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Motivation
Liquid metals are used in applications with large heat transfer

requirements (e.g. heat pipes, electrochemical energy conversion)

Condensed sodium must be pumped into the evaporator to complete the
Na-TEC thermodynamic cycle

Low-temperature capillary pumping solutions in Na-TEC can be enabled
with a non-wetting porous structure
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Conservation of Mass

If mass transfer occurs by advection and diffusion, the two commonly used models
are the advection-diffusion model (ADM) and the dusty-gas model (DGM).

Assume a binary mixture within a porous structure:
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The permeability is given by the Blake-Kozeny expression « =

To account for Knudsen diffusion, the permeability is modified by the Klinkenberg
factor:
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Effective Thermal Conductivity

Due to the significant mismatch between the gas and the solid, use a
parallel arrangement of thermal conductivities
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ky=(k'+kL)
Consider a binary mixture of monatomic gases [1] to find £,

The porous solid thermal conductivity is enhanced by radiation between
particles

The packed bed is assumed to be pseudo-homogeneous with diffuse
incident flux and a quasi-isotropic phase function [2]
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 The extinction coefficient can be extrapolated from previously gathered
experimental data [2]

[1] Mason, Saxena, 1958
[2] Chen, Churchill, 1963




Gauge Pressure Experiment
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Experimental Design
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Evaporator Design




Thermal Profile
» To find temperature profile, use an quasi-axisymmetric 3D COMSOL model
« Bottom of the flange is assumed to be isothermal (heat input)
« Top of the geometry is set to ambient temperature (i.e. infinite fin)

« Natural convection on external faces (use Churchill-Chu correlation)
« Diffuse, gray radiation on internal and external boundaries
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Maximum Mass Flowrate

Consider a binary mixture of argon and sodium vapor. The argon does not
penetrate the liquid sodium boundary in the evaporator or the porous structure.
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Experiment Attempt #2
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Summary and Future Work

Summary:

« Discussed transport model for combined advection/diffusion

* Introduced the experimental design used to demonstrate sodium
pumping

« Described experimental modifications to achieve a successful run

Future Work:

« Continue experimental attempts while
trying to improve the temperature
profile

« Gather enough data points to construct a
pump curve

« Validate experiment with conjugate heat
transfer Comsol modeling
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