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ABSTRACT

This article is concerned with the approximation of high-dimensional
functions by kernel-based methods. Motivated by uncertainty quan-
tification, which often necessitates the construction of approxima-
tions that are accurate with respect to a probability density function
of random variables, we aim at minimizing the approximation error
with respect to a weighted LP-norm. We present a greedy procedure
for designing computer experiments based upon a weighted modi-
fication of the pivoted Cholesky factorization. The method succes-
sively generates nested samples with the goal of minimizing error
in regions of high probability. Numerical experiments validate that
this new importance sampling strategy is superior to other sampling
approaches, especially when used with non-product probability den-
sity functions. We also show how to use the proposed algorithm to
efficiently generate surrogates for inferring unknown model param-
eters from data.
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1 Introduction

This article considers the approximation of a function u : F R using kernel based interpolation. We are
particularly interested in the case where u belongs to a (weighted) Hilbert function space V, and the argument
to the function is a finite-dimensional random variable y with associated probability density function (PDF)
w : F R that introduces the weighting to vw. Therefore, we focus on constructing approximations FIv (u)
of u, with respect to the finite-dimensional subspace V c Vw, which have a small approximation error

ew(u,V,p) := (f lu(y) — (FIvu)(y)rw(y)dy) . (1)

In other words, we aim at minimizing the approximation error with respect to the w-weighted LP (F)-norm,
that is

1/p

:= lu(Y)rw(Y)dY) •
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Such function approximation problems often show up in applications of uncertainty quantification (UQ)
and Bayesian inference. In these applications u usually corresponds to the parameter-to-solution map of a
partial differential equation and the approximation is constructed to reduce the number of computationally
expensive simulations (i.e. point evaluations of u).

Numerous techniques have been developed to build such approximations PA. Within the computational
science and engineering community, some of the most widely adopted methods for approximating models
are those based on generalized polynomial chaos expansions 19, 41:11, sparse grid approximation [®, mg
Gaussian process models rE1 and low-rank tensor decompositions 112, q. These methods can be very
efficient when building approximations to functions of independent random variables. However, there is a
dearth of algorithmic options for when the variables are dependent.

The objective of this article is to propose a methodology to efficiently generate nested and (greedy-
)optimal samples for a given probability density w function, which requires a small number of evaluations of u
to build an approximation with a pre-specified accuracy measured in the LI', norm. Accurate approximations
can be built without tailoring the sampling and approximation strategy to the PDF w. However such
approaches, called domination methods [2, Em], are suboptimal and require larger number of evaluations
of u than methods that consider w [FF51]. Instead of building an approximation which minimizes the error
measured by the LIZ, norm, domination methods build an approximation that minimizes the error measured
by another norm L-1', where g is a simpler PDF. Typically g is simply a constant, i.e. the PDF of independent
bounded uniform variables. The use of the simpler incorrect PDF g allows the use of existing unweighted
approximation methods, but comes at a cost [2, ®, HE].

The following lemma characterizes the accuracy in a w-weighted norm given an approximation that is
accurate in the g-weighted norm.

Theorem 1.1 (Strong convergence [2]). Let g : f -> and w : F —> IR denote two densities which satisfyN

8 = 1 — _ w(y)dy
frnr

Now assume that the error of the approximation IIg(u) of u satisfies

6 := 1ln — 11974 4 MI P ? I, (2)

and that u is bounded with Cg = IlullL.-(r) Then, there holds

llu —11sulla(r) 
< oh, e + Cup'', , provided Cr := max c.̀. < oo. (3)

u E rut g(y) 

This theorem states, that tailoring an approximation to a PDF different from w degrades approximation
accuracy by a constant Cr. The constant Cr is characterized as the maximum deviation of g frorn the original
PDF w. If F is unbounded, we can still apply approximation methods for bounded domains F. However,
this induces an additional increase in the error which is proportional to the probability 8 (measured with
respect to w) of y falling outside the bounded domain.

In meshfree kernel-based approximation, u is often evaluated at samples drawn from quasi-random num-
ber sequences. However, these sequences were primarily designed for unweighted function approximation,
i.e. they are good samples for Vg with g being a PDF of a uniformly distributed random variable. Theo-
rem I1.11 suggests that we can significantly reduce the approximation error if we instead use samples optimized
for the PDF of interest w.

In this article we present a w-aware approximation technique based on nested greedy-optimal sampling
using a weighted version of the so-called power function, i.e. the worst case error functional in kernel-based
approximation. The power function has been used to construct efficient sampling schemes for unweighted
approximation M. Our new contribution is to employ a weighting in the sample allocation process, which
adapts the samples to the probability measure w. We will show that this approach outperforms approxi-
mations constructed using classical power function based sampling and quasi Monte Carlo sampling. We
also compare our approach with methods based upon Quasi Monte Carlo sequences and integrated variance
(IVAR) experimental design I[l 11 used by the Gaussian process community.

When w is a tensor-product measure, our approach produces approximations with accuracy comparable
to approximations built using samples obtained from inverse transform sampling [6, E6] applied to quasi
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Monte Carlo sequences. However, the latter approach can only be applied easily to tensor-product measures,
while our approach is also applicable to non-product measures, for example that occur in Bayesian inference
problems. We also demonstrate that our approach produces approximations with similar accuracy to those
constructed using IVAR. However, the latter is much more computationally intensive and difficult to im-
plement. Our approach only requires a simple linear algebra task (i.e. the pivoted Cholesky factorization),
while IVAR requires an expensive non-convex optimization.

The rest of this article is organized as follows. In Section g, we provide an overview of kernel-based
function approximation. Then, in Section 1, we introduce a new approach for greedily generating samples
for kernel based approximation based upon a weighted modification of pivoted Cholesky factorization. We
especially discuss the similarities and differences between our new approach and existing sampling strategies
used for kernel based approximation. Finally, in Section 4, we provide numerical results that highlight the
strengths and performance of our new approach.

2 Kernel-based function approximation

This section provides a summary of radial basis function approximation using scattered data. Our exposition
is similar to the discussion on function approximation in finite-dimensional reproducing kernel Hilbert spaces
found in P511.

2.1 Reproducing kernel Hilbert spaces

Definition 1 (Reproducing kernel Hilbert space). A reproducing kernel K for a general Hilbert space V with
inner product (., .)v is a function K:1-' x —>IR such that

1. K(.,y) E V for all y E F,

2. u(y) = (u,K(.,y))v for all u E V and all y E F.

A Hilbert space V with reproducing kernel K xr—>R is called reproducing kernel Hilbert space (RKHS).

A continuous kernel IC : F x F N is denoted positive semi-definite on F C Rd, if we have

N N

E E %of yj,)j=1f=i
(4)

for all N E N, all pairwise distinct X = fyi, . . . , yArl C F, and all a E RN \ {0}. It becomes positive definite
if the inequality in (4) holds strictly.

In this article, we use radial basis functions, i.e. radial kernels

with co : [0, co)
with

/C(Y, yt) := (PUY (5)

. A typical example of such a radial kernel is the Gaussian / squared exponential kernel,

co(r) = e_E2,2

• (6)

The method we describe can be applied to a broad set of other kernels including the the class of Matérn
kernels given by

K6_4(r)r13- 4 d
(PH  2/3-11-0) , > 2•

Here K, being the modified Bessel function of the second kind of order v and r is the gamma function. Note
that the parameter v dictates for the smoothness of the kernel function.

The first property of Definition I implies that V contains all functions of the form

u =
N

=1
IC( a) (7)
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provided that the points {yi,...,yN} satisfy y3 E P. Vice versa, we can construct the native space Aric(F)
for a given symmetric, positive definite kernel IC by completion from the pre-Hilbert space

FK(F) := span {IC(., y) : y E .

It is shown in 14 that Ar,c(r) is a RHKS for 1C. For functions of the form (
norm induced from the inner product

(N

Ea3c.,y,), /33,c.,y3,)
j=1 ,=

.nfic (r)

N N

=1 j'=1

7), the native space carries the

/33' k(ya

For example, the native space ArK(r) of the Matern kernel with > d/2 and r =
Sobolev space 1113 (Rd).

is the well-known

2.2 Function approximation

The focus on this paper is the approximation of functions u that are elements of the native space of a kernel
IC, i.e. u E Aik(F). With this goal we introduce a finite-dimensional approximation subspace of .Vic(r) by
choosing a finite set of sampling points

= {yi,...,YN} C r,

resulting in the finite-dimensional subspace

V(X) := span{ IC(., y) : y E X} C Afic (F).

We are then interested in constructing a 'good' orthogonal projection IIv(x)(u) of u E Ar,(r) to V (X).

Interpolation. In reproducing kernel Hilbert spaces, the best-approximation, given by the orthogonal
projection Hv(x), and the interpolation of a function u E ) with given data {(yi,u(0)},/,v_1 turns out
to be identical That is, we observe for the interpolant Ivvou the equality

N

(Zv(x)u)(y) =llv(x)(f)(y):=Ect3cy, y3) for all y E r,
j=1

where the coefficients {a3}:7v , a3 E R, are computed by solving a linear system of equations with

A xa = u, a := (al . . . ŒN)T,

and the kernel matrix

u := (u(yi) u(yN))T

(K(Y Yi) 1C(Y 1:Y N)

Ax :=

1C(Y N, Y1) K(Y;r, YN)

For positive definite kernels, Ax is symmetric, positive definite and regular.

Worst-case error. The power function [29, 37] or kriging variance IN for a subspace V (X) is, following
PA, the interpolation / approximation worst case error

Pv(x)(Y) =
If (Y) — (Iv(x)f)(Y)I 

f eAfics7 , f Ilf Ilm,c(r)

The power function gives us a simple estimate for the interpolation error.

(10)
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Theorem 2.1 (Power function interpolation error ril). Let r, K, X be as before and we have f E N-K(F)
with its interpolant ly(x)(f) on X. Then, there holds the error bound

If (Y) — Iv(x-) (Y) I Pv(x) (y)Ilf II Aric (r)

for all y E P.

The proof is trivial based on the above definition of the power function. Following Theorem I2.11, the
upper bound for the interpolation error decouples in a product of the norm of the function and a term which
only depends on the particular kernel and the samples in X.

Computing the power function using (10) appears difficult. However the power function can easily be
evaluated using the following theorem.

Theorem 2.2 ([1). For two sets X, X' with elements y and y'3, and sizes IX] = N, = N' , we use the
extended notation

Then, the power function (10

lc(y1, Yc)
Ax,x, :=

K(YN, VI)

)• • • k(yi, Y'N,)
•

- - - k(Y., Y'N,)
can numerically be evaluated by

Pv(x)(Y) = VIC* y) — ATx,{v}AjciAx,{v}. (12)

Note that the problem of finding a point set X c F which minimizes the power function corresponds
to approximating a given matrix by a low-rank approximation. Finding the best possible point set is
therefore strongly related to the search for submatrices of maximal volume, see and to adaptive cross
approximation [C11, Eq.

Remark 2.1. For large sets X, the evaluation of the power function by (12) can become unstable. A stable
evaluation becomes possible by using the Newton basis of V(X). We will discuss this procedure in Section

Regularized function approximation. For large N, Ax often becomes ill-conditioned. This is why we
usually consider a regularized function approximation. In regularized kernel-based approximation, which is
sometimes also called kernel ridge regression, Tikhonov regularization 133 is used. It replaces the original
linear system of equations by a modified, but more stable one

(Ax eregl)a = u,

where I the identity matrix. Depending on the size of the regularization parameter Ereg , the matrix Ax
EregI can have a much smaller condition number. Nonetheless, regularization introduces a small error of the
order of the regularization parameter E„g. In this paper we set ereg = 10-12.

2.3 Relation to Gaussian process regression

Gaussian process (GP) regression can be used for function approximation in a Bayesian setting [21i, 213, 31.
Let us assume that for a given function u : —> II:, we have a set of samples evaluation locations X =
{y1, , yx} and noisy evaluations it, := u(yi) + N.(0, c12), collected in a vector ft. Given a prior
mean function mo(y) and a covariance kernel K(y, y') we can construct an approximation by conditioning
this the Gaussian process prior on the available data. The resulting posterior distribution of the Gaussian
process is given by

uly, X , u  ̂N(m(y),C(y)).

The posterior mean

m(y) = mo(y) + aTAx,{y}

it typically used as an approximation of u and the covariance

C(y) =1C(y, — Aldo (Ax + o-2I) lAx,{y}. (13)
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as a indication of the error in that approximation. Construction of the Gaussian posterior mean requires
estimation of the coefficients a. Using the notation Ax,{y} from equation (11), the vector a is given by

a := (Ax o-21) 1 (ii mo(y)) •

Note that for mo 0, the posterior mean in Gaussian process regression corresponds to regularized function
approximation with the same kernel function 1C and with a Tikhonov regularization with E„g =

In general, the kernel contains hyper-parameters 0 such as the length-scale, the signal variance, and the
noise variance, which are unknown and need thus to be inferred from the data. The beauty of Gaussian
process regression is that it automatically provides a tool for hyper-parameter optimization by means of the
numerical maximization of the log-marginal-likelihood

log p(111X, 0) = T(Ax a2 P-111— 2 log I Ax + (72/1 — 2 log 27r .

We will use this technique in our numerical results.

3 Sampling strategies

In this section, we present various sampling strategies for kernel-based approximation and Gaussian process
regression. We first present an existing approach for nested unweighted-greedy optimal sampling using the
power function, cf. (10). We next extend this approach to generate samples which minimize the weighted
error functional (1) of the resulting approximations. These two methods are then compared with popular
sampling strategies from the Gaussian process and radial basis function communities, based upon integrated
variance experimental design and low-discrepancy sequences, respectively.

3.1 Greedy nested sampling using the power function

Global optimization problem. From Theorem 2.2 we observe that we can reduce the error of the
interpolation by minimizing the power function. Given a large set of candidate points Xcar,d, an optimal
subset of points X* with X*1 = m can be found by solving the following optimization problem:

X* = argmind 11-Pv(x)11L—(r) subject to,ccx_ IX (14)

Unfortunately, solving this global optimization problem is often intractable. Consequently a number of
greedy strategies have been introduced r, rr7, 313].

Greedy-optimal nested sample selection. The greedy version of the optimization problem in (14) we
consider uses two properties of the power function Pv(x). The first property is given by the following lemma.

Lemma 3.1 (Monotonicity Ell). With F satisfying an interior cone condition, IC being positive definite and
X' , X" C F being finite sets of samples with X' C X" , it holds

Pv(x,)(Y) Pv(x,f)(y) for all y E F.

The proof of this lemma can be found in [131]. The lemma states as the number of samples increases,

Pv (x)(Y) decreases monotonically for all y E F. This property guarantees that, when using a greedy opti-
mization strategy, adding a locally optimal sample will always decrease the power-function and approximation
error.

The following property is also useful for constructing a greedy sampling scheme.

Lemma 3.2. With I' and JC as before and X = {yl, , yr,} c 1' a finite set of samples, it holds

Pv(x)(y = 0 for all y3 E X.
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This lemma states that the power function Pv(x) is zero for all elements of X. This statement is obvious
since in the definition of the power function the numerator becomes zero in all samples y E X, since Iv(x-)
is an interpolant.

The two aforementioned properties can be used to design the greedy sampling algorithm, summarized in
Algorithm 1. Let Xcand c F be a large, but finite candidate set. Given j — 1 samples Xj_1 already selected
from the Xcand, we select the j-th sample ya from the remaining samples Xcand Xj_1 by maximizing

pc_011Loo(r). If Xcand is large enough, then yi will approximate well ymax = argmaxyer Pv(x3 _1)(Y)
in the sense that Plc,,c,_iulyal (Ymax) O. This process is repeated until the desired number of samples is
reached.

Algorithm 1 Greedy sample selection by the power function [17]•

1: function GETGREEDYSAMPLES(K, Xcand, m)
2: yi = argmaxy(x-cand Pv({y})(y)
3: Xl = fyil
4: for j = 2,3,...,m do
5: yi = argmaxwc„,„, \,(3_1 IPV(X3_1)(Y)1
6: Xi = Xi_1 U tyjl

7: return Xm

Efficient and stable implementation. As mentioned before, the evaluation of the power function using
equation (12) is not stable rip, mi. To improve stability, rffl1 proposes to iteratively build a Newton basis
{01i, , OM- for V(X3) during the greedy algorithm (Algorithm 1). By using this Newton basis, the power
function can be evaluated stably using the expression

P,7(x3)(y)=K(y,Y)-Egq(y).

Moreover, it is discussed in [V] that greedy-optimal sampling using the Newton basis of a positive definite
kernel K can be performed by the pivoted Cholesky factorization [131.

Given the candidate set matrix Axe.nd , the first j steps of the pivoted Cholesky factorization given in
Algorithm 2 compute the column matrix La E RNc'"'d" and a permutation vector P. Each column of L3
defines a Newton basis vector of V(X3) evaluated on the candidate set Xcand. The first j pivots in p denote
the indices of the points from the candidate set that maximize the power-function, see [®].

Note that, in practice, the entire matrix Ax_na needs not be computed. Instead, the entries K should
only be evaluated when required. Also note, that this Cholesky procedure produces a nested set of samples
and can be used to enrich an existing set of points. Given m samples we can add an additional sample from
the candidate set Xcand by performing another factorization step on the matrix A and adjusting the current
Cholesky factor using the steps associated with the inner loop of Algorithm g.
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Algorithm 2 Pivoted Cholesky factorization [E31].

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

function PIVOTEDCHOLESKY(A)
r = 1
d = diag(A)
p = (1, . . . ,n)
while r < n do

imax = argmaxiE{r,r+1,...,n} dP3
swap pr and

443, = Vdp,
for i E {r+ 1, , n} do

v-kr —1
fPi 

n
13 

p
nta. (aPx,Pim.. Lj=1"( x,..i'("Pi,nax 7j) tePr,r

d13 7-reax dpimax 'el02 imax

12: r r 1
return (L =

A E s.p.d.
i> current row

i> diagonal of A
initialization of permutation

i> find pivot
i> exchange columns

i> compute diagonal entry
1> comp. other entries

i> got to next row

3.2 Sampling using a weighted power functions

In accordance with Theorem 12.1 the sampling strategy from the last subsection is tailored to approximating
the unweighted interpolant, i.e., it minimizes If (y) — Iv(x) (y) l. With the goal of generating approximations
that are accurate with respect to the weighted LIZ, norm (1), we aim to generate approximations that minimize

(f (Y) - (Iv (x) f )(y)) g (y)1

for the weight function g(y) = co(y); P. This choice is motivated by noting that

1/p 1/p

eco(u, 17, /3) := (I lu(y) — (Ivu)(y)rw(y)dy) = (f lu(y) — (Ivu)(Y)9(y)rdy) •
r r

With the goal of generating samples tailored to f g, instead of f , we define the weighted kernel

k(y,y') := g(y)1C(y, y')g(y/).

Then, given a function of the form

we have

and

f (Y) = Ej=,
N

(xi
f(y)g(y) =Edjk(y, , where di = g(yi)

j=1

IlfglINk(r) = II f
where Ark is the native space of the weighted kernel. If we further define the weighted power function

(y) (Iv(x)f)(y))g(y)1 

f ENic (r), f 00 llfgllAric(r)
Pg ,17 (X) (y) = sup

we immediately arrive at the error estimate

(f (y) — (Iv (x) f)(y))g(y)1 < Pg,v(x)(y)Ilf glIA6c(r).

In the weighted analogy to Theorem 2.2, the weighted power function (10) is equal to

Pg ,17 (X)(Y) = g(y)1C(y, y)g(y) ATX ,{11} A X1,X A X ,{Y},

(15)
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where

)
( g(y1)C(y1, yi)g(yi) — g(yi.)1C(yi., y'N,)9(yIN,)

(y N)1((y N y1)9(y1) g(y Algy N y1v,)9 (VN,)

for two sets X, X' with elements ya and y'3, and sizes IX' = N, 1.X1 = N. Hence, the pivoted Cholesky
factorization should be appropriately modified in order to find an optimal set of points X which minimizes
the L°° (F)-norm of the weighted power function.

In order to adapt Algorithm g for the weighted power function, we shall make first the following
considerations. Let A = (aj,j,)j3, E Rn xn be a symmetric and positive (semi-) definite matrix and
D = diag(di, , dn) E R"n be a diagonal matrix with positive diagonal entries dj > O. Then, the
pivoted Cholesky factorization for the matrix

A= (ai,f)i,j, = (djaj = DAD

yields a rank-m approximation LiT with L =

= DAD iiT .

The matrix L = (ej,f)i,j, := D-1i obviously results in a rank-m factorization A LLT, where it is
especially inferred that

= c/a tj,j, for all j = 1, . . . ,n, j' = 1, , m.

The only difference between applying the pivoted Cholesky factorization for A and for A is thus the different
choice of the pivots. Therefore, by setting

A = (1C(y3, y3,))3 J„ D = diag (g(y1), ,g(YNe.na)),

we readily verify that the pivoted Cholesky factorization with respect to

A= (g(y3)/C(y3, y 3,)g(Y ,))

can be realized by Algorithm 3, where we directly compute the matrix L as output instead of the matrix L.
Note that this procedure can be reinterpreted as a type of importance sampling.

Algorithm 3 Weighted pivoted Cholesky factorization for kernels.

1: function WEIGHTEDPIVOTEDCHOLESKY(Xcanch g, m)
2: r = 1
3: Ncand = 1Xcandl
4: d = diag (1C(y1,y1),•••, N-ad))
5: p = (1, • • • , Ncand)
6: while r < m do
7: imax = argmaxiefr,r+1,...,Nendl {di); g2r,  (ypi )}
8: swap pr and pimo,x
9: p,,,, = dpr
10: for i E {r + 1, . . . , Ncand} do

11: fpj,„‘“x,r = (IC (yp,,
12: dpimax = 2dpima. - tpimax

13: r = r + 1
return (L =

r —1
j=1 ,a) fp,,r

current row

initialization of permutation

find weighted pivot
exchange columns

1). compute diagonal entry
1). comp. other entries

got to next row
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3.3 Integrated variance experimental design

In the field of Gaussian process regression, a methodology similar to the greedy optimization strategy above
has been developed in [111]. In this approach, optimal experimental designs, i.e. optimal samplings, are
created by minimizing the a-posterior integrated variance (IVAR).

The a posteriori variance of a Gaussian process, cf. Subsection Z3, conditioned to given input samples
X is

C(Y I X) = Y) AX,{y} (11,c a2/) lAx,{y}.

In general, the IVAR approach aims at finding an optimal set of samples X* c Lf c F of size 1X*1 = m from
a set of feasible experiments LI by solving the minimization problem

X* = argmin f c(y1X)w(y)dy. (16)
XCU, IXI=rn

Note that we adapted the notation from [I111] appropriately.
In accordance with (12), the posterior variance c(y IX) in Gaussian process regression for a noise variance

of 0-2 = 0 is just the square of the power function, i.e. we have

Hence, the minimization of (16

c(y1x) = Pi2i(x)•

is in fact equivalent to the minimization

X* = argmin Pe,(x)(y)w(y)dy.
XCU, IXI=rn Jr 

This means, instead of minimizing the L'(F)-norm of the power function as proposed in the last section,
IVAR minimizes the (squared) weighted LI(F)-norm of the power function.

3.4 Low discrepancy sequences

It is common in both, the Gaussian process regression and radial basis function literature, to use low-
discrepancy sequences as point sets for approximation [5, 21, IS]. Low discrepancy sequences are typically
used for approximation in unweighted spaces. However, if the PDF w has product structure, i.e.

w(y) = ' • • • wd(yd),

then we can apply inverse transform sampling [6, Elli] to generate points sets X* that follow the underlying
distribution of w. To this end, let

11,j(yi) = f wj(t)dt
t<yi

denote the cumulative distribution function of the j-th variable yj. Given a set of samples drawn uniformly
on [0,1], e.g. from a unweighted low-discrepancy sequence, we can obtain a new set of samples

:= WW1), • • • , FP). (yd)) : y E ,

which can be used for weighted approximation. In this article, we will Halton sequences for building RBF
approximations.

Note that inverse transform sampling can be applied to non-product densities. However, doing so requires
the use of non-linear transformations, such as the Rosenblatt transformation which can be infeasible even in
moderate dimensions and introduces strong non-linearities which decrease the accuracy of approximations for
fixed sample sizes. Consequently, unlike our weighted greedy strategy and weighted IVAR, low-discrepancy
sequences cannot be used for approximation for PDFs of dependent variables. Nevertheless, we include the
use of inverse transform sampling in a numerical test case with tensor-product density in order to provide a
truly competitive method comparison.
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4 Numerical examples

In this section, we demonstrate the efficacy of our proposed approach on a number of numerical examples and
compare its performance with a number of existing sampling approaches which were presented in Section 1.

In all the following examples, we will measure the performance of an approximation using the relative
weighed LIZ, (F)-norm, i.e.

(f lu(y) — (rIv(x)u)(Y) w(y)dy)1119
€,,,(u, 17 (X)) :=  r

Unless otherwise stated, we set p = 2. In Section
sampling scheme for several different p > 1.

For the examples considered here, we cannot compute the error (
mate it by the Monte Carlo estimator

1 /p

(.4 lu(y)IP w(Y)dY
) 

14.41

(17)

, we investigate the performance our weighted Cholesky

17) exactly. Consequently, we approxi-

\ 1/p

(EliV=1 Myi) (111/(X)u)(Yi)L)
Ew,p 0,1, V (X)) :=

(EL lu(yi)12114
The samples yi in the Monte Carlo estimator are drawn i.i.d. from the underlying distribution of the PDF
w.

In the following examples we set N = 10,000 and use the Gaussian/squared exponential kernel from
equations (5) and (6). We explore the the generation of samples in two situations; when the hyper-parameters
of the kernel are fixed and when they are optimized with the procedure described in Subsection I2.3. Unless
otherwise stated, we create optimal samplings X* using the weighted pivoted Cholesky factorization when
X cand consists of the first 5000 samples of the Halton sequence and 5000 samples drawn from w(y).

4.1 Impact of using the domination method

In Section 0 we argued, based upon Lemma 1.t, that incorporating knowledge of the density w into the
sampling process improves the convergence of the Lf, error of an approximation by a (possibly large) constant
factor. In this section, we provide numerical evidence to support this claim. With this goal, consider the
function

d

u(y) := cos (27 + 40T2 yj) ,
i=1

defined for for arbitrary dimension d > 0, and let PDF w(y) of y be the product

opeta (y) wrta (y j)

j=1

of the PDFs of univariate Beta random variables

1-(a + 0)j33eta(y j)
1-(a)1-(0)

-1 - 0'1

(18)

with parameters a and 0, where r is the gamma function.
In Figure T, we compare the convergence in error for different dominating measures g when d = 2 and the

parameters of the product-Beta density w are a = = 20. We define the dominating measures to also be
product-Beta densities with parameters ag and 0 g and compare errors for different values of these parameters
ag = Og = T. For each choice of dominating measure we compute the constant Cr from Lemma 1.1 as a
measure of the distance between the densities g and w. For this example S= 0 (see Lemma 1.1). As the



12 Harbrecht, Jakeman, Zaspel

dominating measure approaches w, i.e. ag —> a and 13g -> )13 which corresponds to Cr —> 1, the dominating
measure approximation becomes more efficient. The plot clearly shows that constructing an approximation
from sample designs targeting a density g, which is not w, results in a degradation of accuracy, and the
penalty grows as the quantity Cr grows. Although using a dominating measure only effects the constant of
convergence and not the rate of convergence (see Lemma 1.1), the change in the constant is significant.

100

10-2

cs1

L)
10-4

10-6

T = 1: = 25.14
T = 5: Cr = 4.15

T = 10: C, = 2.02

T = 20: Cr = 1.00

101
m

102

Figure 1: A comparison of the error in approximations of function (18) obtained by the weighted Cholesky
sampling using different domination measures. Here, w is a tensor product of identical univariate Beta
PDFs with parameters a = = 20 and we vary the distribution parameters of the domination measure
a9 = 69 = T. As predicted by Theorem 1.1 the error in the approximation increases as the distance between
the measure increases.

4.2 Comparison to existing weighted sampling strategies

With the next numerical study, we compare the performance of the weighted Cholesky sampling strategy
to other existing approaches in the field, namely the unweighted Cholesky sampling strategy, the IVAR
approach, and the inverse transform sampling approach. Note that the latter is only feasible for product
densities. Therefore, we again consider (18) with the same Beta density.

Figure p plots the error in the RBF approximation for various sampling strategies as the number of
samples is increased. Weighted Cholesky outperforms all methods when d = 2 and has similar performance
to Weighted Halton when d = 10. We do not plot IVAR when d = 10 because for large sample sizes the
optimization was taking over a day. This could likely improved with some code optimization, however any
conclusions we would draw would remain the same. The IVAR optimization problem is computationally
much more expensive than our approach, it involves a non-convex optimization of md unknowns, yet the
error obtained using IVAR will be similar to our approach or worse.

4.3 Improvements by weighting for non-product PDFs

In our second test case, we again use the cosine function from (18). However, we use a non-product density,
which we construct by using the Nataf transform Pl]. The PDF wNat is given by

with

d
WN at (y) =  (Z)  TT —

lld \ 
j=1
11 Wi (Yj),

1  ( 1 
1/RAT (z) =  

\/(27)ddet(R17) exp 2 ZT \ 

t

-"-v) 1z)

(19)
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Figure 2: Comparison of the sampling strategies for building RBF approximations of (
and d = 10 (right).

The correlation matrix Rv is given by

(Rv) if = j',
1)i+i' 0.9, otherwise.

18) with d = 2 (left)

(20)

The c7J3 are the marginal probability distributions of wNat, n is the univariate standard normal density
function, z3 := (D91(F3(yi)) with F3w 

aN t

( ) are the marginal cumulative distributions of W Nat and .13g is the

cumulative distribution function. Figure 5 depicts the PDF coN' for d = 2 with univariate Beta marginals
each with parameters (a, 3) = (2, 5).

For this test case, with non-product PDF, the inverse transform sampling approach is not applicable.
Consequently, in Figure 3, we compare the convergence properties for the Halton sequence with the help of
the unweighted pivoted Cholesky factorization and the weighted pivoted Cholesky factorization, as shown
in Figure for d = 2 on the left-hand side and for d = 10 on the right-hand side. For both dimensionalities,
the unweighted Cholesky sampling strategy gives only slightly better results than the Halton sequence. In
contrast, the weighted Cholesky sampling strategy clearly outperforms the other methods. These results
become even more pronounced in higher dimensions.

Figure also plots the error in the approximation constructed using weighted Cholesky samples when the
correlation length of the kernel is optimized each time a batch of samples is requested (Weighted Cholesky
opt.). When d = 2 we increase the number of samples in X in batches of size 5 for m < 50 and 25 otherwise.
After each of these batches, we re-optimized the hyper-parameters. In d = 10 we increase the number of
samples in X in batches of size 5 for m < 50 and 50 < m < 200 and 100 otherwise. Regardless of the
dimension, optimizing for the best correlation length degrades the performance for small sample sizes, but
the effect is minor and decreases as more samples are added.

4.4 Different weighted p-norms

In this experiment, we vary q in Eco,q (12,1 (x)) in accordance with q = 1, 2, 4, 6 using (18) and the dependent
beta density with d = 2 and d = 10. The results are found in Figure 4, where the set-up of the experiment
is the same as in the previous one. We observe again that the weighted Cholesky sampling strategy clearly
outperforms the unweighted strategies independent on the particular choice of q.

Figure 5 depicts the samples sets (m = 100) generated, for the non-product PDF, by the weighted
and the unweighted Cholesky sampling strategies with the non-product PDF with d = 2. The weighted
approach clearly allocates more samples to regions of high-probability. This is the major reason for its
better performance. However, as p is increased, more samples are allocated to regions of lower probability.
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Figure 3: Comparison of the weighted and the unweighted Cholesky sampling strategies with Halton sequence
applied to the uniform dominating measure for (18) with a non-product PDF. The weighted Cholesky
sampling strategy clearly outperforms the other results for d = 2 (left) and d = 10 (right).
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Figure 4: A comparison of the error in approximations of function (18) obtained using weighted Cholesky
sampling using different values of q targeting different norms. Here we use the non-product PDF (19) with
correlation (20), d = 2 (left and middle plots), d = 10 (right plot) and univariate Beta marginals each with
parameters (a, 13) = (2, 5). The values of q from left to right are 1,6,4, respectively.

5 Bayesian inference

In this section, we will use Cholesky sampling to construct posterior surrogates for efficient Bayesian inference
of model parameters from observational data, cf. 131. To make this precise, let f (y) : 110 —> likn be a vector
of n observable quantities, parameterized by d random variables y. Bayes' rule can be used to define the
posterior density for the model parameters y given observational data d:

7r(dl y)7(y) 
P(y) = 7r(y =

fD 7r(d Y)7(y)dy

where any prior knowledge on the model parameters is incorporated into the prior density 7r(y) and 7r(d y)
is the likelihood function which specifies the probability of observing data d given a realization of the model
parameters.

5.1 Determining the likelihood

The form of the likelihood is determined by the statistical model that relates the data to the simulation
model. In the following, we will assume the following relationship d = f (y)+ e, where the noise E Ar(0, E)
is normally distributed with mean zero and covariance E. Under this assumption, the likelihood takes the
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Figure 5: Comparison of samples sets, for the non-product PDF, generated by (left) the unweighted Cholesky
sampling strategy and (middle) the weighted strategy with q = 2 and (right) q = 6. The samples are plotted
on top of the contours of the non-product density ( ) with correlation (20), d = 2, and univariate Beta
marginals each with parameters (a, (3) = (2, 5).
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form

7r(d I y) = exp (- 2(d f(y))TE-1 (d f (y))) = exp ( - u(y)),

where u is often referred to as the negative log likelihood. Often, when evaluating f , and thus u, is compu-
tationally expensive, a surrogate of either f or u is built to avoid the expensive evaluation of the model. For
example, [S] proposes to replace the misfit u in the likelihood by an m-point approximation that is
used to compute an approximation of the posterior distribution, i.e.

P.,g = 7rm,g (y I d) =  
xpe - ilm,gu(y))7(y)dy 

(21)

The authors of [EIS] construct a polynomial chaos expansion (PCE) which is tailored to the prior distribution,

i.e. g(y) = p(y) z. Using the prior as a dominating measure is inefficient, as it has often a much larger non-
zero support than the posterior. Attempts have been made to increase the efficiency of Bayesian inference
by using low-order localized surrogates to facilitate sampling in regions of high probability [47 Eu]. The
use of localized surrogates results in small-rates of convergence. Recently, PCE tailored to the posterior
distribution has been used to obtain higher rates of convergence [fThl, EV1].

5.2 Using weighted Cholesky sampling

In the following, we demonstrate that our weighted Cholesky sampling scheme can be used to efficiently
construct RBF/Gaussian process surrogates of the misfit u. The adaptive algorithm we use is summarized
in Algorithm 4 and described here.

Algorithm 4 Adaptive Cholesky sampling for Bayesian inference.

X cand,1: function GETPOSTERIORAPPROX(K {Ami}3=1),

2: Xo = 0, Uo = =

3: for j = 1, 2, . , s do
4: gj = exp (-119u)'3.1-' 7T
5: OXj =UPDATEWEIGHTEDPIVOTEDCHOLESKY(Xcand, K, Xj_1,gj, AM,j)
6: Xj = Xj_i U AXi
7: uj = uj_1 U u(AXj) D evaluate model at new samples
8: 11.9,m u =APPROXIMATEFUNCTION(Xj, Uj)

9: i3j = UPDATETEMPERINGPARAMETER(,Qj-1 ,I1g,mj U)

10: return Xs, IIg,mstt
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Because the true posterior density p is unknown, we cannot directly use it to specify g. Instead, we will
use a series of intermediate PDFs which converge to the true distribution

g3(y) = exp (-119, _lu (y)) ir(y), j = 1, . . . , s,

where 0 = )30 < /31 < < < 1. A similar approach has been used to improve the performance of Markov
chain Monte Carlo (MCMC) when sampling multi-modal posteriors [3]. Such methods are referred to as
transitional MCMC.

Starting with an initial set of points X0 which is often the empty set, Algorithm 4 begins by setting
the initial dominating measure to be the prior, i.e. go(y) = p(y)t, P. This measure is then adapted as
information (evaluations) about u is obtained. Specifically, given an approximation rim, 1,g„ u at iteration
k > 1 built with mk_i samples Xk_i, we compute an estimate of the posterior density omk-1,sk-1(Y) and set

gk(y) = .1 This domination measure is then used to enrich the existing set of samples with
another Arnk samples AXk, yielding Xk+i = Xk U AXk. This process continues until a sufficient accuracy in
the posterior is reached or a computational budget is exhausted. Note that unlike the examples in Section 4
when the weighting density is known we cannot use samples from the unknown density in the candidate set

Xcand•

Our transitional approach has two advantages. Firstly, it can sample multi-model and/or concentrated
PDFs. Moreover, it allows us to build in a level of conservativeness to prevent our weighted sampling
approach from being misled during the initial stages of the algorithm when the approximate posterior is highly
inaccurate. At the first iteration when we have no knowledge of the posterior, we simply revert to sampling
from the prior However, as our approximation becomes more accurate, so does our approximation of the
posterior which allows us to place increasing trust in the surrogate for determining the weighting function
used with our pivoted Cholesky procedure. The level of trust is dictated by the value of The value chosen
should be the largest 03 E (03-1, 1] such that the ratio of the previous posterior, using 0.7-1 and the posterior
obtained using the new )6' are "close". Following [3], we choose ,3j such that the coefficient of variation of the
densities is equal to a pre-defined threshold T, i.e.

Var [exp (-119u(y))'3-13'-1 7r(y)]
2

E [exp (-1-Igu(y))3-133-1 7(y)]

Similar to [3], we found T = 1 to be a reasonable choice. To compute the expectation and variance we use
1000 samples drawn uniformly from F. The cost of this step is negligible as it only requires the evaluation
of the surrogate.

= T.

5.3 Example: Rosenbrock function

This subsection demonstrates the benefit of using our transitional Cholesky sampling algorithm to construct
surrogates for Bayesian inference. In the following, assume that the observational quantities are modeled by
the function f : -> R2, where

fi(y) = -V2(4gi - 2), f2(y) = -\/2 ((4y2 - 2) - (4gi - 2)2) .

In addition assume that the prior distribution 7(y) is a uniform distribution on [0, 1]2 and the observational
data is d = (40)T . Using a Gaussian error model with covariance E = diag(1, 0.01) the negative log
likelihood is an affine transformation of the two-dimensional Rosenbrock function

u(y) = (1 - gi)2 + 100(g2 0)2, y = 4y - 2.
Figure compares the accuracy of surrogates constructed using three sampling schemes. The "Prior

Weighted Cholesky" label in the legend refers to the weighted Cholesky sampling with the prior as the
dominating measure, the "Adaptive Weighted Cholesky" refers to our transitional algorithm and "Halton"
refers to simply using a untransformed Halton sequence. In all cases we simultaneously select samples and
optimize the correlation lengths of the RBF/Gaussian process kernel.

1Note that when using the weighted Cholesky procedure we can ignore the constant denominator in the approximate posterior
(g) as this does not effect the pivoting procedure.
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Figure 7: Transitional parameters /33 at each iteration of the adaptive weighted Cholesky algorithm (left).
The training set and approximate unnormalized posterior at iteration 6 (middle) and at the final iteration
(right).

The left plot of Figure 6 depicts the L2p error of each method, computed using 10,000 samples drawn
from the true posterior distribution using rejection sampling. The middle plot depicts the squared Hellinger
divergence

= 1 - Pm,g(y)P(y)dy

between the true and the approximate posteriors. The integral is evaluated using a high-degree tensor-
product Gaussian quadrature rule. By both, the L2p and Hellinger divergence metrics, our adaptive weighted
Cholesky algorithm is significantly more efficient than the alternatives. Notice that the convergence curves
terminate at different sample sizes for each sampling method. The curves terminate when the condition
number of the kernel matrix 1C(X3, X3) constructed using the training data X3 becomes highly ill-conditioned.

The right plot of Figure 0 compares the condition number of each sampling strategy. For a fixed sample
size m, the condition number of our approach is largest. Using the prior as the dominating measure improves
the condition number, however the error degrades significantly.

The performance of the adaptive algorithm, is dependent on the transitional parameter /33. In the left
of Figure 7, we plot the evolution of 03 at each iteration of the sampling algorithm. For small sample sizes
the approximate posterior changes significantly each time the training set is enriched. This causes 03 to
remain small. However, as the accuracy of the surrogate of u improves, also increase. The middle plot
shows the approximate posterior and training samples after 50 model evaluations and the right plot after
450 evaluations. The approximate posterior is 'closer' to the prior for small sample sizes.
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6 Conclusion

In this article, we presented a greedy algorithm for generating samples with the goal of minimizing the
weighted LP-error of kernel-based approximations. Most existing literature focuses on strategies for approx-
imations that minimize the unweighted error. The major contribution of our work to the existing literature
is the construction of a computationally simple and efficient algorithm based upon pivoted Cholesky fac-
torization for selecting samples for weighted approximation. We demonstrate through extensive numerical
examples that our results are almost always significantly more accurate than existing approaches. The im-
proved performance is obtained by concentrating samples in regions of high probability while minimizing the
ill-conditioning of the interpolation point set.

In addition to generating accurate interpolants, the algorithm presented has three useful properties.
Firstly, the sample sets are nested. Consequently they can easily be enriched with additional samples if
additional computational resources become available. Secondly, although we focused on the use of the
squared exponential kernel, our algorithm can be used in conjunction with any other radial kernel. And
finally the sample sets remain stable even when the length scales of the kernel are changed each time
additional samples are added. This is extremely useful because the best length scales of a function are not
typically known a priori.

The first part of the article focuses on the weighted approximation of functions when the weight-function
is known. The article concludes with an example of how the proposed algorithm can be used for efficiently
generating surrogates for the purpose of inferring unknown model parameters from data using Bayesian
inference. In this setting the true weight function is the posterior distribution of the model parameters,
which is unknown. The algorithm described iteratively builds up an approximation of the posterior, starting
from the prior, which is used as a weighting function in the weighted Cholesky sampling procedure. For the
example presented, the proposed approach produces approximations of the true posterior which are orders
of magnitude more accurate for a pre-specified budget.
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