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Abstract

We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady

Inductive helicity injection (HIT-SI) device that treat the entire plasma volume in a single dynamic

MHD model. A new fully 3D numerical tool, the PSI-TET code, was developed that provides the

geometric flexibility required for this investigation. Implementation of a zero-β Hall MHD model

using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary

condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented

focusing on injector dynamics that are investigated numerically for the first time. Asymmetries

in the plasma loading between the two helicity injectors and progression of field reversal in each

injector are observed. Analysis indicates cross-coupling between injectors through confinement

volume structures. Injector impedance is found to scale with toroidal current at fixed density,

consistent with experimental observation. Comparison to experimental data with an injector drive

frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures

from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

∗ hansec@uw.edu
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I. INTRODUCTION

The development of efficient, steady state current drive is a crucial issue for many mag-

netic confinement fusion concepts[1, 2]. The Helicity Injected Torus-Steady Inductive (HIT-

SI) experiment[3, 4] studies the use of Steady Inductive Helicity Injection (SIHI) current

drive as a means for sustaining plasma current in closed toroidal geometries. Although all

current drive methods can be cast in terms of helicity and its injection, the term “helicity

injection current drive” is usually ascribed to a class of methods where helicity is injected in

an experimentally convenient way with plasma dynamo[5–8] and other dynamic processes[9]

used to distribute the current driving force where it is needed. Many experiments have

successfully applied this method using axisymmetric injection fields, such as Coaxial He-

licity Injection (CHI) on spheromaks[10–12] and spherical tori[13, 14] and Oscillating Field

Current Drive (OFCD)[15] on Reverse Field Pinches (RFPs).

The necessary involvement of plasma dynamics in these current drive methods com-

plicates their understanding. This motivates the use of numerical models to analyze the

physical phenomenon involved. Single fluid MHD and Hall-MHD models have been used

previously to study helicity injection in SSPX[16, 17], NSTX[18], Pegasus[19] and other

experiments[20, 21]. These investigations have helped elucidate relaxation and other pro-

cesses that reproduce many of the qualitative features observed in experimental data. In

order to gain confidence in understanding derived from these models, direct comparison

must be made between observations and simulation results. This process of validating[22–24]

MHD as an appropriate and predictive model for existing and future magnetic confinement

experiments is an area of significant activity[25, 26].

The SIHI current drive method investigated on the HIT-SI experiment differs from previ-

ously studied helicity injection methods through the use of non-axisymmetric applied fields.

Additionally, these fields are generated inductively by circuits on injectors external to the

primary confinement volume. Detailed descriptions of the experiment and its operation are

available in references [27] and [28]. Figure 1 shows a cut-away of the experiment (col-

ors indicate segments that are electrically isolated from one another). Helicity is injected

into the plasma by oscillating two sets of coils, the flux and voltage coil, on each of two

semi-toroidal injectors attached to either side of the nominally axisymmetric bow-tie flux

conserver. These coils produce helical magnetic fields that link through the injector and flux
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(a)Machine Geometry (b)Simulation Domain

FIG. 1. Cut-away view of the HIT-SI experiment and simulation domain. Only the boundary of

the computational grid is shown for comparison with the source CAD representation.

conserver volumes, which both generate[4] and sustain[8] a spheromak[29, 30] equilibrium.

A more detailed description of the operation will be provided in section III as part of the

discussion of boundary conditions used in simulations.

SIHI has shown significant promise, producing the first sustained spheromaks with ob-

served pressure confinement[31] while removing electrode surfaces – a significant source of

impurity production. Previous numerical studies of this method by Izzo[32] and Akcay[26]

have advanced the understanding of SIHI current drive in HIT-SI. However, these studies

simplified the plasma geometry, by removing the helicity injectors, so that the remaining

plasma region is axisymmetric. Injection fields in the confinement volume were then pro-

duced by applying magnetic field boundary conditions to mimic the effect of the injector

circuits. These changes allowed the widely used and verified NIMROD code[33, 34] to be

applied to HIT-SI, but removed plasma dynamics internal to the injectors from the simula-

tions.

In this paper we present the first simulations of HIT-SI that treat the full plasma volume

in a single coupled simulation. These simulations are found to agree well with experimental

data and previous simulations by Akcay[26]. By including the injector regions, agreement

is improved between the injector impedance observed in simulations. Field reversal in the

injectors, due to AC operation of the driving circuits, is observed to progress asymmetrically

relative to the injector mouths once a significant toroidal current forms. Circuit loading,

produced by plasma response, is found to be more dissipative in one injector than another,

where the “dominant” injector is dependent on relative phasing. Analysis of injector coupling
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to plasma eigenmodes indicates cross-coupling through intermediary modes may play a role

in determining this asymmetry. Simulations were enabled by the development of a new

MHD code (PSI-TET) that is capable of representing complex 3D geometry easily.

The remainder of this paper will be organized as follows: In section II the PSI-TET

code[35] will be briefly described, focusing on the features that enabled the simulations to

follow. In section III the numerical model (zero-β MHD) will be presented along with details

of its implementation using vector finite elements. A new boundary condition is also pre-

sented that self-consistently models the insulator coated conducting wall and driving circuits

of HIT-SI. Section IV will present results of simulations performed with the zero-β model

focusing on new physical phenomena associated with modeling the injectors. Comparison

to experimental data from magnetic diagnostics will be presented in V.

II. PSI-TET

The PSI-center TETrahedral mesh (PSI-TET) code is a 3D high order finite element

framework that supports the development of multi-physics models on unstructured tetrahe-

dral grids. This discretization enables the representation of complex 3D geometries easily,

such as the HIT-SI experiment. An interface to the CUBIT[36] and T3D[37] meshing soft-

wares allow generation of computational grids directly from Computer-Aided Design (CAD)

models – accurately representing experimental geometries. High order finite element repre-

sentations are provided in the form of nodal scalar (Lagrange) and Curl-Conforming vector

(Nedelec[38, 39]) basis sets, with support to add additional sets as desired. PSI-TET is

a massively parallel code supporting both distributed (task) and shared (thread) memory

parallelization using a MPI+OpenMP model[40, 41]. To enable the use of large meshes and

efficiently utilize parallel computing environments the physical domain is decomposed using

the METIS[42] partitioning library. Linear algebra operations are supported through either

a native implementation or an interface to the PETSc library[43]. This allows the user

to design code that can access a wide variety of solvers through a common and consistent

interface.

A main feature of the PSI-TET framework is built-in mechanics and support for construct-

ing preconditioners using the geometric multi-grid method[44–47]. A base grid is imported

and successively refined, by subdividing each edge in the mesh, resulting in a hierarchy of
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progressively finer grids. Multi-grid levels are defined by creating a linear discretization for

each of the coarse grids and additional levels for each polynomial order up to the maximum

desired order on the finest grid. New nodes generated during grid refinement are adjusted to

the CAD boundary using the CUBIT or T3D interfaces. Quadratic or cubic mappings from

logical to physical space can also be constructed to accurately capture boundary curvature

when using high order representations using the same interface.

III. NUMERICAL MODEL

For this investigation a zero-β Hall-MHD model was implemented in PSI-TET. This

model simplifies the Hall-MHD equations for a fully ionized, quasi-neutral (ni = ne = n)

plasma by assuming temperature and density are both uniform in space and constant in

time. This reduces the system of equations to the plasma momentum (eq. 1a) and induction

(eq. 1b) equations. The current density is derived from the magnetic field through a low

frequency approximation to Ampere’s law (eq. 1c). The electric field is given by generalized

Ohm’s law (eq. 1d) including resistive, Hall and electron inertia terms. The fluid stress

tensor is approximated with a simplified kinematic viscosity, Π = −ν∇u. The remaining

constants are plasma density (n), resistivity (η), ion mass (mi), enhanced electron mass

(m∗
e) and charge constant (e).

nmi

[
∂u

∂t
+ u · ∇u

]
= J×B−∇ · Π (1a)

∂B

∂t
= −∇× E (1b)

J =
1

µ0

∇×B (1c)

E = −u×B + ηJ +
1

ne

(
J×B +

m∗
e

e

∂J

∂t

)
(1d)

This model was chosen based on existing numerical studies[26] where it was shown to be a

suitable starting case for modeling HIT-SI. Two-fluid effects, included through the Hall term

in Ohm’s law, are expected to be important in HIT-SI as the ion inertial scale (di ≈ 8 cm)

is comparable to experimental length scales, such as the injector diameter (linj = 14 cm),
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for the simulations presented in section IV. The importance of these effects have also been

confirmed empirically as simulations using a resistive MHD model were unable to capture

the rapid formation observed in experimental data[26]. The inertia term in Ohm’s law is

included for numerical convenience and used in conjunction with an enhanced electron mass

to artificially damp Whistler waves with high spatial and temporal frequency– reducing the

stiffness of the numerical system. An enhancement factor of 100, yielding a mass ratio

of mi
m∗
e
≈ 36 for a Deuterium plasma, was found to increase solver speed without affecting

plasma dynamics[26].

A. Implementation

Equations 1a and 1b are implemented in PSI-TET using the Crank-Nicolson centered, im-

plicit method for time advance. The resulting non-linear system of equations are discretized

in weak form using a Galerkin finite element approach on an unstructured tetrahedral grid.

The magnetic field is expressed using a vector element representation, which defines the

solenoidal and longitudinal components of the vector field on distinct subsets of the basis

set. This defines a natural Helmholtz-like decomposition (eq. 2) within the representation,

enabling boundary conditions that treat the two subspaces separately – as with the SIHI

boundary condition described below.

B = ∇×A +∇φ (2)

Basis functions are defined using the hierarchical set of Schöberl[39]. Plasma velocity is

discretized using a scalar Lagrange basis for each Cartesian component of the vector field.

Both representations support variable polynomial degree, and representations up to 4th

order are currently available. For the work presented here, quadratic basis sets were used for

both the magnetic field and plasma velocity. Vector elements have been used extensively in

electrodynamic modeling[48, 49] and have also been applied to incompressible MHD[50, 51],

where both the vector potential and fluid vorticity are represented using the same basis.

However, to the authors’ knowledge this is the first application of vector finite elements to

representation of the magnetic field directly in MHD.

The discretized non-linear system of equations is solved using Newton iteration with the

preconditioned Generalized Minimum RESidual (GMRES) method[52] used to provide an
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approximate inverse for the system Jacobian. Preconditioning is performed using geometric

multi-grid with a V-cycle iteration, where coarse representations are defined by first reducing

the polynomial order of the representation and then coarsening the underlying tetrahedral

mesh – as described above. Smoothing on each level is performed by a few GMRES iter-

ations that are further preconditioned by a block-Jacobi method – with local direct solves

(LU)[53]. For the simulations presented in this paper this method provided a significant

speed improvement over single-level preconditioners such as additive-Schwarz, block-Jacobi

and incomplete factorizations.

B. SIHI Boundary Conditions

Boundary conditions for SIHI current drive in HIT-SI have posed a challenge for numerical

models. The device is constructed out of 1/2” thick copper to provide a good flux conserver.

The plasma facing surface is then coated with a thin insulating layer in order to ensure purely

inductive operation of the injectors. As no external magnetic field is initially applied this

enforces that both the magnetic flux and current density normal to the boundary must be

zero (eq. 3). By restricting current flow to the boundary magnetic flux and injected power

are able to redistribute over the boundary in response to plasma dynamics. Capturing this

effect is expected to be important in accurately modeling SIHI current drive.

B · n̂ = J · n̂ = 0 (3)

The constraint on the magnetic flux is satisfied with a perfectly conducting wall boundary

condition. However, the constraint on current density is more complicated as it amounts to

restriction of the functional form of the tangential magnetic field on the boundary, given by

equation 4 where the subscript t denotes vector components tangential to the boundary.

(∇×B) · n̂ = 0→ Bt = ∇tχ (4)

In previous simulations using an axisymmetric boundary this effect is modeled by a

thin boundary layer with high resistivity relative to the plasma value. High resistivity

impedes current flow across this layer – approximating the insulating coating. To prevent

numerical issues associated with this sharp variation in resistivity, it is necessary to introduce

a matching boundary layer in the mesh so that the variation can occur within a single cell.
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Generating such a mesh is straightforward for a 2D poloidal mesh. However, this method

proved impractical for a tetrahedral mesh of HIT-SI due to the complex geometry where the

injectors meet the confinement volume. In order to avoid this requirement a new boundary

condition has been developed to restrict J · n̂ at the wall directly, by leveraging the subspace

decomposition provided by the vector elements used to represent the magnetic field. The

requirement that tangential magnetic field on the boundary must be curl-free (eq. 4) can be

straightforwardly enforced using the vector element representation. A Dirichlet boundary

condition is applied to the solenoidal subspace only, reducing the tangential field to the

gradient of a scalar potential on the boundary.

This boundary condition also provides a simple way to apply driving fields to the injectors.

By allowing the boundary potential to be multi-valued, jumps can be applied to enforce the

loop integral of the magnetic field,
∮

B · dl = f(t), on each topologically distinct closed

path on the boundary. By virtue of Ampere’s law this is equivalent to specifying the current

passing through any surface enclosed by the given path. For HIT-SI, two unique paths

exist for each injector and correspond to current passing through the injector handle, in

the plasma, and current passing between the injector and the confinement volume, outside

the plasma. Experimentally these currents correspond to the measured injector current,

driven by the voltage coil, and total current in all windings of the flux coil respectively. The

driving circuits on HIT-SI are then modeled using these jump conditions to reproduce the

experimentally observed injector flux and current waveforms.

C. Flux Waveform Feedback

For HIT-SI simulations, the external drive circuits and their coupling to the plasma

are not simulated directly. As a result, boundary conditions are used to reproduce the

experimentally observed plasma quantities of flux and current in each injector. Current

is controlled directly by the relevant boundary condition. Injector flux on the other hand

is related to the boundary condition on flux coil current through plasma dynamics in the

injector. In order to reproduce the desired flux waveform, the amplitude of the effective flux

coil currents are adjusted in time based on the actual injector flux. A Proportional-Integral-

Differential (PID) control algorithm is used to set the flux coil current in each injector

from the measured injector fluxes at the beginning of each time step. An example of the
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FIG. 2. Injector flux (dashed) and flux coil current (solid) waveforms from the PSI-TET baseline

simulation near toroidal current saturation. Higher coil current and a larger phase offset (at zero

crossing) are required for the X-injector to drive the desired flux waveform, when compared to the

Y-injector.

injector flux coil currents required to produce sinusoidal flux waveforms during the baseline

simulation presented in section in section IV is shown in figure 2. The required coil current

waveform deviates significantly from the flux waveform in both phase and shape, indicating

variation in the equivalent circuit inductance and resistivity throughout an injector cycle.

The observed coil current waveforms from simulation are in qualitative agreement with

experimental observations, which show similar structures and contain the same asymmetry

between the X and Y injectors – indicating a difference in circuit loading between the two

injectors. Details of this asymmetry and the waveform shape will be discussed further in

the following section in reference to related plasma activity.

IV. RESULTS

In this section we present the results, focusing on injector dynamics, from initial simula-

tions of the HIT-SI experiment using the model presented above. A benchmark simulation

was performed for direct comparison to experimental data (presented in the next section)

along with supplemental simulations to investigate injector physics, by varying parameters

around the base case. The benchmark case was performed with physical parameters set

to closely match experimentally observed values, shown in table I, for experimental shot

9



122385. This shot was chosen as it has been extensively studied both experimentally[8, 28]

and numerically[26]. This shot does not constitute the highest performance achieved in

HIT-SI, but is representative of operation in this regime.

The flux and current waveforms in each injector were driven sinusoidally as sin (2πfinjt+ φi0)

with a linear ramp in amplitude to the steady state values shown in table I applied over

the first injector period (69 µs). The starting phase (φi0) was set independently for each

waveform to match the relative phase offsets experimentally imposed during 14.5 kHz op-

eration in HIT-SI. A starting phase of 0 and −π/2 was used for the X and Y injector

currents respectively, with the related flux waveform on each injector set to lead the current

waveform by 1 µs.

Density is measured in the experiment using a single interferometry chord. A steady

increase in density is observed throughout the shot along with oscillations at the injector

frequency, see figure 7 in reference [8]. For these simulations a density consistent with

the averaged density immediately following formation of toroidal current was chosen, as in

previous studies[26]. The experimental temperature range is based on measurements using

a Langmuir probe. Experimental resistivity and viscosity are derived from the density and

temperature measurements using the Spitzer[54] model for resistivity (η = 0.51ne2τe/me)

and the Braginskii[55] model for parallel viscosity (ν = 0.96nkTiτi). Resistivity for the base

simulation was chosen in order to match the toroidal current between the simulation and

experiment during flattop. Resistivities for additional simulations presented in section IV C

are shown in parentheses.

The computational mesh was constructed using T3D[37] and a simplified CAD represen-

tation of the HIT-SI device where the diagnostic gap on the outboard midplane has been

removed. The resulting simulated plasma volume, shown in figure 1(b), captures the full

experimental plasma domain well, shown in figure 1(a). The same computational grid was

used for all simulations and consists of a base grid with a single mesh refinement resulting

in an average edge length of 2.1 cm for the solution grid. The average node spacing is

h ≈ 1 cm for the quadratic basis functions used for discretization. Slightly higher resolu-

tion exists near the nose cone and injector mouths due to small geometric features in these

areas. Convergence was checked by performing partial simulations (500 µs in length) with

higher polynomial degree (cubic) on the same grid and higher grid resolution with the same

polynomial degree (h ≈ 0.5 cm). The time step was dynamically varied as the simulation
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TABLE I. Run parameters for the HIT-SI baseline simulation in comparison to experimental values

from shot 122385.

Parameter Experiment Simulation

Injector Current [kA] 10-20 21

Injector Flux [mWb] 0.6-1.4 1.2

finj [kHz] 14.5 14.5

ne [m−3] 1− 4× 1019 1.5× 1019

Te [eV] 6-12 8

η/µ0 [m2/s] 25-9 16 (12.5, 25)

ν/ρ [m2/s] 200-1000 260

advanced to maintain a constant number of linear iterations per time step. A maximum

time step of 60 ns was imposed, determined by convergence studies. Decreases in the time

step were only seen during injector reversal periods, resulting in an average time step very

close to the 60 ns maximum.

A. Injector Coupling to the Confinement Volume

By including the injectors in the simulation domain, connection of the injector fields to

the magnetic object in the confinement volume can be analyzed. HIT-SI operation can

be divided into two time periods based on the amplitude of toroidal current present in

the confinement volume. Before formation of a strong toroidal current the confinement

volume is dominated by an object with primarily odd symmetry, which closely matches

the symmetry of the applied field from a given injector. Figure 3 shows the magnetic field

structure from the baseline simulation in the X-Z plane during this period. The plot is at

a time in the simulation when the visible injector (X-Injector) has peak flux and current.

The full magnetic structure is mostly n = 1 symmetric with injector magnetic field linking

into an aligned structure in the confinement volume. The magnetic configuration in the

confinement volume closely matches a linear combination of the 2nd and 3rd force-free

eigenstates of the domain[35]– solutions to the eigenvalue equation µ0J = λB. The applied
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FIG. 3. Magnetic field in the X-Z plane from a PSI-TET simulation before formation of a toroidal

current (0.087 ms). In-plane field is shown as the black vectors while out-of-plane field strength

is indicated by the shaded cross-section (scale in [T]). The X-Injector and confinement volume are

visible.

injector fields directly couple to these states, see section IV B. During the pre-formation

phase this structure grows and rotates in time to align itself with the dominant injector,

consistent with observations of n = 1 mode activity in experimental data, simulations[26]

and Taylor theory approximation[4, 56].

The configuration produced early in time is ideally unstable[57, 58] and relaxes[9] once it

reaches sufficient free energy to the desired spheromak equilibrium that is primarily axisym-

metric. In this post-formation phase, a different coupling of the injectors to the confinement

volume is observed. As the spheromak energy is increased the injector fields are forced

to align with this object by virtue of reconnection, producing a new state during peaks of

injector flux and current, shown in figure 4. At this time the spheromak object is clearly

visible as a large n = 0 structure in the out of plane component of the magnetic field. Flux

from the injector is forced to align with the spheromak as it exits the injector, causing the

driven current channel to “lean” against the inner and outer walls of the flux conserver. This

configuration, which was expected during design of HIT-SI[3] and observed internal to the

confinement volume in previous simulations, is expected to be conducive to current drive in

the spheromak[8] – by maintaining parallel current in the edge of the plasma. As the main
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FIG. 4. Magnetic field in the X-Z plane from a PSI-TET simulation following formation of a

toroidal current (1.4 ms). In-plane field is shown as the black vectors while out-of-plane field

strength is indicated by the shaded cross-section (scale in [T]).

magnetic structure is now largely symmetric it does not rotate, but instead “tips” back and

forth as the injector channels reconnect during reversal of the injector to align with the

spheromak on the opposite side. Coupling to the confinement volume also begins to effect

the field structure inside the injectors seen as an n = 0 variation in the amplitude of the out

of plane field strength in figure 4. As the current ratio (
Iφ
Iinj

) increases, this effect becomes

more pronounced and the flux profile across the injector mouth can vary significantly from

its pre-formation profile.

B. Injector Dynamics

The plasma region inside the injectors introduces a rich set of dynamics that has not

been well studied previously. In fact, the injectors introduce new, numerically challenging

regions due to dynamics associated with field reversal. The boundary conditions driving

the injectors always push field in from the boundary, resulting in reversal that occurs by

injecting magnetic flux and current in the opposite direction of existing fields. As new flux

is injected, the existing flux is compressed into a progressively smaller channel in the center

of the injector. When the current gradients associated with this flux transition become large
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enough they drive instability at the interface, breaking the boundary into islands, and field

within the channel reverses to match the direction of the incoming flux. Throughout this

process, incoming flux near the wall remains well behaved due to the nearby conducting

surface. Figure 5 shows an example of the magnetic field structure midway through the

reversal process in the X-injector. At this time, the flux channel has broken up into islands

and field is reversing so that the field flows uniformly from right to left through the injector.

The primary reversal phase, characterized by fluctuations and islands, spans less than 4 µs

in the baseline simulation, making it much faster than other non-linear phenomena present

in the confinement volume. This time scale is consistent with the Sweet-Parker[59, 60]

reconnection timescale, τsp =
√
τAτL/R ≈ 3.2 µs, computed for current sheets in the injector

just before the onset of macroscopic reversal (344 µs). At this time the injector flux reverses

on a scale of ≈ 4 cm with average field strength in the reversal channel of ≈ 30 mT.

Reconnection layers associated with reversal are not fully resolved[61] in these simulations

so only macroscopic dynamics will be discussed here.

Reversal within a single injector progresses asymmetrically with respect to the injector

mouths, as seen in figure 5. Island structures at the time shown in this figure are more

concentrated near the left mouth, corresponding to the location where flux was entering the

injector from the confinement volume prior to reversal. The right mouth on the other hand

shows more complete reversal with larger scale island structures visible compared to the

left mouth. This trend continues through the remainder of the reversal as island structures

reconnect and dissipate, moving downstream (right to left in figure 5) along the flux being

injected. The relationship of this progression, relative to the injector flux prior to reversal,

holds for all reversal events following formation of a toroidal current. Prior to spheromak

formation the reconnection process is more symmetric. If the toroidal current is reversed,

the progression is also reversed. As the injector fields are strongly tied to the confinement

volume during this period, as shown in figure 3, coupling may act to stabilize or destabilize

the field more at one injector mouth. This would act to delay or trigger the reversal process

leading to the observed asymmetry.

Field reversal is also visible as a deviation from the otherwise smooth injector flux coil

current waveform required to reproduce sinusoidal injector flux. In figure 2 an increase in

the time derivative of coil current is seen just proceeding reversal events in both the X

(t ≈ {1.34, 1.38, 1.41, 1.44} ms) and Y (t ≈ {1.36, 1.39, 1.43, 1.46} ms) injectors. During and
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FIG. 5. Magnetic field in the X-Z plane from a PSI-TET simulation during field reversal in the

X-injector (0.345 ms). In-plane field is shown as the black vectors while out-of-plane field strength

is indicated by the shaded cross-section (scale in [T]).

following these field reversals a stagnation in flux coil current is observed. This stagnation in

coil current, without a corresponding stagnation in the injector flux (loop voltage), indicates

a large change in the inductance of the injector plasma during this time – consistent with a

change in magnetic topology due to field reversal. Additionally, the flux coil currents show

an asymmetry between the plasma response to flux injection in the two injectors. The coil

currents on the X-Injector have a higher peak amplitude and exhibit a larger phase offset

with respect to the flux waveform than the coil currents for the Y-Injector. These differ-

ences indicate that the plasma load on the X-Injector flux circuit is more dissipative than

the Y-Injector in simulations. An asymmetry that is also observed experimentally during

14.5 kHz operation in HIT-SI. To further investigate this phenomenon a set of simulations

were performed to determine the effect of injector phasing and toroidal current direction on

the flux coil currents. Three additional simulations were performed and compared to the

baseline case. The first simulation kept the same parameters and driver waveform as the

base case, but changed the starting phase of all waveforms together to generate a negative

toroidal current. For the other two simulations the relative phasing of the injectors was

swapped so that the Y-Injector waveforms “led” the X-Injector. Starting phase was then

varied to get one simulation each with positive and negative toroidal current. The observed
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strength asymmetry was found to be dependent on phasing only, such that the higher am-

plitude waveform occurred when flux reversals corresponded to the two injectors switching

from the same polarity (defined as the sign of driver waveform) to opposite polarities. This

indicates that coupling between the injectors may be important in determining the relative

loading on the driver coils.

To investigate a possible means of interaction between the two injectors, we employ the

framework of force-free equilibria used extensively to study HIT-SI[4, 56, 62]. For these

states, vacuum fields induced by circuits on different injectors are orthogonal to each other,

resulting in no mutual coupling, but the injector fields do couple through common plasma

modes in the confinement volume[56]. The coupling coefficients for each injector to the first

5 eigenmodes in HIT-SI are shown in table II. Coupling is computed as
∫
V

Bi
v · BndV ,

where Bi
v is the vacuum field for injector i (with unit flux) and Bn is the n-th force-free

eigenmode (with unit energy). In this force-free model the voltage and flux circuits are

implicitly tied by the requirement of uniform parallel current density (λ = j·B
B2 ), therefore

only the vacuum flux must be considered to compute mode coupling. The strongest couplings

exist between the second and third modes, which share the odd symmetry of the injectors.

Mode 3 represents the strongest interaction and couples the two injectors with matching

polarities. Coupling of the injector fields through a common mode like this one may explain

the asymmetry in coil current waveforms. During field reversals in the X-Injector, the

existing flux will couple to the flux in the Y-Injector, which is ramping up, through this

intermediate mode. This coupling may act to maintain the flux, requiring stronger drive,

and thus coil currents, to reverse. For other reversal periods this effect would be present

due to coupling through the second eigenmode, but weaker as observed. Non-linear coupling

through a common third mode has also been observed experimentally for plasma modes that

are linearly decoupled[63, 64]. Mutual coupling with the same polarity is also consistent

with experimental observations of an “injector” mode. This “injector” mode manifests as a

spontaneous offset of the injector flux and current that appears in both injectors with the

same polarity.

16



TABLE II. Computed mode coupling for injector drive fields to force-free plasma eigenmodes in

HIT-SI.

Eigenmode X-Injector Y-Injector

1 2.2× 10−10 −6.8× 10−11

2 −7.0× 10−3 9.6× 10−3

3 5.1× 10−2 5.1× 10−2

4 −2.1× 10−10 −1.4× 10−10

5 −4.2× 10−11 −3.8× 10−11

C. Drive Impedance

During high performance operation in HIT-SI, the impedance of the voltage coil circuits is

well described by a real impedance, which scales linearly as the ratio j/n in the confinement

volume[8]. This impedance is indicative of the underlying current drive mechanism that

transfers magnetic energy from the injector driven region to the bulk plasma current. As a

result, reproducing this impedance behavior is an important element in validating a model for

studying helicity injection current drive in HIT-SI. Experimentally, the scaling is determined

by comparing driver coil voltage and current waveforms in time with the toroidal current and

line averaged electron density. However, with the present zero-β model plasma density is

fixed in time, so impedance should only depend on the toroidal current. As the equivalent coil

voltage is not readily available in simulations, a helicity balance model is used, where Ohmic

dissipation from the spheromak equilibrium is assumed to be the dominant dissipation.

As the injector flux and current are fixed the rate of helicity injection depends only on

impedance. Helicity dissipation is due to resistive decay of the spheromak equilibrium with

a characteristic time, τK = µ0
2ηλ2

, that is known from resistivity and λTaylor = 10.3 m−1.

In steady state this gives the helicity balance in equation 5, where Zinj is the voltage coil

impedance, Ψinj is the quadrature injector flux, Iinj is the quadrature injector current,

and K ∝ I2φ is the normalized magnetic helicity associated with the toroidal current. By

assuming balance this equation is only expected to hold when the toroidal current has

reached steady-state.
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ZinjΨinjIinj =
K

τK
(5)

To investigate this scaling in simulations the background resistivity is scanned, with

fixed plasma density and injector flux/current, to determine the dependence of the peak

toroidal current on resistivity. If Zinj ∝ j/n then the toroidal current should scale as

Iφ ∝ η−1. In general, if the impedance scales as Zinj ∝ Iαφ then toroidal current should

scale as Iφ ∝ η
1

α−2 with fixed plasma density and injector flux/current. Previous simulations

without the injector volumes found a scaling of Iφ ∝ η−0.6 (Zinj ∝ I
1/3
φ ), lower than the

scaling expected from experimental observations. This process was repeated using PSI-TET

by taking the baseline case and performing simulations at two additional resistivities (η/µ0 =

12.5, 25). The toroidal current evolution and saturated values for the three simulations used

to determine scaling are shown in figure 6. These simulations show stronger scaling of

toroidal current with resistivity of Iφ ∝ η−0.86 (Zinj ∝ I0.84φ ). This impedance scaling agrees

with experimental observations within the error determined in reference [8]. Scaling is

slightly below the analytic prediction based on the Imposed Dynamo Current Drive (IDCD)

model. However, simplifying approximations were required to derive both the analytic

prediction and the helicity balance employed here. In particular variation in dissipation rates

due to changes in the helicity content per unit current and decay time were not considered,

which will be affected by evolution of the current profile that is expected to occur as the

toroidal current grows.

The lowest resistivity, and highest current gain, simulation also sees the development

of low frequency oscillations in the toroidal current late in time. These oscillations begin

to manifest at a current gain of ≈ 3, which is within the operational range of HIT-SI at

14.5 kHz. Experimentally, oscillations like these cannot be distinguished from plasma circuit

interaction that also tends to manifest as low frequency variation. Oscillations in the toroidal

current have been seen in NIMROD simulations of HIT-SI with very low resistivity and high

current amplification (≈ 6) where transient closed flux is formed[65]. However, Poincaré

sections during this time in the PSI-TET with η/µ0 = 12.5 do not show any persistent flux

surfaces. This phenomenon will be investigated further in comparison with higher frequency

experimental operation, where high current amplification is seen.
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FIG. 6. Comparison of toroidal current (Iφ) evolution from simulations with different resistivities

(η/µ0 = 12.5, 16, 25). Toroidal current following saturation is found to scale as η−0.86, in good

agreement with experimental observed impedance measurements[8].

V. COMPARISON TO EXPERIMENTAL DATA

In this section, we compare the baseline simulation with experimental data to assess the

level of agreement in diagnostic signals. Before comparisons can be made the experimental

and simulation timebases must be matched. For HIT-SI, this is done by first shifting the sim-

ulation timebase to match the time of toroidal current formation in both datasets. Then, the

simulation is shifted by the smallest amount, either backward or forward in time, to match

the injector current waveforms following current saturation (≈ 1.5 ms) in the experimental

data. For the baseline case presented here, the simulation was a shifted by 641.5 µs in time

to provide the injector alignment shown in figure 8 and used for comparison to diagnostics.

This shift produces good agreement with both experimental injector waveforms, which are

not exactly 90 degrees out of phase with respect to each other as they are in the simula-

tion. Figure 7 shows a comparison between the toroidal current in shot 122385 and the

simulated toroidal current from the PSI-TET baseline simulation. Toroidal current for both

the simulation and experiment is computed using discrete surface magnetic measurements

to approximate Amperian loops[56]. The simulation reproduces the early formation time

well, but the linear current growth observed in the experiment is not reproduced. This

difference is primarily due to a corresponding ramp of the injector driving circuits in the
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FIG. 7. Comparison of toroidal current (Iφ) from the PSI-TET baseline simulation to experimental

data from shot 122385 at 14.5 kHz.

experiment over this time period, while the amplitude of the injectors is constant in the

simulation. Injector waveforms that more closely match the experimental observed signals

are being investigated for future validation simulations. Many of the comparisons presented

here mirror those used in the previous validation study of zero-β Hall-MHD by Akcay[26].

For this paper we have limited comparisons to experimental data, with some comments on

the differences to previous simulations. Detailed comparison between the two numerical

models and experimental data for validation purposes will be presented in a separate paper

to follow.

A. Comparison to Internal Magnetics

In HIT-SI profiles of the toroidal (Bφ) and poloidal (Bθ) magnetic field are measured along

a radial chord by an internal magnetic probe. Evolution of these fields in experimental shot

122385 and simulation are compared in figure 9. In order to prevent clutter in the plot only

a subset of probe locations are shown. The signals for each probe are also plotted with

a fixed offset between locations of 50 mT and 80 mT for the poloidal and toroidal fields

respectively. The major radius of each probe is given on the right side of each plot, just

below the corresponding trace. The magnetic axis of the mean magnetic field in HIT-SI is

located at ≈ 33 cm and the flux conserver is located at ≈ 55 cm.
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FIG. 8. Comparison of injector current waveforms from the PSI-TET baseline simulation (dashed)

to experimental data from shot 122385 (solid) at 14.5 kHz.

Overall, good agreement is seen between PSI-TET and the experiment in both mean

amplitude as well as the fluctuations from the injectors. The phase of injector driven os-

cillations agree well over the entire shot, with agreement in amplitude when experimental

flux and current match the simulated values at approximately 1.5 ms. Significantly larger

fluctuation amplitudes are produced early in time, before formation of a toroidal current,

in the simulation despite good agreement in the formation time. This is likely due to lower

experimental injector currents during this period. Following breakdown in the experiment

a significant drop in the flux and current in the injectors is observed, resulting in decreased

fluctuation amplitude. Fluctuations in the plasma density as well as its mean value are also

higher during this period of time, indicating that density transport may have a stronger ef-

fect before relaxation. Similar oscillations, before relaxation, were also observed in previous

simulations of HIT-SI[26].

Following relaxation, some small differences in fluctuation amplitude and character are

seen in the poloidal field particularly near the mean field magnetic axis. The higher ampli-

tude can be attributed to lower injector current in the experiment prior to 1.5 ms, as shown

in figure 8. A difference is also present in time averaged values of both the toroidal and

poloidal field when the toroidal currents are comparable, as with previous simulations[26].

This indicates a difference in the mean field equilibrium, which is important in validating

the current drive mechanism[8], between simulations using zero-β MHD and the experiment
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FIG. 9. Comparison of magnetic field evolution along the internal magnetic probe for the PSI-TET

validation case and experimental data from shot 122385 at 14.5 kHz.

at 14.5 kHz. By restricting our system to uniform density and temperature, we are ne-

glecting pressure forces as well as variation of plasma resistivity due to temperature, both

of which can strongly impact the structure of equilibrium magnetic fields. Recent experi-

mental observations[31] indicate that pressure effects are important in HIT-SI, at least with

higher injector drive frequency. These effects will be addressed in future work using extended

MHD models including plasma density and temperature dynamics that are available in both

PSI-TET and NIMROD.

B. Comparison of Surface Magnetics Using Bi-Orthogonal Decomposition

Magnetic field is also measured on the interior surface of the flux conserver in HIT-SI

using a distributed array of magnetic probes. Probes are arranged in 4 poloidal arrays of 16

probes each, placed at 0◦, 45◦, 180◦ and 225◦ toroidally, see figure 2 in reference [56]. As with

the internal magnetic probe, toroidal and poloidal field are sampled at each location. Bi-

Orthogonal Decomposition (BD)[66] is applied in order to compare coherent dynamics, from

the 192 magnetic signals produced by this array, between experiment and simulations. The

use of this method is motivated as the magnetic probes have a complicated (non-circular)

spatial relationship that cannot be captured easily using Fourier methods. Additionally, BD

has shown promise for the development of versatile, semi-automatic and quantitative metrics
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for validating MHD models to experimental data[26]. BD is already used for analyzing

experimental data from large diagnostic arrays[67, 68] and simulation results[69].

Bi-Orthogonal Decomposition is a method for decomposing groups of diagnostics signals

into principal components for further analysis. In order to use this method the data must

first be arranged into a signal matrix Yi,j = yi(tj), where individual diagnostic signals (yi),

sampled using the same time base, at discrete time points tj, are stored as columns. This

results in an N×M matrix where N is the number of diagnostic signals and M is the number

of time points. The signal matrix is then decomposed using Singular Value Decomposition

(SVD), equation 6, producing sets of singular values and vectors that correspond to the

spatial and temporal dependence of principal modes[70] in the diagnostic signals. Each set

is contained in one of the factored matrices, φ for the spatial vectors (topos), and Ψ for

the temporal vectors (chronos). By convention these matrices are constructed to be unitary

matrices, where the individual singular vectors are orthogonal to each other and have unit

magnitude. Amplitudes (weights) for individual modes are stored in the diagonal matrix A.

Modes are ordered such that mode amplitudes monotonically decrease, providing a heirarchy

of structures beginning with the dominant (largest amplitude) mode. As the matrix Y is

not square in general, only K = MIN(N,M) modes exist with both spatial and temporal

singular vectors. The remaining vector space in the larger dimension does not produce a

mapping and can be neglected during analysis. For use in the following analysis a mode

based notation will be used where the singular vectors and weights for the k-th mode are

labeled as φk, Ψk, and Ak.

Y = φAΨT (6)

For the comparisons presented here independent decomposition of signal matrices from

experimental data (shot 122385) and the PSI-TET baseline simulation are performed. Com-

parisons are then made between amplitudes and shapes of modes within the resulting sets.

To ensure consistent analysis simulation data was resampled on the experimental timebase

(1 MHz), after shifting the data in time as described above. This ensures phase shifts and

sampling differences do not affect the comparisons. The time window used for this analysis

was 11 injector periods starting at 947 µs, to avoid known differences in the startup behavior

described in section V A.

The resulting signal weight spectrum, Ak, for the first five modes from each of the decom-
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FIG. 10. Mode weights from independent BD analysis of surface magnetic probe signals from the

PSI-TET validation case and experimental data from shot 122385 at 14.5 kHz.

positions are compared in figure 10. As magnetic signals are being used in the data matrix

these amplitudes are directly related to the energy of each mode, integrated over the length

of the sampling window, as Ek ∝ A2
k ∗M . The qualitative shape of the mode spectrum is

well reproduced in the PSI-TET simulation. Differences in the first and second mode ampli-

tudes can be partially attributed to the difference in toroidal current evolution and injector

amplitudes between experiment and simulation. From previous BD analysis of HIT-SI it is

known that the first mode corresponds to the spheromak mean field state, while the second

and third modes correspond primarily to the directly driven injector fluctuations. As a re-

sult these mode weights will be strongly influenced by the average value of the toroidal and

injector currents. As the experimental injector current ramp in not captured in simulations,

the average injector current over the sampled time period is higher in the simulation than

experimentally. This injector current difference also contributes to the difference in toroidal

current evolution, due to lower power injection at lower injector current.

Experimentally, the first BD mode has been found to accurately reproduce the measured

toroidal current[31]. Therefore, we can use the scaled chrono (A1Ψ1(t)) for this mode to

compare the temporal evolution of the toroidal current in simulation and experiment using

a common calculation, figure 11. Using this method good agreement is seen between oscil-

lations observed in the experiment and simulation. The source of discrepancy in the mode

amplitudes for the first mode is also evident using this interpretation. Therefore, detailed
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FIG. 11. Temporal behavior (chrono) of the first mode from independent BD analysis of surface

magnetic probe signals from the PSI-TET validation case and experimental data from shot 122385

at 14.5 kHz.

comparison for validation will require matching the injector waveforms more closely.

To assess the agreement of topos between two data sets, Y 1 and Y 2, in a more quantita-

tive manner, a correlation metric is defined, given by equation 7. Agreement for temporal

behavior can be evaluated in the same manner. This metric quantifies agreement by mea-

suring how well aligned the singular vectors are with respect to each other through the use

of an inner product.

C1,2
i,j = φ1

i · φ2
j (7)

As the individual singular vectors have unit magnitude this correlation will vary in the range

[0, 1] where 0 indicates the singular vectors are orthogonal, complete disagreement, and 1

indicates the singular vectors are identical, complete agreement.

This metric is used to analyze topos of the first 5 modes of the PSI-TET data set for

correlation with the first five modes of the experimental data set in figure 12(a). Correlation

is computed for each of the five modes in the simulation decomposition (colored bars) against

the same modes from experimental decomposition (axis position). The same method is

also used to compare chronos from the respective decompositions in figure 12(b). Good

agreement (> 0.6) is seen with experiment in both spatial and temporal structures for the

first four modes. The fourth mode was not well captured by previous simulations[26] –

indicating injector geometry or coupling may be important for this mode. Analyzing the
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FIG. 12. Mode correlations between independent BD analyses of surface magnetic probe signals

from the PSI-TET validation case and experimental data from shot 122385 at 14.5 kHz.

spatial structure shows a n = 2, m = 1 mode structure, where toroidal variation with n = 2

symmetry is seen near the X-injector and a more symmetric shape in the toroidal direction

is seen near the Y-injector. The fourth mode’s structure may be attributable to asymmetry

introduced by the injector mouths on the nominally axisymmetric confinement volume. This

effect is seen in the Taylor state for HIT-SI, which contains a large island at the q = 1/2

surface that is resonant with an n = 2, m = 1 structure, due to the perturbation induced

by the injector mouths[35]. For the fifth mode, observed correlations are dominated by

random low values (< 0.3) across many modes. This behavior is characteristic of correlations

for higher modes as well, indicating poor correlation between experimental and simulation

mode structure beyond the fourth mode. However, interpretation of agreement in these

higher modes may be misleading as singular value decomposition is a non-linear process.

Therefore, modes in the tail region, where mode energies are more closely spaced, are more

susceptible to random mixing and reordering than higher amplitude modes. For this reason,

only agreement in the first four modes, where the signal energy of each mode is greater than

10% of the total signal energy, are considered meaningful — with the fifth mode presented

to illustrate the behavior of BD correlations for higher modes.
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VI. CONCLUSION

This paper presents initial results for a new model that provides a more comprehen-

sive tool for studying HIT-SI device than previously available. Initial simulations with this

model have shown good agreement with experimental observations, while elucidating new

dynamics associated with the helicity injectors. With the addition of injector regions, zero-

β Hall-MHD also reproduces the experimentally observed injector impedance scaling with

toroidal current. Simulations show significant asymmetry during the reversal processes,

which appears to be due to coupling of injector drive fields to plasma modes in the confine-

ment volume. Unfortunately, the helicity injectors are not well diagnosed in HIT-SI so direct

comparison to experimental observations in these regions is not possible. However, obser-

vations of an “injector” mode in the experiment are consistent with the observed injector

coupling in simulations.

As discussed in section V, many of the remaining differences observed between experiment

and simulations may be attributable to differences in the drive waveforms. Detailed valida-

tion studies using PSI-TET and NIMROD, which capture variation in the injector amplitude,

have been performed at 14.5 kHz to determine and quantify the remaining discrepancies[71].

These studies are extending simulations to different injector frequencies as well, where dif-

ferent performance and behavior has been observed experimentally[31]. Agreement with

experimental observations at higher frequencies is expected to require plasma pressure and

other dynamics. Further simulations with an extended MHD model capable of capturing

these effects are now underway.
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