
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Moment Representation in the Lattice Boltzmann Method on
Massively Parallel Hardware

Madhurima Vardhan
Department of Biomedical

Engineering
Duke University
Durham, NC, USA

madhurima.vardhan@duke.edu

John Gounley
Computational Sciences and

Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA
gounleyjp@ornl.gov

Luiz Hegele
Department of Petroleum

Engineering
Santa Catarina State University

Santa Catarina, Brazil
luiz.hegele@udesc.br

Erik W. Draeger
Center for Applied Scientific

Computing
Lawrence Livermore National

Laboratory
Livermore, CA, USA
draeger1@llnl.gov

Amanda Randles
Department of Biomedical

Engineering
Duke University
Durham, NC, USA

amanda.randles@duke.edu

ABSTRACT
The widely-used lattice Boltzmann method (LBM) for computa-
tional fluid dynamics is highly scalable, but also significantly mem-
ory bandwidth-bound on current architectures. This paper presents
a new regularized LBM implementation that reduces the mem-
ory footprint by only storing macroscopic, moment-based data. We
show that the amount of data that must be stored in memory during
a simulation is reduced by up to 47%. We also present a technique
for cache-aware data re-utilization and show that optimizing cache
utilization to limit data motion results in a similar improvement
in time to solution. These new algorithms are implemented in the
hemodynamics solver HARVEY and demonstrated using both ideal-
ized and realistic biological geometries. We develop a performance
model for the moment representation algorithm and evaluate the
performance on Summit.

KEYWORDS
lattice Boltzmann method, moment representation, memory, band-
width

ACM Reference Format:
MadhurimaVardhan, JohnGounley, Luiz Hegele, ErikW.Draeger, andAmanda
Randles. 2019. Moment Representation in the Lattice Boltzmann Method
on Massively Parallel Hardware. In Proceedings of ACM Conference (SC’19).
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC’19, November, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The lattice Boltzmann method has proven to be an efficient algo-
rithm to computationally solve a variety of complex phenomena
[30]. It is a popular alternative solver of the Navier-Stokes equations
with a stencil-like structure that has proven highly amenable to
large scale parallelization [4, 6, 23, 26, 35]. Unlike standard stencil
operators, the data needed by LBM for each lattice point is different
for each neighbor. Furthermore, relative to comparable approaches,
LBM has large data storage costs and is highly memory-bound on
current architectures [29].

The regularized lattice Boltzmann method was introduced by
Latt in 2006 to improve the stability of LBM simulations [16, 17].
Regularization improves stability by retaining at each timestep only
the distribution data required for a second-order approximation of
the Navier-Stokes equations. By effectively truncating higher-order
terms in LBM, unwanted oscillations and instabilities in the simu-
lation can be suppressed. While the regularized LBM is necessarily
less accurate at solving the lattice Boltzmann equation, LBM simu-
lations for fluid dynamics are intended to solve the Navier-Stokes
equations. For this latter purpose, regularization does not com-
promise accuracy and, indeed, has been demonstrated to improve
accuracy in benchmark flows [16]. Interestingly, the second-order
approximation of the Navier-Stokes equations only requires the
first three sets of macroscopic moments (density, velocity, and the
symmetric stress tensor), which in a 3-dimensional simulation cor-
responds to 10 double precision values per lattice site. This suggests
remarkable potential for data reduction if one could store the macro-
scopic moments in main memory instead of the distribution data. In
practice, the regularized LBM has thus far only been implemented
by storing distribution data in the same manner as conventional
lattice Boltzmann. To the best of our knowledge, the only attempt
to store the moments instead of distribution data was by Ref. [1],
but their work in fact predates the development of regularized LBM
and suffers from compromised physics.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC’19, November, 2019, Denver, CO, USA Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, and Amanda Randles

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In this study, we introduce an implementation of the lattice Boltz-
mann method based on regularization that stores only moment-
based data. Relative to current approaches, this reduces storage
of simulation data by 47% relative to single distribution methods
[2]. Further, we borrow ideas from nested loop optimization to
introduce cache-awareness and minimize data motion [25]. This
technique reduces the read and write cost per lattice site to 10
double precision values, which is also a 47% improvement on the
state-of-the-art. Further, both reads and writes are well-coalesced,
rendering architecture-tuned data layout schemes less important.
Our approach is implemented in the hemodynamics code HAR-
VEY [28], which is designed for simulations in complex vascular
geometries. We provide details for both node-level performance
and inter-node scalability of the proposed algorithm.

2 RELATEDWORK
The largememory storage cost and bandwidth limitation of the LBM
are primarily due to the need to store LBM particle distribution
data for all stencil components at each lattice site. In a naive 3-
dimensional simulation using a standard D3Q19 lattice (illustrated
in Fig. 1), two copies of the particle distribution data are required,
corresponding to 38 double precision values per lattice site. Over
the past two decades, a series of improved LBM algorithms (AA,
swap, shift, esoteric twist, etc.) have been developed to reduce this
cost by 50%, to a single copy of the distribution data, with 19 values
per lattice site [2, 11, 21, 25]. A similar story prevails for bandwidth:
in naive implementations, the distribution data must be fully read
from and written to main memory twice, with 38 double precision
values being read and written per lattice site. By ‘fusing’ the kernels
that comprise LBM, this cost can be reduced to a single read and
write, with 19 double precision values per lattice site. However,
bandwidth challenges are exacerbated due to the memory access
pattern of LBM itself: either reads from or writes to main memory
for the distribution function can be coalesced but not both.

In spite of these advances, optimization of LBM with respect to
storage and bandwith remains an active area of research [29]. A
series of blocking and tiling schemes have been developed to im-
prove cache performance for LBM and similar stencil computations
[8, 25, 33–35]. More recently, architecture-dependent modifications
to data layout and addressing schemes have been used to success-
fully optimize data access costs [15, 38].

However, these current approaches do not directly address the
fundamental algorithmic limitation regarding the amount of data
to be stored and accessed. One avenue to reduce this cost is spatial
and temporal wavefront blocking [10, 19, 32, 39], in which the data
motion for multiple timesteps can be combined. These approaches
offer strong performance but may be challenging to implement in
coupled codes or complex geometries. Conversely, alternative LBM
algorithms have been developed which store and access macro-
scopic fluid data (density and velocity) instead of the distribution
data [20, 31]. This improvement comes by limiting the physics de-
scribed by these methods, as they can only model laminar flows.
As LBM’s performance in the transition and turbulent regimes is
among the method’s advantages, these alternative methods do not
represent a satisfactory general solution.

c"# c$
c"$
c""c"% c%
c&c' c(

c")
c) c# c"

c"& c"*c"+c*
c"(c"'

Figure 1: The D3Q19 lattice is a symmetric velocity dis-
cretization with the first 18 components ci corresponding
to nearest neighbor lattice points and component c19 for sta-
tionary (zero) velocity.

3 LATTICE BOLTZMANN METHODS
3.1 Distribution representation
The lattice Boltzmann method is characterized by a distribution
function f of fictitious particles which move about a fixed Cartesian
lattice [7]. Each component fi (x, t) represents the population of
particles located at lattice point x at time t with discrete velocity
ci . For LBM simulations in three dimensions, the most common
velocity discretization is the D3Q19 lattice represented in Figure
1. The macroscopic variables density ρ and momentum ρu are
computed as the first two moments of the distribution function:

ρ =
19∑
i=1

fi (x, t) ρu =
19∑
i=1

ci fi (x, t). (1)

From these two moments, the equilibrium Maxwell-Boltzmann
distribution f eq (ρ, u) is approximated as

f
eq
i (ρ, u) = ωiρ

(
1 +

ci · u
c2s
+
uu : Qi

2c4s

)
(2)

for D3Q19 lattice weights ωi , lattice speed of sound c2s = 1
3 , and the

tensorQi = ci ci − c2s I. The evolution of the distribution function
is expressed by the lattice Boltzmann equation,

fi (x + ci , t + 1) = (1 −
1
τ
)fi (x, t) +

1
τ
f
eq
i (ρ, u), (3)

with the Bhatnager-Gross-Krook (BGK) collision kernel [5] and
relaxation time-scale τ .

Several different propogation patterns exist for the distribution
representation of LBM. Most generally, the order of collision and
streaming can be interchanged in the ‘push’ and ‘pull’ patterns,
in order to optimize memory access for collision and streaming,
respectively [38]. Nonetheless, we can broadly describe the spirit
of the algorithm with fused collision and streaming kernels in the
following pseudocode:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Moment Representation in the Lattice Boltzmann Method on Massively Parallel Hardware SC’19, November, 2019, Denver, CO, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

for x := 1 to N do
Read distribution f (x, t)
Compute ρ, u
for i := 1 to 19 do

Compute f
eq
i (ρ, u)

Collision: f ∗i = fi (x, t) + 1
τ

(
f
eq
i (ρ, u) − fi (x, t)

)
Streaming: fi (x + ci , t + 1) = f ∗i

3.2 Moment representation
The regularized lattice Boltzmann method (RLBM) was introduced
to reduce the number of degrees of freedom required for a second-
order approximation of the Navier-Stokes equations [17]. The min-
imum number of degrees of freedom consist of the first three mo-
ments of the LBM distribution: density ρ, velocity u, and the sym-
metric stress tensor Π. Analogous to the first two quantities, the
stress tensor is computed by the equation

Π =
19∑
i=1

Qi fi (x, t). (4)

The regularization procedure modifies the standard distribution-
based LBM by producing a regularized distribution f̂ prior to colli-
sion,

f̂ = f eq (ρ, u) +
ωi

2c2s
Qi : (Π − Πeq) (5)

based on the non-equilibrium component of the stress tensor Π.
From this regularized distribution, the collision and streaming oper-
ations proceed as in the standard lattice Boltzmann method. With-
out compromising accuracy, RLBM has proven to greatly enhance
stability for both bulk flow [16] and boundary conditions [14, 18].

To the best of our knowledge, all existing implementations of
RLBM simply add a regularization step to standard distribution
representation. However, Latt observed that, since the full simu-
lation state is defined by the first three sets of moments, an un-
tapped potential exists to further reduce memory by storing the
moments {ρ, u,Π} instead of distribution function f [16]. The num-
ber of required moments varies with the simulation dimension d as
1+d+ d (d+1)2 ; for D3Q19, each lattice site would have 10moments in-
stead of the 19 distribution components. As the streaming operation
is only defined in terms of distribution components, a moment rep-
resentation of RLBMmust convert between moments and the corre-
sponding distribution components. Such conversions occur in some
LBM variants, such as the MRT collision kernel, which performs
collision in moment space and maps back to distribution space for
streaming [9]. The proposed moment representation of the LBM al-
gorithm in this vein can be described by the following pseudocode:

for x := 1 to N do
Read moments ρ(x, t), u(x, t), Π(x, t)
Compute equilibrium moments Πeq (ρ, u,Π)

Collision Π∗ = (1 − 1
τ)Π +

1
τ Π

eq

for i := 1 to 19 do
Compute distribution f ∗i = ωiρ

(
1 + c2s (u · ci) + c4sQi : Π

)
Streaming fi (x + ci , t + 1) = f ∗i

od
od
Compute moments via Equations 1, 2 and 4

This moment representation presents interesting differences from
the distribution representation. The equilibrium computation and
collision operation are performed on only 6 moments instead of 19
distribution components. This advantage helps balance the addi-
tional arithmetic that occurs when converting to and frommoments
and distributions. However, whether the moment representation
reduces storage requirements or bandwidth limitations relative to
the distribution representation depends on the propagation pattern
in which the representation is implemented.

4 PROPAGATION PATTERNS
4.1 Distribution representations
In its simplest form, the distribution representation of LBM is im-
plemented with two copies of the particle distribution data and
with separate collision and streaming kernels. This configuration,
which we denote ‘AB2k’, allows the two kernels to be optimized
individually but effectively precludes any data reuse between them.
One alternative to improve performance is to maintain the two
copies of the particle distribution data, but to ‘fuse’ collision and
streaming into a single kernel [25, 33]. However, while this alterna-
tive method (‘AB1k’) allows for data reuse between collision and
streaming, it does not reduce overall storage costs. For a task with
N fluid points, the storage requirement for AB2k and AB1k is

M = 38 ∗ N doubles + 19 ∗ N integers (6)

for the two distribution copies and the indirect addressing adja-
cency list. Newer single kernel propagation patterns like AA, swap,
shift, and esoteric twist retain only a single copy of the particle
distribution data [2, 11, 21, 24]. In this study, we focus on the AA
method, which reduces the memory storage for the distribution
data by 50%:

M = 19 ∗ N doubles + 19 ∗ N integers. (7)

Performance comparisons also demonstrate that single distribution
schemes like AA can deliver superior performance on CPUs versus
two distribution propagation patterns [12, 38]. The literature re-
garding optimization and scaling of distribution-based propagation
patterns is too substantial to review here; we refer the reader to
[13, 29, 37].

4.2 Layer scheme for moment representation
There are two closely related challenges to designing a propagation
pattern for the moment representation of LBM. First, in order for
the method to save memory with respect to a single distribution
scheme, only a single copy of the moment data can be stored over
the simulation domain. Second, moments at a lattice site cannot be
recomputed until distribution components have streamed in from
all adjacent lattice sites, necessitating the temporary storage of at
least some distribution data during streaming. To address these two
design requirements – a single copy of the moment data and the
need for some temporary distribution data storage – we adapt the
layer scheme from [1], which features a temporary buffer in which

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC’19, November, 2019, Denver, CO, USA Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, and Amanda Randles

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Layer k= ",
Timestep $ + &

Layer k= &,
Timestep $ + &

Layer k= ',
Timestep $

(→ *+

Recompute Moments
(← *+

Layer k= -,
Timestep $
Layer k= .,
Timestep $

Current
layer

Distribution pseudo domain

Stream

Moment domain

Figure 2: Moment representation algorithm: The moment domain and distribution pseudo domain are shown on the left and
right sides of the figure, respectively. We illustrate the case of layer k = 2 at timestep t . The distributions computed from post-
collisionmoments in layers 0 and 1 have been streamed to the pseudo domain. Dashed velocity lines contain information that
was previously used to compute moments for layer k = 0 at timestep t + 1 and is no longer needed. Next, the post-collision
moments in the current plane k = 2 are used to compute distributions (M → fi) and streamed to the 3 layers in the pseudo
domain. Now, the bottom row in the pseudo domain now has the complete set of 19 distributions required to recompute new
moments (fi → M). These recomputed moments are then written to layer k = 1 at the timestep t + 1. The cycle then continues,
with collsion being performed on layer k = 3 at timestep t , converted to distributions, and streamed to the pseudodomain.

post-streaming distribution data can be stored until moments are
evaluated.

We assume that the domain of each MPI task belongs to a single
cuboid bounding box or, more generally, a series of such bounding
boxes. Each bounding box is divided along one axis into a series of
layers, which are a single lattice site high, as illustrated in figure 2.
While it would be optimal to select this axis based on the dimen-
sions of the bounding box, our current implementation is fixed to
always use the z-axis. Starting from the bottom and looping over
the fluid points in each layer of the moments domain, we perform
the collision operation, convert the resulting moments into distribu-
tions, and stream the distribution components into the appropriate
places in the distribution pseudo domain. After the layer k has been
streamed, we apply boundary conditions in the distribution pseudo
domain to layer k − 1, and convert the layer back to the moments
domain. As the D3Q19 lattice only requires nearest neighbors, this
layer-based propagation pattern can be implemented with only 3
layers in the distribution pseudo domain.

When considering sparse geometries, such as in human vascula-
ture, layers may be sparsely populated by fluid points [26]. We take
such cases into account by indirectly addressing the distribution
pseudo domain. For a given task, the resulting propagation pattern
for the layer scheme requires storage of

M = (10 ∗ N + 3 ∗ 19 ∗ P) doubles + 19 ∗ N integers (8)

where P is the number of fluid points in the most populous layer.
If P ≪ N , the amount of storage for the moment representation
is approximately 47% of a single copy of the distribution function.
Moreover, required memory for the moment representation be-
comes similar in size to the adjacency list for indirect addressing.

4.3 Cache aware layer scheme
To improve data locality relative to single kernel propagation pat-
terns for the distribution representation, it is necessary to minimize
any access to main memory beyond the essential read and write
of the moments array each timestep. In particular, this involves
optimizing the cache locality and data reuse for the 3 temporary
distribution-based layers. As observed by [1], a layer scheme imme-
diately obtains this locality and data reuse for a sufficiently small
problem size. In particular, we expect optimal cache performance
when the entire distribution pseudo domain fits within the last level
cache. In this section, we present a modification of the layer scheme
for the moment representation in section 4.2 which maintains this
advantage for general problem sizes per task via cache awareness.

Our strategy builds on a long history of optimization for LBM
and related stencil computation for blocking and tiling schemes
[8, 25, 33–35] and spatial and temporal wavefront blocking [32, 39].
We introduce a tiling scheme that divides the task bounding box
into ‘blocks’, in a second dimension orthogonal to the previously
defined layer division. Blocks are divided such that the number
of fluid points in any layer of the block does not exceed a speci-
fied threshold, selected based on the size of the CPU L3 cache. As
shown in figure 4, the layer algorithm from the previous section
is performed successively on each block. Therefore, this limitation
on the layer size breaks the full task bounding box into a series of
smaller blocks such that the temporary layer size can be modulated
based on the available space in cache.

Similar to the streaming and communication patterns in tradi-
tional LBM, we observe that a non-trivial interaction occurs at the
boundaries between blocks. As distribution components stream to
their nearest neighbors on the lattice, a distribution component can

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Moment Representation in the Lattice Boltzmann Method on Massively Parallel Hardware SC’19, November, 2019, Denver, CO, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Layer 0 Layer 1 Layer 2

Array of Structure Layout

Layer 0 Layer 1 Layer 2

pVelocity

{. . #$. .{. . #$. . {. . #$. .{. . #% . .

{. . #$. .{. . #$. . {. . #$. .

{. . #% . . {. . #% . .

#$

#%

#$
#%

#&

'#()

Layer 0 Layer 1 Layer 2

Figure 3: Pseudo domain setup: the three layers in the pseudo domain are populated with the distributions streamed from
each moment layer in the array of structure format.

stream from one block to the next (‘forward’, block A to block B)
and from a given block to the previous block (‘backward’, block B
to block A).

For the lattice points in block B which have distribution compo-
nents that will stream ‘backwards’ into the previous block A, we
perform an additional collision operation on these lattice points
when updating the previous block A. This process is illustrated in
figure 4 (b). We then perform the streaming operation for only those
distribution components which stream backwards. Consequently,
some recomputation necessarily occurs for backwards streaming;
this amount is proportional to the cross-sectional area of the block
interface, which is generally small relative to the full bounding box
volume.

A different solution is required for distribution components
which stream ‘forward’, as the update to the moments in the pre-
vious block A precludes the possibility of recomputation when
evaluating the subsequent block B. Instead, as depicted in figure 4
(b), we identify the distribution components in each layer of block
A which would stream forward into block B and write them to a
second temporary buffer. When the layer into which the distribu-
tion components are to stream is encountered in block B, we read
the values from the second temporary buffer and write them to
the appropriate locations in the temporary layer distribution array.
As a result, additional data motion is required for this distribution
components and, once again, the quantity of additional data motion
is proportional to the block interface’s cross-sectional area.

We observe that, in general, the previous division of a non-layer
dimension of the geometry into blocks is not optimal from the
standpoint of minimizing recomputation and additional data mo-
tion. Dividing the two non-layer dimensions into ‘tiles’ would allow
for the optimal case, which could provide a significant improvement
for approximately cubic bounding boxes. We opted for the single
division into blocks for the sake of simplicity, as the ‘tile’ version
would significantly increase the complexity of the secondary tem-
porary buffers for the ‘forward’ streaming across block boundaries.

5 EXPERIMENTAL SETUP
5.1 HARVEY
The algorithms discussed in the previous sections for distribution
and moment representations of LBM are implemented in HAR-
VEY, a highly parallel hemodynamics solver [28]. Parallelized with
MPI and OpenMP, HARVEY is designed for simulations in com-
plex vascular geometries [27]. The sparsity of vascular geometries
presents challenges for load balance, grid generation, and address-
ing. Our approach to the first two challenges does not differ be-
tween distribution-based and moments-based LBM schemes and
implementation details are discussed in previous work [26]. For
addressing, we use indirect addressing with an adjacency list; while
the size of the adjacency list – 19 integers per fluid lattice point
– does not vary for distribution-based and moments-based LBM
schemes, the content of the adjacency list does change. For distribu-
tion representation schemes, we store position in the distribution
array to which the distribution component would stream. However,
for moment representation schemes, the adjacency list stores the
position in the layer array to which the distribution component
would stream.

A no-slip condition is enforced at the walls of the geometry using
the halfway bounce-back method. This boundary condition can
be embedded into the adjacency list, thereby avoiding a separate
kernel. More complex boundary conditions, such as those required
at inlets or outlets, are enforced in this implementation with a Zou-
He condition for velocity or pressure [40]. We impose the boundary
conditions while the points are still stored in the distribution pseudo
domain, after collision and streaming but prior to recomputing
moments.

Communication is performed over a halo region surrounding
each task’s bounding box. The complete set of 19 distribution com-
ponents or 10 moments is communicated at each lattice point in
the halo for distribution- and moment-based schemes, respectively.
While halo-free schemes (e.g., [15]) can reduce communication for
distribution-based schemes, having full knowledge of data on the

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SC’19, November, 2019, Denver, CO, USA Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, and Amanda Randles

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Optimal block threshold = J/cache size

K=0

K=n

K=0

K=n

K=0

K=n

J

K

J = 0 J = n

TEMPORARY
BUFFER

BACKWARD MOVING
DISTRIBUTIONS

FORWARD MOVING
DISTRIBUTIONS

BLOCK A

BLOCK B

BLOCK A

BLOCK B

(a)

(b)

Figure 4: Diagram of the cache aware layer scheme. (a) Initial division into layers (far left, gray), the task bounding box is
also divided into blocks uniformly across all layers (center left, colored by block). In the simulation, we update each block
successively, with collision and streaming being performed layerwise before moving to the next block (right). (b) Backwards
streaming from block B to block A is performed during the update to block A (left). Forward streaming from block A to block
B is performed in two parts: writing the distribution components streaming forward to a temporary buffer while updating
block A and reading these components from the buffer while updating block B.

halo facilitates finite-difference schemes which can be used to apply
boundary conditions and compute time-averaged quantities like
wall shear stress.

Local fluid points are sorted in two ways to improve perfor-
mance. First, to facilitate communication, the distribution and mo-
ment arrays are sorted to group sent points and received points to
contiguous array locations. Second, interior points which are not
communicated are sorted into contiguous arrays for the distribution
representation schemes and into contiguous layers of tiles for the
moment representation schemes. As the moment representation
scheme loops over all fluid points in the layer (or the portion of
the layer within the block, for the cache-optimized version), we
observe that additional lookup is required to identify the members
of the layer for those points sorted for communication.

Validation and convergence tests for a standard set of bench-
mark flow problems were conducted to ensure accuracy. Results
for simulations with the regularized LBM method matched for the
distribution and moment representation schemes up to the order of
round-off errors. Additional validation of the regularized LBM im-
plementation in HARVEY was conducted in [14] with experimental
results for lid-driven cavity flow.

5.2 Architectures
On-node performance and scaling assessments were performed on
an Intel-based cluster, with dual-socket compute nodes connected
with 56Gb/s Infiniband interconnect. Each node has two Intel Xeon
E5-2695V4 ‘Broadwell’ processors with 40 CPU cores exposed to

the job scheduler and a shared 55 MB L3 cache. Our application
was compiled with the 2018 versions of the Intel C++ compiler and
MPI library.

Additional scaling tests were performed on the Summit super-
computer at the Oak Ridge Leadership Computing Facility. Summit
has 4608 IBM Power System AC922 nodes connected by dual-rail
EDR InfiniBand arranged in a non-blocking Fat Tree topology. Each
dual-socket Summit node has two IBM POWER9 processors and
6 NVIDIA GPUs, although this study was conducted solely on the
CPU component of the nodes. Each node has 42 CPU cores exposed
to the job scheduler. Our application was compiled with version
16.01 of the IBM XL C++ compiler and Spectrum MPI library.

5.3 Test geometries
To demonstrate the scaling behaviour and real world application,
we used two test geometries representing different degree of spatial
complexity: a cylinder and a patient-derived coronary artery model.
Representative of an idealized blood vessel, the cylinder geometry
was oriented along the x and z axes to assess the effect of orientation
on performance at a 5 µm on Intel Xeon Broadwell processors. The
same geometry at 5 µm resolution was also used to investigate the
performance comparison of distribution function vs. moment-based
propagation patterns. To understand large scale parallel behavior,
higher resolution simulations were conducted using the cylinder
geometry at 5 µm, 2.5 µm and 1.25 µm. The coronary artery ge-
ometry was derived from CT angiographic data, segmented using
commercial software and obtained from appropriate institutional

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Moment Representation in the Lattice Boltzmann Method on Massively Parallel Hardware SC’19, November, 2019, Denver, CO, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

DRAM Bandwidth 11
.88 GB/se

c

L3 Bandwidth 32.27 GB/se
c

L2 Bandwidth 72.13 GB/se
c

L1 Bandwidth 255.91 GB/se
c

Scalar Add Peak: 2.77 GFLOPS

DP Vector Add Peak: 10.29 GFLOPS

SP Vector Add Peak: 20.58 GFLOPS

DP Vector FMA Peak: 39.3 GFLOPS

SP Vector FMA Peak: 82.29 GFLOPS

AA Collide Stream
AA Collide
MR Collide
MR Evaluate Moments
MR-Opt Collide
MR-Opt Evaluate Moments

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

0.01

0.1

1

10

100

Arithematic Intensity (FLOP/Byte)
0.001 0.01 0.1 1 10 100

DP Vector FMA Peak: 39.3 GFLOPS

SP Vector Add Peak: 20.6 GFLOPS

SP Vector FMA Peak: 82.3 GFLOPS

DP Vector Add Peak: 10.3 GFLOPS

Figure 5: Roofline performance model for AA, moment rep-
resentation (MR), and cache-optimized moment represen-
tation (MR-opt) schemes on the Intel ‘Broadwell’ architec-
ture. For each scheme, we consider the two most signifi-
cant kernels. For the AA scheme, these are the collision and
streaming kernels for the even and odd timesteps (‘Collide’
and ‘Collide Stream’, respectively). For the moment repre-
sentation schemes, these are the collision and streamingker-
nel and the moment evaluation (‘Collide’ and ‘Evaluate mo-
ments’, respectively).

review board approval. The arterial simulation was performed at 50
µm resolution to demonstrate physical hemodynamic blood flow.

5.4 Performance model
We assess node-level performance on the Intel ‘Broadwell’ architec-
ture for the baseline and cache-optimized propagation patterns for
themoment representation using a roofline performancemodel [36].
Given the well-documented bandwidth limitations of the algorithm,
we judged that a roofline model would be the most comprehensive
measure of kernel performance between LBM propogation patterns.
Simulations were conducted using 40 MPI ranks per node and 2
OpenMP threads per rank. Constructed with Intel Advisor, the per-
formance for a representative rank is shown in Figure 5. We focus
on the two most important kernels in these propagation patterns:
(1) collision and streaming and (2) evaluating moments.

In collision and streaming, we are reading 10 consecutively stored
moments from memory at each lattice site, performing the collision
operation, converting the resulting moments into distributions, and
streaming the distributions into the distribution pseudo domain. For
the final two components of this kernel, the loop over distribution
components can be efficiently vectorized. Despite the conversion
from moments to distributions, the arithmetic intensity is quite low
and the performance for the ‘MR Collide’ kernel is only marginally
better than the expected DRAM bandwidth. This is expected since
the distribution pseudo domain does not fit within cache and strides
between writes to the pseudo domain are highly variable due to
the indirect addressing. Without modifying the vectorization, we
observe that the arithmetic intensity remains the same for the

cache optimized ‘MR-Opt Collide’ kernel but bandwidth improves
to between L2 and L3 cache levels.

The kernel in which moments are evaluated is much simpler:
read 19 contiguous memory locations from the distribution pseudo
domain, convert to moments, and write moments back to main
memory. The only computational component – the moment con-
version – vectorizes well and the predictable memory strides im-
prove bandwidth performance. We observe performance at the L2
bandwidth for the baseline moment representation scheme and the
cache-optimized version slightly exceeds on this threshold.

2 4 8 16 20 40
MPI ranks

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

AB2k
AB1k

AA
MR

MR-opt

Figure 6: Performance comparison forMPI+OpenMP config-
urations on a Broadwell node. The 80 hardware thread are
split evenly among the number of MPI ranks indicated.

To investigate the percent of peak performance achieved by the
new method, we use the STREAM benchmark, a commonly used
method for measuring memory bandwidth in HPC systems, to iden-
tify peak performance [22]. STREAM comprises of 4 basic functions:
Copy, Scale, Add and Triad. Each of the functions perform 0, 1 or
2 arithmetic operations and access 1 or 2 input arrays and write
one output array. STREAM provides a direct correlation to mem-
ory bandwidth and is therefore a commonly used tool to assess
the performance of complex HPC workloads which are bandwidth
limited [22]. We use the Copy function to assess the LBM collide
and stream kernel because of the similar read and write operations.
The peak performance with 80 threads for the Copy function of
STREAM on the Intel ‘Broadwell’ is measured at 49.459 GB/s. Using
this metric as the theoretical peak performance, we calculate the ex-
pected performance for the cache-optimized moment, AA collision
and baseline moment kernels to be 8.9 GFLOPs, 16.8 GFLOPs and
8.9 GFLOPs, at the measured arithmetic intensity of 0.18 flops/byte,
0.34 flops/byte and 0.18 flops/byte respectively 5). The measured
performance is higher at 9.7 GFLOPs for the cache-optimized col-
lide kernel and lower at 8.39 GFLOPs for AA and 3.34 GFLOPs
for baseline moment (Figure 5). This finding underscores that by
fitting distribution pseudo domain on cache, the anticipated per-
formance gains can be achieved with the cache optimized moment
implementation.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SC’19, November, 2019, Denver, CO, USA Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, and Amanda Randles

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

0.1

0.2

0.3

1 2 4 8 16 32

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

Number of threads

MR Cylinder Z

MR Cylinder X

Figure 7: Effect of orientation for on-node performancewith
cylindrical geometries oriented the x- and z-axes for the
baseline moment representation scheme for scaling from 1
to 40 OpenMP threads.

6 EXPERIMENTAL RESULTS
6.1 Single-node performance
An on-node performance comparison for the distribution- and
moment-based schemes is shown in Figure 6. The time-per-iteration
is computed from the maximum time spent by any task in the LBM
time stepping loop.We observe that the AA scheme outperforms the
two distribution AB1k and AB2k schemes and, more broadly, that
performance is relatively consistent for the various MPI+OpenMP
configurations. In contrast, the MR demonstrates improved per-
formance for configurations with more threads per rank, at which
it is significantly faster than AA. This difference in performance
results from the relationship between the memory required for the
temporary layers on each rank versus the available cache space.
Due to the domain decomposition, the temporary layers easily fit
within cache for fewer MPI ranks. However, for domain decompo-
sitions with more ranks, the size of the temporary layers exceeds
the cache size and, accordingly, requires access to main memory.
By performing its own decomposition of each task’s bounding box,
the cache-optimized version of the MR scheme allows for improved
performance to be maintained for all MPI+OpenMP configurations
tested.

6.2 Isotropy
Although the proposed layer scheme for the moment representation
would ideally use the longest axis for the layer division, because our
initial implementation decomposes along the z-axis, we take this
opportunity to measure the impact of orientation on performance.
While this dependence is largely ameliorated in the cache-optimized
scheme or by domain decomposition for large MPI runs, it may
be significant for pure OpenMP performance on node. To assess
any potential anisotropic behavior of the baseline moment repre-
sentation algorithm, we use the same cylindrical geometry and
resolution from section 6.1 in two orientations: aligned with the
axis along which layers are divided (z-axis) and orthogonal to this
axis (x-axis). As can be noted in Figure 7, both orientations result in

comparable performance for scaling from 1 to 40 OpenMP threads
on a single rank. We do observe slight performance degradation
for the cylinder oriented along x-axis, which was the sub-optimal
direction since the implemented layer divisions were along the
z-axis.

6.3 Inter-node performance
In this section, we extend the comparison between the distribution
and moment representation schemes to inter-node performance.
Simulations are conducted in a cylinder at 5µm resolution which
is aligned with the z-axis. We assess strong scaling from 128 to
2048 MPI tasks, with up to 40 tasks per node. Relative performance
for the distribution representation schemes is consistent with on-
node performance. However, while AB1k and AB2k scale very
well, AA performs poorly at large task counts due to increased
communication costs. MPI communication for AA is challenging
because different data is transfered on even and odd timesteps. The
data layout in our implementation, which is the same for all three
distribution representation schemes, does not fit well with the AA
communication pattern on odd timesteps.

For the baseline moment representation scheme, we observe
super-linear strong scaling. As the number of tasks increases, the
size of the distribution pseudo domain becomes smaller relative to
the available cache per core and performance improves accordingly.
As a result, the baseline moment representation nearly matches
the performance of an optimally-scaled AA scheme at 2048 tasks,
despite a much slower runtime at 128 tasks. However, as the cache-
optimized version of the moment representation controls for this
effect, we observe that this scheme outperforms over the entire
range of task counts studied. As the problem size per task becomes
small, we observe the expected convergence of the cache-optimized
version to the baseline moment representation. Nonetheless, scal-
ability does not match that of AB1k or AB2k. We expect that the
domain decomposition at these task counts produces non-optimal
bounding boxes for our layer scheme and plan to address this in
figure work.

128 256 512 1024 2048
Broadwell cores

0.02

0.2

2.0

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

AA
AB1k
AB2k
MR
MR-cache-opt

Figure 8: Inter-node performance for strong scaling in a
cylindrical geometry on a cluster with Intel Broadwell
CPUs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Moment Representation in the Lattice Boltzmann Method on Massively Parallel Hardware SC’19, November, 2019, Denver, CO, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

42 168 672 2688 10752 43008 172032
Power9 cores

10−2

10−1

100

101

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

5μm 2.5μm 1.25μm

Figure 9: Strong scaling on Summit’s Power9 CPUs for flow
in cylindrical geometries at three resolutions.

6.4 Performance on large-scale architectures
While LBM implementations using a distribution representation
typically have excellent scalability, it is necessary to confirm that
this still holds for the moment representation scheme. In particular,
the additional complexity and overhead of the cache-optimized
moment representation scheme pose a particular challenge for
strong scalabilty on large systems. To this end, large-scale strong
and weak scaling tests were conducted on Summit for the cache-
optimized MR scheme. Shown in Figure 9, we observe good strong
scaling for runs in a series of cylindrical geometries. We observed
parallel efficiencies of 90.8% for strong scaling from 1 to 32 and from
8 to 256 nodes (42 to 1344 and 336 to 10752 MPI ranks, respectively).
Scaling performance degraded at larger node counts, with 72.5%
parallel efficiency from 128 to 4096 nodes (5376 to 172032 MPI
ranks), as load balance begins to degrade at these task counts.

Similarly, weak scaling results from Summit are shown in Fig-
ure 10. As our scheme does not substantially alter the normal LBM
communication requirements, excellent weak scalability is to be
expected. For three cylindrical geometries, we observe parallel effi-
ciencies of 92-95% from 1 to 64 nodes (42 to 2688 MPI ranks). At
higher node counts, we encounter substantial load imbalance be-
tween task which significantly reduce weak scaling performance.
We are currently working to identify the cause but do not believe
the cache-optimized moment representation to be the source.

6.5 Real world application - Patient-specific
hemodynamic simulation

This performance results discussed above present the critical and
necessary first step to demonstrate the efficient scaling behavior
of our memory and cache optimized layer-based moment repre-
sentation algorithm. In this section, we applied our moment rep-
resentation algorithm to perform high resolution patient-specific
hemodynamic simulation in complex arterial geometry. Memory
savings are crucial for high-fidelity, hemodynamic simulations in
complex geometries as the maximum achievable resolution of the
simulations is limited by the data that can fit in memory on the

system [4, 23, 27]. As such, these patient-specific simulations are
gaining increasing importance and are FDA approved for diag-
nostic purposes [3]. While the layer-based moment algorithm is
generalizable to any LBM application and fluid flow problem, in
this work we present hemodynamic simulation as a representative
application. Achieving physiological flows in large arterial regions
has previously been shown to push the limits of available mem-
ory on current systems [26, 27]. Thus, we use the application of
patient-specific hemodynamic simulation as a case study for our
layer-based moment algorithm.

We use an image-derived coronary arterial geometry as input to
the layer-based moment representation algorithm. Zou-He bound-
ary conditions were implemented at the inlet and outlets [40]. Blood
was modeled as an incompressible Newtonian fluid with a dynamic
viscosity of 4 cP and density of 1.06 kд/m3. The blood vessels were
modeled as rigid walls with no-slip boundary condition. We con-
ducted the simulation in a patient-specific arterial geometry. The
results of the simulation are shown in Figure 11 as velocity stream-
lines along the complete arterial tree.

7 DISCUSSION AND FUTUREWORK
Our driving goal with this work is to reduce both memory stor-
age and bandwidth costs for the LBM algorithm while preserving
accuracy to facilitate higher-fidelity fluid simulations. This study
has presented an alternative LBM propagation pattern based on
the moment representation from the regularized lattice Boltzmann
method. A single-node performance model was used to understand
the data motion and performance of key kernels. Simulation results
on both Intel Broadwell and IBM Power9 CPUs confirmed the ex-
pected performance increase enabled by reducing memory storage
and data motion and by maximizing data-reuse with a cache-aware
layer scheme. Further optimization is likely possible and will be
explored in subsequent studies. Excellent parallel scalability of the
moment representation was observed, consistent with other LBM
implementations. Finally, we demonstrate the application of mo-
ment representation algorithm for patient-specific hemodynamic

42 84 168 336 672 1344 2688
Power9 cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

5μm 6.3μm 7.9μm

Figure 10: Weak scaling on Summit’s Power9 CPUs for flow
in a cylindrical geometries at three resolutions.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SC’19, November, 2019, Denver, CO, USA Madhurima Vardhan, John Gounley, Luiz Hegele, Erik W. Draeger, and Amanda Randles

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 11: Velocity streamlines in a patient-derived left coro-
nary arterial geometry.

simulations. As this work presents a new scheme for improving
both time to solution and the scale of the problem that can fit in
memory, we believe that it will set the stage for grand challenge-
scale, high-fidelity hemodynamic simulations.

Looking forward to specialized hardware, such as GPU accel-
erators, we believe the method introduced here has significant
potential. First, storage space continues to be a limitation on GPUs
and our moment representation would be a significant step to-
ward enabling larger problem sizes on these devices. To be sure,
there is an inevitable trade-off between inter-thread parallelism
and data reuse, especially on GPUs. We certainly expect that the
CPU-focused cache optimization strategy presented here will need
to adapted for GPUs. Specifically, the decomposition of the task
bounding box into blocks will have to be closely modulated by warp
sizes. Additionally, we expect that a structure of arrays or clustered
structure of array format will improve memory coalescing for the
distribution pseudo domain, instead of the array of structures im-
plemented in this study [15]. Nonetheless, precisely because we
will increase the amount of LBM data on the GPU, we anticipate
that the layer-based propagation pattern presented here will expose
sufficient parallelism for efficient GPU computation. Overall, we see
the moment representation implemented in this study as a critical
step in minimizing memory requirements and thereby maximizing
problem sizes that can be tackled on future hardware.

8 ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Comput-
ing Facility, which is a DOEOffice of Science User Facility supported
under Contract DE-AC05-00OR22725. This work was performed
under the auspices of the U.S. Department of Energy by LLNL under
Contract DE-AC52-07NA27344. Support was provided by the LLNL
Laboratory Directed Research and Development (LDRD) program.
Research reported in this publication was supported by the Office

of the Director, National Institutes Of Health under Award Num-
ber DP5OD019876. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health. Support was provided by the Hartwell
Foundation and Duke Theo Pilkington Fellowship. We thank all
the members of the Randlelab for their careful review and feedback
on this work.

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan(http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES
[1] R Argentini, AF Bakker, and CP Lowe. 2004. Efficiently using memory in lattice

Boltzmann simulations. Future Generation Computer Systems 20, 6 (2004), 973–
980.

[2] Peter Bailey, Joe Myre, Stuart DC Walsh, David J Lilja, and Martin O Saar. 2009.
Accelerating lattice Boltzmann fluid flow simulations using graphics processors.
In Parallel Processing, 2009. ICPP’09. International Conference on. IEEE, 550–557.

[3] Stewart M Benton, Christian Tesche, Carlo N De Cecco, Taylor M Duguay,
U Joseph Schoepf, and Richard R Bayer. 2018. Noninvasive derivation of frac-
tional flow reserve from coronary computed tomographic angiography. Journal
of Thoracic Imaging 33, 2 (2018), 88–96.

[4] Massimo Bernaschi, Mauro Bisson, Toshio Endo, Satoshi Matsuoka, Massimiliano
Fatica, and Simone Melchionna. 2011. Petaflop biofluidics simulations on a two
million-core system. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 4.

[5] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. 1954. A model for
collision processes in gases. I. Small amplitude processes in charged and neutral
one-component systems. Physical review 94, 3 (1954), 511.

[6] Jonathan Carter, Min Soe, Leonid Oliker, Yoshinori Tsuda, George Vahala, Linda
Vahala, and AngusMacnab. 2005. Magnetohydrodynamic Turbulence Simulations
on the Earth SimulatorUsing the Lattice BoltzmannMethod. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis. ACM.

[7] Shiyi Chen and Gary D Doolen. 1998. Lattice Boltzmann method for fluid flows.
Ann Rev Fluid Mech 30, 1 (1998), 329–364.

[8] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. 2008. Stencil
computation optimization and auto-tuning on state-of-the-art multicore architec-
tures. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE
Press, 4.

[9] Dominique d’Humières, Irina Ginzburg, Manfred Krafczyk, Pierre Lallemand,
and Li-Shi Luo. 2002. Multiple–relaxation–time lattice Boltzmann models in
three dimensions. Philosophical Transactions of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 360, 1792 (2002), 437–451.

[10] Yuankun Fu, Feng Li, Fengguang Song, and Luoding Zhu. 2018. Designing a par-
allel memory-aware lattice Boltzmann algorithm on manycore systems. In 2018
30th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 97–106.

[11] Martin Geier and Martin Schoenherr. 2017. Esoteric twist: an efficient in-place
streaming algorithmus for the lattice Boltzmann method on massively parallel
hardware. Computation 5, 2 (2017), 19.

[12] Nicholas Geneva, Cheng Peng, Xiaoming Li, and Lian-PingWang. 2017. A scalable
interface-resolved simulation of particle-laden flow using the lattice Boltzmann
method. Parallel Comput. 67 (2017), 20–37.

[13] Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler,
and Ulrich Rüde. 2013. A framework for hybrid parallel flow simulations with
a trillion cells in complex geometries. In SC’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–12.

[14] LA Hegele Jr, A Scagliarini, M Sbragaglia, KK Mattila, PC Philippi, DF Puleri,
J Gounley, and A Randles. 2018. High-Reynolds-number turbulent cavity flow

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Moment Representation in the Lattice Boltzmann Method on Massively Parallel Hardware SC’19, November, 2019, Denver, CO, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

using the lattice Boltzmann method. Physical Review E 98, 4 (2018), 043302.
[15] Gregory Herschlag, Seyong Lee, Jeffrey S Vetter, and Amanda Randles. 2018. GPU

Data Access on Complex Geometries for D3Q19 Lattice Boltzmann Method. In
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 825–834.

[16] Jonas Latt. 2007. Hydrodynamic limit of lattice Boltzmann equations. Ph.D.
Dissertation. University of Geneva.

[17] Jonas Latt and Bastien Chopard. 2006. Lattice Boltzmannmethod with regularized
pre-collision distribution functions. Mathematics and Computers in Simulation
72, 2-6 (2006), 165–168.

[18] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and Andreas
Michler. 2008. Straight velocity boundaries in the lattice Boltzmann method.
Physical Review E 77, 5 (2008), 056703.

[19] Song Liu, Nianjun Zou, Yuanzhen Cui, and Weiguo Wu. 2017. Accelerating the
parallelization of lattice Boltzmann method by exploiting the temporal locality.
In 2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC). IEEE, 1186–1193.

[20] Nicos SMartys and John GHagedorn. 2002. Multiscale modeling of fluid transport
in heterogeneous materials using discrete Boltzmann methods. Materials and
structures 35, 10 (2002), 650–658.

[21] Keijo Mattila, Jari Hyväluoma, Tuomo Rossi, Mats Aspnäs, and Jan Westerholm.
2007. An efficient swap algorithm for the lattice Boltzmann method. Computer
Physics Communications 176, 3 (2007), 200–210.

[22] John D McCalpin et al. 1995. Memory bandwidth and machine balance in current
high performance computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) newsletter 1995 (1995), 19–25.

[23] Amanda Peters, Simone Melchionna, Efthimios Kaxiras, Jonas Lätt, Joy Sircar,
Massimo Bernaschi, Mauro Bison, and Sauro Succi. 2010. Multiscale simulation
of cardiovascular flows on the IBM Bluegene/P: Full heart-circulation system at
red-blood cell resolution. In SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–10.

[24] Thomas Pohl, Frank Deserno, Nils Thurey, Ulrich Rude, Peter Lammers, Gerhard
Wellein, and Thomas Zeiser. 2004. Performance evaluation of parallel large-
scale lattice Boltzmann applications on three supercomputing architectures. In
Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 conference. IEEE, 21–
21.

[25] Thomas Pohl, Markus Kowarschik, Jens Wilke, Klaus Iglberger, and Ulrich Rüde.
2003. Optimization and profiling of the cache performance of parallel lattice
Boltzmann codes. Parallel Processing Letters 13, 04 (2003), 549–560.

[26] Amanda Randles, Erik W Draeger, Tomas Oppelstrup, Liam Krauss, and John A
Gunnels. 2015. Massively parallel models of the human circulatory system.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 1.

[27] Amanda Randles, Erik W Draeger, Tomas Oppelstrup, Liam Krauss, and John A
Gunnels. 2015. Massively parallel models of the human circulatory system.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 1.

[28] Amanda Peters Randles, Vivek Kale, JeffHammond,WilliamGropp, and Efthimios
Kaxiras. 2013. Performance analysis of the lattice Boltzmann model beyond
Navier-Stokes. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th Inter-
national Symposium on. IEEE, 1063–1074.

[29] S Succi, G Amati, M Bernaschi, G Falcucci, M Lauricella, and A Montessori. 2019.
Towards Exascale Lattice Boltzmann computing. Computers & Fluids (2019).

[30] Pedro Valero-Lara. 2018. Analysis and Applications of Lattice Boltzmann Simula-
tions. IGI Global.

[31] David Vidal, Robert Roy, and François Bertrand. 2010. A parallel workload
balanced and memory efficient lattice-Boltzmann algorithm with single unit BGK
relaxation time for laminar Newtonian flows. Computers & Fluids 39, 8 (2010),
1411–1423.

[32] Gerhard Wellein, Georg Hager, Thomas Zeiser, Markus Wittmann, and Holger
Fehske. 2009. Efficient temporal blocking for stencil computations by multicore-
aware wavefront parallelization. In 2009 33rd Annual IEEE International Computer
Software and Applications Conference, Vol. 1. IEEE, 579–586.

[33] Gerhard Wellein, Thomas Zeiser, Georg Hager, and Stefan Donath. 2006. On the
single processor performance of simple lattice Boltzmann kernels. Computers &
Fluids 35, 8-9 (2006), 910–919.

[34] SamuelWilliams, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine Yelick.
2008. Lattice Boltzmann simulation optimization on leading multicore platforms.
In 2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE,
1–14.

[35] SamuelWilliams, Leonid Oliker, Jonathan Carter, and John Shalf. 2011. Extracting
ultra-scale lattice Boltzmann performance via hierarchical and distributed auto-
tuning. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 55.

[36] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
insightful visual performance model for floating-point programs and multicore ar-
chitectures. Technical Report. Lawrence Berkeley National Lab.(LBNL), Berkeley,
CA (United States).

[37] Markus Wittmann, Viktor Haag, Thomas Zeiser, Harald Köstler, and Gerhard
Wellein. 2018. Lattice Boltzmann benchmark kernels as a testbed for performance
analysis. Computers & Fluids 172 (2018), 582–592.

[38] Markus Wittmann, Thomas Zeiser, Georg Hager, and Gerhard Wellein. 2013.
Comparison of different propagation steps for lattice Boltzmann methods. Com-
puters & Mathematics with Applications 65, 6 (2013), 924–935.

[39] Thomas Zeiser, Gerhard Wellein, Aditya Nitsure, Klaus Iglberger, U Rude, and
Georg Hager. 2008. Introducing a parallel cache oblivious blocking approach
for the lattice Boltzmann method. Progress in Computational Fluid Dynamics, an
International Journal 8, 1-4 (2008), 179–188.

[40] Qisu Zou and Xiaoyi He. 1997. On pressure and velocity boundary conditions
for the lattice Boltzmann BGK model. Physics of fluids 9, 6 (1997), 1591–1598.

11

	Abstract
	1 Introduction
	2 Related work
	3 Lattice Boltzmann methods
	3.1 Distribution representation
	3.2 Moment representation

	4 Propagation patterns
	4.1 Distribution representations
	4.2 Layer scheme for moment representation
	4.3 Cache aware layer scheme

	5 Experimental setup
	5.1 HARVEY
	5.2 Architectures
	5.3 Test geometries
	5.4 Performance model

	6 Experimental results
	6.1 Single-node performance
	6.2 Isotropy
	6.3 Inter-node performance
	6.4 Performance on large-scale architectures
	6.5 Real world application - Patient-specific hemodynamic simulation

	7 Discussion and future work
	8 Acknowledgments
	References

