

1 **eLS**

2 **Synthetic biology: molecular tools for engineering organisms**

3 **A20883**

4

5 **Author:** Daniel C. Ducat^{1,2}

6 **Affiliations:**

7 ¹MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East
8 Lansing, MI, USA; ²Department of Biochemistry & Molecular Biology, Michigan State
9 University, 603 Wilson Road, East Lansing, MI, USA.

10

11 ***Advanced article**

12 <insert> **Abstract:**

13 Synthetic biology is a biological engineering discipline based on abstracting living
14 systems through the lens of physical engineering concepts. In particular, synthetic
15 biology places an emphasis on the characterization of simple parts that can be modularly
16 assembled into configurations that give rise to complex, higher-order behaviours. Within
17 the past 2 decades, this approach has enabled the development number of new
18 molecular biology tools for modifying living systems in order to investigate fundamental
19 processes or imbuing functions into cells that do not exist in nature. While specific
20 synthetic biology applications span a huge range of seemingly unrelated disciplines (from
21 biofuel producing microbes, to malaria-resistant mosquitos, to living medical therapies),
22 these distinct examples derive from reuse and rearrangement of relatively limited set of
23 cell engineering technologies. The continuing development of these core molecular
24 biology tools for controlling gene expression, protein activity, and signalling networks
25 can promote ever-more ambitious biological engineering projects.

26 <insert> **Key words:**

27 Synthetic biology, modularity, standardization, genetic circuit, gene expression,
28 metabolic engineering, predictive engineering.

29 <insert> **Key Concepts:**

- 30 • *Synthetic biology is a discipline for biological engineering using principles of physical engineering*
- 31 • *Complex biological systems can be abstracted as a set of core "parts" with separable functions*
- 32 • *A biological part is modular when it confers a discrete function which can be repurposed and*
33 *rearranged in many different contexts while maintaining fidelity*
- 34 • *Biological systems naturally display many modular features that are evident at many different scales*

- 1 • *Synthetic biology attempts to identify, characterize, and repurpose biological modules to build devices*
2 *with novel functions*
- 3 • *The field has created several new molecular biology tools for controlling living systems through*
4 *exploiting the recombination of modular parts*
- 5 • *The tools of synthetic biology are frequently used to imbue organisms with technologically useful traits*
- 6 • *As synthetic biology expands beyond model microbes, its potential to contribute to our fundamental*
7 *understanding of biology continues to increase*

8

9 **Introduction:**

10 At its core, synthetic biology possesses distinct principles and philosophies that
11 can be simplified as the attempt to bring electrical engineering concepts, such as
12 standardization, modularity, and “bottom-up” design, to the biological sciences. While
13 there are many differing opinions about what defines “synthetic biology” and how it
14 contrasts with existing terms such as ‘bioengineering’ or ‘metabolic engineering’, a core
15 conceit of the discipline is that biological systems can be abstracted as a network of
16 modular biological “parts” (Cameron et al., 2014). Identifying biological modules that
17 retain their function when repurposed into other systems, and learning design principles
18 for effectively connecting parts to one another holds the promise to allow programming of
19 cellular behaviours that are not found in nature. In this way, biological systems can be
20 conceptualized as analogous to computer hardware that are composed of highly-defined
21 modules (e.g. resistors, transistors), which can be rearranged into a myriad of complex
22 circuits. Analogously, the capacity to predictively design increasingly ambitious biological
23 systems relies upon the detailed characterization and standardization of these simplest
24 components and understanding design principles for wiring inter-module connections.

25 Synthetic biology has developed rapidly within the last two decades through
26 identification of an increasingly large number of separable modules that can be used to
27 control the activity of genes and proteins within the cell. A biological part is robustly
28 modular if it can be separated from the larger unit, then repurposed in a different
29 context while fully retaining its characteristics. A classically-recognized example of a
30 module is the promoter region of a gene (Figure 1A), which initiates transcription of
31 downstream DNA under a defined set of environmental conditions, but which is routinely
32 used to confer that expression profile on a new gene. Numerous other examples of
33 natural modularity in biological systems can be found across many different scales
34 (Figure 1B). At the same time that decreasing genome sequencing costs have provided a
35 wealth of genome sequences and have highlighted the modular designs within natural
36 systems (Bhattacharyya et al., 2006; Kashtan and Alon, 2005; Pawson and Nash, 2003;
37 Ravasz, 2002; Wagner et al., 2007), decreases in DNA synthesis costs (Kosuri and
38 Church, 2014) have enabled researchers to utilize a modular approach to the design of
39 engineered pathways. Research within the field of synthetic biology often proceeds
40 through the creation of libraries of biological parts, that can be efficiently recombined
41 (Ellis et al., 2011) into a myriad of different configurations and screened for a desired
42 output. This has allowed synthetic biologists to adopt strategies that are more analogous
43 to physical engineering workflow of iterative rational design (i.e. cycles of “design-build-
44 test-learn”; Figure 1C).

1 In this short review, we briefly discuss a number of molecular tools that have
2 emerged from synthetic biology and are allowing cells to be controlled with increasing
3 precision. We place special emphasis on examples that illustrate how modularity informs
4 design of synthetic biology tools. While the range of applications for these tools is
5 beyond the scope of this review, we highlight how modular assembly can generate
6 complex systems from a limited set of relatively simple components.

7 **Refining Control of Gene Expression**

8 Refined methodologies for the control of gene expression underlie many of the
9 more elaborate designs in synthetic biology. While control of heterologous gene
10 expression has been a staple of all bioengineering efforts, recent efforts to more
11 precisely standardize transcription and translation of gene targets have increased the
12 precision, allowing increasing quantitative and predictive design of heterologous gene
13 circuits. Therefore, some of the most fundamental “parts” of a synthetic biology toolkit
14 are simply libraries of genetic elements that can drive expression of inserted genes at
15 predictable levels and are standardized to one another across a broad tuneable range
16 (Hammer et al., 2006). An illustrative example are the efforts to characterize the
17 relationship between a given ribosome binding site (RBS) sequence and its kinetics of
18 inducing ribosome binding and protein translation. This has enabled development of
19 “RBS calculators” that both predict the affinity of a ribosome to a specific RBS sequence
20 while also taking into account local secondary mRNA structure between the RBS and the
21 neighbouring upstream 5' untranslated region (5'-UTR) and downstream coding
22 sequence (Figure 2A; (Bonde et al., 2016; Espah Borujeni et al., 2014)). Such secondary
23 structure effects can be difficult to completely predict, and illustrate biological limitations
24 on modularity that may need to be overcome by suitable design principles for connecting
25 component parts.

26 An excellent example of a library of defined promoter/RBS elements developed
27 for *E. coli* utilized a design strategy to connect promoter-RBS elements that greatly
28 reduced the impact of local genomic context (Figure 2B). As often noted for a given
29 promoter or RBS element, the authors first observed that distinct genes placed under
30 identical promoter-RBS combinations led to unpredictable gene expression levels
31 (Mutalik et al., 2013). The majority of this variability could be attributed to sequence-
32 dependent secondary mRNA structure, for example, the formation of hairpins that block
33 ribosome access (Figure 2A). To circumvent this problem, the authors designed
34 “bicistronic” operons with an invariant upstream coding sequence that could largely
35 eliminate secondary RNA folding effects (Mutalik et al., 2013). Ribosome translocation
36 through the upstream element unfolds the secondary structure of the RNA near the
37 internal RBS, allowing for much greater prediction of downstream genes (Figure 2B).
38 Similar efforts have been directed towards the characterization of the effectiveness of
39 DNA terminator elements to quantify their capacity to insulate a genetic element from
40 the genomic context in which is inserted (Cambray et al., 2013). Collectively, the goal of
41 such studies is to allow *in silico* assembly of a regulatory region that will express a gene
42 of interest (GOI) at a precise and predictable level.

43 Construction of synthetic transcription factors that recognize user-specified DNA
44 sequences is an alternative approach that has helped to broaden the options available
45 for controlling gene expression. Transcription activator-like effector (TALE) domains are

1 one promising class of protein sequences that can be used in the construction of
2 designer transcription factors due to their ability to be constructed to recognize and bind
3 to any target DNA sequence. TALE domains are naturally found in clusters containing
4 multiple repeats of the 33-35 amino acid (aa) sequence, each of which can vary in two
5 specific residues that dictate recognition of an A, T, C, or G nucleotide (Figure 3A). A
6 string of these domains in series defines a particular DNA sequence to which the TALE
7 repeat will bind. Cys2-His2 zinc-finger (ZF) domains represent a similar opportunity for
8 encoding protein targeting to a custom DNA sequence, as each ZF domain possesses
9 affinity to a particular 3 nucleotide triplet (reviewed in (Gaj et al., 2013)). Varying the
10 amino acids that contact the base pairs within the major groove has allowed for the
11 design of domains that have specificity for many of the 64 possible triplet combinations,
12 albeit with different degrees of specificity (Kim et al., 2011).

13 In their natural context, TALE and ZF domains are found as the DNA-binding
14 region within transcription factors, while other domains of the protein specify activities
15 related to transcriptional activation or repression. For example, plant pathogens in the
16 *Xanthomonas* genus inject transcription factors into host plant cells through type III
17 secretion that are guided to bind to promoter regions in the plant nucleus through TALE
18 repeat regions. A separate modular domain acts as a strong activator of transcription,
19 ultimately leading to upregulation of genes that enhance the fitness of the pathogen
20 (e.g., sugar transporter genes that increase the extracellular carbohydrate availability).
21 The same construction strategy can be used to append different functional domains onto
22 custom TALE or ZF proteins, creating proteins that bind to specific sequences and either
23 repress or activate gene expression (Gaj et al., 2013). For instance, adding a VP16
24 domain will create a targeted transcription factor that activates gene expression in
25 mammalian cells while a KRAB domain will conversely repress nearby genes. When
26 synthetic TALE or ZF transcription repressor proteins are used in combination with post-
27 transcriptional repressors (e.g. RNA interference; RNAi) the result can often be nearly
28 complete gene repression.

29 An analogous engineering tool that has received a great deal of attention recently
30 is the nuclease-containing CRISPR (clustered regularly interspaced short palindromic
31 repeat) system. This refers to a natural anti-viral system evolved in bacteria to recognize
32 foreign genetic material and to target a nuclease activity specifically to these sequences.
33 The CRISPR system involves a nuclease protein, Cas9, which binds to specific small non-
34 coding guide RNAs (ngRNA) that acts to direct Cas9's activity to specific genetic
35 sequences by base pairing (Figure 3B). As the guide RNA is encoded separately from
36 Cas9, engineers can readily encode custom guide RNAs to target Cas9 to bind to virtually
37 any sequence. As Cas9 has endogenous nuclease activity, the capacity to direct it to bind
38 to virtually any target sequence has greatly assisted genomic editing efforts by allowing
39 DNA breaks to be introduced at precise locations. Both TALE and ZF-domain containing
40 proteins have also been used widely for genome editing by appending modular domains
41 with nuclease activity onto TALE or ZF proteins. Directed cleaving of DNA *in vivo* greatly
42 increases the frequency of homologous recombination at that site, allowing for targeted
43 gene disruption or insertions. Double-strand breaks (e.g. achieved by appending Fok1
44 nuclease domain) frequently lead to inaccurate repair, making this approach useful for
45 creating indels and disrupting gene function, while single-stranded breaks can allow for
46 seamless integration of alternative DNA sequence through homologous recombination

1 (Gaj et al., 2013). The core features of CRISPR, TALE-, and ZF-containing synthetic
2 transcription factors are similar – they allow creation of custom proteins that bind user-
3 specified nucleotide sequences and can then be modified to locally activate/repress
4 transcription, block translation, or create DNA breaks to introduce targeted genetic
5 modifications. For a detailed review of the comparative strengths and weaknesses of
6 genome editing and control of gene expression via CRISPR, TALEs and ZFs, see (Gaj et
7 al., 2013).

8

9 **Post-translational Control of Protein Activities in Space and Time**

10 In addition to methods to influence the activation and translation of target genes,
11 tools have been developed that allow manipulation of the levels and activities of
12 resultant proteins. Here again, much of this work relies upon the inherent modular
13 organization of natural proteins and their regulatory sequences. For example, SH2
14 domains generally confer binding affinity to the proline-rich sequence PxxP, and is a
15 domain that is repeated across 110 distinct proteins in humans alone (Liu et al., 2006).
16 A particular combination of modular interaction domains that each provide an
17 incremental binding affinity can cooperatively create a protein-protein interface of high
18 specificity (Pawson and Nash, 2003).

19 The ability to control the binding of properties of proteins can be used to improve
20 the performance of heterologous pathways by emulating the natural cellular strategy of
21 segregating factors into distinct micro-domains or compartments in order to increase
22 local concentration while reducing deleterious cross-talk (Figure 3C). For example,
23 eukaryotic cells improve pathway efficiency by compartmentalizing reactions within
24 organelles, effectively concentrating components of related pathways, increasing total
25 flux, and insulating external pathways from unwanted cross-talk or toxic intermediates.
26 Similar benefits are routinely achieved in metabolic and signalling pathways by co-
27 localization to a common micro-domain within the cell, or upon a shared scaffolding
28 surface. For example, elegant studies of yeast mitogen activated protein kinase (MAPK)
29 pathways have demonstrated that scaffold proteins (e.g. Ste5) recruit and concentrate
30 kinases from a related signalling cascade in order to increase fidelity, decrease crosstalk,
31 increase reaction speed, and preserve spatial elements of a signal (Figure 1B; (Gordley
32 et al., 2016)).

33 In an effort to capture similar benefits for heterologous metabolic pathways and
34 reconstructed signalling systems, engineers have designed a variety of synthetic
35 scaffolds with the ultimate goal of creating a programmable subcellular surface *in vivo*.
36 One of the earliest synthetic scaffold designs was simply a string of protein-protein
37 interaction domains all encoded on the same peptide (Figure 3C). By modifying enzymes
38 of a heterologous mevalonate-production pathway so that they contained the
39 corresponding ligand domains, the authors aimed to concentrate the pathway and
40 metabolic intermediates to a subcellular domain within the cytosol. This strategy
41 appeared to increase the output of a heterologous mevalonate production pathway by
42 up to ~100 fold in one instance (Dueber et al., 2009). Yet, unpredictability in the actual
43 structure formed by these simple synthetic scaffolds can limit their utility for other
44 applications. Since then, a variety of biological scaffolds have been engineered, using

1 RNA, DNA, and polymerizing proteins, all of which use a similar premise of attaching
2 modular binding domains that allow target proteins to be recruited to the scaffold
3 structure (Siu et al., 2015). Yet, despite numerous improvements and examples of
4 increasing efficacy of these designs, a truly predictable self-assembling scaffold that can
5 be modified to form a specific desired architecture *in vivo* remains an unfulfilled goal of
6 the field (Young et al., 2017).

7 Just as important as transcription and translation, degradation rates control the
8 steady state level of any cellular protein – providing another potential layer to modulate
9 the activity of engineered systems. One successful approach has been to utilize
10 regulatory peptide sequences that are conditionally recognized by cellular machinery that
11 direct targets to the proteasome. For example, the *ssrA* degradation pathway acts as a
12 control system for damaged mRNA in bacteria by appending a 13 aa sequence onto the
13 C-terminus of any polypeptide associated with a stalled ribosome. This 13 aa signal
14 sequence is recognized by an adapter protein, *SspB*, which also interacts with the
15 proteasomal complex *ClpXP*, thereby targeting these suspect proteins to be degraded
16 (Figure 3D). Detailed mechanistic understanding of *ClpXP*-mediated protein degradation
17 (Baker and Sauer, 2012) laid the foundation for engineers to co-opt it as a mechanism
18 to inducibly downregulate protein levels. By encoding the *ssrA* tag directly within gene
19 sequence of a heterologous construct, the protein can be degraded when expression of
20 *SspB* is induced (Figure 3D). This effectively allows for inducible conditional knockouts
21 for any protein that can be modified at the C-terminus, and has been used to
22 downregulate essential genes for the purpose of metabolic engineering (Brockman and
23 Prather, 2015) and to study the function of essential cell components for which genomic
24 knockouts cannot be generated (Ricci et al., 2016). Similar strategies have been utilized
25 with alternative proteasomal machinery, including the *Lon* protease (Cameron and
26 Collins, 2014).

27 Another powerful class of molecular biology tools that can be used to precisely
28 control the activity of proteins within a cell in both spatial and temporal dimensions are
29 light-responsive proteins termed optogenetic switches. Some of the earliest examples of
30 such devices were derived from the repurposing of microbial channelrhodopsins (Boyden
31 et al., 2005), but more devices have relied upon modular LOV (light-oxygen-voltage)
32 domains and portions of phytochromes and cryptochromes. Key features of optogenetic
33 devices are that light can both induce a rapid conformational change and also that the
34 activated state can be reversed on short time scales by light of different wavelengths
35 (e.g. phytochromes) or within seconds to minutes in the dark (e.g. cryptochromes).
36 Domains that undergo such conformational state switching can be appended onto other
37 functional proteins (e.g. enzymes, transcription factors) to control their function in a
38 light-dependent fashion. This allows a researcher extreme precision to control activation
39 of an optogenetically-controlled pathway both temporally and spatially. A variety of
40 different optogenetic switches have been developed that allow control over gene
41 expression, protein localization, control of ion transport, and activation of signalling
42 cascades at defined subcellular locations (see (Pastrana, 2011) for a non-technical
43 overview, and (Olson and Tabor, 2014; Shcherbakova et al., 2015) for more detailed
44 reviews of mechanisms and applications).

45 **“Bottom Up”: Emergent Complexity from Interactive Components**

1 Individual components, such as defined promoters or well-characterized modular
2 protein-protein interaction domains, are useful tools on their own, but the promise of
3 synthetic biology lies in the capacity to combine individual “parts” in a predictive manner
4 to assemble complex systems with customizable functions. A commonly used synthetic
5 biology component for controlling gene expression is a genetic logic gate, which is
6 conceptualized in relation to simple computational operations. For example, an AND gate
7 is only active if both inputs A and B are TRUE, while an OR gate is active if either A or B,
8 or both, are TRUE (Figure 4A). Sixteen genetic logic gates are possible for a two-input
9 function, and all of these been encoded genetically (Siuti et al., 2013), often via multiple
10 independent approaches. Conceptualizing genetic circuits like logic gates inspired some
11 of the earliest synthetic biology devices, such as the Repressilator and Toggle switch
12 (Collins et al., 2000; Elowitz and Leibler, 2000). Yet the real utility of such genetic units
13 is highlighted when multiple individual modules are connected in series with one
14 another, enabling dramatically more complex behaviour to be encoded within the cell
15 (Brophy and Voigt, 2014; Moon et al., 2012) (Figure 4B).

16 Increasingly, logic circuits are being used to drive designer expression of key
17 genes towards therapeutic or biotechnology goals. For example, a recent report created a
18 probiotic *E. coli* strain with the capability to provide a readout for rapid detection of gut
19 inflammation and demonstrate proof-of-concept within a mouse model. The design
20 involved linking a novel histidine kinase receptor specific for the detection of thiosulfate
21 (a marker of gut inflammation) to a synthetic AND gate, which drove the expression of a
22 readout reporter only when the circuit was induced, and the cells experienced the
23 environment of an inflamed mouse gut (Daeffler et al., 2017). A similar strategy utilized
24 a circuit that responded to a chemical agent (anhydrotetracycline), and triggered a
25 feedback loop, allowing bacteria within a gut to “remember” and report the chemical
26 exposure long after the priming event (Kotula et al., 2014). Both of these studies
27 illustrated how simple genetic circuits can be recombined to make bacterial strains that
28 could reside within the digestive tract and act as “sentinels” to report that the system
29 has been exposed to a specific insult and/or become imbalanced.

30 Akin to connecting logic gates within a single cell to construct more complicated
31 devices, simple circuits that reside in separate cells of a larger population can be
32 connected to one another to create complex higher-order population behaviours. Some
33 of the best-known early examples of these intercellular circuits took advantage of a class
34 diffusible signalling molecules called acyl-homoserine lactones (AHL), derived from
35 bacterial quorum sensing pathways. AHLs are generated with a cell through the action of
36 acyl-homoserine-synthases, and subsequently can diffuse through the plasma
37 membrane and into neighbouring cells (Waters and Bassler, 2005). When an AHL binds
38 into the hydrophobic core of a cognate AHL receptor, it stabilizes the protein, which can
39 bind to promoter elements to regulate gene expression. When connected to one another
40 across different cells by intercellular signals, even a simple circuits can produce
41 startlingly complex behaviours at the population-level, including coordinated “blinking”
42 across the community, or pulse-like waves of gene activation and repression (Danino et
43 al., 2010). Connecting circuits across individual cells has been compared to distributed
44 computation by parallel processors and one advantage of this approach is that it can
45 enable a large design space with a relatively limited number of unique “parts,” because

1 the same components can be reused in distinct cell types within the consortia (Regot et
2 al., 2011).

3 AHLs are only one class of molecule that can be exchanged as a signal between
4 cells, other efforts to program modular microbial communities take advantage of cross-
5 feeding between distinct species to more effectively distribute metabolic labour across
6 consortia partners. While microbes can be designed to exchange any number of
7 metabolic intermediates (e.g. much research has been conducted on closely-related
8 species engineered to have complimentary auxotrophies (Mee and Wang, 2012)),
9 exchange of key metabolites can allow for the generation of communities composed of
10 two or more “metabolic specialist species” that compartmentalize highly different
11 reactions. In one recent example, two microbial partners were engineered to grow
12 together on pretreated cellulosic material (corn stover) by compartmentalizing the
13 reaction for breaking cellulose down to soluble oligosaccharides within *Trichoderma*
14 *reesei*, while an engineered partner species, *E. coli*, consumed the released sugars to
15 produce isobutanol (Minty et al., 2013).

16 As with many of the examples above, synthetic consortia also can serve as an
17 illustration of the limitations of the abstraction of modularity in biological systems. In the
18 previous example, it is notable that the genes encoding the cellulases contained of *T.*
19 *reesei* are theoretically transferrable parts that, if expressed in *E. coli*, could be used to
20 generate a single species with the metabolic capability of the consortia. In this instance,
21 knowledge limitations - about cellulase maturation, export, and organization upon
22 extracellular scaffolding complexes (i.e. cellulosomes) – can complicate our capacity to
23 engineer *E. coli* for efficient cellulose degradation. In other instances, incompatibilities
24 between metabolic processes may hinder integration of two desirable pathways into one
25 host organism. For example, the complex metallocenters of nitrogenases that fix
26 atmospheric nitrogen are notoriously oxygen sensitive and require numerous maturation
27 factors. Aerobic species must often go to extreme lengths to maintain active
28 nitrogenases; confining nitrogenase activity to specialized compartments, time periods
29 or differentiated cell types (Compaoré and Stal, 2010; Flores and Herrero, 2010).
30 Although ambitious efforts exist to express nitrogenases in heterologous hosts, many of
31 these have been met with limited success in part because of the complexity of the
32 pathways and metabolic incompatibilities.

33 Alternatively, there are examples that utilize modular consortia to
34 compartmentalize metabolic abilities across a consortium that would be difficult to
35 program within a single host. For example, *Azotobacter vinelandii* is a nitrogen-fixing
36 bacterium that has been modified to secrete ammonium by knocking out *nifL*, a
37 transcription factor that represses nitrogenase activity under nitrogen-replete conditions.
38 Ammonium-secreting *A. vinelandii* has been shown to grow in co-culture with select alga
39 species and plants (Ambrosio et al., 2017; Ortiz-Marquez et al., 2013), enhancing
40 available nitrogen resources for the autotroph by effectively bootstrapping nitrogenase
41 activity onto photosynthetic organisms. By contrast, retaining an active heterologous
42 nitrogenase within the photosynthetic species would be complicated by the high oxygen
43 partial pressure caused by the oxygen evolving activity of photosystem II. In a
44 conceptually similar vein, the cyanobacterium *Synechococcus elongatus* PCC 7942 has
45 been modified to efficiently fix carbon and secrete it in the form of sucrose, and can
46 therefore be used as a photosynthetic module to construct a variety of light-driven

1 autotroph/heterotroph consortia (Figure 4C; (Hays et al., 2017)). In this case, the
2 heterotrophic species within the consortia can act as a conversion module to transform
3 the sugar to higher-value compounds (Figure 4C). Eight distinct co-cultures have been
4 published with this modular autotroph/heterotroph design, including; utilizing
5 *Pseudomonas putida* to create the bioplastic poly-hydroxybutyrate (Löwe et al., 2017),
6 *Rhodotorula glutinis* for the generation of long-chain fatty acids (Li et al., 2017), and *A.*
7 *vinelandii* to create an artificial carbon-for-nitrogen symbiotic exchange (Smith and
8 Francis, 2016). In some instances, productivity of the synthetic consortia exceeded that
9 of attempts to rewire the metabolism of cyanobacteria for direct photoproduction of the
10 same target compound (Weiss and Ducat, 2017), illustrating the potential benefit of
11 metabolic specialization and compartmentalization.

12

13 **Expanding the Synthetic Biology Toolkit Beyond Model Organisms**

14 In order for synthetic biology to realize its broadest potential it must continue to
15 escape the confines of the best-studied model microbes and apply the foundational
16 principles and philosophy of the discipline towards building reliable parts lists within
17 alternative species. Many of the core themes of synthetic biology have permeated into
18 other disciplines, and specific tools have been adapted for use in a number of organisms.
19 Yet, it could be argued that most model systems outside of *E. coli* and *S. cerevisiae* lack
20 a core set of well-defined biological parts that have been characterized in a standardized
21 manner or been rigorously analysed for their degree of modularity. Because complex
22 synthetic pathways and circuits are built in a manner that is dependent upon robust and
23 predictable functioning of simple elements (Figure 4), the lack of core components (e.g.
24 even small libraries of promoter elements with standardized activities) can hinder the
25 translation of the most ambitious synthetic biology applications into other species.

26 It is frequently said that deep knowledge of a topic is further enhanced when one
27 must teach that knowledge to another; synthetic biology offers a similar promise of
28 "learning-by-building". Although the emphasis of many discussions on the potential of
29 synthetic biology relate to therapeutic, energy, environmental, or other biotechnological
30 applications, perhaps one of the most impactful aspects of the use of synthetic biology
31 will be in furthering our fundamental knowledge of the organization and evolution of
32 biological systems (Bashor et al., 2010). The tools of synthetic biology allow a
33 researcher to manipulate organisms with increasing precision, while the framework
34 enables the systematic investigation of core assumptions about the network organization
35 of living systems by building analogous, simplified genetic devices. Put differently, much
36 of our present day knowledge of biology comes from a scientific tradition of "learning by
37 breaking" – for example the creation and study of mutants. Synthetic biology offers an
38 alternative approach to test and expand our knowledge through the construction of new
39 systems that will only function as intended if our underlying assumptions are relatively
40 accurate. Recognition of the enabling potential of establishing foundational modular
41 "parts lists" across a wide swath of organisms will greatly assist in accelerating the
42 impact of synthetic biology, both for futuristic technological applications, and deepening
43 our fundamental understanding of the organization of life.

44

1

2 Acknowledgements:

3 This work was supported by the Office of Science of the U.S. Department of Energy DE-
4 FG02-91ER2002, as well as NSF Grant CBET #1437657; which also supported some of the
5 primary research discussed in this review.

6

1 **References:**

2 Ambrosio, R., Ortiz-Marquez, J.C.F., Curatti, L., 2017. Metabolic engineering of a
3 diazotrophic bacterium improves ammonium release and biofertilization of plants
4 and microalgae. *Metab. Eng.* 40, 59–68. doi:10.1016/j.ymben.2017.01.002

5 Baker, T.A., Sauer, R.T., 2012. ClpXP, an ATP-powered unfolding and protein-
6 degradation machine. *Biochim. Biophys. Acta - Mol. Cell Res.*
7 doi:10.1016/j.bbamcr.2011.06.007

8 Bashor, C.J., Horwitz, A.A., Peisajovich, S.G., Lim, W.A., 2010. Rewiring Cells: Synthetic
9 Biology as a Tool to Interrogate the Organizational Principles of Living Systems.
10 *Annu. Rev. Biophys.* 39, 515–537. doi:10.1146/annurev.biophys.050708.133652

11 Bhattacharyya, R.P., Reményi, A., Yeh, B.J., Lim, W.A., 2006. Domains, Motifs, and
12 Scaffolds: The Role of Modular Interactions in the Evolution and Wiring of Cell
13 Signaling Circuits. *Annu. Rev. Biochem.* 75, 655–680.
14 doi:10.1146/annurev.biochem.75.103004.142710

15 Bonde, M.T., Pedersen, M., Klausen, M.S., Jensen, S.I., Wulff, T., Harrison, S., Nielsen,
16 A.T., Herrgård, M.J., Sommer, M.O.A., 2016. Predictable tuning of protein
17 expression in bacteria. *Nat. Methods* 13, 233–236. doi:10.1038/nmeth.3727

18 Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-
19 timescale, genetically targeted optical control of neural activity. *Nat. Neurosci.* 8,
20 1263–1268. doi:10.1038/nn1525

21 Brockman, I.M., Prather, K.L.J., 2015. Dynamic metabolic engineering: New strategies
22 for developing responsive cell factories. *Biotechnol. J.* 10, 1360–1369.
23 doi:10.1002/biot.201400422

24 Brophy, J.A.N., Voigt, C.A., 2014. Principles of genetic circuit design. *Nat. Methods* 11,
25 508–520. doi:10.1038/nmeth.2926

26 Cambray, G., Guimaraes, J.C., Mutualik, V.K., Lam, C., Mai, Q.A., Thimmaiah, T.,
27 Carothers, J.M., Arkin, A.P., Endy, D., 2013. Measurement and modeling of intrinsic
28 transcription terminators. *Nucleic Acids Res.* 41, 5139–5148.
29 doi:10.1093/nar/gkt163

30 Cameron, D.E., Bashor, C.J., Collins, J.J., 2014. A brief history of synthetic biology. *Nat.*
31 *Rev. Microbiol.* 12, 381–390. doi:10.1038/nrmicro3239

32 Cameron, D.E., Collins, J.J., 2014. Tunable protein degradation in bacteria. *Nat.*
33 *Biotechnol.* 32, 1276–1281. doi:10.1038/nbt.3053

34 Collins, J.J., Gardner, T.S., Cantor, C.R., 2000. Construction of a genetic toggle switch in
35 *Escherichia coli*. *Nature* 403, 339–342. doi:10.1038/35002131

36 Compaoré, J., Stal, L.J., 2010. Oxygen and the light-dark cycle of nitrogenase activity in
37 two unicellular cyanobacteria. *Environ. Microbiol.* 12, 54–62. doi:10.1111/j.1462-
38 2920.2009.02034.x

39 Daeffler, K.N., Galley, J.D., Sheth, R.U., Ortiz-Velez, L.C., Bibb, C.O., Shroyer, N.F.,
40 Britton, R.A., Tabor, J.J., 2017. Engineering bacterial thiosulfate and tetrathionate
41 sensors for detecting gut inflammation. *Mol. Syst. Biol.* 13, 923.
42 doi:10.15252/msb.20167416

43 Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J., 2010. A synchronized

1 quorum of genetic clocks. *Nature* 463, 326–330. doi:10.1038/nature08753

2 Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal, A. V.,
3 Prather, K.L.J., Keasling, J.D., 2009. Synthetic protein scaffolds provide modular
4 control over metabolic flux. *Nat. Biotechnol.* 27, 753–759. doi:10.1038/nbt.1557

5 Ellis, T., Adie, T., Baldwin, G.S., 2011. DNA assembly for synthetic biology: from parts to
6 pathways and beyond. *Integr. Biol.* 3, 109. doi:10.1039/c0ib00070a

7 Elowitz, M.B., Leibler, S., 2000. A synthetic oscillatory network of transcriptional
8 regulators. *Nature* 403, 335–338. doi:10.1038/35002125

9 Espah Borujeni, A., Channarasappa, A.S., Salis, H.M., 2014. Translation rate is controlled
10 by coupled trade-offs between site accessibility, selective RNA unfolding and sliding
11 at upstream standby sites. *Nucleic Acids Res.* 42, 2646–2659.
12 doi:10.1093/nar/gkt1139

13 Flores, E., Herrero, A., 2010. Compartmentalized function through cell differentiation in
14 filamentous cyanobacteria. *Nat. Rev. Microbiol.* 8, 39–50. doi:10.1038/nrmicro2242

15 Gaj, T., Gersbach, C.A., Barbas, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based
16 methods for genome engineering. *Trends Biotechnol.*
17 doi:10.1016/j.tibtech.2013.04.004

18 Gordley, R.M., Bugaj, L.J., Lim, W.A., 2016. Modular engineering of cellular signaling
19 proteins and networks. *Curr. Opin. Struct. Biol.* doi:10.1016/j.sbi.2016.06.012

20 Hammer, K., Mijakovic, I., Jensen, P.R., 2006. Synthetic promoter libraries--tuning of
21 gene expression. *Trends Biotechnol.* 24, 53–5. doi:10.1016/j.tibtech.2005.12.003

22 Hays, S.G., Yan, L.L.W., Silver, P.A., Ducat, D.C., 2017. Synthetic photosynthetic
23 consortia define interactions leading to robustness and photoproduction. *J. Biol.*
24 Eng. 11, 4. doi:10.1186/s13036-017-0048-5

25 Kashtan, N., Alon, U., 2005. Spontaneous evolution of modularity and network motifs.
26 *Proc. Natl. Acad. Sci.* 102, 13773–13778. doi:10.1073/pnas.0503610102

27 Kim, S., Lee, M.J., Kim, H., Kang, M., Kim, J.-S., 2011. Preassembled zinc-finger arrays
28 for rapid construction of ZFNs. *Nat. Methods* 8, 7–7. doi:10.1038/nmeth0111-7a

29 Kosuri, S., Church, G.M., 2014. Large-scale de novo DNA synthesis: technologies and
30 applications. *Nat. Methods* 11, 499–507. doi:10.1038/nmeth.2918

31 Kotula, J.W., Kerns, S.J., Shaket, L.A., Siraj, L., Collins, J.J., Way, J.C., Silver, P.A.,
32 2014. Programmable bacteria detect and record an environmental signal in the
33 mammalian gut. *Proc. Natl. Acad. Sci.* 111, 4838–4843.
34 doi:10.1073/pnas.1321321111

35 Li, T., Li, C.-T., Butler, K., Hays, S.G., Guarneri, M.T., Oyler, G.A., Betenbaugh, M.J.,
36 2017. Mimicking lichens: incorporation of yeast strains together with sucrose-
37 secreting cyanobacteria improves survival, growth, ROS removal, and lipid
38 production in a stable mutualistic co-culture production platform. *Biotechnol.*
39 *Biofuels* 10, 55. doi:10.1186/s13068-017-0736-x

40 Liu, B.A., Jablonowski, K., Raina, M., Arcé, M., Pawson, T., Nash, P.D., 2006. The Human
41 and Mouse Complement of SH2 Domain Proteins—Establishing the Boundaries of
42 Phosphotyrosine Signaling. *Mol. Cell* 22, 851–868.
43 doi:10.1016/j.molcel.2006.06.001

1 Löwe, H., Hobmeier, K., Moos, M., Kremling, A., Pflüger-Grau, K., 2017.
2 Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture
3 of *Synechococcus elongatus* cscB and *Pseudomonas putida* cscAB. *Biotechnol.*
4 *Biofuels* 10, 190. doi:10.1186/s13068-017-0875-0

5 Mee, M.T., Wang, H.H., 2012. Engineering ecosystems and synthetic ecologies. *Mol.*
6 *Biosyst.* 8, 2470. doi:10.1039/c2mb25133g

7 Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C.-H., Ahn, J.-H., Foster, C.E., Liao, J.C., Lin,
8 X.N., 2013. Design and characterization of synthetic fungal-bacterial consortia for
9 direct production of isobutanol from cellulosic biomass. *Proc. Natl. Acad. Sci.* 110,
10 14592–14597. doi:10.1073/pnas.1218447110

11 Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C., Voigt, C.A., 2012. Genetic programs
12 constructed from layered logic gates in single cells. *Nature* 491, 249–253.
13 doi:10.1038/nature11516

14 Mutualik, V.K., Guimaraes, J.C., Cambray, G., Lam, C., Christoffersen, M.J., Mai, Q.-A.,
15 Tran, A.B., Paull, M., Keasling, J.D., Arkin, A.P., Endy, D., 2013. Precise and reliable
16 gene expression via standard transcription and translation initiation elements. *Nat.*
17 *Methods* 10, 354–360. doi:10.1038/nmeth.2404

18 Olson, E.J., Tabor, J.J., 2014. Optogenetic characterization methods overcome key
19 challenges in synthetic and systems biology. *Nat. Chem. Biol.* 10, 502–511.
20 doi:10.1038/nchembio.1559

21 Ortiz-Marquez, J.C.F., Do Nascimento, M., Zehr, J.P., Curatti, L., 2013. Genetic
22 engineering of multispecies microbial cell factories as an alternative for bioenergy
23 production. *Trends Biotechnol.* 31, 521–529. doi:10.1016/j.tibtech.2013.05.006

24 Pastrana, E., 2011. Optogenetics: controlling cell function with light. *Nat. Methods* 8,
25 24–25. doi:10.1038/nmeth.f.323

26 Pawson, T., Nash, P., 2003. Assembly of cell regulatory systems through protein
27 interaction domains. *Science* 300, 445–452. doi:10.1126/science.1083653

28 Ravasz, E., 2002. Hierarchical Organization of Modularity in Metabolic Networks. *Science*
29 (80-). 297, 1551–1555. doi:10.1126/science.1073374

30 Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellén, J., Peeters, T., Hohmann, S., de
31 Nadal, E., Posas, F., Solé, R., 2011. Distributed biological computation with
32 multicellular engineered networks. *Nature* 469, 207–211. doi:10.1038/nature09679

33 Ricci, D.P., Melfi, M.D., Lasker, K., Dill, D.L., McAdams, H.H., Shapiro, L., 2016. Cell
34 cycle progression in *Caulobacter* requires a nucleoid-associated protein with high AT
35 sequence recognition. *Proc. Natl. Acad. Sci. U. S. A.* 113, E5952–E5961.
36 doi:10.1073/pnas.1612579113

37 Shcherbakova, D.M., Shemetov, A.A., Kaberniuk, A.A., Verkhusha, V. V., 2015. Natural
38 Photoreceptors as a Source of Fluorescent Proteins, Biosensors, and Optogenetic
39 Tools. *Annu. Rev. Biochem.* 84, 519–550. doi:10.1146/annurev-biochem-060614-
40 034411

41 Siu, K.H., Chen, R.P., Sun, Q., Chen, L., Tsai, S.L., Chen, W., 2015. Synthetic scaffolds
42 for pathway enhancement. *Curr. Opin. Biotechnol.*
43 doi:10.1016/j.copbio.2015.08.009

44 Siuti, P., Yazbek, J., Lu, T.K., 2013. Synthetic circuits integrating logic and memory in

1 living cells. *Nat. Biotechnol.* 31, 448–452. doi:10.1038/nbt.2510

2 Smith, M.J., Francis, M.B., 2016. A Designed *A. vinelandii*-*S. elongatus* Coculture for
3 Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals. *ACS*
4 *Synth. Biol.* 5, 955–961. doi:10.1021/acssynbio.6b00107

5 Wagner, G.P., Pavlicev, M., Cheverud, J.M., 2007. The road to modularity. *Nat. Rev.*
6 *Genet.* 8, 921–931. doi:10.1038/nrg2267

7 Waters, C.M., Bassler, B.L., 2005. Quorum Sensing : Communication in Bacteria. *Annu.*
8 *Rev. Cell Dev. Biol.* 21, 319–346. doi:10.1146/annurev.cellbio.21.012704.131001

9 Weiss, T.L., Ducat, D.C., 2017. Designing stable, synthetic, light-driven cyanobacteria-
10 heterotroph consortia for bioproduction. *Metabolic Engineering.* doi:
11 10.1016/j.ymben.2017.10.009

12 Young, E.J., Burton, R., Mahalik, J.P., Sumpter, B.G., Fuentes-Cabrera, M., Kerfeld, C.A.,
13 Ducat, D.C., 2017. Engineering the bacterial microcompartment domain for
14 molecular scaffolding applications. *Front. Microbiol.* 8.
15 doi:10.3389/fmicb.2017.01441

16

17

18 <insert> **Further Reading:**

19 Kirschner, M. W., & Gerhart, J. C. (2006). *The plausibility of life: Resolving Darwin's dilemma*. Yale
20 University Press.

21 Church, G. M., & Regis, E. (2014). *Regenesis: how synthetic biology will reinvent nature and*
22 *ourselves*. Basic Books.

23 Lim, W., Mayer, B., & Pawson, T. (2014). *Cell signaling: principles and mechanisms*. Taylor & Francis.

24 Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic
25 engineering. *Metabolic engineering*, 14(3), 189-195.

26 Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: from modules to
27 systems. *Nature reviews Molecular cell biology*, 10(6), 410-422.

28 Lazebnik, Y. (2002). Can a biologist fix a radio?—Or, what I learned while studying apoptosis. *Cancer*
29 *cell*, 2(3), 179-182.

30

31

32 <insert> **Glossary:**

33 **Part:** a unit of biology that is a smaller component of a larger system and has separable
34 functions (e.g. protein domain, gene promoter).

35 **Module:** a functional unit (part) of biological systems that retains its intrinsic properties
36 irrespective of the context it is placed and what other units it is connected to.

1 **Circuit:** a collection of modules connected to one another such that the network is
2 capable of a programmed higher-order function. For example, a biological "logic circuit"
3 that can detect 2 input stimuli and activate (or repress) an output gene according to a
4 defined standard (see Figure 4A).

5

6

1 <insert> **Figures and Tables:**
2 **All figures within this manuscript are original and do not require permission for**
3 **use.**

4 **Figure 1:**

5

6 **Abstraction of biology as composed of modular subunits.** A core tenant of
7 synthetic biology is the conceptualization of biological systems as composed of many,
8 relatively simple interconnected parts that can be recombined in a modular fashion. **A)** A
9 gene coding region is readily recognized as containing modular features, including the
10 promoter, ribosome binding site (RBS), coding sequence, and terminator. If these
11 “parts” are to be used in a truly modular fashion, it should be possible to repurpose
12 them in a different context, yet retain their core function. Promoter “i” (dark green –
13 bottom left) represents a highly modular promoter element because it drives
14 transcription of the downstream sequence in a highly predictable fashion, no matter
15 what the sequence is. Promoter “ii” (light green) displays variable properties depending
16 on the context, and therefore possesses poor modularity. **B)** Modularity in the design of
17 living systems can be found across many scales. This includes protein domains, which
18 often contain homologous sequence to domains in other proteins. The SH2 (Src-
19 homology domain 2) is a domain with the self-contained property of binding amino acid
20 sequences P-X-X-P, and is a domain naturally found widely across many proteins in
21 eukaryotes. Whole proteins are often modular and can be exported from one organism
22 to another while retaining their function, or even repurposed in different contexts in the
23 same cell for different functions. Here, the MAPKKK Ste11 is at the top of the kinase
24 cascade for signalling responses to both mating factor and osmotic shock in yeast. The
25 function of Ste11 (grey box) remains the same while the context (i.e. which scaffold
26 protein it is associated with; either Ste5 or Pbs2) has important implications for its
27 output. At larger scales, examples of modularity of tissue types or whole organs can be
28 found (e.g. the capacity to transplant hearts across a relatively large evolutionary
29 space). Yet, at each biological scale, examples of poor modularity also exist (e.g. cannot
30 transplant brain tissue from even closely related species). This highlights the necessity of
31 utilizing a process **C)** to characterize biological parts in a standardisable way for their
32 functionality, thereby identifying valuable parts and design principles that facilitate
33 biological engineering using a modular approach.

34

35

36

1 **Figure 2:**

2 **Appropriate design principles can improve the modularity of component parts.**

3 An example of a lack of modularity within biology can be found in the activity of RBS
4 elements, which **A)** often exhibit variability in the degree of translation they promote,
5 depending on context. For example, the same RBS element may drive a high expression
6 of GFP (green fluorescent protein; top) but low expression of RFP (red fluorescent
7 protein) due to unexpected nucleotide interactions within the mRNA that cause formation
8 of secondary structure that inhibits ribosome binding (bottom). More predictive
9 expression of a broad range of genes can be achieved through design principles that
10 mitigate these problems. **B)** Creating bi-cistronic elements that consist of a leading RBS
11 (RBS1) and a standardized leader sequence allows for upstream binding of ribosomes.
12 The helicase activity of ribosomes translocating through the leader sequence disrupts
13 secondary structure, revealing the internal RBS (RBS2). This design has been
14 successfully implemented to greatly reduce the variability in gene expression that is
15 achieved when using a given promoter/RBS combination, regardless of the target gene
16 to be expressed (Mutalik et al., 2013).

17

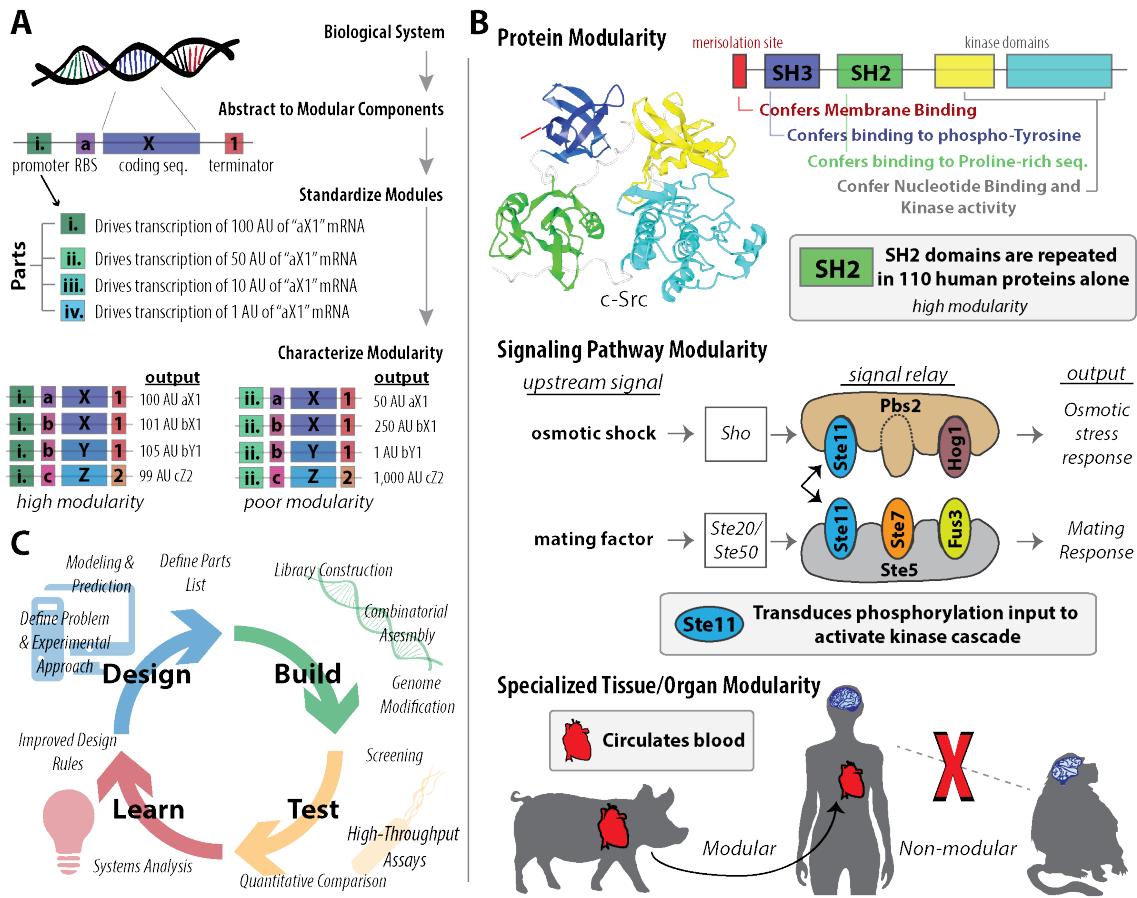
18

1 **Figure 3:**

2

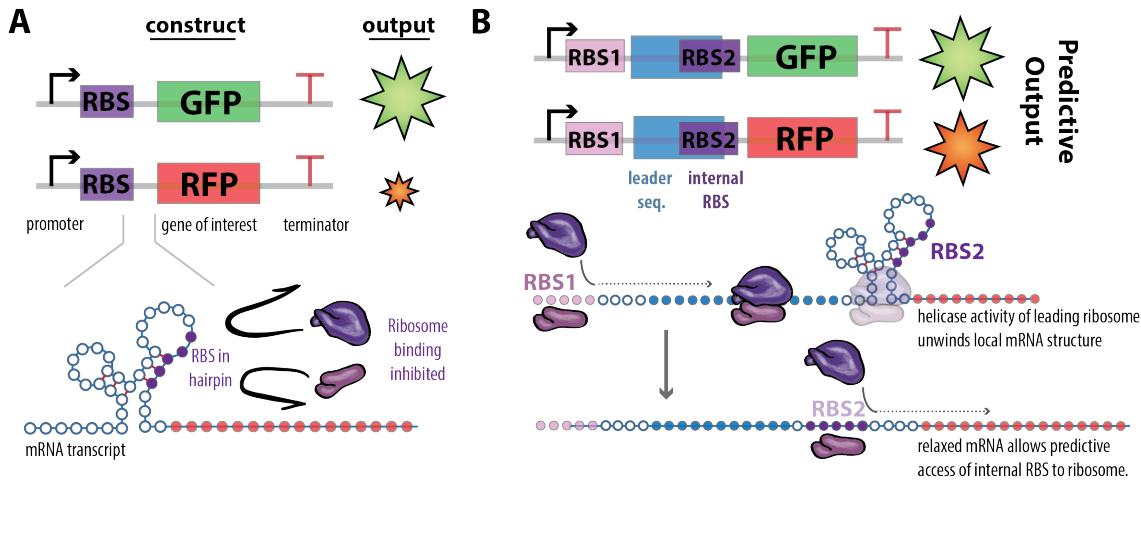
3 **Examples of modular molecular biology tools utilized in synthetic biology. A)**

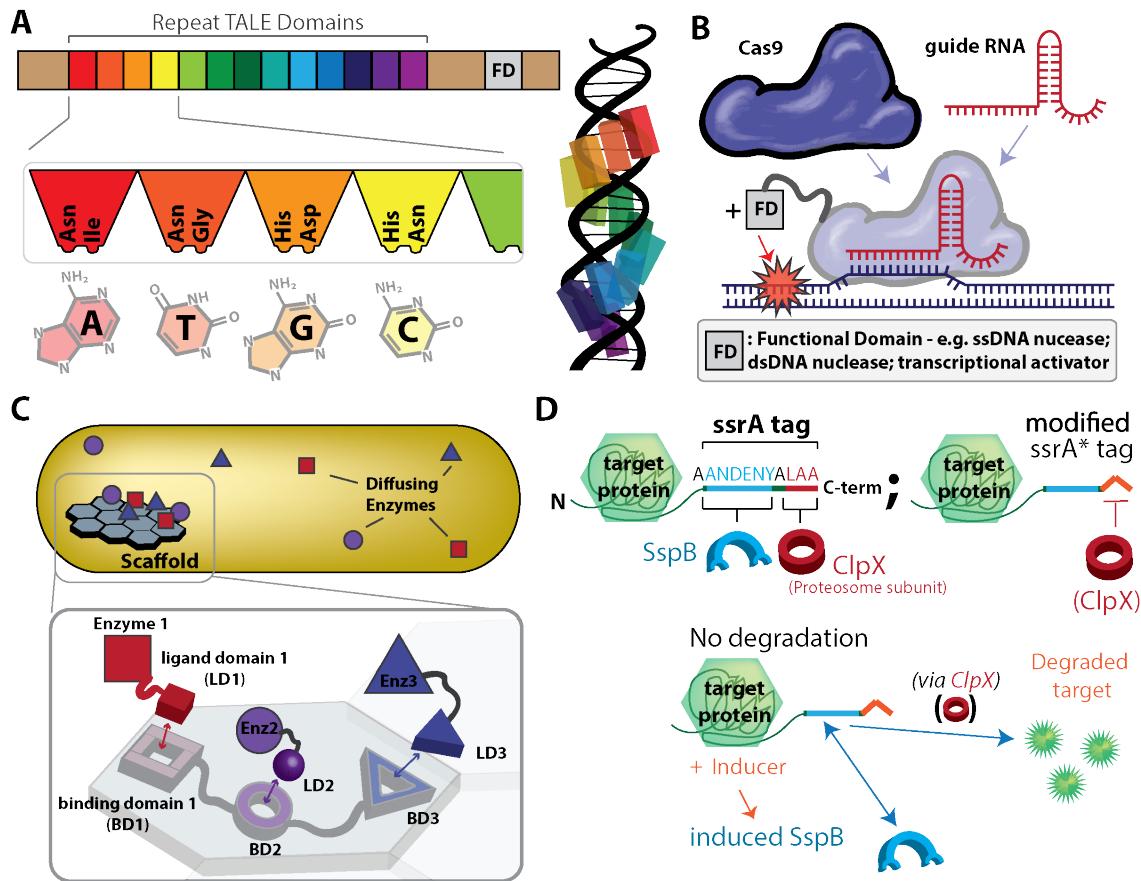
4 TALE effectors are characterized by a modular DNA-targeting region that is composed of
5 multiple repeats of a protein domain. Each domain is nearly identical to the others,
6 except that they can vary in two key amino acid residues (see blow-up insert) and these
7 two residues confer specificity for binding to a target nucleotide. When multiple domains
8 are connected in series, they can bind to a target DNA sequence by arraying next to one
9 another within the major groove of the DNA (right). **B)** Cas9 protein recognizes small
10 non-coding RNAs that have a characteristic hairpin sequence. When bound to a guide
11 RNA (red) the Cas9 protein is able to use standard base pairing interactions to bind to
12 the complimentary sequence within a target genome. Both Cas9 and TALE proteins can
13 be readily modified with a functional domain (FD) to confer a desired function that will
14 preferentially affect the target sequence: capacity to induce double-stranded or single-
15 stranded DNA breaks, or domains that enhance/repress recruitment of transcriptional
16 machinery. **C)** Concentration of proteins to a subcellular location (top) is a recurring
17 theme to improve fidelity and efficiency within signalling and metabolic pathways.
18 Artificial scaffolds have been constructed by encoding a string of binding domains (e.g.
19 SH2 domains) on a single polypeptide that correspond to ligand domains that are
20 appended to target proteins. When the artificial scaffold is expressed, it recruits the
21 target proteins through receptor-ligand interactions, effectively concentrating the
22 enzymes relative to one another. Early designs consisted only of single, isolated
23 scaffolds, while more recent examples have favoured scaffolding proteins that can self-
24 assemble into defined, macromolecular arrays (depicted as tiled hexagons). **D)** Protein
25 degradation can be experimentally controlled by modifying target proteins so they
26 encode C-terminal "degron" tags (ssrA tag). These peptides are typically recognized by
27 endogenous proteasome machinery (ClpX) and targeted for degradation. By introducing
28 point mutations to the ssrA tag sequence, the marked protein can only be recognized
29 when the adaptor protein (SspB) is present to recruit it to the proteasome, allowing for
30 inducible downregulation of the target by controlling the expression of sspB.


31

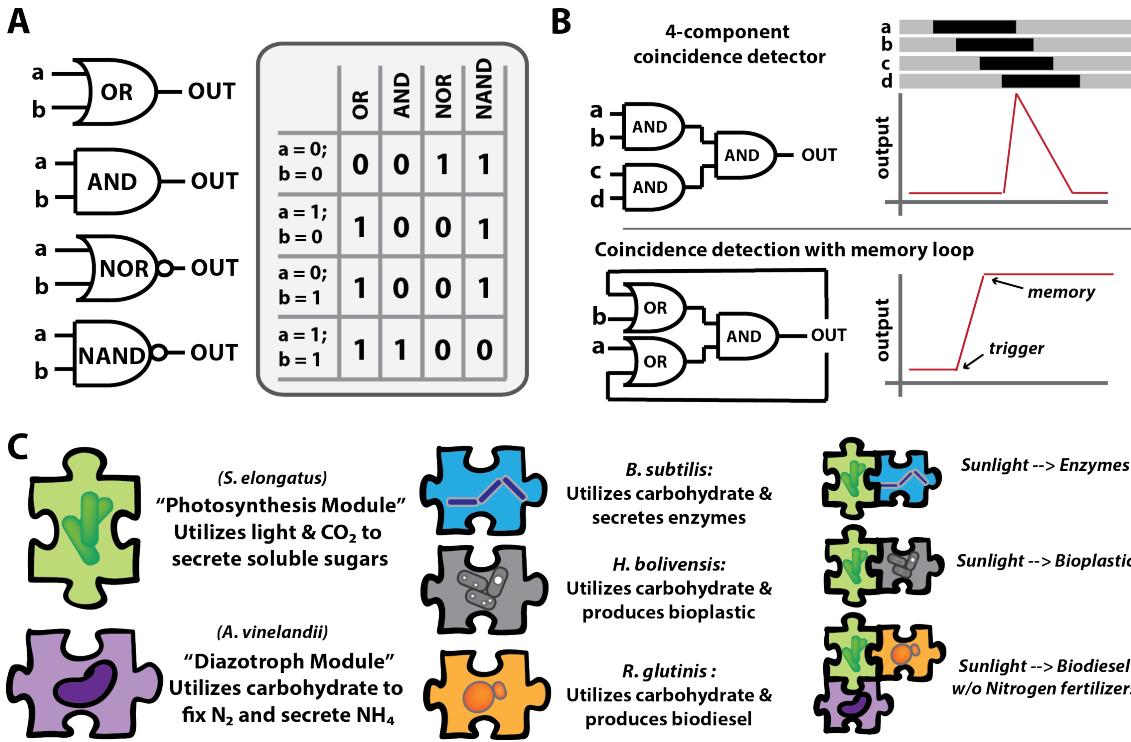
1 **Figure 4:**

2


3 **Assembly of simple modules to create increasingly complex circuits and**
4 **systems. A)** Two-component logic gates process two input signals and activate an
5 output response (1) when the appropriate conditions are met. A lookup table (grey inset)
6 illustrates the output of 4 basic logic gates under each condition of for commonly-used
7 gates. **B)** Connection of component logic gates together in series can allow for higher-
8 order complexity in genetic circuit design. For instance, connecting 3 AND gates will
9 create a coincidence detector that activates a target output (e.g. gene expression; red
10 line) only when all 4 input criteria are met. Other complex output patterns, such as
11 "memory" or oscillatory outputs can be generated by connecting simple circuits.
12 Complex behaviours can arise when feedback loops are present in otherwise simple
13 networks – e.g. a device that activates only when exposed to two signals, and retains
14 memory of this activation (bottom). **C)** Individual cells, or species can also be abstracted
15 as modules within a larger community. Here, an autotrophic module (the
16 cyanobacterium *S. elongatus*) has been engineered to utilize photosynthesis to fix
17 carbon and export a simple sugar (sucrose). In synthetic communities, this can be
18 regarded as an "autotrophic" module that provides organic carbon to power other
19 desirable metabolic reactions in heterotrophic modules. Combining species modules can
20 confer desired properties into synthetic consortia without having to engineer complex
21 processes (e.g. light-harvesting or nitrogen-fixation) into a single chassis.


22

1


2

1

2

