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Abstract—A key challenge for utilizing spiking neural networks
or spiking neuromorphic systems for most applications is trans-
lating numerical data into spikes that are appropriate to apply
as input to a spiking neural network. In this work, we present
several approaches for encoding numerical values as spikes,
including binning, spike-count encoding, and charge-injection
encoding, and we show how these approaches can be combined
hierarchically to form more complex encoding schemes. We
demonstrate how these different encoding approaches perform
on four different applications, running on four different neuro-
morphic systems that are based on spiking neural networks. We
show that the input encoding method can have a significant effect
on application performance and that the best input encoding
method is application-specific.

Index Terms—spiking neural networks, neuromorphic systems,
input encoding, value-to-spike

I. INTRODUCTION

Spiking recurrent neural networks have been shown to be
a powerful computational paradigm [1], [2], and their deploy-
ment on emerging neuromorphic hardware systems can result
in realizing these computational abilities with low power, en-
ergy efficient implementations [3]. However, there are a variety
of hurdles to overcome when implementing real applications
on spiking neuromorphic systems. One of the fundamental
hurdles is how to encode input appropriately from numerical
or categorical data into spikes on input neurons. Traditional
artificial neural networks, which use matrix-vector operations
in the transformation of inputs to outputs, can operate directly
on numerical values. Spiking neural networks, on the other
hand, typically cannot operate directly on numerical data;
instead, those values must be converted into the form of
spikes or spike trains. However, making the conversion from
numerical data to spikes or spike-trains is non-trivial. The
choice of encoding scheme can affect not only performance
on an application in terms of accuracy, but also the rate at
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which data can be processed and the energy efficiency of
the system, which is particularly important for neuromorphic
implementations.

In this work, we present a variety of different input encod-
ing schemes for spiking neural networks and evaluate their
effectiveness on four applications, implemented on four neu-
romorphic implementations of spiking neural networks. These
applications are: an image classification task, a time series
classification task, a classic control task, and an autonomous
robot control task. In particular, we discuss three types of
encoding approaches and how they can be combined hierar-
chically to achieve complex encoding schemes and encode
relatively high input resolution over short time periods. We
demonstrate that the input encoding approach can have a
significant effect on application performance and that often the
encoding approach may be derived from the characteristics of
the input that the applications produce.

II. BACKGROUND AND RELATED WORK

The two most common spiking neural network input en-
coding approaches are both inspired by biological neural
networks: rate coding and temporal coding [4]. In Maass’s
canonical work on spiking neural networks [1], he describes
encoding schemes based on the timing of spike arrivals into
spiking neural networks. Temporal coding of this form is
also the basis of the spiking neural network back-propagation
analog, SpikeProp [5] and has also been used more recently in
new back-propagation analogs for neuromorphic systems [6].
Temporal coding has also been popular in the neuromorphic
community, especially when used with learning algorithms
such as spike-timing dependent plasticity (STDP) [7].

In [8], Querlioz, et al., use a variety of rate encoding
schemes, including in-phase fixed rate encoding, where the
rate is proportional to the value being encoded, and a Pois-
sonian rate encoding, where the time constant is inversely
proportional to the value being encoded. They showed that
the precise input encoding style (of these three approaches) did
not affect the performance on a particular application (image
recognition) using STDP as a weight training mechanism and
a homeostasis rule for neuron threshold training. Rate coding
has also been popularly used in neuromorphic systems [9].



Fig. 1. Example of combining binning, spike-count encoding, and charge-injection encoding to convert a single value into spikes. In this example, we use
bk = 5, pk = 2, ck = −1, and Ck = 1. The value x = −0.6 ∈ [−2.4, 2.4] is converted to two pulses on input neuron 1 (corresponding to bin 1) with the
final pulse having a charge power of 0.5.

In [10], Yanguas-Gil compares the results of multiple types
of encodings, including single-spike temporal encoding, tem-
poral encoding followed by a spike-train, rate encoding, and
modifying the input signal, and that for the MNIST dataset,
temporal coding over a short period of time is sufficient for
maintaining high accuracy. The different encoding schemes
are highly affected by the neuron model’s ability to process
and output information. Single spike encoding schemes and
the constant input signal were not able to function well on
the MNIST task when restricted to binary outputs (spike or
no spike). Since many neuromorphic platforms are restricted
to this type of output behavior in the neurons, these encoding
approaches are likely not sufficient.

A recent approach for input encoding is to binarize the input
by scaling input values to the range of [0, 1] and using that
scaled value to represent the probability of the input neuron
firing. This approach has been used for training spiking neural
networks via back-propagation-style algorithms as well [11].

A more recently introduced approach to encoding visual
inputs in particular for spiking neural networks is to use a
neuromorphic vision sensor. Rather than capturing images
frame-by-frame, neuromorphic vision sensors [12], [13] in-
stead report event-driven information, where each pixel reg-
isters an event when a change has occurred. This type of
streaming input to represent images has been used for certain
image classification tasks in neuromorphic systems [14]. This
approach is relatively limited, as it can only apply to certain
input types and applications, in this case image processing or
classification.

The encoding schemes described above are not universally
applicable for all neuromorphic applications. For example,
the neuromorphic vision sensor approach, or using filters to
produce salient binary features only apply to image data. For
real-time processing applications on neuromorphic systems,

such as those requiring real-time control, temporal encoding
schemes and rate encoding schemes may not be as effective
or even applicable, because data may be arriving at a rate
that is not capable of being encoded quickly enough to
make decisions in real time. Because of this lack of general
applicability of common approaches presented in the literature,
we investigate three simple encoding approaches that can be
hierarchically combined to produce more complex encoding
schemes that (1) can be applied to a wide variety of input
data types and (2) can represent single input values over a
very short period of time so that they can be applied to real-
time classification or control tasks.

III. VALUE-TO-SPIKE ENCODING

We introduce and investigate a variety of encoding schemes
beyond the typical temporal or rate coding schemes, partic-
ularly those that require relatively few spikes per value to
encode and that can be encoded over a short period of time. We
describe three different ways to convert a value into spikes and
how combinations of those approaches can be created to form
more complex encoding schemes. For each of these schemes,
we assume that for a single input k (where a single input may
correspond to, for example, readings for an individual sensor),
most values xk that that input can take on will fall into a range
mk ≤ xk ≤Mk.

A. By Bin

One approach for encoding an input value in a single spike
in a single time step is to create multiple input neurons cor-
responding to that input and then encode the value by spiking
on a particular neuron. We call this approach “binning.” For
binning, for an input k, we define a parameter bk to be the
number of bins for input k, and split the range [mk,Mk]
into bk equal-sized bins, and extend the first and last bin
to account for all possible values. For example, if mk = 0,



Mk = 1, and bk = 4, then the four bins would correspond
to (−∞, 1
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neuron for each bin, and when a new value xk is to be encoded
for input k, we find the appropriate range and then spike on
the corresponding input neuron for that bin.

B. By Number of Spikes

A second approach, which we call “spike-count” encoding,
is to convert input values into a small number of spikes arriving
at a fixed rate. We typically restrict ourselves to a small
number of spikes in order to allow for streaming input. In this
case, spike-count encoding has a parameter pk, which is the
maximum number of pulses or spikes to encode a single value.
Similar to binning, we define a set of pk equal-sized bins,
but extending the first and last bin to account for all possible
values. Here, rather than having multiple input neurons and
assigning an input neuron to each bin, we instead have a
single input neuron. Input values xk that fall in the first range
correspond to 1 pulse applied to the neuron, the second range
to 2 pulses, and so on.

C. By Charge Value

A third approach relies on the ability not only to inject a
spike into a system in order to force an input neuron to fire, but
also to inject a specific charge value into a neuron, which may
or may not cause that neuron to fire. This “charge-injection”
encoding approach requires two parameters, ck and Ck, which
define a minimum charge value (ck) and a maximum charge
value (Ck).

Note that the function to linearly map a range [a, b] to [c, d]
is:

h(x) = c+
d− c

b− a
(x− a) (1)

We will use this mapping several times in different en-
coding approaches. To encode a value xk into input for
the “charge-injection” encoding scheme, we first let x′k =
max{min{xk,Mk},mk} to force is to be in the range
[mk,Mk]. Then, we will map the value x′k from the range
[mk,Mk] to the range [ck, Ck] (using the function h :
[ck, Ck]− > [mk,Mk] defined above) to determine the charge
value to apply to the input.

D. Combining Encoding Schemes

All three of the previous encoding schemes are fairly
straightforward to implement. In this work, we introduce
combinations of the previously discussed encoding schemes to
produce more complex encoding schemes. In fact, we assume
that at all times, all three input encoding schemes are used
simultaneously and that a particular encoding scheme can
be “turned off” by certain parameter settings. For example,
binning can be turned off by setting bk = 1, spike-count
coding can be turned off by setting pk = 1, and charge-
injection coding can be turned off by setting ck = Ck. We
then apply the encoding schemes hierarchically. First, for a
given value xk, we find the appropriate bin that the value

should belong in, which gives us a new range [m′k,M
′
k] for

values that occur within that bin. This determines the neuron
to which the corresponding inputs will be applied. Once the
bin is defined, we then use one of the three inter-bin encoding
functions, f , defined below (simple, flip-flop, or triangle) to
map the value from [m′k,M

′
k] to the range [0, 1]. In other

words, f(xk) ∈ [0, 1] is determined. In order to perform
spike-count encoding, we perform the following operations to
determine how many pulses to apply:

p = min{bpk ∗ f(xk)c+ 1, pk} (2)

Finally, once p (the number of pulses to apply to the
corresponding bin) has been determined, we then want to map
the charge value pk ∗ f(xk) linearly from the range [p, p+1)
to [ck, Ck) to find the charge value of the last pulse to be
applied. An example of this approach using Equation 1 as f
is given in Figure 1, where bk = 5, pk = 2, ck = −1, and
Ck = 1. The figure includes an encoding of the value -0.6,
which results in two pulses being applied to bin 1, with charge
values of 1 for the first pulse, and 0.5 for the second.

Fig. 2. Example of the simple encoding scheme for four bins. In particular,
an input value of xk = 1.0 is to be encoded. First, the appropriate bin is
found. Since xk ∈ [0, 5), the correct bin is bin 2. Then fsimple(xk) maps
xk from [0, 5) to [0, 1), which converts the value to 0.2.

For simple inter-bin encoding (Figure 2), suppose we have
applied the binning approach, and we have reduced ourselves
to the case in which xk is in the possible range of [m′′k ,M

′′
k ].

Simple encoding simply does the h(xk) linear mapping (as
described in Equation 1) from [m′′k ,M

′′
k ] to [ck, Ck].

Fig. 3. Example of the flip-flop encoding scheme for four bins for the value
xk = 1. As in Figure 2, it will map to bin 2. However, because bin 2 is an
even bin, fflipflop(xk) = fevenbin(xk) = 0.8, as in Equation 3.

Flip-flop encoding (Figure 3 uses a similar linear mapping
function h(xk) for odd-numbered bins (i.e., bin 1, bin 3, bin 5,
...), but it flips the mapping for even-numbered bins, such that
if xk is at the max end of the bin, then the output charge is the
minimum ck. The intent of flip-flop encoding it to make the
mapped values continuous when xk crosses bin boundaries.

fevenbin(xk) = Ck +
ck − Ck

M ′′k −m′′k
(xk −m′′k) (3)



Triangle encoding has the bins overlap, so that most input
values produce spikes in adjacent bins. Specifically, when
bk neurons are employed, the values between mk and Mk

are partitioned into (bk + 1) effective bins. Effective bins 0
through bk produce spikes for neurons 0 through bk, with the
f() mapping being like simple. Additionally, effective bins 1
through bk +1 produce spikes for neurons 0 through bk, with
the f() mapping going from 1 to 0. Thus, most values produce
spikes for adjacent pairs of input neurons.

For example, if mk = 0, Mk = 1 and bk =
4, then there are five effective bins, each with a range
of 0.2. The four actual bins overlap, and correspond to
(−∞, 0.4], [0.2, 0.6], [0.4, 0.8], [0.6,∞).

f(xk) = ck + (Ck − ck)

(
1− 1

M ′′
k−m

′′
k

2

∣∣∣∣xk −
m′′k +M ′′k

2

∣∣∣∣
)
(4)

Fig. 4. Example of triangle encoding with four bins for the value xk = 1. In
this case, because we have overlapping bins, xk falls both in bin 1 and bin
2. It falls in the second half of bin 1, which results in an applied pulse value
of ftriangle(xk) = 0.25 for bin 1. It falls in the first half of bin 2, which
results in ftriangle(xk) = 0.75 for bin 2.

Fig. 5. Illustration of how ftriangle encodes values across four overlapping
bins.

See Figures 2 through 4 for a comparison of the same input
value applied for each of the three methods when mk = −10,
Mk = 10, and bk = 4. Note that simple encoding has
discontinuous charge input to the network. Flip-flop encoding
makes the charge of the input continuous, but moving xk

across a peak switches from a large charge applied to one
bin to a large charge applied to another bin, which is highly
discontinuous.

Triangle encoding smooths these bin transitions by overlap-
ping the bins. Thus, the input pulses become fully continuous
at the cost of having to use more bins to get the same
sensitivity per bin (where sensitivity is how much the input
charge changes with respect to the input value xk, i.e., the
slope). Figure 5 shows how the overlapping bins work with
triangle encoding with four bins.

IV. SPIKING NEUROMORPHIC SYSTEM FRAMEWORK

In order to study the effects of these different input encod-
ing techniques on spiking neural network and neuromorphic

performance, we utilize the TENNLab’s common software
framework [15] and the Evolutionary Optimization for Neuro-
morphic Systems (EONS) training method [16], both of which
are briefly described below.

The TENNLab software framework is a platform for en-
abling the building applications for neuromorphic systems and
the study and evaluation of different neuromorphic imple-
mentations [15], [17]. The software framework implements
a common interface to multiple spiking neuromorphic sys-
tems, including the three used in this work. The common
interface allows for an application code to be written once
and then trained on multiple neuromorphic platforms without
any application software changes. The four applications in
this work were all implemented once and then compiled
and deployed on the different neuromorphic implementations.
The software framework also implements all of the encoding
schemes described in Section III.

The primary learning algorithm used in the framework
is Evolutionary Optimization for Neuromorphic Systems
(EONS) [18], though other learning approaches are either
supported (e.g., reservoir computing) or are currently being
implemented (e.g., back-propagation). For the purposes of
these tests, EONS is convenient to use because it will attempt
to build the best network suited for each individual coding
scheme without hand-tuning and without having to change the
underlying algorithm at all to accommodate for different cod-
ing schemes. The goal with using EONS rather than another
algorithm is to give each encoding scheme its best chance
of succeeding, rather than selecting a particular plasticity
rule or gradient-descent based implementation, which are not
applicable to all possible encoding schemes.

In this work, we utilize three spiking neural network or
neuromorphic implementations that have been described in
previous work and that we briefly summarize here:

• NIDA: A spiking neural network model with integrate-
and-fire neurons and synapses with a simplified plasticity
mechanism in which the spiking neural network is em-
bedded into a three-dimensional space and the delays on
synapses depend on the distance between two neurons in
the 3D space [19].

• DANNA2: A fully digital programmable neuromorphic
implementation with integrate-and-fire neurons, restricted
synaptic connectivity, and synapses with weights and
delays [20]. DANNA2 can either be implemented on an
FPGA or in a custom chip implementation. We include
two versions of DANNA2, one with shorter maximum
synaptic delays that is more efficiently implemented on
hardware (DANNA2-short) and one longer maximum
synaptic delays that is better suited to certain applications
(DANNA2-long).

• mrDANNA: A mixed analog-digital programmable neu-
romorphic implementation with integrate-and-fire neu-
rons and synapses with a simple plasticity mechanism.
In this implementation, each of the synapses are imple-
mented using two metal-oxide memristors [21].



We utilize four applications with the neuromorphic com-
puting framework. Two of those applications are classification
tasks: one with image data (not well-suited to native spiking
networks) and one with time-series data. We also include two
control tasks. The four tasks are:
• Radio: A satellite radio problem signal classification task,

previously described in [22].
• 3-MNIST: A restricted version of the MNIST task [23] in

which the goal is to classify an handwritten digit image
as either a 3 or not a 3. We also use a limited training
and testing set size.

• Pole: The canonical pole balancing task, previously de-
scribed in several works [24], [25]. We use the version
of the pole balancing task that does not include velocities
as input, only cart and pole position.

• Robonav: An autonomous robotic navigation task, previ-
ously described in detail in [26].

A. Motivation for Alternative Encoding Schemes

We use four applications here, two of which require real-
time behavior. Both pole and robonav are control tasks in
which the network takes input information every 0.02 seconds
(20 milliseconds) and has to make a control decision before
the next 0.02 seconds has elapsed. This means that the input
has to be communicated from the sensors to the neuromorphic
device, the network on the device has to process the input and
produce output, which is then converted to the control decision
to produce the next set of inputs in less than 0.02 seconds.

To reduce power consumption, many neuromorphic sys-
tems operate at a very low clock rate. For example, IBM’s
TrueNorth operates at a 1 kHz clock rate [27]. For both of
the pole and robonav tasks, this low clock rate means that
the network would have less than 20 clock cycles to make a
decision based on the current set of inputs. Assuming input
can be provided to the neuromorphic system only on the clock
cycle, this significantly restricts the number of values that can
be represented either by temporal coding and rate coding on
a single neuron (at most 20 values for both). Further, this
assumes that the network itself does not need all of the input
in the system to be processed before needing some number of
cycles to make the decision, which is likely a poor assumption.
It is more likely that the network would need at least half of
that time to use the input data to make the control decision,
which restricts the number of possibly represented values to
10. By combining binning, spike-count encoding, and charge-
injection encoding into more complex encoding schemes, we
can use these encoding schemes to achieve higher resolution
on the inputs over very short time windows, making them
amenable to real-time control and classification tasks.

V. RESULTS

To evaluate the different encoding schemes, we test all com-
binations of the parameter settings listed in Table I, eliminating
those that do not make sense (e.g., triangle and flip-flop for
bk = 1 or ck = Ck) and those that result in no information
being passed into the network (e.g., bk = 1, pk = 1, and

TABLE I
EVALUATED PARAMETERS

Parameter Evaluated Settings
bk (Number of Bins) 1, 2, 4, 8
pk (Number of Spikes) 1, 2, 4, 8

[ck, Ck] (Range of Charge Values) [0, 0.5], [0, 1], [0.25, 0.5],
[0.25, 1], [0.5, 0.5], [1, 1]

Inter-bin Encoding Type Simple, Flip-Flop, Triangle

TABLE II
EVOLUTIONARY OPTIMIZATION PARAMETERS

EONS Parameter Value
Population size 1000
Crossover rate 0.5
Mutation rate 0.9
Selection type Tournament
Tournament Size 5

ck = Ck). For each set of different valid parameter settings,
we run 100 test runs of EONS on a particular neuromorphic
implementation and application combination (i.e., 100 separate
evolutions), in order to alleviate variations due to the random
initialization of the populations in the genetic algorithm. The
genetic algorithm parameters of EONS for these tests are given
in Table II.

A. Bin Encoding

Fig. 6. Training (yellow) and testing (green) results for binning approaches
alone. The mean values are connected by line plots in order to show trends
when varying the number of bins.

Figure 6 gives the results for the four applications and
four implementations (NIDA, mrDANNA, DANNA2-long,
and DANNA2-short) when only using binning as the encoding
approach. In this case, we consider the test cases in which
pk = 1, ck = Ck, and the encoding scheme is set to
simple. This figure indicates that the appropriate number of
bins to choose is application specific, rather than neuromorphic
implementation specific. That is, in all cases, the same general



Fig. 7. Training (yellow) and testing (green) results for spike-count encoding
approaches alone. The mean values are connected by line plots in order to
show trends when varying the number of spikes.

trends hold across all neuromorphic implementations, while
the trends vary significantly from application to application.
In particular, for MNIST, the training fitness tends to remain
relatively stable as the number of bins increases, but the testing
fitness decreases as the bins increase. This indicates that at
least for MNIST, a low-level input resolution is sufficient
and that higher resolution levels can lead to overfitting. Since
MNIST’s images are practically binary, this is not a surprising
outcome. For both pole balancing and robonav, increasing the
number of bins decreases both the training and testing values
significantly. Unlike the other tasks, however, radio benefits
from increasing the number of bins. Since radio only has two
inputs (the real and complex value of the radio signal), but
since each of those values is relatively high resolution, it is
not surprising that more bins gives better performance.

B. Spike Count Encoding

Figure 7 gives the results for the four applications and four
implementations when only using spike-count encoding. In
this case, bk = 1, ck = Ck, and the encoding scheme is set
to simple. For spike-count encoding, the trends are much less
stark and are less consistent across implementations as the
binning approach. For example, on the pole balancing task,
more pulses per bin improved performance for both of the
DANNA2 implementations, but decreased performance for the
NIDA implementation. Across the board, however, there was
relatively little difference between using different numbers of
spike counts in the encoding.

C. Charge-Injection Encoding

Figure 8 shows the results when using charge-injection en-
coding only (bk = 1, pk = 1, and simple encoding type). Once
again, as in the spike-count encoding approach, the results
are fairly consistent across different ranges. Unlike the other
approaches, for the radio task, the training and testing results

Fig. 8. Training (yellow) and testing (green) results for charge-injection
encoding approaches alone. The mean values are connected by line plots
in order to show trends when varying minimum and maximum values of the
range.

Fig. 9. Average simulation time per network for DANNA2-long on MNIST
based on different encoding schemes.

tracked very closely together, indicating good generalization
ability for this task. The “resolution” on encoding for charge-
injection is theoretically much more than for binning or spike-
count in a fixed time period (i.e., it is restricted only by the
resolution at which charge can be injected into the spiking
neural network or spiking neuromorphic system). However,
depending on the range of value encoded, it is likely that
to stimulate a single fire, multiple incoming pulses would be
required, which may not be desired for a given application.

D. Input Encoding Effects on Network Performance

It is worth noting that different input encoding schemes can
affect the size of the networks produced, as well as the amount
of activity in the networks. Both of these factors influence the
amount of energy or power required for a given neuromorphic
implementation. In this work, we simulate each neuromor-
phic implementation using discrete event simulations, which
means that networks that have more activity require longer
to simulate. We cap the wall-clock time for training rather
than the number of generations, so we are implicitly biasing
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Fig. 10. Top 20 encoding schemes for each implementation/application combination based on median value of the testing performance. The encoding schemes
are represented by color blocks. The top 20 encoding schemes are shown from left to right in each of the individual plots. The first row of color blocks
indicates the number of bins bk , the second row of color blocks is spike count per bin pk , the third row is charge encoding type (simple, flip-flop or triangle),
and the fourth and fifth rows represent ck and Ck , respectively.

towards input encoding schemes that are simultaneously more
accurate, have less activity, and are smaller (i.e., are more
power efficient in real hardware implementations). Though we
do not explicitly measure activity as part of the simulation,
we can use average simulation time per network as a sur-
rogate for how much activity there is the network. Figure 9
shows how different input encoding schemes affect network
simulation time for the MNIST task for the DANNA2-long
neuromorphic implementation. As can be seen in this figure,
all encoding schemes have an effect on network performance.

Both binning and spike-count increase the simulation time
(thus, increase the activity) when increasing the number of
bins/spikes. Simulation time is not an issue when moving to a
physical hardware implementation of a neuromorphic system,
but it correlates with the amount of activity in the network.
As such, encoding schemes that use more bins or more pulses
per bin will use more energy for the same task.

E. Complex Encoding Schemes

After eliminating the pathological cases for combinations of
the parameters given in Table I, we are left with 230 different



valid combinations of parameters or encoding schemes. These
230 encoding schemes include the binning encoding only,
spike count encoding only, and charge-injection only input
schemes, which can be achieved by setting the parameters as
described in each of the previous sections. We determine the
best encoding schemes by ranking according to the median
value across the 100 test cases in order to alleviate issues
associated with random variation in the initial EONS popula-
tions. Figure 10 shows graphically the top twenty encoding
schemes for each neuromorphic implementation/application
combination, along with box plots on their performance. In
most cases, the box plots show that there is relatively little
difference in performance across the top twenty different
encoding schemes, except for the pole balancing task (row
2 in Figure 10). Some clear patterns emerge in the types of
encoding schemes that are successful, however.

For MNIST (the first row), a smaller number of bins
(bk ≤ 2) and the flip-flop encoding type dominated the top
20 encoding schemes, while the number of spikes for spike-
count encoding and the minimum and maximum values for
charge-injection encoding have less impact on performance,
which is consistent with what is seen in Figures 7 and 8.

For pole balancing (the second row of box-plots and en-
coding scheme color blocks in Figure 10), there is a radical
difference in the performance of DANNA2-long and NIDA
as compared with the other two implementations because of
architectural limitations of DANNA2-short and mrDANNA
(shorter realizable synaptic delays) that have more of an impact
than input encoding schemes, but trends in best encoding
schemes still emerge. In particular, the best performing en-
coding schemes had bk = 2 and the encoding scheme set
to flip-flop, while once again the spike-count parameter pk
and the minimum and maximum values for charge-injection
encoding had less of an impact. We speculate that the two bins
are chosen because they can be used to differentiate between
positive and negative values of the cart’s position and velocity,
while the other parameters are used to indicate magnitude of
the values.

Unlike all of the other applications, the radio task benefited
from a larger number of bins (bk ≥ 4) in most cases. Requiring
a larger number of bins is consistent with the results shown in
Figure 6 and is consistent with the high resolution of the values
represented in the radio dataset. Perhaps the more interesting
result for radio is that it was the only task that consistently
benefited from setting the encoding type to triangle. Triangle
encoding really only makes sense when the number of bins
is greater than three (bk ≥ 3); otherwise, a large range of the
input values for triangle will spike all of the bins. Though
triangle enables a higher resolution representation, because it
requires a larger number of bins, this will correspond with a
greater simulation time and thus, fewer trained generations.
Thus, a larger number of bins and triangle encoding will
only dominate the encoding schemes for an application if the
gains in accuracy due to higher resolution are large enough to
outweigh the implicit penalties of longer simulation time.

Similar to the pole balancing task, the Robonav task benefits

Fig. 11. Variation in performance between best and worst performing
encoding schemes.

from using two bins and flip-flop encoding as well. Once
again, we speculate that the two bins are used to represent
positive and negative values for this control task. In general,
larger numbers of spikes for spike-count encoding were also
helpful for the robonav task, indicating that it benefited from
higher resolution input value magnitude representation than
what was generally required for the pole balancing task. Based
on the results from both pole and robonav, we can conclude
that bk = 2 and the flip-flop encoding schemes are at least
good starting points for real-time control-style tasks.

F. Key Observations

Here we summarize three of the key observations found
from this comparison of encoding schemes.

Key Observation 1: The encoding scheme chosen has
an impact on application performance. The variation in
performance between the best and worst encoding schemes
(where best and worst are determined by median value across
100 tests) is shown in Figure 11. Clearly the difference in
performance is beyond the random initial population variation
effects of the evolutionary process. To further illustrate the
impact of the encoding scheme on performance, we show the
full 230 encoding schemes performance box plots and color
blocks for the DANNA2-long on the pole balancing task in
Figure 12. Here, we can see the drastic difference that input en-
coding scheme has on performance of the evolution, with clear
patterns in the parameters chosen. For example, not only do
fewer bins consistently perform better (as can be seen in Figure
10), but more bins consistently perform worse. These types
of patterns emerge for all of the implementation/application
combinations, though we have only shown one here.

Key Observation 2: The appropriate encoding scheme
depends primarily on the application, rather than the
implementation. Even though the neuromorphic implementa-
tions have different levels of parameter resolution and different
architectural details (e.g., neuron or synapse implementations),
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Fig. 12. All 230 encoding schemes, ranked from best to worst (left to right) on the pole balancing application, running on Danna2-long. The box plots
showing the testing performance across all 100 evolutions for each encoding scheme are shown, along with the encoding scheme itself as a color block.

these architectural details did not have a major effect on which
encoding schemes performed well. Trends in how different
encoding schemes (more bins vs. fewer bins, etc.) were gener-
ally consistent across different implementations. For radically
different architectures than those presented here, especially
those utilizing different forms of plasticity or utilizing exotic
device types, it is likely that different encoding schemes will
have different performance effects. However, we expect that
these conclusions will hold for more traditional fully digital
neuromorphic implementations, such as Intel’s Loihi [28] or
IBM’s TrueNorth [27].

Key Observation 3: All applications benefited from
“complex” encoding schemes. Most of the top 20 encod-
ing schemes for each application/implementation combination
utilized some encoding combination of binning, spike-count
encoding, and charge-injection encoding to achieve the higher
fitness values, and the top performing encoding scheme in
every case was a “complex” encoding scheme. Unlike tem-
poral and rate coding, which both require longer intervals to
encode more resolution in input information, by combining
binning, spike-count, and charge-injection encoding, higher
resolution can be achieved without increasing the amount of
time required to encode the input. We believe that this higher
resolution achieved by the complex encoding methods results
in the better performance of the complex encoding scheme
over the binning, spike-count, or charge-injection encoding
approaches alone.

VI. DISCUSSION AND CONCLUSION

In this work, we present three simple approaches for encod-
ing numerical values into input for spiking neural networks
(binning, spike-count encoding, and charge-injection encod-
ing) and demonstrate how they can be combined hierarchically

to achieve more complex encoding schemes. We show how
these different encoding schemes perform on four different
applications and four spiking neural network or neuromorphic
implementations. We show that the encoding scheme does
have a significant impact on performance of the spiking neural
network or neuromorphic system, and we show that the encod-
ing scheme that is most appropriate to use is more dependent
on the application than it is on the particular neuromorphic or
spiking neural network implementation.

In future work, we intend to compare our new encoding
schemes with rate and temporal coding approaches in order
to quantify differences in application accuracy and power and
energy consumption for the different encoding schemes, while
also factoring in practical considerations of using rate and
temporal encoding schemes for real-time applications. The
goal of this work was to investigate the effect of encoding
schemes; in future work, we plan to investigate the specific
reasons why certain encoding schemes perform very well and
why others perform very poorly. Since it may not be obvious
which encoding scheme will be best for a given application,
we plan to expand the EONS framework to allow for hyper-
parameter optimization of the input encoding schemes. That
is, rather than hand-tuning the encoding scheme or performing
a grid search as we have done here, we plan to use EONS
to discover the appropriate input encoding parameters and
schemes to use for a given application and implementation
combination. Additionally, we plan to investigate how input
encoding schemes affect the performance of different spiking
neural network learning mechanisms, including spike-timing
dependent plasticity and liquid state machines.
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