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Abstract—The rapid transformation of micro grids due to the
accelerated integration of renewables, storage systems and IoT
enabled monitoring and control has opened up new opportunities
as well as challenges. Future micro grids will be characterized
by high DER penetration and will require sophisticated net load
balancing frameworks which explicitly consider the errors in
prediction of load and generation due to uncertainty in weather
conditions while making decisions. Traditional techniques for grid
net load management which rely on isolated shaping of load and
supply curves are inadequate and inefficient. For micro grids with
high PV penetration, the intermittent and unpredictable nature
of PV based energy generation can lead to dramatic and sudden
supply demand imbalances thus requiring a holistic framework
for balancing net load over the entire horizon. In this paper,
we develop a sequential decision making framework for net load
management that optimally balances the usage of storage and
energy market transactions as a mechanism for mitigating supply
demand imbalances (net load imbalances) over the horizon. Our
framework specifically accounts for prediction uncertainty of
future net load imbalances and minimizes the tail end risk of
storage shortfall at the end of the horizon. Using qualitative
analysis, we show that our framework achieves its objective of
minimum cost net load balancing while accounting for the tail
end risk.
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I. INTRODUCTION

Today’s micro grids have large numbers of integrated IoT-
enabled DERs (prosumers with storage systems, rooftop solar
PVs). The falling cost of these components has enabled
a dramatic increase in their installations. As per the DoE
SunShot vision document, solar generated power is expected
to grow to 14% of the total power supply in 2030 and 27% by
2050 [1]. Increasingly, energy storage systems are also being
adopted to store surplus supply for future use. Advances in
the efficiency and resiliency of energy storage systems [2]
along with the proliferation of IoT enabled smart monitoring
and control systems for the grid components [3] are opening
up new challenges as well as opportunities for micro grid
operations.

Renewable generation, due to its unpredictable nature, in-
troduces uncertainty in net load balancing [4]. Traditional net
load balancing frameworks for grids include load and supply
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shaping techniques such as optimal power flow (OPF) based
load distribution, market energy procurement, Security Con-
strained Economic Dispatch (SCED), etc. These techniques are
usually performed in isolation. However, current micro grids
with intermittent and highly uncertain PV generation require
a more unified net load management framework.

We envision future micro grids to be separate monolithic
components of the distribution system with interactions as
single entities. Such micro grids will be characterized by high
DER penetration, such as PV installations and energy storage
systems. Each micro grid component will be a node in the
IoT network enabling real time data collection and control.
This large amount of IoT data will enable more frequent
load and supply predictions, which can be advantageously
integrated with decision making optimizations to develop more
sophisticated net load balancing frameworks. Note that these
frameworks should also account for prediction errors due to
uncertainty in weather conditions.

In this paper, we develop a holistic sequential decision
making framework for net load balancing over a short-term
horizon in micro grids with high DER penetration. Given a
set of load imbalance predictions for the future, the frame-
work makes a set of actionable decisions over the horizon.
Specifically, at each time interval, the framework decides the
amount of (excess) energy to be bought (sold) from the market
and discharged (charged) from the storage to mitigate current
load imbalance while minimizing the total cost over the entire
horizon. Our framework specifically accounts for prediction
uncertainty of future net load imbalances and minimizes the
tail end risk of storage shortfall at the end of the horizon.

II. RELATED WORKS

Several works address the problem of mitigating net load
imbalances by shaping the load/supply curve. Demand Re-
sponse is a widely used technique which shapes the load curve
by curtailing the load during peak demand periods [5], [6].
Techniques have also been developed focusing on directly con-
trolling the load curve using electricity prices as a control [7].
To mitigate solar surplus, several techniques which perform
solar curtailment have been developed [8], [9].

Several storage management techniques have also been
developed to minimize the cost of grid operations. Techniques



such as [10], [11] develop energy management systems which
control storage.

Participating in electricity market by limiting the tail end
risk was first proposed in the work done by Sethi et. al. [12].
Works such as [13], [14], [15] develop risk constrained
framework for procuring wind energy. Works such as [16],
[17] develop a similar framework for storage management
under demand uncertainty. Our framework is similar to the
framework in [17] as both perform storage management
and energy market transactions simultaneously. However, Our
MDP based solution allows us to perform net load balancing
in the presence of discrete operational states [9]. The tail end
risk that we consider is the unavailability of enough storage
for the night time operations.

The techniques mentioned above work in isolation. There-
fore, we develop a holistic framework that performs energy
storage management and energy market transactions simulta-
neously allowing the grid operator to have a unified view of
the grid.

III. NET LOAD BALANCING MODEL

A. Micro Grid Model

The micro grid model that we consider in this work best
represents a University or Industrial campus. It is characterized
by the presence of several load consuming nodes such as
buildings, and several producers of non-commercial scale
(cheap) electricity. In this work, we assume that the producers
supply electricity to the micro grid using PV installations over
the buildings. The micro grid consists of distributed storage
with an aggregate capacity R. The storage has a cumulative
charge/discharge capacity of c. We do not model storage spe-
cific parameters such as Depth of Discharge (DoD), efficiency
as we assume the presence of a number of distributed storage
systems rather than a single battery system. A centralized
controller is responsible for ensuring smooth grid operations
over a decision making horizon defined over a set of daytime
intervals ¢ € {1,...,T}. Note that the horizon is defined
over daytime since supply within the micro grid using PVs
is only available during that time. We assume that during
the night time, all demand needs to be met using the storage
accumulated during the day. In our framework, the controller
responds to per interval supply demand mismatch by either
procuring/selling electricity from the external market or by
charging/discharging the storage. For each interval ¢, a buy
action b; needs to be performed, where b; is the amount of
electricity bought from the market (in kWh). Moreover, a
discharge action sr; is performed, where sr; is the amount
of the electricity discharged from the storage (in kWh). If b,
and sr; are negative, opposite actions of selling the electricity
or charging the storage, respectively are performed. The action
performed at ¢ is represented using a; =< b, st >. The cost
of buying (selling) electricity at interval ¢ is C?. We do not
associate any cost with storage charging/discharging. We also
assume that the set of costs C’f, 0 <t < T is known a priori.

B. Input Data Model

The inputs to our model are the load and generation
predictions. As the predictions are prone to errors, they need to
be modeled carefully so that the framework can make decision
accounting for the errors. We assume that at the beginning of
each interval ¢ of the decision making horizon, the controller
receives an input data vector Y; =< Dy, Dii1,...,Dp >.
Here Dy = Ly — Py, t' € {t,...,T} denotes the per
interval net load imbalance; L, and P, denote the per interval
aggregate consumption and PV generation respectively.

At time t, D; denotes the actual net load imbalance as
observed in real time whereas the Dy, ¢ € {t+1,...,T}
are random variables denoting the predicted imbalances. The
relation between action a; and D; is D; = b; + sry. Thus, if
we want to buy excess storage for the future at time ¢, we can
choose b; > D;.

C. Tail End Risk

At the end of the decision making horizon, we assume
that the minimum amount of storage required for night time
operations is R’. Hence, the tail end event whose risk needs to
be minimized is the unavailability of storage capacity of more
than R’ by the end of the decision making horizon. Depending
upon the severity of the implications of failing to avoid the
risk, the grid operator can associate it with a cost function as
follows:

/
O(Rr R) = {O fir = 1t M)
Crisk  otherwise

where Rr denotes the storage available after the interval
T and C,;s, denotes the cost of not avoiding the risk. Ci.;s
needs to be calculated appropriately to provide the operator
with a choice to meet or not to meet R’ for a given input data.
In this work, we assume that the risk needs to be avoided at
all cost and hence C,.;5,. = 0o. We will extend our framework
to handle partial risk tolerance in our future works.

D. Net Load Balancing Framework

A high level overview of our net load balancing frame-
work is shown in Figure 1. A storage capacity of Ry is
available at the beginning of the decision making horizon.
In each time interval ¢, using the most updated input data
Y, the framework makes a decision and outputs action ay
for buying (selling) from the external market and discharging
(charging) the storage. The action a; for each interval is
determined by formulating and solving a Markov Decision
Process (MDP) [18] as described in the next section. MDP is
a widely used mathematical framework for solving sequential
decision making problems. At the end of the horizon, the
amount of storage available Ry should be > R'.

IV. RISK AWARE NET LOAD BALANCING FRAMEWORK

In this section, we discuss the details of the Risk Aware
Net Load Balancing Framework that we developed to perform
minimum cost per interval net load balancing using storage
and electricity market while ensuring that the tail end risk of
the shortfall of storage is avoided.



Fig. 1. Net Load Balancing Framework

A. Objective

Given the net load balancing model defined in Section III,
the objective of our framework is to minimize the cost of
grid operations while ensuring that in each interval, the power
ingress is equal to the power egress and at the end of the
horizon, the minimum storage requirement is met.

B. Solution

1) MDP Formulation: For each interval ¢t € {1,...,T},
with information Y;, we define the MDP to determine action
a; using the following parameters:

a) Decision Epoch: The decision epochs — the time inter-
vals during which the MDP makes decisions — are {¢,...,T}
with T < co.

b) States: MDP uses the information regarding the cur-
rent state to make a decision. For each interval ¢’ € {¢,...,T},
we define state s;» =< dyr, Ry >, where dy «~ Dy denotes the
predicted net load imbalances. R, 0 < Ry < R denotes the
available storage capacity and is defined as Ry = Ry _1—sry.

c) Initial and Terminal States: The initial state is denoted
using a single state s;_1 =< 0, R;—1 >. The terminal states
are denoted using s =< 0, Ry > where R > R. Note that
the net load imbalance for initial and terminal states are zero.
This is because the initial state imbalance is addressed before
invoking the current MDP and the terminal state is outside the
decision epoch.

d) Actions: MDP outputs an action from all available
actions in the action space for each time interval after making
a decision. The action ensures that the load imbalance for
the interval is mitigated while making sure that the stor-
age charging/discharging constraints are satisfied. For a state
sy =< dy,Ry >, action space contains actions ay =<
by, ST >,t/ € {t, c. ,T} such that dyy = by + sry,
max{Ry — R, —c} < sry < min{—Ry,c} where ¢ denotes
the per interval charge/discharge capacity of the storage sys-
tem. Only the action a; for ¢ = ¢ i.e., corresponding to the
current interval is executed. The remaining actions are part

of the computation framework while solving the objective
function.

e) State Transition Probabilities: Given state sy =<
dy, Ry > at time ¢/, the transition probability for sy =<
dyr 41, R4 > is as follows:

0if Ryy1 # Ry —sro
P[dy41|Y:] otherwise

p(St/+1|3t’7 at') = {

where P[dy41]Y;] denotes the probability distribution of
dy 1 v Dy 41 under input data Y;.
f) Objective: The MDP solves the following objective
problem:

T
min E[Z Cp.by + C(Rp, R')] 2)
t=t

subject to the conditions defined above.

2) MDP Solution: When input data Y; is available at the
beginning of interval ¢,the MDP is used to determine the
action a; =< by, sty > which are executed immediately. If the
storage capacity at the beginning of the interval was R;_1, then
the storage capacity at the end of the interval R, = R;_1—sr4.
The MDP is solved as detailed below.

a) Solving MDP: We define the cost to go function at
time t' € {¢t,...,T} as follows:

Jt/(Rt/, dt/) = Ctb/(dt/ — S?"t')+

T
E[C(Rr,R)+ > C!x (D;—sri)|Yi
i=t/+1
(3)
If J}; is the optimal value of the function, then it can be
written recursively as:

Ji(Ry,dy) = Sriélsz{of,.(dt, — sry)+

> PlAYY] x Jfy (R — sre,d)} (4)
dwDyr gy

where SR = {sr max{R; — R,—c} < srp <
min{R;,c}}. The recurrence relation above implies that at
time ¢’ the best course of action is the one which minimizes
the sum of the cost of operation in the current interval and
the expected value of the future cost of operations. The above
recurrence can be solved using standard dynamic programming
techniques. The initial condition for the recurrence relation is
as follows:

Jry1(Rr,0) = (&)

oo otherwise

{o if Ry > R’

The optimal action at time ¢ can be determined by solving
Ji(R;—1,0) after setting up the dynamic program for the MDP.
The variables need to be discretized in order to solve the
dynamic program.



b) Runtime: Let [a,b]s denote the number of discrete
entries when the range [a,b] is discretized using ¢ units i.e.
[a,b]s = [%5%]. The total number of entries to be filled are:
T x [0, R]s x max,{[d"™, d"9%]s}, where dmm/ "% denote
the minimum/maximum value attained by the random variable
D;. Each entry requires O(|SR;| x max;{[d[™, d*®]s})
time. Hence, the total time complexity is O(T" x [0, R]s X
ISR x max{[dn, do+]5)2).

V. EVALUATION

We evaluated the framework developed in Section IV to
qualitatively assess its performance in terms of cost minimiza-
tion and scalability. The framework was implemented using
C++ on Dell Optiplex with 4 cores running at 2 Ghz clock
frequency. The framework was run over a decision making
horizon of 20 15-intervals (11 am - 4 pm).

A. Dataset

We used electricity consumption (load) time series data
available from USC’s micro-grid [19]. We selected a subset
of buildings such that the average load during peak periods
(1-4 pm) was 90 kWh and during off peak periods was 70
kWh. We assumed a storage capacity of 1500 kWh with a
charge/discharge rate of 140 kW. The storage requirement
at the end of the horizon was set as 1400 kWh, which is
sufficient to supply off peak average load for 19 hours i.e.
outside the decision making horizon. We used solar irradiance
data available at [20] for Los Angeles USC Downtown area
to calculate the solar generation data. We varied the area of
solar panels and used PV output calculator [21] to generate
three time series solar generation data which were then used to
create three load imbalance time series. The three time series
differed in the fraction of times either load or solar generation
was surplus during the decision making horizon. Figure 2
shows the time series data of load and solar generation used
to create the load imbalance data. The three solar time series
are as follows: S1) Both load and solar surplus almost equal
number of times, S2) load is surplus most of the time, and S3)
solar generation is surplus most of the time. We assumed ad-
ditive errors using gaussian distribution with mean p = 0 and
variance 2 = 5,10, 20 i.e., Prey|Y;] «~ N(0, (¥’ —t) x 02),
such that D, = cit/ + e, with dt/ denoting the actual value
of load imbalance.

B. Optimality

We compare the cost of operation across the entire decision
making horizon, i.e. 11 am - 4pm, of our framework against
an optimal framework which has the correct data for the
entire horizon in advance. The optimal framework solves a
single MDP for decision epochs {1, ..., T} using the available
correct data. The cost of buying was set at $0.75/kWh for
Ilam - 1pm and $0.95/kWh for the remaining horizon. We
evaluated our framework using 6 timeseries data generated
i.e. three load imbalance profiles with two different variance
of 10 and 20. We set the initial value of storage to 0 and 750
kWh.
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Varying Initial Storage and Variance

Figure 3 shows the relative percentage error of the cost
of solutions obtained from our framework with respect to
the optimal algorithm. As we can see from the figure, for
each pair of initial storage-load imbalance curve, a higher
variance leads to slightly higher errors. This is expected as
increasing uncertainty in the input data increases the errors in
decision making. However, note that the error difference is not
significant implying that the framework is able to compensate
for the increased uncertainty.

Also, note that the errors increase with the change in the
initial storage value. This is due to the fact that when the
initial storage is 0 kWh, the major focus of the framework
is to just charge the storage to its final value (1400 kWh)
and fulfill the deficit. However, when the initial storage is 750
kWh, charging requirements are reduced and the framework
tries to focus on participating in the external market operations
by selling the excess energy. The additional actions open up
new avenues for the uncertainty in the input data to introduce
errors as manifested in the higher relative percentage errors.

In our future work, we will focus on reducing the errors
furthers by using reinforcement learning based techniques
which learn from the past experience to improve the accuracy
for the future operations.
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C. Scalability

We perform scalability analysis of the framework by vary-
ing the storage capacity and the variance of the errors. We
calculate the time required to make decision at time period O
for the entire horizon. For each storage capacity value R, we
fix the charge discharge rate to 0.1 x R. Figure 4 shows the
time required to make decisions with respect to the storage
capacity R for various values of variance. The increase in
runtime is quadratic in R. This is in agreement with the
runtime which is O(R x [SR|), when other variables are fixed
and [SR| = O(R). The increase in runtime with variance is
significant. However, even for a storage capacity of 1000 kWh
and variance of 20, the runtime is just around 340 seconds.

A few techniques can be followed to further improve the
scalability. The entries of the dynamic table have low interde-
pendencies. Hence, they are easy to parallelize. Moreover, as
the runtime is significantly affected by the storage capacity,
the smart grid can be partitioned into several smaller grids
with smaller storage capacity. This improvement in runtime
would be quadratic in nature. As the focus of this paper is to
develop a new net load balancing framework with reasonable
performance, a detailed analysis of such techniques is omitted.

VI. CONCLUSION

In order to sustain the current pace of Distributed Energy
Resource (DER) integration into the smart grid, the existing
energy infrastructure needs to be re-imagined. The framework
developed in this work is one such effort in this regard. Our
holistic framework which performs net load balancing using
energy procurement and storage will allow the micro grid to
have greater control over its operations. With a sufficiently
high penetration of solar PVs, we envisage the micro grid
becoming a self sustaining entity with minimal interaction with
the larger grid.

In our future work, we will focus on data driven modeling
of error probabilities to make our framework more suitable for
real world deployment. We will also focus on modeling the
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