
A Cooperative Multi-Agent Deep Reinforcement Learning
Framework for Real-Time Residential Load Scheduling∗

Chi Zhang

Department of Computer Science

University of Southern California

Los Angeles, CA

zhan527@usc.edu

Sanmukh R. Kuppannagari

Ming Hsieh Department of Electrical

and Computer Engineering

University of Southern California

Los Angeles, CA

kuppanna@usc.edu

Chuanxiu Xiong

Department of Computer Science

University of Southern California

Los Angeles, CA

chuanxix@usc.edu

Rajgopal Kannan

US Army Research Lab-West

Playa Vista, CA

rajgopak@usc.edu

Viktor K. Prasanna

Ming Hsieh Department of Electrical

and Computer Engineering

University of Southern California

Los Angeles, CA

prasanna@usc.edu

ABSTRACT
Internet-of-Things (IoT) enabledmonitoring and control capabilities

are enabling increasing numbers of household users with control-

lable loads to actively participate in smart grid energy management.

Realizing an efficient real-time energy management system that

takes advantage of these developments requires novel techniques

for managing the increased complexity of the control action space

in resolving multiple challenges such as the uncertainty in en-

ergy prices and renewable energy output along with the need to

satisy physical grid constraints such as transformer capacity. Ad-

dressing these challenges, we develop a multi-household energy

management framework for residential units connected to the same

transformer and containing DERs such as PV, ESS and controllable

loads. The goal of our framework is to schedule controllable house-

hold appliances and ESS such that the cost of procuring electricity

from the utility over a horizon is minimized while physical grid

constraints are satisfied at each scheduling step. Traditional energy

management frameworks either perform global optimization to

satisfy grid constraints but suffer from high computational com-

plexity (for example Integer Program, Mixed Integer Programming

frameworks and centralized reinforcement learning) or perform de-

centralized real-time energy management without satisfying global

grid constraints (for example multi-agent reinforcement learning

with no cooperation). In contrast, we propose a cooperative multi-

agent reinforcement learning (MARL) framework that i) operates

in real-time, and ii) performs explicit collaboration to satisfy global

grid constraints. The novelty in our framework is two fold. Firstly,

our framework trains multiple independent learners (IL) for each

household in parallel using historical data and performs real-time

inferencing of control actions using the most recent system state.

Secondly, our framework contains a low complexity knapsack based

cooperation agent which combines the outputs of ILs to minimize

cost while satisfying grid constraints. Simulation results show that

∗
This work has been funded by the Department of Energy (DoE) under award number

DE-EE0008003 and the U.S. National Science Foundation under grant number 1637372.

our cooperative MARL approach achieves significant cost improve-

ment over centralized reinforcement learning and day-ahead plan-

ning baselines. Moreover, our approach strictly satisfies physical

constraints with no apriori knowledge of system dynamics while

the baseline approaches have occasional violations. We also mea-

sure the training and inference time by ranging the number of

households from 1 to 25. Results show that our cooperative MARL

approach scales best among various approaches.

CCS CONCEPTS
•Computingmethodologies→Multi-agent planning;Multi-
agent reinforcement learning.

KEYWORDS
multi-agent, deep reinforcement learning, smart home, real-time

load scheduling, internet-of-things

1 INTRODUCTION
Household adoption of Disribted Energy Resources (DER) such as

PV (photovoltaic) and ESS (energy storage systems) has increased

significantly in recent years. Solar generated power is expected to

grow to 14% and 27% of the total power supply by 2030 and 2050,

respectively [1]. Residences now come equipped with controllable

loads including dishwashers, laundry and HVAC systems and EVs

(Electric Vehicles) that can be used to participate in Demand Re-

sponse programs – a classic approach for passive participation in

grid management. Now, with 5G supported IoT technology and

bidirectional AMI meters, real-time monitoring and control of loads

and DER outputs has become feasible [24, 27], enabling more active

participation of residential households in grid management. Users

are already able to adjust their daily consumption patterns with the

emergence of commercial household storage technology [4] and

solar panels. This will be further facilitated by the introduction of

dynamic time dependent pricing [13].

To realize an energy management framework for residential

households, load scheduling has been widely studied [5, 21, 26].

The goal is to schedule controllable loads across the day to minimize



the cost of procuring electricity in response to dynamic prices. In

this work, we revisit the problem with the following enhancements:

• We incorporate DERs including PV and ESS. This drasti-

cally alters the energy usage pattern of the households and

requires more sophisticated decision making strategies.

• We account for the net impact of individual residential sched-

uling decisions under a common transformer. Specifically,

we ensure that at any given time period, the physical capac-

ity constraint of the transformer is not violated due to the

households collectively drawing excessive power.

Similar to previous works [22, 23], we assume unknown system

dynamics, wherein we need to predict PV generation and dynamic

pricing for the next time step given history, for decision making.

Reinforcement learning algorithms such as policy gradient and

Q-learning have been widely used to solve load scheduling prob-

lem with unknown system dynamics [16, 17, 22]. Multi-agent rein-

forcement learning (MARL) is used when multiple residents with

different scheduling tasks interact in the same environment with

global system constraints. Independent learners (IL) and central-

ized method has been studied and compared [23, 26]. However,

the IL approach fails to strictly prevent constraint violations while

the centralized method suffers from exponential growing of states

and actions. In this work, we proposed a cooperative MARL frame-

work for real-time residential load scheduling which cooperates to

minimize the cost to procuring electricity and ensure the capacity

constraints of the transformers are not violated. First, we treat each

resident as an agent and train independent learners using Proximal

Policy Optimization (PPO) [30] with various local capacity budgets.

To enforce global transformer capacity constraints, we propose

an efficient cooperative algorithm that combines outcomes from

different agents learned by each household. The contributions of

this paper are as follows:

• We explicitly model the residential households containing

PV, storage and controllable loads. We train Independent

Learners (IL) for each household. We then perform real-time

inferencing of control actions using the most updated state

information (price, load demand, PV output etc.).

• We develop a novel low complexity knapsack based coop-

eration agent which combines the control actions of ILs to

minimize collective cost of operation for all the households

while ensuring the transformer constraints are satisfied.

• Simulation results show that our approach achieves signifi-

cant cost improvement over centralized reinforcement learn-

ing and day-ahead planning baselines without capacity con-

straint violation.

• We measure the training and inference time by ranging the

number of households from 1 to 25 and results show that

our cooperative MARL approach scales best among various

approaches.

2 BACKGROUND
2.1 Markov Decision Process
Markov Decision Process (MDP) [20] is a model for sequential

decision making. Typically, a MDP M = (S,A,T ,γ ,R), where S
is the state space, A is the action space, T : S × A × S → [0, 1]

Environment

Neural Network Policy

Parameter !

⇡
✓ (a

t |s
t )

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>p(st+1|st, at)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇡✓(at|st)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Action a

Collect

Reward r

State
s

Agent

Figure 1: A general reinforcement learning setting with neu-
ral network policy

is the transition probability model, γ is the discount factor and

R : S ×A×S → R is the reward function. Policy is a set of functions

π (a |s) : S → A and the goal of MDP is to obtain a policy such that∑∞
t=0 E[γ

tR(st ,at , st+1)] is maximized. The state transition satis-

fies Markov property: the next state only relies on the previous

state and the current action. In real world, states are not always

observable. For example, the PV generation depends on the location

of the PV panel and the weather condition. These latent informa-

tion constitutes the state which we don’t have access to. What

we observe is the PV generation value in the past, where Markov

property doesn’t hold. Such setting is called Partially Observable

Markov Decision Process (POMDP) [29]. In this paper, we model

the household environment as a POMDP.

2.2 Deep Reinforcement Learning
Reinforcement learning (RL) [32] is a learning based approach to

solve MDP with unknown transition model. We show a general

reinforcement learning setting with neural network to represent

policy in Figure 1. Model-free RL tries to directly learn policy based

on the reward signal by interacting with the environment. In this

work, we apply Proximal Policy Optimization (PPO) [30] to learn

independent learners. It uses clipped surrogate objective to approx-

imate the policy gradient as

∇θ J (θ ) = E[∇θ (min(rt (θ )At , clip(rt (θ ), 1 − ϵ, 1 + ϵ)At ))] (1)

where rt (θ ) =
πθ

πθold
andAt =

∑∞
t ′=t γ

t ′−tR(st ,at )−V (st ).At is the

advantage of action at over a state-dependent baselineV (st ), which
indicates the value of current state. In the process of training agent

using PPO, we will also fit V (st ) with Monte-Carlo sampling to

obtain an unbiased value function approximator. The value function

is then used to perform cooperation among multiple agents, which

will be illustrated in Section 5.2.

2.3 Multi-Agent Reinforcement Learning
In this work, we consider fully cooperative multi-agent interact-

ing in the same environment [8]. It can be represented as tuple

(S1, · · · , Sn,A1, · · · ,An,T ,γ ,R). In Figure 2, we illustrate a multi-

agent reinforcement learning setting with 3 agents, where each

agent interacts within its own sub environment with global ac-

tion constraint denoted as f (a1,a2, · · · ,an ) ≤ C and global reward



f(a1, a2, a3)  C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Agent 2Sub
Environment 2

Action a2

Reward r2

Agent 1Sub
Environment 1

Action a1

Reward r1

Agent 3Sub
Environment 3

Action a3

Reward r3

R(r1, r2, r3)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: A multi-agent reinforcement learning setting

function denoted as R(r1, r2, · · · , rn ). The advantages of this model

are:

• Each sub environment can be homogeneous or heteroge-

neous. For example, each household can have different load

types, PV panel and scheduling priorities.

• Priorities among households can be injected into the global

reward function by taking a weighted sum of sub reward

denoted as

N∑
n=1

wn

∞∑
t=0
E[γ tR(st ,n,at ,n, st+1,n )

wherewn is the weight of reward of agent n. This is practical
because some households may have more important loads

than others.

In our simulation, we consider simplified scenarios with homoge-

neous sub environments and equally weighed rewards.

2.3.1 Independent Learner (IL). In this approach, each agent inde-

pendently learns its own policy by ignoring the state and action

space of the other agents. While this results in the adoption of local

optimal policy for each agents, however, collectively the agents

might potentially violate the global environment constraints. Such

scenarios require explicit cooperation among agents, where some

agents need to sacrifice for the sake of collective benefit.

2.3.2 Centralized Agent. In this approach, a centralized agent learns
the policy for all the agents to enable cooperation by considering

states and actions from all the agents [23]. However, centralized

agents suffer from exponential increase of state and action space

as the number of agent increases [18].

As both the methods discussed above have their own limitations,

we develop a novel approach by training Independent Learners

for each household (Section 5.2.1) and using a low computational

complexity cooperation algorithm to ensure satisfaction of global

environment constraints (Section 5.2.2).

3 RELATEDWORK
Smart energy management has been widely studied with the pro-

liferation of DERs and IoT technology. In [21], the authors model

electricity market and residents as two players. The residential

scheduling problem is modeled as aMarkov Decision Process (MDP)

and game theoretic techniques are used for solution. However, their

model is only applicable to small number of residents due to lim-

ited scalability. In [26], the authors assume Markovian price and

residential device usage with known transitions and use Q-learning

to learn optimal strategy to shift the loads with respect to dynamic

Transformer

Household

Capacity  C
<latexit sha1_base64="cQhehgDltz2DTsW8v6sLUkUVK1g=">AAACK3icbVA9SwNBFHznZ4xfUbHSYjEIVuHORstgGssEjAomhL3NS1zcuz1336nhyI+xVez9H1aKhY2/QzeJhSYOLAwz7/FmJ0yUtOT7r97U9Mzs3HxuIb+4tLyyWlhbP7U6NQLrQittzkNuUckY6yRJ4XlikEehwrPwqjLwz27QWKnjE+ol2Ix4N5YdKTg5qVXYbBDeUVbhCReSev2GwmtWaRWKfskfgk2S4IcUy9vPtQ8AqLYKX422FmmEMQnFrb0I/ISaGTckhcJ+vpFadBeueBcvHI15hLaZDeP32a5T2qyjjXsxsaH6eyPjkbW9KHSTEadLO+4NxH+9gUJaK9v/K6eKpNG3Y7Goc9jMZJykhLEYpeqkipFmg+JYWxoUpHqOcGGk+xgTl9xwQa7evGssGO9nkpzulwK/FNS CYvkIRsjBFuzAHgRwAGU4hirUQUAG9/AAj96T9+K9ee+j0SnvZ2cD/sD7/AZwIqth</latexit><latexit sha1_base64="8hLV575HUdlVS/VgfOYacqKjOH4=">AAACK3icbVC7SgNBFJ2NrxhfUbFSZDAIVmHXRstgGksD5gEmhNnJTTJkdmeduauGJaUfYqvY+x9Wiq2VH6GTxMIkHhg4nHMv98zxIykMuu6bk5qbX1hcSi9nVlbX1jeym1sVo2LNocyVVLrmMwNShFBGgRJqkQYW+BKqfq849Ks3oI1Q4SX2I2gErBOKtuAMrdTM7tQR7jApsohxgf1BXcI1LTazOTfvjkBnifdLcoW9l9LX/f7LRTP7XW8pHgcQIpfMmCvPjbCRMI2CSxhk6rEBe6HHOnBlacgCMI1kFH9AD63Som2l7QuRjtS/GwkLjOkHvp0MGHbNtDcU//WGCiolzWBSjiUKrW6nYmH7tJGIMIoRQj5O1Y4lRUWHxdGW0MBR9i1hXAv7Mcq7TDOOtt6Mbcyb7meWVI7znpv 3Sl6ucEbGSJNdckCOiEdOSIGckwtSJpwk5IE8kifn2Xl13p2P8WjK+d3ZJhNwPn8AjVWsxw==</latexit><latexit sha1_base64="8hLV575HUdlVS/VgfOYacqKjOH4=">AAACK3icbVC7SgNBFJ2NrxhfUbFSZDAIVmHXRstgGksD5gEmhNnJTTJkdmeduauGJaUfYqvY+x9Wiq2VH6GTxMIkHhg4nHMv98zxIykMuu6bk5qbX1hcSi9nVlbX1jeym1sVo2LNocyVVLrmMwNShFBGgRJqkQYW+BKqfq849Ks3oI1Q4SX2I2gErBOKtuAMrdTM7tQR7jApsohxgf1BXcI1LTazOTfvjkBnifdLcoW9l9LX/f7LRTP7XW8pHgcQIpfMmCvPjbCRMI2CSxhk6rEBe6HHOnBlacgCMI1kFH9AD63Som2l7QuRjtS/GwkLjOkHvp0MGHbNtDcU//WGCiolzWBSjiUKrW6nYmH7tJGIMIoRQj5O1Y4lRUWHxdGW0MBR9i1hXAv7Mcq7TDOOtt6Mbcyb7meWVI7znpv 3Sl6ucEbGSJNdckCOiEdOSIGckwtSJpwk5IE8kifn2Xl13p2P8WjK+d3ZJhNwPn8AjVWsxw==</latexit><latexit sha1_base64="T6JWRssZwg6yNcsh7HdD8efP1RE=">AAACK3icbVDLTgIxFO34RHyhxpWbRmLiisy40SWRjUtM5JEAIZ1ygYbOdGzvqJMJH+NW49e40rj1O7TALAQ8SZOTc+7NPT1+JIVB1/1wVlbX1jc2c1v57Z3dvf3CwWHdqFhzqHEllW76zIAUIdRQoIRmpIEFvoSGP6pM/MYDaCNUeIdJBJ2ADULRF5yhlbqF4zbCE6YVFjEuMBm3JdzTSrdQdEvuFHSZeBkpkgzVbuGn3VM8DiBELpkxLc+NsJMyjYJLGOfbsQF7YcQG0LI0ZAGYTjqNP6ZnVunRvtL2hUin6t+NlAXGJIFvJwOGQ7PoTcR/vYmCSkkznpdjiUKrx4VY2L/qpCKMYoSQz1L1Y0lR0UlxtCc0cJSJJYxrYT9G+ZBpxtHWm7eNeYv9LJP6RclzS96tVyxfZ93lyAk 5JefEI5ekTG5IldQIJyl5Ji/k1Xlz3p1P52s2uuJkO0dkDs73L/n4qRw=</latexit>

Distributor

Our Focus

LV Feeder
HV/LV

LateralSub-station

Figure 3: Smart grid network model

pricing. In [5], the authors model appliance operation scheduling

problem as Mixed-Integer Linear Programming (MILP) and pro-

poses a heuristic to efficiently approximate the optimal solution. In

[22], the authors utilize Deep Q-Network (DQN) and Deep Policy

Gradient (DPG) to perform online energy scheduling to minimize

cost and reduce peak loads. In [25], the authors use MILP and a

dynamic scheduling model for optimal load scheduling among dif-

ferent consumer types for different load types to the find optimal

storage requirement for a microgrid under different scenarios. In

their problem, the storage requirement is passively computed rather

than actively participating in the optimization problem.

The innovation in our problem formulation is that actively utilize

storage and schedule loads under dynamic pricing and stochastic PV

generation. Furthermore, we also consider the cooperation among

individual households with different load profile connected to the

same transformer with a capacity constraint. Simply solving this

problem using MILP will not be scalable due to exponential in-

crease in the size of state and action space. Hence, we consider

training multiple independent learners for each household with

various local constraints offline using historical data. Then, we use

the trained model to perform online inferencing. To enable cooper-

ation to satisfy global constraints, we propose an efficient online

algorithm to select local actions for each household that achieves

global optimum.

4 PROBLEM SETUP
4.1 Overview
In this work, we adapt the smart grid model from [19] as illustrated

in Figure 3. Power from the high voltage transmission network is fed

into the low voltage network using HV/LV sub-station. Several Low

Voltage (LV) feeders originate from the sub-station to deliver power.

Each LV feeder is connected to several transformers using laterals.

The transformers further step down the voltage and provide power

to households using distributors. The multi-agent framework in this

work focuses on the group of residents under the same transformer

with each one of them treated as a single agent.

4.2 Single Household Energy Model
Figure 4 illustrates our household model – PV panel, storage system

with bidirectional energy flow and a list of controllable loads.

4.2.1 Energy Storage Model. We consider batteries as the main ESS

in household [4]. Let Pb ,n denote charging and discharging power



PV

Controllable Load

Controllable Load

Controllable Load

Storage

Grid

Figure 4: Single household model. The arrow denotes the
power flow direction.

for household n. We assume the battery can work in charging,

discharging or disconnected mode. Let Eb ,n (t) denotes the energy
stored in battery at time t . The battery energy transition is given as

Eb ,n (t + 1) = ηb ,nEb ,n (t) + λb ,n (t)Pb ,n∆t (2)

where ηb ,n ∈ (0, 1] denotes battery efficiency and λb ,n (t) = 1/−1/0

denotes charging/discharging/disconnected, respectively.

4.2.2 Household Loads. We follow the same household loads cate-

gorization as in [25]:

Modifiable power loads. Modifiable power loads need to be

served in a fixed window where the total energy requirement is

met. They are characterized by earliest starting time, a deadline and

the required number of operations during this period. Examples are

EV charging and HVAC operation. In this paper, we focus on sched-

uling modifiable power loads with the presence of PV and storage.

For household n, the scheduling task isM interruptible loads with

operation power Pn,1, Pn,2, · · · , Pn,M and required number of oper-

ation times Ln,1, Ln,2, · · · , Ln,M , where Ln,m < 96,m = 1, 2, · · ·M .

For simplicity, we assume the earliest starting time is the beginning

of the day with an end of day deadline. At each timestamp, the

action space for household n load scheduling is a binary vector

an (t) = (an,1(t),an,2(t), · · · ,an,M (t)) (3)

where an,m = 1/0 denotes turning on/off loadm, respectively.

Time shiftable loads. Time shiftable loads have fixed opera-

tion power and length and once started, should not be interrupted

(for example, dish washers and laundry units). Accurate prediction

of dynamic price is the key to scheduling time shiftable loads. Time

shiftable loads can be viewed as modifiable power loads with ad-

ditional constraints: they should be scheduled in consecutive time

slots until finished. Thus, they are easily included in our framework.

Non-shiftable loads. Non-shiftable loads (eg. microwaves, desk-

tops) are requested on demand. It can be viewed asmodifiable power

loads with only one action - on. Thus, it can also be easily included

in our framework.

4.2.3 PV generation and Dynamic Pricing. The PV generation at

each time step is determined by the area of solar panels, the weather

condition, the time of the day and so on. The dynamic pricing in the

electricity market is determined by the balance between buyers and

sellers. We assume that the household can only observe the history

value of PV generation and dynamic pricing without knowing the

underlying system dynamics. For day ahead scheduling, we are

required to predict the PV generation and the dynamic pricing

for the next day. For online scheduling, we can incorporate online

information with historical data to make more accurate prediction

for decision making.

4.3 Transformer Capacity Constraint
In this section, we formally define the physical grid constraints that

our cooperative algorithms enforces. Let K be the set of transform-

ers connected to the LV feeder using laterals. For each transformer

k ∈ K , let H (k) be the households connected to the transformer

using distributors. Let Pдr id ,h (t) be the power demand of house-

hold h ∈ H (k) at time t . Henceforth, for simplicity, we will use

Eдr id ,h (t) = Pдr id ,h (t) × ∆t , where ∆t is the interval size i.e. the
energy demand in our model. Hence, for each transformer k ∈ K ,
the following constraint needs to be satisfied:

|
∑

h∈H (k )

Eдr id ,h (t)| ≤ Ck (4)

where Ck is the capacity rating of the transformer k . From Sec-

tion 4.4 onwards, we will focus on a single transformer and will

drop k to simplify notation.

In addition to the transformer capacity constraints, the utility

also needs to ensure that voltages are within the threshold. A high

load demand on LV feeders can cause low voltages downstream i.e.

at the transformers further away from the HV/LV substation. By

solving power flow equations [12], utility can dynamically deter-

mine real and reactive power (energy) limits at each transformer to

limit voltage fluctuations which can be modeled as follows:

Pmin (t) ≤
∑

h∈H (k)

Pдr id ,h (t) ≤ Pmax (t) (5)

Qmin (t) ≤
∑

h∈H (k )

Qдr id ,h (t) ≤ Qmax (t) (6)

where Eдr id ,h (t) = Pдr id ,h (t) + iQдr id ,h (t) and P
min/max (t) +

iQmin/max (t) is the time dependent complex energy limits. How-

ever, since utilities just actively deliver real power with households

being charged only for real power and reactive power injection for

voltage regulation is handled by the utility [6], we only focus on

the real power constraint in this work. Our framework will enforce

either transformer capacity constraint or voltage fluctuation lim-

iting constraints, whichever is smaller. To simplify discussion, we

will simply denote the constraint as C(t).

4.4 Markov Decision Process Setup
We formulate our problem as a multi-agent Markov Decision Pro-

cess (MDP) with N agents (households). We assume the optimiza-

tion horizon is one day with T timestamps. In our simulation, we

set T = 96 (15 minutes interval) as in most previous work [5, 22].

4.4.1 State Space. Each household has its own local state and

shares global states.We further divide states into fully observable
states and partially observable states where fully observable

states satisfy Markovian property while partially observable states

don’t. For household index n,



• Local fully observable states: At time t , the remaining

load vector (ln,1(t), ln,2(t), · · · , ln,M (t)) and energy storage

Eb ,n (t).
• Local partial observable states: Historical PV generation

before time step t : pvn (0),pvn (1), · · · ,pvn (t − 1).
• Global partial observable states: Historical unit price of
energy before time step t : c(0), c(1), · · · , c(t − 1).

Initial state. The remaining load ln,m (1) = Ln,m,∀n,m. We

assume random initial storage Eb ,n (1),∀n. During simulation, we

use real data to generate household PV generation and unit energy

price.

4.4.2 Action Space. For household index n, the action space is

• The binary vector an (t) to turn on/off each load as defined

in Equation 3.

• The battery operation mode λb ,n (t) as defined in Equation 2.

4.4.3 TransitionModel. First, the energy demand and supply should

match

M∑
i=1

an,m (t)Pn,m + λb ,n (t)Pb ,n = pvn (t) +
Eдr id ,n (t)

∆t
,∀n, t (7)

where Eдr id ,n (t) is the energy drained from the smart grid. We

assume Eдr id ,n (t) can be negative, in which case we are selling

energy to the market using storage. The transition model of the

remaining load for household n loadm is

ln,m (t + 1) = ln,m (t) − an,m (t),∀m,n (8)

The transition model of storage is defined in Equation 2. The transi-

tion model of PV and price is determined by the underlying system

dynamics and we only observe their values. In our simulation, we

use real world historical values directly without explicitly modeling

the data generation process.

4.4.4 System Constraints.

Local. For each household, the total number of time slots turning

on certain loads is equal to the requirement.

T∑
t=1

an,m (t) = Ln,m,∀n,m (9)

Global. At any time, the total energy drained from the house-

holds connected to a transformer must not exceed the transformer

capacity:

|

N∑
n=1

Eдr id ,n (t)| ≤ C(t),∀t (10)

For simplicity, we assume no lower bound in the drawn energy.

4.4.5 Objective. We want to minimize the cost of draining energy

from the grid to finish the load scheduling as well as satisfying

the feeder capacity. The goal is to choose an (t) and λb ,n (t) for n =
1, 2, · · ·N and t = 1, 2, · · ·T such that the total cost J is minimized,

where J is calculated as

J =
T∑
t=1

N∑
n=1

Eдr id ,n (t)c(t) (11)

subject to Equation 2-10.

Algorithm 1: Offline Optimization (Day-ahead Planning)

Predict: pvn (t), c(t),∀n = 1, · · · ,N , t = 1, · · · ,T ;
Solver: Run ILP to solve minimization problem defined by

Equation 11, subject to Equation 2-10;

Result: an,m (t), λb ,n (t),∀n = 1, · · · ,N ,m = 1, · · · ,M, t =
1, · · · ,T

Online Execution:
for t = 1 to T do

Take planned action

an,m (t), λb ,n (t),∀n = 1, · · · ,N ,m = 1, · · · ,M

end

Algorithm 2: Online Optimization (Online Planning)

Input: Historical PV and dynamic energy pricing data;

Train predictor p̂vn (t),∀n and ĉ(t) offline;

Online Execution:
for t = 1 to T do

Predict pvn (k), c(k),∀n = 1, · · · ,N ,k = t + 1, · · · ,T ;
Run ILP and obtain next time step action

an,m (t + 1), λb ,n (t),∀n = 1, · · · ,N ,m = 1, · · · ,M ;

Take planned action

an,m (t + 1), λb ,n (t),∀n = 1, · · · ,N ,m = 1, · · · ,M ;

Observe ground truth PV generation and price at t + 1;

end

5 APPROACH
Before we delve into our proposed cooperative RL based solution in

Section 5.2, we briefly discuss three baseline algorithms: i) offline

optimization, ii) online optimization, iii) centralized reinforcement

learning agent

5.1 Baseline Approaches
5.1.1 Offline Optimization. Offline optimization is also known as

day-ahead planning. We show the algorithm outline in Algo-

rithm 1. First, we predict all day-ahead uncertainties including PV

generation and dynamic energy pricing. Then, we optimize the total

cost J subject to constraints 2-10 using Integer Linear Program-

ming (ILP). The main advantage of this approach is that it supports

real-time load scheduling very well since no real-time computation

is needed. However, this approach has three main drawbacks:

• The day-ahead predictor can predict the trend accurately but

suffer from real-time information blindness. For example,

the PV generation at 1pm has not only strong correlation

with PV generation at 1pm during previous days, but also

12pm generation of the same day.

• It is open-loop control with no integration of real-time in-

formation. Thus, the performance is greatly impacted if ir-

regular scenarios happen.

• ILP is NP-complete in general and doesn’t scale very well

w.r.t the number of households.

5.1.2 Online Optimization (Online Planning). We show a skeleton

of the online optimization in Algorithm 2. The online optimization



will also generate a sequence of planned action for the entire day

as offline optimization. However, only the next time step ac-
tion will be executed. Then, the ground truth PV generation and

dynamic price will be observed. The predictor will utilize newly

observed ground truth tomake finer prediction and the agent will re-

plan. In contrast to offline approach, online planning integrates real-

time information for decision making and achieves near-optimal

performance as shown by simulation results. However, we have to

run ILP for every time step, which loses real-time load scheduling

capability.

5.1.3 Centralized Reinforcement Learning. For comparison, we also

train a centralized RL agent to solve the residential load scheduling

problem. To train the centralized agent, a global environment that

concatenates Markov Decision Process components: observations,

action, reward, transitionmodel is implemented. In our problem, the

number of action variables in a single household is K and the size

of action space of N household is 2
NK

. The large observation and

action space prevents the policy from converging and yields worse

performance than cooperative independent learners as shown in

simulation results in Section 7.3.

5.2 Cooperative Reinforcement Learning
In this paper, we propose a multi-agent cooperative reinforcement

learning algorithm to solve the optimization problem defined in

Section 4. First, we discretize the capacity C into {0, 1, · · · ,C ′}.
This can always be done if we only care about numerical solution

up to finite decimals, say two. Then, the total number of possible

C ′ = ⌈100C⌉. For each c ∈ {0, 1, · · · ,C ′} and household n, we train
Independent Learner An,c with local capacity c using Proximal

Policy Optimization (PPO). During deployment, each agent An,c
produce an action acn,c using policy network and an expected sum

of future reward rn,c using value network. Then the objective of

the cooperation algorithm is to select exactly one action from each

household such that the sum of capacities is ≤ C ′ and the sum of

reward is maximized. The solution to this problem is provided by

the following dynamic programming formulation:

Φ(c,n + 1) = max

c ′∈{0,1, ...,C ′ }
{Φ(c − acn+1,c ′,n) + rn+1,c ′} (12)

where c ∈ {0, 1, . . . ,C ′} and n ∈ {2, . . . ,N } and Φ(c, 1) entries are
initialized based on the available actions for the first household.

Equation 12 can be solved by creating a table Φ of size (C ′ + 1) ×N
and iteratively filling entries starting from {0, 1} till {C ′,N }. Filling
each entry requiresO(C ′) time. Hence, the total runtime isO(C ′2N ).
However, the runtime and the number of agents to train offline,

which is C ′N , can be very large since C ′ = ⌈100C⌉. In the future

subsection, we provide an approximation algorithm that reduce

the number of agents to train for each household to log
1+ϵ C

′
. We

show an illustration of the process in Figure 5.

5.2.1 Learning Independent Learners. In this work, we train Inde-

pendent Learner (IL) using PPO algorithm [30]. The target policy

network is a function map from observation to action. We use

neural network with parameter θ and represent it as πθ (at |st ). To
model the relationship between different output actions, we choose

Multivariate Gaussian Controller with mean and covariance

matrix. The output is sampled from a trained Multivariate Gaussian

Household 1 Household 2Capacity …
…

Household N

C

C - 1

… … …

1

0

…

…

…

…

…
r1,0 = V alue(s1)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1,0 = Policy(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r1,1 = V alue(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1,1 = Policy(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r1,C�1 = V alue(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1,C�1 = Policy(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r2,C = V alue(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2,C = Policy(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r2,C�1 = V alue(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2,C�1 = Policy(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r2,1 = V alue(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2,1 = Policy(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r2,0 = V alue(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a2,0 = Policy(s2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rN,0 = V alue(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

aN,0 = Policy(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rN,1 = V alue(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

aN,1 = Policy(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rN,C�1 = V alue(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

aN,C�1 = Policy(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

rN,C = V alue(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

aN,C = Policy(sN )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r1,C = V alue(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a1,C = Policy(s1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 5: An illustration of cooperation process. We train
one agentwith local capacity c ∈ {0, 1, · · · ,C ′} for eachhouse-
hold. During deployment, we choose one agent from each
household such that the sum of the reward is maximized
and actions satisfy the global capacity constraint. For exam-
ple, the agent with red circle for each household is selected.

Algorithm 3: Cooperative Reinforcement Learning

Offline Training:
local_capacity ← [0, 1, (1 + ϵ)

1

N , · · · , (1 + ϵ)
k
N ];

for n = 1 to N do
for cap in local_capacity do

Policyn,cap ,Qvaluen,cap = ppo(envn, cap);

end
end
Let capi ← (1 + ϵ)

i
N , i = 0, 1, · · · ,k and cap−1 = 0;

Let Eдr id ,n (t) = f (an,m, λb ,n );
Online Deployment:
for t = 1 to T do

an,m (t), λb ,n (t) ← Policyn,capk (sn (t)),m = 1, 2, · · · ,M ;

if
∑N
n=1 f (an,m, λb ,n ) > C then

an,m (t), λb ,n (t) ←

cooperate(Policyn,cap ,Qvaluen,cap );

end
Take action an,m (t), λb ,n (t);

end

distribution. We discretize the output by treating positive value as

1 and negative value as 0.

To train independent learners, we use large negative reward sig-

nal to guide the agent to avoid violating local capacity constraint.

When training independent learners, the reward signal and observa-

tion is too noisy for the agent to converge to a good solution. To deal

with this problem, we adopt the idea from AlphaGo [31]. Instead

of directly training ILs, we obtain around 1000 optimal actions for

each household by running ILP using ground truth PV generation

and price information. We train our policy network using optimal

action in a supervise way (In AlphaGo, the supervision comes from

human players). Then, we finetune the policy network with reward

signals using reinforcement learning algorithm Proximal Policy

Optimization [30].



5.2.2 Approximation Algorithm for Cooperation with Bounded Ca-
pacity Constraint Violation. One technique to reduce the time com-

plexity of cooperation algorithm (12) is to develop approximation

algorithm similar to one developed in [11]. We choose a parameter

ϵ and define the following partitions for the range [0, . . . ,C ′]:

(0, 1], (1, (1 + ϵ)
1

N ], ((1 + ϵ)
1

N , (1 + ϵ)
2

N ], . . . , ((1 + ϵ)
k−1
N , (1 + ϵ)

k
N ]

where (1 + ϵ)
k−1
N < C ′ ≤ (1 + ϵ)

k
N and hence, k = ⌈N log

1+ϵ C
′⌉.

The partitions are indexed using kp ∈ {0, 1, . . . ,k}. Let ĉ(kp ) be the
upper value of the partition indexed using kp . Now, we calculate
rn,c ,acn,c∀n ∈ [N ] and c ∈ {ĉ(0), ĉ(1), . . . , ĉ(k)}. The solution to

this problem is now provided by the following dynamic program-

ming formulation:

Φ̃(c̃,n + 1) = max

kp ∈{0,1, ...,k }
{Φ̃(c̃ − acn+1,c(kp ),n) + rn+1,c(kp )}

(13)

where c̃ ∈ {ĉ(0), ĉ(1), . . . , ĉ(kp )} and n ∈ {2, . . . ,N }. Note that
the expression c̃ − acn+1,c(kp ) is mentioned for simplicity of no-

tation. In implementation, given c̃ + c(kp ) , the entry c̃
′
such that

c̃ ′ ≥ c̃ + c(kp ) >
c̃ ′

(1+ϵ )
1

N
is updated. The size of the table for Equa-

tion 13 is (k + 1) × N and each entry requires O(k) time. Hence,

the time complexity is O(N 3
log

2

1+ϵ C
′) which is polynomial in the

encoded input size. Moreover, we have the following theorem for

Equation 13.

Theorem 5.1. Equation 13 is a polynomial runtime complexity
algorithm to perform cooperation whose solution maximizes reward
while in the worst case violates the capacity constraint C ′ by (1 + ϵ).

Proof. Similar to the analysis in [11] we will prove the theorem

using induction. For each entry c,n, we will show that there exists

c̃,n such that the following holds:

(1) Φ̃(c̃,n) ≥ Φ(c,n)

(2) c̃ ≤ (1 + ϵ)
n
N c

For n = 1, it is trivially true as c will be rounded up to a value

c̃ ≤ (1 + ϵ)
1

N c and Φ̃(c̃, 1) will choose the maximum from all c
mapped to c̃ . Assuming the induction holds for n, for n + 1, let

cn+1 be the capacity of the action chosen from household n + 1.

Let
c̃ ′

(1+ϵ )
1

N
< c̃ + cn+1 ≤ c̃ ′ i.e. Φ(c̃ ′,n + 1) is the updated entry

due to this action. By induction condition (2) and adding cn+1 we

have,
c̃ ′

(1+ϵ )
n
N
+ cn+1 ≤ c + cn+1. So, c̃

′ < (1 + ϵ)
1

N (c̃ + cn+1) ≤

(1+ϵ)
1

N (c̃ ′+ (1+ϵ)
n
N cn+1) ≤ (1+ϵ)

n+1
N (c +cn+1) as (1+ϵ)

n
N > 1.

So, c̃ ′ ≤ (1 + ϵ)
n+1
N (c + cn+1) and thus the induction condition (2)

holds. Induction condition (1) holds as Φ̃(c̃ ′,n + 1) will pick the

maximum from all c + cn+1 mapped to it.

Now, substituting n = N in induction (2), we get the theorem.

□

Remark 1: Note that for Equations 12 and 13, the values of c
are assumed to be integers. This is without loss of generality as

fractional values can be scaled to represent them using integers.

Moreover, note that the optimality of Equation 13 is with respect

to the values output by the independent learners used as input to

Equation 12. The output of the independent learners are treated

as ground truth and its sub-optimality is not considered in the

algorithm.

5.2.3 Heuristic for Cooperation with Strict Capacity Constraint Sat-
isfaction. The runtime of the approximation algorithm developed

in Section 5.2.2 depends upon ϵ i.e. the factor by which the capacity

constraint is violated. For example, choosing ϵ = 1 for a runtime of

O(N 3
log

2
C ′) will lead to a capacity constraint violation of 2C ′ in

the worst case. For scenarios which require low computational com-

plexity but cannot tolerate such high errors, we develop a heuristic

that ensures that the constraints are never violated. The heuristic

however, does not guarantee optimal solution.

For each n, using ⌈log
2
C ′⌉ independent learners, the heuristic

computes rn,c ,acn,c for c ∈ {C
′, C

′

2
, C
′

2
2
, . . . , C

′

2
k }, where

C ′
2
k ≥ 1 >

C ′
2
k+1 . We now have the following dynamic programming formula-

tion for cooperation:

Θ(c,n + 1) = max

c ′∈{C ′, C
′

2
, C
′

2
2
, ..., C

′

2
k }

{Θ(c − acn+1,c ′,n) + rn+1,c ′}

(14)

The size of the table Θ is O(C ′ × N ) and each entry requires

O(log
2
C ′) runtime. Hence, the computational complexity of the

heuristic is O(C ′N log
2
C ′).

Remark 2: Note that the dynamic programming formulations

above cannot handle negative values. To handle this, if some house-

holds are injecting surplus power into the distributors and others

are drawing power, and wlog, power drawn is more than the power

injected, then we will solve the above problem only for the load

consuming households with increased capacity C ′ + Ps , where Ps
is the power injected by the surplus power households.

6 EXPERIMENTAL SETUP
6.1 Dataset
6.1.1 PV Generation and Dynamic Pricing. We use mixed real and

synthetic datasets to conduct experiments. The Pecan Street dataset

[2] records the energy consumption and PV generation for users

from 2013-01-01 to 2016-12-31 every 15 minutes.We choose a subset

of 25 users with PV panels. PJM dataset [3] records the dynamic

pricing in the east coast every hour. We interpolate the data using

cubic interpolation to generate 15-minute dynamic pricing.

6.1.2 Load Profile. We pick 5 typical household appliances from

[9] and EVs from [10] and summarize the attributes in Table 1. We

generate load profiles for 25 households by uniform sampling from

the minimum value and the maximum value.

6.1.3 Storage Profile. The household storage capacity ranges from

9-12 kWh. We generate 25 household storage capacity profiles by

uniform sampling from [9, 12]. The capacity efficiency η is set to

0.99 and the battery input/output power is set to half of the storage

capacity.

6.1.4 Dynamic Pricing Normalization. In this problem, the load

scheduling horizon is one-day. Thus, only the relative price within

a day matters. In simulation, we preprocess the price to have maxi-

mum of 1 and minimum of 0.



Load Name Min Power (kW) Max Power (kW) Min Slots (15 min) Max Slots (15 min)

Dishwasher 1.2 1.5 2 8

Washing Machine 0.5 1 4 8

Clothes Dryer 1 4 4 8

Home Air Conditioner 1 4 48 80

Electric Vehicle 2.5 7 32 48

Vacuum Cleaner 0.2 0.7 4 8

Table 1: Load Profiles for Experiments

LSTM 
cell

LSTM 
cell

LSTM 
cell

LSTM 
cell

xt�5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xt�4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xt�3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xt�2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

xt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LSTM 
cell

xt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h3
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h4
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6: Online/offline Long Short-Term Memory (LSTM)
predictor for PV generation and dynamic pricing

6.1.5 Transformer Capacity. In training independent learners, we

find that very few agents violate local capacity 4 kWh and most of

them will violate local capacity 2 kWh. Thus, we consider two sets

of transform capacity that leads to different environment types.

In loose environment setting, we set transform capacity to be

4N , where N is the number of households. In this type, very few

cooperation is needed and each agent can act greedily.

In compact environment setting, we set transformer capacity

to be 2N , where N is the number of households. We expect explicit

cooperation among agents tominimize the number of violations and

maximize the reward at the same time. When training Independent

Learners, we choose C ′ = C and c ′ = 2, 4, 8, 15,∞.

6.2 Predictor Architecture
An accurate predictor is key to making good decisions. In this work,

we use Long Short-Term Memory (LSTM) [15] as the predictor

architecture (Figure 6). The online and offline predictors share the

same architecture which takes in historical data as input, passed

into LSTM cell and generates the next time step output. An LSTM

cell contains input gate and forgot gate. For offline predictor, xt−i
represents the data ith day ahead. It is a 96 dimension vector. For

online predictor, xt−i represents i − th time step ahead and it is a

scalar. Data from 2013-01-01 to 2015-12-31 was used to train the

predictor with a train/val split ratio of 0.75/0/25.

6.3 Baseline Models
To evaluate the performance of our cooperative RL, we set up three

baseline methods for comparison.

(1) We train offline predictor for PV generation for each house-

hold and dynamic pricing using LSTM. We use the predicted

generation and prices to perform day-ahead planning by

running Integer Linear Programming (ILP) using Gurobi

Optimization Software [14].

Figure 7: PV prediction from various predictor

(2) We train online predictor for PV generation for each house-

hold and dynamic pricing using LSTM. Then, we perform

online planning i.e. planning for the next interval by running

Integer Linear Programming (ILP) using Gurobi Optimiza-

tion Software [14].

(3) We obtain optimal action by feeding ground truth PV gen-

eration and dynamic pricing to ILP optimizer using Gurobi

Optimization Software [14].

6.4 Simulation Environment
We build a simulation environment based on OpenAI Gym [7] to

evaluate and compare the performance of various approaches. The

agents are trained using PyTorch framework [28]. We use data

from 2013-01-01 to 2015-12-31 to train agents and use data from

2016-01-01 to 2016-12-31 to test.

7 RESULTS
7.1 Offline Predictor vs. Online Predictor
We show the prediction results for PV generation of a single house-

hold and dynamic pricing during a single day in Figure 7 and Fig-

ure 8. Results show that online prediction has much lower error

versus day-ahead predictor. This indicates more accurate planning

by online approach. However, the online optimization needs to

re-plan by running ILP at each time step, which is computational

expensive. By training RL agents offline, our approach takes ad-

vantage of the accurate prediction from online predictor, while



Figure 8: Dynamic pricing prediction from various predictor

avoiding high computation as inferencing has low computational

requirement and cooperation algorithm is very efficient.

7.2 Independent Learner
7.2.1 Insights of Learned Strategy. We show an example of the

learned strategy by running offline optimization, online optimiza-

tion and reinforcement learning agent to perform load scheduling

and record status including storage, absolute grid consumption and

dynamic pricing. The status curves are shown in Figures 9, 10 and

11, respectively. A reasonable strategy is to charge the storage at

low price period and discharge to supply the loads when price is

high. As shown in Figure 10 and Figure 11, the agent trained using

reinforcement learning resembles the action of online optimization

with less noisy behavior and successfully catches the peak time of

the price. In Figure 9, the peak of offline predicted price mismatches

with the ground truth peak, yielding storage charging at high price

and thus increasing the overall cost. The costs of offline optimiza-

tion, online optimization and reinforcement learning independent

learner in this example are 14.27, 4.95 and 5.74, respectively.

7.2.2 Local Constraint. To show the effectiveness of the reward

signal based local constraint for independent learner, we show the

results of absolute grid energy value with various local capacities

in Figure 12. According to the figure, all the independent learners

obey the local capacity constraint. It is also worth noticing that

increasing the local capacity from 8 to 15 doesn’t change the grid

energy curve very much, which indicates the consistency of the

optimal policy learned by RL.

7.3 Performance Comparison
We compare the performance of the proposed cooperative RL vs.

several baselines mentioned in Section 6.3 by using these methods

to perform load scheduling for two consecutive weeks. The normal-

ized average household cost of various approaches are shown in

Figure 13 and Figure 14. In both environments, the cooperative RL

approach performs much better than centralized RL and slightly

better than offline optimization. The online optimization approach

almost performs optimally due to low prediction error.

Figure 9: Independent learner storage, absolute grid energy
vs. dynamic pricing obtained by offline optimization (day-
ahead planning)

Figure 10: Independent learner storage, absolute grid energy
vs. dynamic pricing obtained by online optimization (online
planning)

Figure 11: Independent learner storage, absolute grid energy
vs. dynamic pricing trained by reinforcement learning algo-
rithm (proximal policy optimization)



Figure 12: Absolute grid energy value with various local ca-
pacity trained with reinforcement learning agent

Figure 13: Performance of various algorithms of two weeks
execution in loose transformer capacity environment

Figure 14: Performance of various algorithms of two weeks
execution in compact transformer capacity environment

Figure 15: Average daily number of violations of various al-
gorithms of two weeks execution in compact transformer
capacity environment

The cost of all the algorithms increases when the transformer

capacity decreases as shown in Figure 14. The cost of the non-

cooperative agent is less than the cooperative agent. This is ex-

pected since non-cooperation acts greedily but significantly in-

creases the number of violations as shown in Figure 15. Generally,

reinforcement learning based agents have fewer violations than

offline optimization. We didn’t include online optimization and

optimal in Figure 15 since the number of violation is zero.

8 DISCUSSION
8.1 Scalability
As shown in figures 13-15, the average household cost and number

of violations remains almost the same for the cooperative RL ap-

proach. For offline optimization, the number of violations increases

with the number of households due to the worsening impact of peak

mismatch. For online optimization, the computation time required

by Integer Programs often lasts from 20 minutes to hours, thus re-

ducing their real-time utility. Finally, the exponential growth in the

observation and action space of the centralized approach prevents

the algorithm from converging. Hence, distributed RL/optimization

approaches would appear more suitable for efficient cooperative

algorithms. Following this design logic, we train distributed learn-

ers using RL and also propose an efficient algorithm that combines

the results while satisfying global constraints. This achieves a good

tradeoff between offline training complexity and online execution

speed. More importantly, all these independent learners can be

trained in parallel, which further yields better scalability.

8.2 The Applicability of RL Approach
Compared with optimization approaches i.e. approaches which

perform a prediction and then solve the optimization problem, ma-

chine learning (ML) based approaches are much faster at run time.

The reason is that ML based approaches are trained offline using

historical data and only inferencing is performed at runtime us-

ing the most updated environment information. Inferencing from a

trained model requires low computational complexity (as compared

to solving an optimization problem). However, the performance of



ML based algorithms relies on the generalization from the training

data to the testing data. In this work, we ensure generalization by

sampling the load profiles for both testing and training from the

same distribution. However, this may not be true in real scenarios,

where the load patterns of a single user may change over time. This

requires effective detecting mechanism and retraining of the policy

based on new patterns.

9 CONCLUSION AND FUTUREWORK
In this work, we addressed the problem of cooperative decisionmak-

ing from a collection of agents. We limit computational complexity

while ensuring cooperation by training Independent Learners (ILs)

and combining their results using a knapsack based agent.

The current work considers a reward function dependent only

on the load consumption and price of electricity. In our future

works, we will use more sophisticated reward functions which

also consider customer satisfaction. This can be formulated us-

ing hierarchical MDP. Moreover, we will also consider fairness of

cooperation–the losses incurred over a period of time by agents

forced to adopt sub-optimal actions should be equitably distributed

among the households. We will develop online cooperation algo-

rithm with bounded competitive ratios.

REFERENCES
[1] 2012. SunShot Vision Study: A Comprehensive Analy-

sis of the Potential for U.S. Solar Electricity Generation.

https://digital.library.unt.edu/ark:/67531/metadc836555/.

[2] 2018. Pecan Street Dataset. http://www.pecanstreet.org/category/dataport/.

[3] 2018. PJM Dataset. http://www.pjm.com/markets-and-operations/.

[4] 2018. Tesla Powerwall: the complete battery review.

https://www.energysage.com/solar/solar-energy-storage/tesla-powerwall-

home-battery/.

[5] A. Agnetis, G. de Pascale, P. Detti, and A. Vicino. 2013. Load Scheduling for

Household Energy Consumption Optimization. IEEE Transactions on Smart Grid
4, 4 (Dec 2013), 2364–2373. https://doi.org/10.1109/TSG.2013.2254506

[6] Hamed Ahmadi, José R Martí, and Hermann W Dommel. 2015. A framework for

volt-VAR optimization in distribution systems. IEEE Transactions on Smart Grid
6, 3 (2015), 1473–1483.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

arXiv:arXiv:1606.01540

[8] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. 2010. Multi-agent Rein-
forcement Learning: An Overview. Springer Berlin Heidelberg, Berlin, Heidelberg,

183–221. https://doi.org/10.1007/978-3-642-14435-6_7

[9] DaftLogic. 2018. List of the Power Consumption of Typical Household Appliances.

https://www.daftlogic.com/information-appliance-power-consumption.htm.

[10] Ergon Energy. 2018. Charging your electric vehicle.

https://www.ergon.com.au/network/smarter-energy/electric-

vehicles/charging-your-electric-vehicle.

[11] Thomas Erlebach, Hans Kellerer, and Ulrich Pferschy. 2002. Approximating

multiobjective knapsack problems. Management Science 48, 12 (2002), 1603–

1612.

[12] Masoud Farivar and Steven H Low. 2012. Branch flow model: Relaxations and

convexification. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference
on. IEEE, 3672–3679.

[13] Ahmad Faruqui and Sanem Sergici. 2010. Household response to dynamic pricing

of electricity: a survey of 15 experiments. Journal of regulatory Economics 38, 2
(2010), 193–225.

[14] LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http:

//www.gurobi.com

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735 arXiv:https://doi.org/10.1162/neco.1997.9.8.1735

[16] B. Kim, Y. Zhang, M. van der Schaar, and J. Lee. 2016. Dynamic Pricing and Energy

Consumption Scheduling With Reinforcement Learning. IEEE Transactions on
Smart Grid 7, 5 (Sept 2016), 2187–2198. https://doi.org/10.1109/TSG.2015.2495145

[17] Sunyong Kim and Hyuk Lim. 2018. Reinforcement Learning Based Energy

Management Algorithm for Smart Energy Buildings. Energies 11, 8 (Aug 2018),

2010. https://doi.org/10.3390/en11082010

[18] Jelle R. Kok andNikos Vlassis. 2004. Sparse Cooperative Q-learning. In Proceedings
of the Twenty-first International Conference on Machine Learning (ICML ’04). ACM,

New York, NY, USA, 61–. https://doi.org/10.1145/1015330.1015410

[19] Stephen Lee, Srinivasan Iyengar, David Irwin, and Prashant Shenoy. 2017. Dis-

tributed Rate Control for Smart Solar Arrays. In Proceedings of the Eighth Interna-
tional Conference on Future Energy Systems (e-Energy ’17). ACM, New York, NY,

USA, 34–44. https://doi.org/10.1145/3077839.3077840

[20] MartinL.Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). Wiley.

[21] S. Misra, A. Mondal, S. Banik, M. Khatua, S. Bera, and M. S. Obaidat. 2013. Resi-

dential Energy Management in Smart Grid: A Markov Decision Process-Based

Approach. In 2013 IEEE International Conference on Green Computing and Commu-
nications and IEEE Internet of Things and IEEE Cyber, Physical and Social Comput-
ing. 1152–1157. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.200

[22] E. Mocanu, D.C. Mocanu, H.P. Nguyen, A. Liotta, M.E. Webber, M. Gibescu,

and J.G. Slootweg. 2018. On-line building energy optimization using deep

reinforcement learning. IEEE Transactions on Smart Grid (8 5 2018). https:

//doi.org/10.1109/TSG.2018.2834219

[23] Milad Moradi. 2016. A centralized reinforcement learning method for multi-

agent job scheduling in Grid. 2016 6th International Conference on Computer and
Knowledge Engineering (ICCKE) (2016), 171–176.

[24] K. Moslehi and R. Kumar. 2010. A Reliability Perspective of the Smart Grid. IEEE
Transactions on Smart Grid 1, 1 (June 2010), 57–64. https://doi.org/10.1109/TSG.

2010.2046346

[25] Ashutosh Nayak, Seokcheon Lee, and John W. Sutherland. 2018. Storage trade-

offs and optimal load scheduling for cooperative consumers in a microgrid with

different load types. IISE Transactions 0, 0 (2018), 1–9. https://doi.org/10.1080/

24725854.2018.1460517 arXiv:https://doi.org/10.1080/24725854.2018.1460517

[26] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra. 2010. Residential Demand Re-

sponse Using Reinforcement Learning. In 2010 First IEEE International Conference
on Smart Grid Communications. 409–414. https://doi.org/10.1109/SMARTGRID.

2010.5622078

[27] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid.

2016. Internet of Things in the 5G Era: Enablers, Architecture, and Business

Models. IEEE Journal on Selected Areas in Communications 34, 3 (March 2016),

510–527. https://doi.org/10.1109/JSAC.2016.2525418

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. In NIPS-W.

[29] Sachin Patil. 2013. Partially Observable Markov Decision Processes (POMDPs).

https://people.eecs.berkeley.edu/ pabbeel/cs287-fa13/slides/pomdps.pdf.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[31] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,

Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without

human knowledge. Nature 550 (18 10 2017), 354 EP –. https://doi.org/10.1038/

nature24270

[32] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press Cambridge.

https://doi.org/10.1109/TSG.2013.2254506
http://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.1007/978-3-642-14435-6_7
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TSG.2015.2495145
https://doi.org/10.3390/en11082010
https://doi.org/10.1145/1015330.1015410
https://doi.org/10.1145/3077839.3077840
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.200
https://doi.org/10.1109/TSG.2018.2834219
https://doi.org/10.1109/TSG.2018.2834219
https://doi.org/10.1109/TSG.2010.2046346
https://doi.org/10.1109/TSG.2010.2046346
https://doi.org/10.1080/24725854.2018.1460517
https://doi.org/10.1080/24725854.2018.1460517
http://arxiv.org/abs/https://doi.org/10.1080/24725854.2018.1460517
https://doi.org/10.1109/SMARTGRID.2010.5622078
https://doi.org/10.1109/SMARTGRID.2010.5622078
https://doi.org/10.1109/JSAC.2016.2525418
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

	Abstract
	1 Introduction
	2 Background
	2.1 Markov Decision Process
	2.2 Deep Reinforcement Learning
	2.3 Multi-Agent Reinforcement Learning

	3 Related Work
	4 Problem Setup
	4.1 Overview
	4.2 Single Household Energy Model
	4.3 Transformer Capacity Constraint
	4.4 Markov Decision Process Setup

	5 Approach
	5.1 Baseline Approaches
	5.2 Cooperative Reinforcement Learning

	6 Experimental Setup
	6.1 Dataset
	6.2 Predictor Architecture
	6.3 Baseline Models
	6.4 Simulation Environment

	7 Results
	7.1 Offline Predictor vs. Online Predictor
	7.2 Independent Learner
	7.3 Performance Comparison

	8 Discussion
	8.1 Scalability
	8.2 The Applicability of RL Approach

	9 Conclusion and Future Work
	References

