
Sodium Pumping via Condensation within 
a Non-Wetting Porous Structure

Alexander Limia, Peter Kottke, Prof. Andrei G. Fedorov, Prof. Shannon K. Yee
2017 Summer Heat Transfer Conference

July 14, 2017

Scalable Thermal Energy Engineering Laboratory
Woodruff School of Mechanical Engineering

2C
πθ >



Sodium Thermal Electrochemical Converter (Na-TEC)
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Vapor Pressure 
~95 kPa
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Vapor Pressure 
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1-2 : Isobaric Heating

2-3 : Vaporization

3-4 : Isothermal Expansion 

4-5 : Isobaric Cooling

5-6 : Condensation

6-1 : Isentropic Pumping 
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History of Na-TEC Wick Development

Tournier and El-Genk, Journal of Thermophysics and Heat Transfer, 2002

• First wicks were tested in 1980’s for 
microgravity operation

• Competition between efficient liquid 
transport and capillary driving force

Driving Force
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Non-Wetting Capillary Pumping of Liquid Sodium
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Prior wicks were made 
with wetting structures 
in the evaporator

Can a non-wetting porous structure 
enable low-temperature capillary 
pumping solutions in the condenser?
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Laplace Pressure

Young-Dupree Equation

Interfacial Pressure is a Function of Surface Energy, Contact 
Angle, and Pore Size
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Stainless Steel 18-8

Adapted from Taylor & Ford, U.K. 
Atomic Energy Authority Report, 1955

pd

Cθ12

1
K

( )4 coslv
L C

p

σP π θ
d

= -

Idealized Cylindrical Pore
SS 316 porous structure thermally 

pressed inside cylinder:

9.55 mm

ε  = 0.25
0.1 µm < dp < 4.15 µm

100 µm
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Sodium vapor diffuses through the porous structure and condenses 
at the liquid-vapor interface
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Experimental Conditions:
• Interface not established via 

condensation
• No recirculation
• Transient Operation

Vitreous 
Carbon Felt

SS 316

SS 316
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Superheated
Evaporator

Pressure
Transducer
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Structure
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Liquid Na level

To Atm

An electrode prism measures the sodium flowrate at 
various pressures

Cartridge heaters inserted 
radially into the flange edge

Electrode Prism

L
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= 2.5 m
m

dprism = 1 mm

Electrodes



Physical Experiment Assembly

1.0 in

Experimental 
Coupon

Experiment Inside Glovebox

electrodes

graphite heater 
block

calcium silicate 
insulation

Evaporator Heater 
Block

cartridge 
heaters

Final Assembly Before 
Experiment

alumina foam 
insulation
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A Conduction Model is Used to Predict the Temperature 
Profile Within the Experimental Coupon

Tbound

Porous 
structure 
domain

natural convection 
and radiation

bottom flange

Flange bolt

Interface 
heat source

T∞

top flange

K

1/6 geometry with radiation symmetry 

A quasi-axisymmetric 3D COMSOL 
model approximates the coupon 
temperature profile:

Consider only the experimental
coupon with fixed temperature
boundaries:
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Use a 1D conduction model to estimate 
the central axial temperature

W/m/K, ε = 25%, SS 316

W/m/K, ε = 70%, Vitreous Carbon

Wetting Transition
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Quasi-steady 1D model assumptions:

1. Stationary condensation front

2. Infinitesimal two-phase zone

3. Dilute gas approximation

4. Uniform capillary pressure
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How to Differentiate Between Liquid Sodium Pumping and 
Thermal Expansion
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Control Experiment• Thermal expansion requires a 
density reduction of ~ 0.7%

• This requires a temperature 
increase of ~ 30K

• Control Experiment shows 
temperature change > 13K
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Summary of Experimental Results – 6/6/19
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• Liquid pumping was achieved 
at a ΔP of ~3.8 kPa

• Electrode activation is not 
accounted for by thermal 
expansion

Why is observed mass flowrate 
much faster than predicted?
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Several Experimental Conditions Require Deeper Exploration

Post-processing of experimental 
coupon:

6/14/19 Run
Thin layer of sodium 
observed after 
opening the coupon

Unknown Run
Entire carbon felt 
area covered with 
sodium

a) Is condensation occurring 
during cooling?

b) Is diffusion rate exceeding 
pumping rate?

c) Is condensation flooding the 
pores during heating?

!m

Argon may be trapped 
within the flow path 
during sodium melting

Bubble expansion 
affects the flowrate 
calculation

Condensation within 
the relief valve, 
suppresses pumping 
capacity


