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Abstract— Buildings consume 74% of the total electricity
produced in the United States. A significant portion of the
building electric load includes heating ventilation and air-
conditioning (HVAC) systems and water heating (WH) systems.
Enabling flexibility in the operations can improve overall electric
grid efficiency. This paper describes a multi-agent system for
supporting integration, learning, optimization, and control of
HVAC and WH in supporting a future smart grid. The
architecture supports a transactive-based negotiation strategy
between homeowners and a microgrid controller to adjust
consumption behavior and reduce electricity costs. The
framework is deployed in a neighborhood and preliminary testing
is underway. The agent architecture design is discussed along
with the preliminary optimization results from the demonstration
site.

Index Terms-- 10T, agents, transactive, demand management,
grid-interactive

I. INTRODUCTION

In recent years, electric distribution system operations have
been advancing rapidly, particularly with the growing
intelligence at the residential level. The Internet of Things (IoT)
has brought opportunities to modify setpoints on thermostats
and turn on/off devices manually or through a schedule. While
load shedding control options from a centralized system have
been researched significantly in the past [1]-[5] opportunities to
actively control load through a negotiation process has not been
researched as much [6]. For example, in [7] a multi-agent
energy management solution is proposed that uses central
coordination and building management to achieve user
objectives, renewable energy source forecasting, and battery
bank management. In [8], a fuzzy-based multi-agent centralized
energy management system is proposed where each agent
receives the measured quantities of the microgrid as input
signals. A particle swarm framework is used in [9] as the basis
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for a facilitator agent which enables neighborhood optimization
while building level agents to manage building level
optimization. The pilots [10] and [11] use bids, from a
satisfaction-based bid curve, from the end-users in the process
of setting real-time prices.

This paper focuses on a research and demonstration project
with an intelligent negotiation strategy between residential
homeowners and a microgrid controller. This strategy is
supported by a multi-agent system infrastructure that learns,
optimizes, and controls the residential loads. The objective is to
develop a robust formulation for transactive control and
management of residential loads to reduce energy cost for both
homeowners and the utility and maximize the use of microgrid
resources. The belief is that by providing a cost incentive to the
homeowner to adjust consumption, the overall load profile can
be modulated to support utility-scale needs such as peak
reduction and renewable energy penetration. Historically, the
entirety of the decision-making process has been performed by
the utility or microgrid. For example, real-time prices are set by
the utility without input from the end-user [12] and [13]. This
project is investigating a compromise on decision and control
over loads by demonstrating a negotiation-like process between
the homes and microgrid or utility. The concept and initial
optimization results are presented.

II.  BACKGROUND

A community composed of sixty-two detached, single-
family homes and supported by a microgrid has been
constructed. An aerial view of the community is shown in Fig.
1. Each home has connected equipment and devices that
provide advanced control features and data. For negotiation
purposes, the heating, ventilation, and air conditioning systems
(HVAC) and water heaters are the primary loads that are
engaged for providing flexibility and control. Each of the
homeowners has entered into a two-year research agreement
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with the utility company to allow data collection as well as
dispatch control of their HVAC and water heater. The research
project included an eighteen-month development phase as the
homes were designed and constructed. The research analysis
phase will extend another six months to a year after the data
collection phase.

The microgrid was constructed to support the
community through improved resilience. When a distribution
system anomaly is detected, such as an outage, the microgrid
islands the neighborhood and continually provides power to the
community. The microgrid assets include large-scale solar,
energy storage, and a natural gas generator. A microgrid
controller has been programmed to optimally determine the
generation resource dispatch as well as the potential to
incentivize homeowners to adjust electric power consumption.
The agent architecture and negotiation process are described in
the next section.

Figure 1. Aerial view of Reynold’s Landing at Ross Bridge, Smart
NeighborhoodTM. Image: Southern Co.

III.  AGENT FRAMEWORK AND STRATEGY

The approach for the negotiation process for this project has
been developed with the concept of price signal and load curve
exchanges. The negotiation process is shown in Fig. 2. The
microgrid controller is responsible for issuing a 24-hour
projected price signal on a per phase basis (AN/BN/CN) that is
based on optimal projections of local generation costs versus
achievable load reductions through load adjustment. This
information is passed down to all homes for decision-making
with a specific iteration number to link the home response back
to the price signal. At the home-level, optimization, models, and
learning heuristics provide three 24-hour load forecasts for the
(1) HVAC, (2) water heater, and all other uncontrolled loads.
The aggregator sums the responses and provides an estimated
total load by phase to the microgrid controller. Based on the
response, the microgrid controller has the option to modify the
price signal or accept the current load projection. This process
of sending and receiving price signals and load signals is
repeated until the microgrid controller has found an acceptable
point of convergence.

A multi-agent system (MAS) architecture was developed to
support the required functionality and is shown in Fig. 3 . The
utilization of the MAS approach leads to more resilient
architecture as the agents are able to self-govern and realize a
greater objective. The MAS architecture also supports
modularity and can be expanded by simply creating more
agents.

The presented architecture utilizes a set of three different
systems that are constantly interacting to support the greater
purpose of the negotiation process: the aggregator, the single
home, and learning. Each of these is represented by a virtual
machine actively running within the cloud and used to perform
unique functions. Application programming interfaces (APIs),
ZMQ message bus and Microsoft Azure Service Bus are the
key means for the agents to intercommunicate data throughout
the system. The agents were coded in Python.
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Figure 2. Exchange interaction between Microgrid controller, Aggregator,
and home to support negotiation framework.
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Figure 3. Depiction of agent-based architecture.

The primary purpose of the aggregator system is to
distribute and collect information from each of the single home
systems within the cloud. The information that needs to be
distributed includes credentials and weather forecast from the
utility and price signals, acceptance, and iteration from the
microgrid controller. The agents within the aggregator system
include the utility interface, microgrid interface, and
aggregator. The purpose of these agents is described in more
detail in TABLE 1.



TABLE 1. AGGREGATOR INSTANCE AGENTS

Purpose

Agents

Pulls data from Southern Company API which
includes weather and Service Bus credentials
Communicates to microgrid controller predicted
load consumption, iteration number, and receives
price signal, iteration number, and acceptance
utilizing Service Bus

Sets up communications to each Single Home
VM and issues weather data, price signal, and
iteration while receiving predicted load and
iteration.

Utility Interface

Microgrid Interface

Aggregator

The learning system has the primary purpose of providing
predictive elements to the single home system. The learning
system extracts recorded data from a historian-based API and
attempts to develop and predict several key parameters that are
needed for the HVAC and water heater optimization including
hot water usage, internal heat load and uncontrolled electrical
load, and building model parameters. These agents within the
learning system are the hot water predictor, internal heat load
and electricity consumption, and building model parameters.
The purpose of these agents is presented in TABLE II.

TABLE II. LEARNING INSTANCE AGENTS

Agents Purpose

Produces a forecast estimation of the hot water
usage in time based on flow meter data.
Produces a forecast estimation of heat load

Hot Water Predictor

Internal Heat Load

and Electricity | within the home and other load electricity
Consumption consumption based on metered circuit level data.

o Estimates the building parameters for the MPC
Building Model formulation based on historical weather data and
Parameters

HVAC, WH and other metered circuit level data.

The primary system utilized to support decision making is the
single home system. The single home system is deployed on
identical virtual machines but with unique credentials for each
home within the neighborhood. This is necessary as each
homeowner has a separate set of log-in credentials for the
devices, user inputs for bounding the control, building design,
and usage patterns in terms of behavior. These parameters are
needed to both communicate to the devices through API calls
and to optimize the HVAC and water heater utilization.

The optimization is based on a model predictive control
(MPC) approach where a building model and HVAC
performance data is used to optimize the HVAC while a water
heater model is used to optimize the water heater. The models
utilized for the building and water heater are presented in Fig.
4 and Fig. 5. Both models have been used in previous
simulation environments [10] and are used here in an MPC
formulation. The models are based on electrical equivalencies
and have been proven to be able to be learned and tuned [12].
The building parameters, in Fig. 4, that are estimated based on
the learning approach are Rroof, Cattic, Rattic, Rw, Cw, Cin,
Rim, Cim which represent the thermal resistance and
capacitance of the roof, attic, walls, indoor air, and the objects
(mass) within the building.

The water heater is modeled in similar fashion as shown in
Fig. 5. Since the same water heater equipment is utilized
throughout the neighborhood, the thermal resistance and
capacitance of the water heater were not expected to change and
were hard-coded into the optimization without the need of
adjustments from a learning algorithm. However, the hot water
draw (Qh) was considered a key element providing an accurate
MPC formulation. Qw represents the cold, makeup-water
supplied to the water heater.
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Figure 4. Electrical model representation of residential building used in
HVAC optimization.
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Figure 5. Water heater model used in water heater optimization.

The optimization utilized in the single home system is
multi-objective with two primary purposes in mind. The first is
to maintain comfort by operating within the homeowner
scheduled limits. The comfort is based on temperature
scheduled by homeowners on the device. The second is
economic and is driven by the price signal issued by the
microgrid controller.

The optimization was developed with a linear programming
formulation and solved using an open-source solver —
computational infrastructure for operations research
(COINJ|OR) [15] and software interface (PulP) [16]. The linear
programming formulation guarantees an optimum solution and
the reduced order models solve very quickly on the platform
(often within 10 seconds). Comfort was weighted significantly
higher than the cost drivers.

The agents within the single home system are the home
interface, HVAC interface, Water heater interface, HVAC
optimizer, water heater optimizer and learning agent interface.
The purpose of each agent is presented in TABLE III.

IV. IMPLEMENTATION

The MAS architecture has been deployed on a system of
Microsoft Azure Virtual Machines hosting Ubuntu version
16.04 and VOLTTRON platform. These are hosted in the cloud
and managed by the utility with separate collection and
automation systems to save each home’s HVAC and water



optimization results and provide a detailed view into the system
behavior. Example results are presented and discussed.

TABLE III. SINGLE HOME INSTANCE AGENTS

Agents Purpose

Data pass-through and collector of optimization
and electrical consumption projections for
Aggregator agent through Service Bus

Home Interface

Gets, Pushes, and Translates HVAC vendor API
JSON calls to support decision making and
optimization. Heat/Cool Setpoints are primary
control means.

HVAC Interface

Gets, Pushes, and Translates WH vendor API
JSON calls to support decision making and
optimization. Heat Setpoint and Water Heater
Mode are primary control mechanisms.

Water Heater
Interface

Utilizes building specifications, forecasted weather
data, building parameter data, price forecast, and
HVAC status data to optimally schedule HVAC
and provide expected electrical consumption.
Issues setpoint.

HVAC Optimizer

Utilizes predicted water consumption, price
Water Heater forecast, and Water Heater status data to optimally
Optimizer schedule Water Heater and provide expected

electrical consumption. Issues setpoint.

Learning Agent
Interface

Extracts data from an API to provide input to the
optimization models and total load forecast.

Todays, initial testing is underway with a baseline price signal
based on Alabama Power Real-Time Time of Use Rate for
Summer. This price signal is fundamentally a square wave with
peak price at $0.21 for hours between 1pm and 7pm local time
(or 18:00 and 24:00 UTC) and $0.075 during non-peak hours.
The price signal is sent repeatedly for every iteration (adjusted
in time based on the microgrid controller clock) for the initial
testing. This occurs on a roughly 10-minute basis as the
optimization for each reports back in approximately 3 minutes.

Two sets of water heater optimization and control results are
presented for two different homes in the neighborhood shown
in Fig. 6 and Fig. 7. On the top graphs, the actual temperature
measured versus forecasted temperature are shown while in the
bottom graphs, the projected electrical consumption versus
actual measured is presented. For these homes, the water heater
is a hybrid hot water heater with both heat pump and electric
operational modes. The key for optimization is to limit electric
mode utilization while avoiding high price periods.

In this stage of the work, a generic hot water usage pattern
has been implemented for all homes. Since hot water usage is
the primary driver for water heater energy use and tank
temperature changes, the current model is not able to accurately
predict future use or temperatures. This will be addressed in the
future by using machine learning to create unique forecasts for
hot water usage for each house. Regardless of the poorly
matched hot water use forecast, the optimization raised the hot
water temperature in both water heaters to ride through both the
critical peak price and forecasted hot water draw period. While
the actual measured temperature did not identically match
projected temperature the optimization and control did
successfully preheat the water heater and ride through the
critical price period without any utilization.
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Figure 6. Example comparison of forecasted baseline operation and actual
operation for water heater temperature (top) and power consumption
(bottom) versus price signal (House A) plotted based at coordinated

universal time (UTC)
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Figure 7. Example comparison of forecasted baseline operation and actual
operation for water heater temperature (top) and power consumption
(bottom) versus price signal (House B) plotted with UTC.

A single home optimization and control results are presented
in Figure 8. In the top graphs, the actual temperature measured
versus forecasted temperature are shown while in the bottom
graphs, the projected electrical consumption versus actual
measured is presented. Similar to the case of the water heater,
internal heat load projections have not been tuned to the
homes. Additionally, homeowners have the capability to
override the temperature at the thermostat. Despite having a
programmed temperature range down to 19C in their
thermostat, this homeowner overrode the dispatched
temperature preventing the home from cooling below 20C.



This resulted in the air conditioner cycling during the peak
period contrary to the forecasted results. Additional tuning of
the models and communication with the homeowners on how
to properly set their desired temperature limits are expected to
improve the accuracy of the optimization. This is currently in
deployment and early testing.
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Figure 8. Cumulative cost-optimized power consumption for 10 homes under
two different electricity price signals

V. CHALLENGES AND FUTURE WORK

Some of the challenges encountered during the
development and initial deployment (assessment) phases of this
project included: interfacing with device APIs where the
manufacturers updated the content and/or format of the data,
maximum allowable calls to the vendor APIs set to once every
5 minutes, recurring connectivity issues caused by either the
homeowners’ wi-fi routers or device manufacturer’s servers
being offline, homeowners electing to manually override their
devices rather than changing their programmed setpoints and
device point control limitations set by the manufacturer.

Future work includes further assessment of an array of use
cases of interest to the utility with respect to home load control
or microgrid resource allocation. Further refinements in the
optimization algorithms will likely be developed, although
much of the changes to the algorithms are expected to occur at
the individual house level as a result of the machine learning
agent that has been overlaid on the initial agent deployment.
Last, homeowner education on input options to devices should
reduce override challenges.

V. CONCLUSION

This paper describes a multi-agent system to support
integration and optimization of HVAC and water heaters within
a transactive microgrid. The agent system was deployed in a
cloud-based system for several weeks and has been controlling
residents water heaters and HVAC systems. The system has

been collecting performance and optimization results which
continue to be evaluated. Data from initial optimization results
are shown for a sampling with a real-time price signal. Work
continues as evaluation of the ability to load shape and driving
factors are assessed.
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