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Abstract—The integration of renewable energy sources such as
solar PVs into micro grids has increased in recent years. However,
the intermittent and unpredictable nature of renewable energy
generation makes supply uncertain, in turn requiring continuous
net load balancing to ensure grid stability. One technique to
achieve net load balancing is curtailment, however, selection of
the optimal set of curtailment strategies to achieve a targeted
curtailment is NP-hard. State-of-the-art curtailment selection
techniques approach this problem by either developing com-
putationally expensive optimal curtailment strategies or reduce
accuracy to generate sub-optimal solutions quickly. In this work,
we develop NO-LESS: a Near OptimaL CurtailmEnt Strategy
Selection algorithm. NO-LESS is a novel Fully Polynomial Time
Approximation Scheme (FPTAS) which determines bounded
(near optimal) curtailment strategies in a small amount of time
while simultaneously satisfying practical constraints on strategy
switching overhead and curtailment fairness. We perform both
theoretical analysis and practical evaluation to show that NO-
LESS is a scalable solution for performing net load balancing
through curtailment strategy selection in Micro Grids.

I. INTRODUCTION

Integration of distributed energy resources in micro grids,
especially using renewable sources such as solar PVs is open-
ing up new challenges in net load balancing [1]. Renewable
energy generation can be intermittent and unpredicatable.
The high variability in renewables generation due to weather
conditions can lead to frequent load-supply mismatches when
either the supply is higher than the load or vice versa.

Traditional net load balancing techniques such as Demand
Response are inadequate as they do not address supply surplus.
Although techniques such as storage can be used to smooth
these imbalances, they are costly and require sophisticated
control for providing both upward and downward reserves.

Recent technological advances in solar PV installations such
as the development of micro-inverters have opened up new
opportunities for net load balancing. Traditionally, the entire
solar PV installation was connected to the grid as a monolithic
generator. However, with the availability of micro-inverters,
each solar panel (called module) in the installation can be
independently connected (disconnected) to (from) the grid [2].
By disconnecting a subset of modules, the solar PV installation
exhibits discrete solar curtailment configurations.
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Therefore, it is now possible to develop a holistic net load
balancing framework which performs load curtailment during
high demand periods and solar curtailment during periods with
surplus supply. Since long-term renewables prediction is more
uncertain, the net load balancing framework has to be designed
to execute rapidly within short prediction horizons. Significant
literature exists for performing fast and optimal curtailment
selection when the nodes of the smart grid exhibit continuous
curtailment values. However, if the nodes exhibit discrete solar
or load curtailment values, as is the case in real world micro
grids, then achieving a curtailment target from the nodes can
be shown to be NP hard and hence a challenging task. State-of-
the-art discrete curtailment selection works have approached
this problem by resorting to certain concessions. They either
provide computationally expensive optimal solutions or faster
heuristics with no optimality bounds.

In this work, we show that this problem can be solved
in polynomial time to within an arbitrarily small factor.
We develop NO-LESS (Near OptimaL CurtailmEnt Strategy
Selection), a fast curtailment algorithm for net load bal-
ancing applicable to any micro grid where the generators
and consumers exhibit discrete1 curtailment strategies. We
also consider additional practical constraints such as the cost
incurred in switching and the inability to arbitrarily switch
strategies in our algorithm. Specifically, we develop an FPTAS
that does the following: given an accuracy parameter ε > 0,
NO-LESS performs strategy selection to achieve a curtailment
target in time polynomial in the number of nodes, strategies,
and 1/ε while ensuring that 1) no node is curtailed more
than its maximum allowable value and 2) the total curtailment
exceeds the target by no more than a (1 + ε) factor. NO-
LESS achieves this while also incorporating some additional
practical constraints based on our experience in curtailment in
our microgrid, namely strategy switching overhead costs along
with limitations on strategy switching in consecutive intervals.

II. RELATED WORKS

Supply-demand matching using load curtailment is a well
studied field. Optimal polynomial time solutions have been
developed for scenarios with continuous load curtailment such

1Continuous curtailment values can be discretized to fit into this algorithm.



as in [3] and [4]. However, this assumption is unsuitable for
micro grids as the buildings exhibit discrete curtailment values.

In order to tractably solve the problem of achieving load
curtailment using discrete curtailment values, stochastic op-
timization algorithms have been developed in works such
as [5] and [6]. However, such works assume the availability
of a large number of nodes in the grid. For example, for
the technique in [5], the minimum number of customers
required to achieve the desired curtailment value with more
than 95% probability is quadratic in the curtailment value.
Several fast heuristics [7], [8] have also been developed
which do not provide any optimality guarantee and can have
significantly high errors in worst case. Several other works [9],
[10] focus on providing optimality guarantee by developing
Integer/Mixed Integer Linear Programming (ILP/MILP) based
solutions which are computationally expensive as solving an
ILP/MILP takes exponential amount of time.

Solar curtailment has gained attention recently due to the
challenge of surplus supply posed by the integration of renew-
ables. Works [11], [12] performing solar curtailment assume
the availability of continuous solar curtailment strategies by
varying the voltage from the Maximum Power Point (MPP).
This requires fine grained control of the solar panels. For
some scenarios, fine grained control might not be available
due to limitations of inverter technology. Authors in [2]
develop a technique which reacts to over-voltages by simply
disconnecting individual PV modules from the grid using
the micro-inverters thus exhibiting discrete solar curtailment
strategies. We leverage this capability to perform proactive
solar curtailment with discrete curtailment strategies.

Previously, we developed a 2-factor algorithm for achieving
minimum cost net load balancing with fairness [13]. In this
work, we develop an (1+ε)-factor algorithm which ensures
fairness in net load balancing.

III. CURTAILMENT MODELING IN MICRO GRIDS

A. Motivation

In our model, a micro grid consists of several nodes. The
nodes can be a producer of electricity, for example solar
PVs, or a consumer of electricity, for example, buildings
in a campus. Each producer node (solar PV) is associated
with a discrete set of solar curtailment values achieved by
(dis)connecting individual PV modules to the grid using
micro-inverter technology [2]. Each consumer node can be
switched to one of the several available load curtailment
strategies [14]. A control center can remotely switch each node
into one of several available strategies in each time interval of
the curtailment horizon. Each such node-strategy pair exhibits
a fixed amount of curtailment. Renewable generation and con-
sumer load predictions are performed to predict the expected
supply-load mismatch C during a given time horizon consisting
of T time intervals. The control center then determines the
node-strategy pairs across the intervals of T to achieve the
desired curtailment target C.

This setting has several constraints which make this problem
hard. Firstly, each node can follow one of several available

strategies, each associated with a fixed curtailment value.
Hence, the curtailment values exhibited by a single node form
a discrete set. However, such node strategy pairs are not large
enough for the applicability of the law of large numbers
which is critical for the success of stochastic optimization
based techniques. A simple version of this problem, where a
targeted curtailment value needs to be achieved using a set of
discrete curtailment values with no additional constraints, can
be shown to be NP hard by reducing the well known subset
sum problem to it. Secondly, each strategy switch by a node
requires some ramp time to come into effect. For certain pairs
of strategies, this ramp time is prohibitively large. Hence, a
node following some strategy in an interval cannot switch to
any arbitrary strategy in the subsequent interval.

In our previous work [15], we developed an FPTAS for this
problem to address only the first constraint. The algorithm did
not take into account the strategy switching overheads. In this
work, we develop a more sophisticated algorithm to address
both the constraints.

B. Bounding Curtailment Unfairness

In order to ensure that certain nodes of the grid are not
unfairly penalized by incurring disproportionately large cur-
tailment, we assign a budget value Cbmax with each node
b. NO-LESS algorithm, by ensuring that each node curtails
within its targeted budget, avoids unfair penalization of each
node of the micro grid.

C. Incorporating Strategy Switching Overheads

In order to incorporate strategy switching overheads, for a
node b, we define a function Γb to model the cost of switching
between allowable strategies. The purpose of the cost is to
disallow frequent strategy switching when ramp time is high.
If the node is allowed to switch from strategy j to k, then
Γb(j, k) < ∞ denotes the cost of switching, else Γb(j, k) =
∞. Note that Γb can be represented using a 2D square matrix
whose i, j entry represents the cost of switching from strategy
i to j. This ensures that a single call of Γb requires O(1)
amount of time. For a node b, we limit the cost incurred in
switching strategies by τb.

IV. NO-LESS

A. Problem Formulation

We are given a set of M nodes and N strategies. The entire
curtailment horizon is divided into discrete time intervals. We
are given a time varying curtailment matrix C(t) ∈ RM×N

with element cbj(t) denoting the discrete curtailment value
of node b adopting strategy j at time interval t where t ∈
{1, . . . , T}. Let Cbmax be the maximum curtailment value
for node b. Let X(t) be the decision matrix with element
xbj(t) denoting the corresponding decision variable at time t.
The achievable curtailment value across the entire curtailment
horizon is given by C. τb denotes the limit on the total cost
of strategy switches for a node b. We assume that strategy 1
is the default strategy with a curtailment value of 0 i.e. if a



node is not included in an interval of the curtailment horizon,
it follows strategy 1.

Given the model above, the objective is to determine node-
strategy pairs for each interval such that: (1) The curtailment
target is achieved with minimum curtailment error: difference
between the achieved and the targeted curtailment, (2) No node
is curtailed more than its maximum allowable value, (3) only
allowable strategy switches are performed by each node across
each consecutive intervals, and (4) for each node, the cost
incurred in switching strategies is within its allowable limit.

B. FPTAS for NO-LESS

We first develop a dynamic programming based FPTAS to
determine the set of curtailment strategies followed by a single
node b during the curtailment horizon to achieve a curtailment
value of at most (1+ε)C, where ε is a user determined accuracy
parameter. The cost of strategy switches will be bounded by τb
(Section IV-B1). We then combine the results of all the nodes
to achieve the targeted curtailment value from all the nodes
(Section IV-B2).

1) Achieving Curtailment Target for a Single Node: Let
µ = εC

T . For each cbj(t), we define ĉbj(t) = b cbj(t)µ c. We
also define Ĉ = bCµc. We define a boolean function Θ which
returns true if a curtailment value Ĉt can be achieved using
strategy Sk at time t incurring a cost ≤ qt strategy switches
and False otherwise. Θ can be defined using the following
dynamic programming formulation:

Θ(Ĉt, t, Sk, qt) = FALSE if Ĉt − ĉbk(t) < 0||qt < 0

= ||jΘ(Ĉt − ĉbk(t), t− 1, Sj , qt − Γb(j, k))

(∀j ∈ {1, . . . , N}) otherwise (1)

If any of Θ(Ĉ, T, Sk, τb) ∀k ∈ {1, . . . , N} is True, we can
determine the required strategies by traversing the recursive
formulation and determining the strategies at each time t as
described in Algorithm 1. The dynamic program can be solved
by creating a table of size Ĉ ×T ×N×τb. We will refer to the
entire table as Θ to simplify the notations. We can initialize
the table using the following equations:

Θ(Cl, 1, Sk, q) =TRUE if ĉbk(1) == Cl∀k ∈ {1, . . . , N}
&& q >= Γb(1k) ∀l

FALSE otherwise (2)

Lemma 1. Algorithm 1 finds the strategies to be followed
in each interval by node b to achieve the curtailment value C
within a cost of τb for strategy switches with a time complexity
which is polynomial in N,T and 1

ε .

Proof. We omit the proof of correctness in the interest of
space as it can easily by argued using the arguments used
for dynamic programming algorithms. Now, filling a single
entry of the table requires O(N) time. Hence, the algorithm
requires O(T

2N2τb
ε ) which is the dominating term. We assume

τb = O(T ) i.e. the ratio of the largest to smallest cost is

Algorithm 1: A (1 + ε) polynomial time approximation
algorithm to achieve the curtailment value C by a single
node b

1 Fill entries Θ(Ĉl, t, Sk, qt)∀Ĉl ∈ {0, . . . , Ĉ},∀t ∈
{1, . . . , T},∀Sk, k ∈ {1, . . . , N},∀qt ∈ {1, . . . , τb}
using equations 1 and 2

2 X(t)← φ ∀t ∈ {1, . . . , T}
3 Ccur ← Ĉ
4 qcur ← τb
5 for Time t = T to 1 do
6 if ∃k ∈ 1, . . . , N s.t Θ(Ccur, t, Sk, qcur) then
7 if !Θ(Ccur − cbk(t), t− 1, Sk, qcur) then
8 qcur ← qcur − 1

9 Ccur ← Ccur − cbk(t)
10 X(t)← Sk

Output: X , where X(t) denotes the strategy to be
followed at time t

bounded and the number of switches is ≤ T , the algorithm is
polynomial in N,T and 1

ε .

Lemma 2. The total curtailment value obtained by following
the strategies output by Algorithm 1 is ≤ (1+ε)C∗ where C∗ is
the total curtailment value obtained by following the strategies
output by an optimal algorithm.

Proof. Let Cx be the curtailment value obtained by following
the strategies output by Algorithm 1. Let C∗ be the optimal
curtailment value. Clearly, Cx ≤ µ

∑T
t=1 cbX(t)(t). Also, C∗ ≥

µ
∑T
t=1(cbX(t)(t)−1). This implies Cx ≤ C∗+µT ≤ C∗+εC.

Now, since C ≤ C∗, Cx ≥ C∗(1 + ε).

Using Lemmas 1 and 2, we get the following theorem.

Theorem 1. Algorithm 1 is a FPTAS to determine the strategy
to be followed in each interval 1, . . . , T to achieve a curtail-
ment value C by a single node b with the cost of strategy
switches is bounded by τb.

2) Achieving Total Curtailment by all the Nodes: We will
run step 1 of Algorithm 1 with curtailment value Ĉbmax,
the node-specific maximum curtailment value, ε′ = ε

M , and
limit on the cost on strategy switching τb for each node
b ∈ {1, . . . ,M} to create Θb. For a node b, define Φb =
∪ Ĉl | ∃{Sk, q} with Θb(Ĉl, T, Sk, q) = TRUE. Assume Φb
is in sorted order. Let L(Φb) denote the number of entries in
Φb

We will again use a dynamic programming based algorithm
for this problem. We define a boolean function Ξ which returns
True if a curtailment value Ĉb can be obtained by using nodes
{1, . . . , b} and False otherwise. Ξ can be defined using the
following formulation:

Ξ(Ĉb, b) = TRUE if ∃k ∈ {1, . . . ,L(Φb)}
s.t.Ξ(Ĉb − Φb(j), b− 1) is TRUE

= FALSE otherwise (3)



Ξ can be initialized for all Ĉb ∈ {0, . . . , Ĉ}, where
Ĉ = bCµc, µ = εC

MT by the following equations:

Ξ(Ĉb, 1) = TRUE if ∃k ∈ {1, . . . ,L(Φb)} s.t.Ĉb = Φb(k)

= FALSE otherwise (4)

Given a total curtailment value C, Algorithm 2 can be used
to combine the curtailment values that can be achieved from
individual nodes to attain the total curtailment value.

Algorithm 2: A (1 + ε) polynomial time approximation
algorithm to achieve the curtailment value C

1 Run Step 1 of Algorithm 1 for each node b with
Ĉbmax = bCbmax

µ c, where µ = εC
MT , ε′ = ε

M , and τ = τb
and produce Φb

2 Fill entries Ξ(Ĉb, b)∀Ĉb ∈ {0, . . . , Ĉ},∀b ∈ {1, . . . ,M}
using equations 3 and 4

3 Xb(t)← φ ∀b ∈ {1, . . . ,M},∀t ∈ {1, . . . , T}
4 Ccur ← Ĉ
5 for b = M to 2 do
6 if ∃k ∈ {1, . . . ,L(Φb)} s.t.

Ξ(Ccur − Φb(k), b− 1) == 1 then
7 Call Algorithm 1 with inputs Φb(k), T, τb to

produce output X
8 Xb ← X
9 Ccur ← Ccur − Φb(k)

Output: X , where Xb(t) denotes the strategy to be
followed by node b at time t

Theorem 2. Algorithm 2 is a FPTAS for NO-LESS

Proof. The correctness can be argued similar to that of Algo-
rithm 1. We skip the argument in the interest of space.

Let Cx be the curtailment value obtained by following
the strategies output by Algorithm 2. Let C∗ be the optimal
curtailment value. Clearly, Cx ≤ µ

∑M
b=1

∑T
t=1 cbX(t)(t).

Also, C∗ ≥ µ
∑M
b=1

∑T
t=1(cbX(t)(t) − 1). This implies Cx ≤

C∗ + µMT ≤ C∗ + εC. Now, since C ≤ C∗, Cx ≥ C∗(1 + ε).
Step 1 of Algorithm 2 requires O(MT 3N2

ε ) time. Step 2
requires O(Ĉ) time to fill each of the Ĉ ×M entries hence,
O(M

3T 2

ε2 ) time. These being the dominating terms, the total
complexity of Algorithm 2 is O(M

3T 2

ε2 + MT 3N2

ε ) which is
polynomial in M,N, T and 1

ε .

V. EVALUATION

We evaluate the algorithm developed in this work using the
curtailment dataset obtained by the DR programs conducted
in the University of Southern California (USC). The USC
micro grid consists of more than 150 buildings equipped
with smart meters to capture consumption data in 15-minute
intervals. Each DR lasted for 4 hours during which each
building switched to one out of 6 available strategies [14].
The curtailment data was obtained by using the algorithm
developed in [16]. For solar curtailment, we use simulated
data generated by using solar irradiance data for Los Angeles

County [17] and varying the solar PV are from 10m2 to
20m2 and the yield from 5% to 15%. 6 different curtailment
strategies: 0, 0.125 ∗ O, 0.25 ∗ O, 0.5 ∗ O, 0.75 ∗ O,O, with
O being the maximum output were generated. The cost of
switching between strategies was fixed as 1. And the cost of
strategy switching was limited to 10. The allowable strategy
switches were 0↔ 1↔ 5, 0↔ 2↔ 4↔ 5 and 0↔ 3↔ 5,
where 0 is the default strategy with a curtailment value of 0.
We implemented the NO-LESS in Java. The experiments were
performed on Dell optiplex with 4-cores and 4 GB RAM.
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Fig. 1. Near Optimality of NO-LESS

A. Near Optimality

We implemented an Integer Linear Program (ILP) for the
problem objective to obtain optimal solutions. We varied the
targeted curtailment values from 100 kWh to 2000 kWh. The
number of nodes was fixed at 20. Figure 1 shows the relative
percentage error incurred by NO-LESS algorithm compared
against the optimal solution. Relative percentage error is
defined as: (P−O)∗100

O , where P is the solution obtained by
NO-LESS and O is the optimal solution obtained by the ILP.
As shown in the figure, the relative percentage errors incurred
by NO-LESS are much less than the worst case guarantee as
determined by ε.

Notice that the relative percentage error increases as the
curtailment target increases. This is because our algorithm is
essentially a packing problem. For lower curtailment values,
the algorithm has enough available node-strategy pairs to
choose from to pack. However, as the curtailment value
increases, the availability of such pairs becomes sparse. While
the optimal algorithm tries all possible combination for opti-
mizing the packing, our algorithm terminates as soon as it
finds one which is within the worst case guarantee ε.

B. Scalability

NO-LESS algorithm has two critical parameters which
affect scalability: the number of nodes M and the accuracy
parameter ε. Note that our algorithm is independent of the
targeted curtailment value.

Figure 2 shows the effect on the execution time of the
number of nodes for various values of ε. For each ε, the
execution time increases polynomially with respect to the



  

10 20 30 40 50 60 70 80 90 100
0.000

50.000

100.000

150.000

200.000

250.000
є=0.1 (10%)
є=0.2 (20%)
є=0.05 (5%)

Number of Nodes

Ti
m

e 
(s

ec
on

ds
)

Fig. 2. Execution Time vs Number of nodes for different values of epsilon

number of nodes. Even for an accuracy parameter of 5%, the
runtime is less than 4 minutes.
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Fig. 3. Execution Time vs epsilon for different number of nodes

Figure 3 shows the trade-off between the accuracy parame-
ter ε and the execution time in seconds for various number of
nodes. The execution time increases quadratically with respect
to 1

ε . For very small values of ε such as 0.01 (1%), this leads
to very large runtimes such as 600 seconds for 50 nodes.
However, our algorithm fills the dynamic programming table
in such a way that all entries in a row can be independently
populated by looking at the entries of previous columns.
This provides us with an opportunity to easily parallelize the
algorithm to achieve dramatic improvement in the runtime. We
do not perform such analysis in this work.

C. Comparison with State-of-the-art Techniques

Table I compares the theoretical and experimental errors and
the computation time of our algorithm for various values of ε
with state-of-the-art techniques. Our algorithm, with a small
increase in runtime is able to provide solutions with extremely
low errors as shown in the table.

TABLE I
ERROR AND SCALABILITY (20 NODES) COMPARISON

Technique Theoretical
Error

Experimental
Error

Time

Change Making [8] None 2-10% ≈1 second
LP based algorithm [4] None 20-95% ≈1 second
NO-LESS (ε = 0.05) 5% <1.5% 2.2 seconds
NO-LESS (ε = 0.01) 1% <0.25% 33 seconds

VI. CONCLUSION

Integration of renewables provides an economic way to
supply for the loads of the consumers in a micro grids.

However, this comes with a caveat as the problem of discrete
curtailment strategy selection is NP-hard. In this work, using
theoretical guarantees as well as practical evaluation, we prove
that near optimal results can be obtained in polynomial time
for this problem. We also provide the users with a parameter
to trade-off accuracy versus computation time.

In our future works, we will incorporate the network model
of the grid. We will also incorporate interval wise net load
balancing. The simplicity of our problem formulation makes
it easier to incorporate any such additional modifications or
constraints with minimal effort.
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