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Project Objectives and Goals Experimental Setup Conclusion

After attempting to run this experiment with a few different
configurations, the set-up described herein is robust and reliable as
evidenced by 15 successful runs shown in the results. The

The transfer of liquid sodium from a low-pressure condenser to a
high-pressure evaporator is necessary to complete the
thermodynamic cycle of a Na-TEC. A unique sodium capillary pump
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P issue that might be exacerbating these inconsistencies is residual
sodium methoxide leftover in the tubing infrastructure after
cleaning out the sodium with methanol.
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