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Abstract— Buildings consume 74% of the total electricity 
produced in the United States. A significant portion of the 
building electric load includes heating ventilation and air-
conditioning (HVAC) systems and water heating (WH) systems. 
Enabling flexibility in the operations can improve overall electric 
grid efficiency. This paper describes a multi-agent system for 
supporting integration, learning, optimization, and control of 
HVAC and WH in supporting a future smart grid. The 
architecture supports a transactive-based negotiation strategy 
between homeowners and a microgrid controller to adjust 
consumption behavior and reduce electricity costs. The 
framework is deployed in a neighborhood and preliminary testing 
is underway. The agent architecture design is discussed along 
with the preliminary optimization results from the demonstration 
site. 

Index Terms-- IoT, agents, transactive, demand management, 
grid-interactive 

I. INTRODUCTION  
In recent years, electric distribution system operations have 

been advancing rapidly, particularly with the growing 
intelligence at the residential level. The Internet of Things (IoT) 
has brought opportunities to modify setpoints on thermostats 
and turn on/off devices manually or through a schedule. While 
load shedding control options from a centralized system have 
been researched significantly in the past [1]-[5] opportunities to 
actively control load through a negotiation process has not been 
researched as much [6]. For example, in [7] a multi-agent 
energy management solution is proposed that uses central 
coordination and building management to achieve user 
objectives, renewable energy source forecasting, and battery 
bank management. In [8], a fuzzy-based multi-agent centralized 
energy management system is proposed where each agent 
receives the measured quantities of the microgrid as input 
signals. A particle swarm framework is used in [9] as the basis 

for a facilitator agent which enables neighborhood optimization 
while building level agents to manage building level 
optimization. The pilots [10] and [11] use bids, from a 
satisfaction-based bid curve, from the end-users in the process 
of setting real-time prices.  

This paper focuses on a research and demonstration project 
with an intelligent negotiation strategy between residential 
homeowners and a microgrid controller. This strategy is 
supported by a multi-agent system infrastructure that learns, 
optimizes, and controls the residential loads. The objective is to 
develop a robust formulation for transactive control and 
management of residential loads to reduce energy cost for both 
homeowners and the utility and maximize the use of microgrid 
resources. The belief is that by providing a cost incentive to the 
homeowner to adjust consumption, the overall load profile can 
be modulated to support utility-scale needs such as peak 
reduction and renewable energy penetration. Historically, the 
entirety of the decision-making process has been performed by 
the utility or microgrid. For example, real-time prices are set by 
the utility without input from the end-user [12] and [13]. This 
project is investigating a compromise on decision and control 
over loads by demonstrating a negotiation-like process between 
the homes and microgrid or utility. The concept and initial 
optimization results are presented. 

II. BACKGROUND 
A community composed of sixty-two detached, single-

family homes and supported by a microgrid has been 
constructed. An aerial view of the community is shown in Fig.  
1. Each home has connected equipment and devices that 
provide advanced control features and data. For negotiation 
purposes, the heating, ventilation, and air conditioning systems 
(HVAC) and water heaters are the primary loads that are 
engaged for providing flexibility and control. Each of the 
homeowners has entered into a two-year research agreement 
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with the utility company to allow data collection as well as 
dispatch control of their HVAC and water heater. The research 
project included an eighteen-month development phase as the 
homes were designed and constructed.  The research analysis 
phase will extend another six months to a year after the data 
collection phase. 

          The microgrid was constructed to support the 
community through improved resilience. When a distribution 
system anomaly is detected, such as an outage, the microgrid 
islands the neighborhood and continually provides power to the 
community. The microgrid assets include large-scale solar, 
energy storage, and a natural gas generator. A microgrid 
controller has been programmed to optimally determine the 
generation resource dispatch as well as the potential to 
incentivize homeowners to adjust electric power consumption. 
The agent architecture and negotiation process are described in 
the next section.  

 

III. AGENT FRAMEWORK AND STRATEGY  
The approach for the negotiation process for this project has 

been developed with the concept of price signal and load curve 
exchanges. The negotiation process is shown in Fig.  2. The 
microgrid controller is responsible for issuing a 24-hour 
projected price signal on a per phase basis (AN/BN/CN) that is 
based on optimal projections of local generation costs versus 
achievable load reductions through load adjustment. This 
information is passed down to all homes for decision-making 
with a specific iteration number to link the home response back 
to the price signal. At the home-level, optimization, models, and 
learning heuristics provide three 24-hour load forecasts for the 
(1) HVAC, (2) water heater, and all other uncontrolled loads. 
The aggregator sums the responses and provides an estimated 
total load by phase to the microgrid controller. Based on the 
response, the microgrid controller has the option to modify the 
price signal or accept the current load projection. This process 
of sending and receiving price signals and load signals is 
repeated until the microgrid controller has found an acceptable 
point of convergence.  

A multi-agent system (MAS) architecture was developed to 
support the required functionality and is shown in Fig.  3 . The 
utilization of the MAS approach leads to more resilient 
architecture as the agents are able to self-govern and realize a 
greater objective. The MAS architecture also supports 
modularity and can be expanded by simply creating more 
agents. 

The presented architecture utilizes a set of three different 
systems that are constantly interacting to support the greater 
purpose of the negotiation process: the aggregator, the single 
home, and learning. Each of these is represented by a virtual 
machine actively running within the cloud and used to perform 
unique functions. Application programming interfaces (APIs), 
ZMQ message bus and Microsoft Azure Service Bus are the 
key means for the agents to intercommunicate data throughout 
the system. The agents were coded in Python.  

 
Figure 2. Exchange interaction between Microgrid controller, Aggregator, 

and home to support negotiation framework. 
 

 
Figure 3. Depiction of agent-based architecture. 

The primary purpose of the aggregator system is to 
distribute and collect information from each of the single home 
systems within the cloud. The information that needs to be 
distributed includes credentials and weather forecast from the 
utility and price signals, acceptance, and iteration from the 
microgrid controller. The agents within the aggregator system 
include the utility interface, microgrid interface, and 
aggregator. The purpose of these agents is described in more 
detail in TABLE I. 

 
Figure 1. Aerial view of Reynold’s Landing at Ross Bridge, Smart 

NeighborhoodTM. Image:  Southern Co. 
 
 



TABLE I. AGGREGATOR INSTANCE AGENTS 

 
The learning system has the primary purpose of providing 
predictive elements to the single home system. The learning 
system extracts recorded data from a historian-based API and 
attempts to develop and predict several key parameters that are 
needed for the HVAC and water heater optimization including 
hot water usage, internal heat load and uncontrolled electrical 
load, and building model parameters. These agents within the 
learning system are the hot water predictor, internal heat load 
and electricity consumption, and building model parameters. 
The purpose of these agents is presented in TABLE II.  

TABLE II. LEARNING INSTANCE AGENTS 

 

The primary system utilized to support decision making is the 
single home system. The single home system is deployed on 
identical virtual machines but with unique credentials for each 
home within the neighborhood. This is necessary as each 
homeowner has a separate set of log-in credentials for the 
devices, user inputs for bounding the control, building design, 
and usage patterns in terms of behavior. These parameters are 
needed to both communicate to the devices through API calls 
and to optimize the HVAC and water heater utilization.   

The optimization is based on a model predictive control 
(MPC) approach where a building model and HVAC 
performance data is used to optimize the HVAC while a water 
heater model is used to optimize the water heater. The models 
utilized for the building and water heater are presented in Fig.  
4 and Fig. 5. Both models have been used in previous 
simulation environments [10] and are used here in an MPC 
formulation. The models are based on electrical equivalencies 
and have been proven to be able to be learned and tuned [12]. 
The building parameters, in Fig.  4, that are estimated based on 
the learning approach are Rroof, Cattic, Rattic, Rw, Cw, Cin, 
Rim, Cim which represent the thermal resistance and 
capacitance of the roof, attic, walls, indoor air, and the objects 
(mass) within the building. 

 The water heater is modeled in similar fashion as shown in 
Fig.  5. Since the same water heater equipment is utilized 
throughout the neighborhood, the thermal resistance and 
capacitance of the water heater were not expected to change and 
were hard-coded into the optimization without the need of 
adjustments from a learning algorithm. However, the hot water 
draw (Qh) was considered a key element providing an accurate 
MPC formulation. Qw represents the cold, makeup-water 
supplied to the water heater.   

 
Figure 5. Water heater model used in water heater optimization. 

 

The optimization utilized in the single home system is 
multi-objective with two primary purposes in mind. The first is 
to maintain comfort by operating within the homeowner 
scheduled limits. The comfort is based on temperature 
scheduled by homeowners on the device. The second is 
economic and is driven by the price signal issued by the 
microgrid controller.  

The optimization was developed with a linear programming 
formulation and solved using an open-source solver – 
computational infrastructure for operations research 
(COIN|OR) [15] and software interface (PulP) [16]. The linear 
programming formulation guarantees an optimum solution and 
the reduced order models solve very quickly on the platform 
(often within 10 seconds). Comfort was weighted significantly 
higher than the cost drivers. 

The agents within the single home system are the home 
interface, HVAC interface, Water heater interface, HVAC 
optimizer, water heater optimizer and learning agent interface. 
The purpose of each agent is presented in TABLE III. 

IV. IMPLEMENTATION 
The MAS architecture has been deployed on a system of 
Microsoft Azure Virtual Machines hosting Ubuntu version 
16.04 and VOLTTRON platform. These are hosted in the cloud 
and managed by the utility with separate collection and 
automation systems to save each home’s HVAC and water 

Agents Purpose 

Utility Interface Pulls data from Southern Company API which 
includes weather and Service Bus credentials 

Microgrid  Interface 

Communicates to microgrid controller predicted 
load consumption, iteration number, and receives 
price signal, iteration number, and acceptance 
utilizing Service Bus 

Aggregator 

Sets up communications to each Single Home 
VM and issues weather data, price signal, and 
iteration while receiving predicted load and 
iteration. 

Agents Purpose 

Hot Water Predictor Produces a forecast estimation of the hot water 
usage in time based on flow meter data. 

Internal Heat Load 
and Electricity 
Consumption 

Produces a forecast estimation of heat load 
within the home and other load electricity 
consumption based on metered circuit level data. 

Building Model 
Parameters 

Estimates the building parameters for the MPC 
formulation based on historical weather data and 
HVAC, WH and other metered circuit level data. 

 
Figure 4. Electrical model representation of residential building used in 

HVAC optimization. 
 



optimization results and provide a detailed view into the system 
behavior. Example results are presented and discussed.  

TABLE III. SINGLE HOME INSTANCE AGENTS 

 

Today, initial testing is underway with a baseline price signal 
based on Alabama Power Real-Time Time of Use Rate for 
Summer. This price signal is fundamentally a square wave with 
peak price at $0.21 for hours between 1pm and 7pm local time 
(or 18:00 and 24:00 UTC) and $0.075 during non-peak hours. 
The price signal is sent repeatedly for every iteration (adjusted 
in time based on the microgrid controller clock) for the initial 
testing. This occurs on a roughly 10-minute basis as the 
optimization for each reports back in approximately 3 minutes. 

Two sets of water heater optimization and control results are 
presented for two different homes in the neighborhood shown 
in Fig. 6 and Fig. 7.  On the top graphs, the actual temperature 
measured versus forecasted temperature are shown while in the 
bottom graphs, the projected electrical consumption versus 
actual measured is presented. For these homes, the water heater 
is a hybrid hot water heater with both heat pump and electric 
operational modes. The key for optimization is to limit electric 
mode utilization while avoiding high price periods. 

In this stage of the work, a generic hot water usage pattern 
has been implemented for all homes. Since hot water usage is 
the primary driver for water heater energy use and tank 
temperature changes, the current model is not able to accurately 
predict future use or temperatures.  This will be addressed in the 
future by using machine learning to create unique forecasts for 
hot water usage for each house. Regardless of the poorly 
matched hot water use forecast, the optimization raised the hot 
water temperature in both water heaters to ride through both the 
critical peak price and forecasted hot water draw period.  While 
the actual measured temperature did not identically match 
projected temperature the optimization and control did 
successfully preheat the water heater and ride through the 
critical price period without any utilization.  

        
Figure 6. Example comparison of forecasted baseline operation and actual 

operation for water heater temperature (top) and power consumption 
(bottom) versus price signal (House A) plotted based at coordinated 

universal time (UTC) 

 
Figure 7. Example comparison of forecasted baseline operation and actual 

operation for water heater temperature (top) and power consumption 
(bottom) versus price signal (House B) plotted with UTC. 

 
A single home optimization and control results are presented 

in Figure 8.  In the top graphs, the actual temperature measured 
versus forecasted temperature are shown while in the bottom 
graphs, the projected electrical consumption versus actual 
measured is presented. Similar to the case of the water heater, 
internal heat load projections have not been tuned to the 
homes. Additionally, homeowners have the capability to 
override the temperature at the thermostat.  Despite having a 
programmed temperature range down to 19C in their 
thermostat, this homeowner overrode the dispatched 
temperature preventing the home from cooling below 20C.  

Agents Purpose 

Home Interface 
Data pass-through and collector of optimization 
and electrical consumption projections for 
Aggregator agent through Service Bus 

HVAC Interface 

Gets, Pushes, and Translates HVAC vendor API 
JSON calls to support decision making and 
optimization. Heat/Cool Setpoints are primary 
control means. 

Water Heater 
Interface 

Gets, Pushes, and Translates WH vendor API 
JSON calls to support decision making and 
optimization. Heat Setpoint and Water Heater 
Mode are primary control mechanisms. 

HVAC Optimizer 

Utilizes building specifications, forecasted weather 
data, building parameter data, price forecast, and 
HVAC status data to optimally schedule HVAC 
and provide expected electrical consumption. 
Issues setpoint. 

Water Heater 
Optimizer 

Utilizes predicted water consumption, price 
forecast, and Water Heater status data to optimally 
schedule Water Heater and provide expected 
electrical consumption. Issues setpoint. 

Learning Agent 
Interface 

Extracts data from an API to provide input to the 
optimization models and total load forecast. 



This resulted in the air conditioner cycling during the peak 
period contrary to the forecasted results. Additional tuning of 
the models and communication with the homeowners on how 
to properly set their desired temperature limits are expected to 
improve the accuracy of the optimization. This is currently in 
deployment and early testing. 

 

 
Figure 8. Cumulative cost-optimized power consumption for 10 homes under 

two different electricity price signals 
 

V. CHALLENGES AND FUTURE WORK 

Some of the challenges encountered during the 
development and initial deployment (assessment) phases of this 
project included:  interfacing with device APIs where the 
manufacturers updated the content and/or format of the data, 
maximum allowable calls to the vendor APIs set to once every 
5 minutes, recurring connectivity issues caused by either the 
homeowners’ wi-fi routers or device manufacturer’s servers 
being offline, homeowners electing to manually override their 
devices rather than changing their programmed setpoints and 
device point control limitations set by the manufacturer.  

Future work includes further assessment of an array of use 
cases of interest to the utility with respect to home load control 
or microgrid resource allocation.  Further refinements in the 
optimization algorithms will likely be developed, although 
much of the changes to the algorithms are expected to occur at 
the individual house level as a result of the machine learning 
agent that has been overlaid on the initial agent deployment. 
Last, homeowner education on input options to devices should 
reduce override challenges. 

V. CONCLUSION 

This paper describes a multi-agent system to support 
integration and optimization of HVAC and water heaters within 
a transactive microgrid. The agent system was deployed in a 
cloud-based system for several weeks and has been controlling 
residents water heaters and HVAC systems. The system has 

been collecting performance and optimization results which 
continue to be evaluated. Data from initial optimization results 
are shown for a sampling with a real-time price signal. Work 
continues as evaluation of the ability to load shape and driving 
factors are assessed. 
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