
Fast, scalable and accurate finite-element based ab initio
calculations using mixed precision computing: 46 PFLOPS

simulation of a metallic dislocation system.

Sambit Das†∗, Phani Motamarri†∗, Vikram Gavini†‡, Bruno Turcksin§, Ying Wai Li¶‖, Brent Leback∗∗
†Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

‡Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
§Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
¶National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States

‖Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
∗∗Nvidia Corporation, Santa Clara, CA 95050, USA

∗ Sambit Das and Phani Motamarri contributed equally to this work.

Abstract—Accurate large-scale first principles calculations
based on density functional theory (DFT) in metallic systems
are prohibitively expensive due to the asymptotic cubic scal-
ing computational complexity with number of electrons. Using
algorithmic advances in employing finite-element discretization
for DFT (DFT-FE) in conjunction with efficient computational
methodologies and mixed precision strategies, we delay the onset
of this cubic scaling by significantly reducing the computational
prefactor while increasing the arithmetic intensity and lower-
ing the data movement costs. This has enabled fast, accurate
and massively parallel DFT calculations on large-scale metallic
systems on both many-core and heterogeneous architectures,
with time-to-solution being an order of magnitude faster than
state-of-the-art plane-wave DFT codes. We demonstrate an
unprecedented sustained performance of 46 PFLOPS (27.8%
peak FP64 performance) on a dislocation system in Magnesium
containing 105,080 electrons using 3,800 GPU nodes of Summit
supercomputer, which is the highest performance to-date among
DFT codes.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

Our spectral finite-element based DFT code with FP32-
FP64 computing demonstrates 46 PFLOPS (27.8% FP64 peak)
sustained performance on OLCF’s1 Summit, which is 3.1×
higher than the current DFT record. We demonstrate strong
scaling speedup of 14.5× – 26.8× on ALCF’s2 Theta, with
time-to-solution 9× faster than state-of-the-art codes.

II. PERFORMANCE ATTRIBUTES

Category of peak performance,
achievement scalability, time-to-solution

Type of method used N/A
Results reported on the whole application

basis of including I/O
Precision reported mixed precision

System scale results measured on full-scale system
Measurement mechanism timers and FLOP count

1Oak Ridge Leadership Computing Facility
2Argonne Leadership Computing Facility

III. OVERVIEW: ACCURATE DFT CALCULATIONS IN
METALLIC SYSTEMS

First principles calculations, based on quantum mechanics,
have been immensely successful in predicting a wide variety
of materials properties. In particular, Kohn-Sham density func-
tional theory calculations (DFT) have provided numerous key
insights into materials behavior (mechanical, chemical, elec-
tronic & optical properties), and consume a substantial fraction
of world’s computational resources today. The Kohn-Sham
approach to DFT [1] reduces the exponential computational
complexity (in number of electrons) of solving the many-
electron Schrödinger equation (SE) to cubic computational
complexity, and this important advance was awarded the
Nobel Prize in Chemistry in 1998 [2]. This advance was
accomplished by reducing the SE to an equivalent problem
of non-interacting single electrons in an effective mean field
governed by the electron-density—the probability density of
finding an electron at a spatial point x. Mathematically, the
computation of ground-state electronic structure in Kohn-
Sham DFT [3] involves a self consistent field (SCF) iteration
solving the following non-linear eigenvalue problem (Kohn-
Sham equations):(
−1

2
∇2 + Veff(ρ)

)
ψi = εiψi, ρ(x) =

∑
i

2fi(εi)|ψi(x)|2 .

In the above, {ψi} and {εi} are the single-electron Kohn-
Sham orbitals (wavefunctions) and corresponding energy lev-
els, respectively; Veff is the effective single-electron potential;
ρ is the electron-density; fi denotes the orbital occupancy
of the ith state, which is evaluated as a function of εi
(typically, using the Fermi-Dirac distribution). As DFT is
concerned with evaluating the ground-state properties, fi = 0
for the unoccupied states, and, thus, the solution to the above
equation entails solving the eigenvalue problem corresponding
to the lowest N states (corresponding to non-trivial orbital
occupancy). The resulting computational complexity is cubic-
scaling with number of electrons (Ne).



The stringent accuracy requirements in DFT (∼ O(10−5)
relative error in energy) needed to compute meaningful materi-
als properties, in conjunction with the cubic-scaling computa-
tional complexity, demand significant computational resources
for accurate DFT calculations, and, thus, routinely limit mate-
rials systems to at most a few thousands of electrons. Numer-
ous efforts have been undertaken over the past two decades to
tackle this challenge, which can broadly be categorized into:
(i) reduced-order scaling techniques [4]–[7]; (ii) reduced-order
basis techniques [8], [9]. The former relies on avoiding the di-
rect computation of Kohn-Sham wavefunctions, and designing
algorithms to directly compute the electron-density. While this
has been successful in reducing the computational complexity
to be close to linear scaling for materials systems that have
a band-gap, these techniques are either not applicable, or
are not robust and accurate for metallic systems. On the
other hand, approaches relying on the use of a reduced-order
basis, while efficient, do not offer systematic convergence and
the desired accuracy, especially for metallic systems. Thus,
despite significant method development efforts into alternate
approaches, the conventional approach of solving the Kohn-
Sham equations with a plane-wave discretization [10]–[12],
despite all its limitations, has remained the method of choice
for metallic systems.

In this work, we report a significant advance in the state-
of-the-art for accurate DFT calculations in metallic systems
via the development of DFT-FE [13], which is a result of
algorithmic advances combined with implementation innova-
tions, that has enabled fast, scalable and accurate large-scale
DFT calculations on metallic systems as large as 100,000
electrons. This has been made possible by: (i) the develop-
ment of efficient and accurate spatially adaptive discretization
strategies using higher-order finite-element discretization; (ii)
developing efficient and scalable algorithms in conjunction
with mixed-precision strategies for the solution of Kohn-Sham
equations; (iii) implementation innovations, both on many-
core and hybrid architectures, that significantly reduce the data
movement costs and increase arithmetic intensity. As will be
demonstrated, these developments have resulted in DFT-FE
providing a time-to-solution that is 9× faster than the state-of-
the-art for large-scale metallic systems at similar accuracy, and
a sustained performance of 46 PFLOPS that is 3.1× greater
than that of any previously reported DFT code.

The reported advance in this work has wide ranging im-
plications on a number of fields, including applied physics,
chemistry, materials science, and metallurgy. There are many
critical scientific and technological problems that can be tack-
led by availing the predictive capability of DFT calculations
for large-scale metallic systems, made possible by DFT-FE.
These include, to name a few: (i) studying catalytic properties
of nanoparticles [14], whose sizes are beyond those that
are currently accessible, to accelerate research in catalysis;
(ii) designing efficient solid-state electrolytes with high ionic
conductivity and interfacial stability [15], which require large-
scale and long time-scale molecular dynamics (MD) simula-
tions; (iii) predicting the properties of high entropy alloys [16]

to develop next generation materials with unprecedented prop-
erties; (iv) design of light-weight structural alloys [17]. In this
submission, we focus on demonstrating the critical capability
advance made possible by DFT-FE that has the potential to
provide a breakthrough in the design of light-weight structural
alloys. It is expected that every 10% reduction in the weight of
a vehicle will result in a 6-8% increase in the fuel efficiency,
which has significant implications to economic savings and
reducing the carbon footprint. Magnesium (Mg) being the
lightest structural metal is an ideal candidate [18], but a
technological solution has thus far been elusive due to the lack
of ductility of Mg (needed to form parts). Dislocations are line
defects, whose energetics control the ductility in a crystalline
material. In particular, in Mg, the energetics and stability of
a particular type of dislocation, namely the pyramidal dislo-
cation, has been identified as critical to improving ductility
in Mg [17], [19]. Understanding its energetics require highly
accurate DFT calculations on large-scale systems involving
many thousands of atoms, which have been out of reach thus
far. We demonstrate here that DFT-FE is capable of tackling
this outstanding challenge by demonstrating calculations on
pyramidal dislocations in Mg, with system-sizes reaching
∼10,000 atoms (∼100,000 electrons) with the desired high-
accuracy.

IV. CURRENT STATE OF THE ART

Given the large importance of DFT calculations, numerous
efforts have been undertaken over the past three decades to
develop accurate and computationally efficient approaches for
solving the Kohn-Sham DFT problem. These include efficient
discretization schemes for the Kohn-Sham problem, devel-
opment of efficient and reduced-order scaling algorithms for
solving the Kohn-Sham equations, as well as efforts to improve
the parallel scalability of the developed codes. Among the
discretization schemes, the plane-wave (PW) basis remains to
date the method of choice, especially for metallic systems, due
to the systematic convergence and computational efficiency
afforded by the spectral convergence of the PW basis. This has
resulted in the wide adoption of the codes such as VASP [12]
(commercial) and QUANTUM ESPRESSO [11] (QE) (open
source) by the electronic structure community. Despite the
popularity of the PW based DFT codes, the limitations of a
Fourier space discretization are widely known—limited scal-
ability on parallel computing architectures, and inefficiency
in treating non-periodic systems. Significant efforts have been
undertaken to improve the parallel scalability of PW based
codes, such as the development of QBox [20] for ab initio
MD simulations, which was employed by the Gordon Bell
prize winning team in 2006. As will be demonstrated in this
paper, despite the decades long effort into developing scalable
and efficient PW based DFT codes, DFT-FE significantly
outperforms both QBox and QE (state-of-the-art PW codes)
by 5× in time-to-solution on a medium-sized benchmark
metallic system containing 8,630 electrons, solved to a similar
accuracy level. Furthermore, DFT-FE has been demonstrated
to outperform QE up to 16×, even on periodic systems where
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PW discretization is most efficient, for systems containing
∼30,000 electrons [13].

In order to tackle some of the limitations of the PW
basis, numerous real-space techniques have been developed,
of which reduced order basis functions constructed from
Gaussian type orbitals [8], [9] have been the most popular.
Notably, the CP2K [8] package is a massively parallel DFT
code that uses such a reduced order basis. The Gordon Bell
finalists in 2015 [21] demonstrated a sustained performance
of 15 DP-PFLOPS using CP2K, the highest reported among
DFT codes thus far. While such reduced-order basis sets
can provide computational efficiency, they lack systematic
convergence for generic materials systems, and, hence, are
not suitable for accurate DFT calculations involving metallic
systems. Furthermore, as will be demonstrated in this paper,
DFT-FE attained sustained performance of 46 PFLOPS, 3.1×
higher than [21].

The lack of systematic convergence using Gaussian type
orbitals has led to recent efforts in developing systematically
improvable, efficient and scalable real-space DFT techniques
based on finite-difference [22], [23] and finite-element dis-
cretization [24], [25]. The 2011 Gordon Bell prize win-
ning team [26] used a finite-difference technique to perform
DFT calculations on a semi-conducting system achieving a
sustained performance of 3.08 DP-PFLOPS on the K su-
percomputer, a previous generation machine. However, the
simulations demonstrated were not commensurate with chem-
ical accuracy. The 2016 Gordon Bell prize finalist [27] also
employed finite-difference discretization in conjunction with a
linear scaling technique to conduct large-scale first principles
molecular dynamics simulations. However, this linear scaling
technique is only suited for materials systems with a band-
gap, and thus is not applicable for metallic systems. Reduced
order scaling DFT calculations on metallic systems at chemical
accuracy have recently been demonstrated using the ONETEP
code [28], employing psinc basis functions and a Fermi-
operator expansion type approach [29]. We note that such
an approach has a very high computational prefactor for
metallic systems. Furthermore, parallel scalability has not been
demonstrated, thereby resulting in a large time to solution—
up to 3 hours per SCF iteration on system sizes involving
∼100,000 electrons. In comparison, as will be demonstrated,
DFT-FE has achieved a per SCF time of 2.4 minutes for
similar system sizes.

Overall, the current state-of-the-art DFT methods for large-
scale metallic systems are either limited by scalability, accu-
racy, or by the computational efficiency they afford. Thus, DFT
calculations on metallic systems have been severely limited,
and is the key bottleneck in tackling many scientific and
technologically important questions across a range of fields.
The development of DFT-FE that combines various strategies,
algorithmic advances and implementation innovations, as dis-
cussed subsequently in Sec. V, provides an important advance
for fast and accurate large-scale DFT calculations on metallic
systems, and a tool to tackle a range of open questions that
have not been possible heretofore.

Fig. 1: Adaptive finite-element mesh with refinement around atomic
positions for a periodic HCP Mg supercell with a vacancy at the
corner of the simulation domain.

V. INNOVATIONS REALIZED

We employ the finite-element (FE) discretization of the
Kohn-Sham equations to avail the systematic convergence
afforded by FE basis, and to exploit its significant parallel
scaling advantage in comparison to widely used basis sets like
plane-waves (PW). In particular, FE basis is localized with
a compact support on the FE cells containing/sharing a FE
node. Thus, only the FE nodes on processor boundaries need
to be communicated, which has a significantly smaller com-
munication cost in comparison to the all-to-all communication
required in global basis sets like PW.

A. Algorithmic advances in using finite-elements for DFT

Two major challenges prevented the FE basis from being
widely adopted in ab initio calculations: (i) naively imple-
mented FE discretization has a significant degrees of freedom
(DoFs)3 disadvantage, in comparison to PW, at chemical accu-
racy; (ii) FE discretization results in a generalized Hermitian
eigenvalue problem (GHEP)4, HΨ̂i = εhi MΨ̂i, which is more
challenging to solve in comparison to a standard Hermitian
eigenvalue problem (SHEP). We overcame the first challenge
by employing an error-analysis informed adaptive higher-
order FE discretization (polynomial order ≥ 4) [13] that
significantly reduced the DoFs needed to achieve chemical
accuracy. In particular, the spatial adaptivity is realized via an
a priori mesh adaption scheme (cf. Fig. 1), which guides the
mesh refinement based on a local FE cell error indicator ob-
tained from the error analysis of the Kohn-Sham problem [13].
In DFT-FE, the adaptive mesh generation infrastructure is
based on the p4est library [30] via the deal.II finite-
element library [31]. We overcame the second challenge by
employing spectral finite-elements with nodal points coinci-
dent with Gauss-Lobatto-Legendre (GLL) points [25], which
in conjunction with GLL quadrature for numerical integration5

renders M diagonal. Thus, we can trivially transform the
GHEP to SHEP, given by: H̃Ψ̃i = εhi Ψ̃i, where Ψ̃i = M1/2Ψ̂i

and H̃ = M−1/2HM−1/2.

3DoFs denotes # basis functions.
4H and M denote the discrete sparse Hamiltonian and overlap matrices of

size M ×M , where M denotes # FE basis. Ψ̂i denotes the discrete vector
corresponding to the ith wavefunction.

5Accuracy and sufficiency of GLL quadrature on M is established in [25].
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The resulting discrete Kohn-Sham nonlinear eigenvalue
problem is solved using a self consistent field (SCF) iter-
ation (cf. Algorithm 1) by employing the Chebyshev fil-
tered subspace iteration procedure (ChFSI) [25], [32] in each
SCF iteration. The most dominant computational step here is
ChFSI, which entails constructing a subspace that is rich in the
eigenspace of the occupied single-electron states and solving
the SHEP in this subspace. ChFSI has been demonstrated
to be more computationally efficient (10× – 20×) [25] and
scalable in comparison to traditional approaches computing
eigenpairs explicitly. The ChFSI procedure implemented in
DFT-FE (cf. Algorithm 2) involves the following three steps:
Chebyshev filtering (CF), orthonormalization (CholGS), and
the Rayleigh-Ritz procedure (RR). Below we discuss the
innovations focused on improving arithmetic intensity and
reducing data movement costs of CF, CholGS and RR steps.

Algorithm 1 Self Consistent Field (SCF) iteration in DFT-FE

M : # FE basis; N : # eigenstates; (.)h: FE discretized field

1: Start with an initial guess for input electron-density ρhin(x), and
an initial guess for Ψ̃.

2: [EP] Get effective potential, V h
eff(ρ

h
in(x),R), by solving a dis-

crete Poisson equation (O(M log(M))). Compute FE cell level
Hamiltonian matrices of H̃.

3: Perform ChFSI procedure: [Ψ̃
R
,D] = ChFSI

(
Ψ̃, H̃

)
(call

Algorithm 2).

4: [DC] Compute new output electron density, ρhout(x), using Ψ̃
R

and D. (O(MN))

5: If
∥∥ρhout(x)− ρhin(x)

∥∥ ≤ tolerance, stop; Else, compute new
ρhin(x) using a mixing scheme, and go to step 2.

Algorithm 2 ChFSI procedure: [Ψ̃
R
,D] = ChFSI

(
Ψ̃, H̃

)
Ψ̃ is a M ×N matrix

1: [CF] Chebyshev polynomial filtering of Ψ̃ (cf. Sec. V-C).
(O(MN))

2: [CholGS] Orthonormalize the Chebyshev filtered basis Ψ̃:

a: [CholGS-S] Compute overlap matrix, S = Ψ̃†Ψ̃. (O(MN2))
b: [CholGS-CI] Perform Cholesky factorization of the overlap
matrix, S = LL†, and compute L−1. (O(N3))

c: [CholGS-O] Construct orthonormal basis: Ψ̃
o
=Ψ̃L−1†.

(O(MN2))

3: [RR] Perform the Rayleigh-Ritz procedure:

a: [RR-P] Compute projected Hamiltonian: Ĥ = Ψ̃
o†

H̃Ψ̃
o

.
(O(MN2))
b: [RR-D] Diagonalization of Ĥ: ĤQ = QD. (O(N3))

c: [RR-SR] Subspace rotation step: Ψ̃
R

= Ψ̃
o
Q. (O(MN2))

B. General GPU acceleration strategy

To achieve maximum performance on GPUs, we have
ported all computationally intensive steps in the ChFSI proce-
dure to GPUs. Further, the algorithm is implemented such that

we minimize CPU-GPU data transfers6, which can be a rate
limiting step relative to the high arithmetic performance on the
GPU. In ChFSI procedure, the operations corresponding to CF,
CholGS-S, CholGS-O, RR-P and RR-SR are ported to GPUs
using CUDA kernels, and cuBLAS library for the Xgemm
operations. The CholGS-CI and RR-D steps are performed on
CPUs in parallel on a subset of the MPI ranks using the ELPA
library [33]. These operations could not be performed on
GPUs as the O(N2) memory of the overlap (S) and projected
Hamiltonian (Ĥ) matrices would be too large to store in serial7

on a single GPU for very large scale problems considered in
this work (N ∼ 60, 000). Further, these operations performed
on CPUs do not constitute a bottleneck, even at large system
sizes8. The aforementioned memory overflow issue is also
present in the compute intensive CholGS-S, CholGS-O, RR-P
RR-SR steps, but we circumvent them by using a blocked
approach [13]. To elaborate the blocked approach in the
context of CholGS-S, the sub-matrices of S, corresponding
to a block of wavefunctions, are computed one at a time by
assembling the local contributions computed on the GPUs,
and subsequently copied to the ELPA parallelized S on the
CPUs. An important aspect of our implementation is that,
by porting the aforementioned steps in ChFSI procedure to
GPUs in conjunction with GPU porting of the electron-density
computation (DC), we completely eliminate the otherwise
required large data transfer of Ψ̃ between CPU and GPU
during the SCF procedure.

C. Reduction of memory access & communication costs in CF

Chebyshev polynomial filtering procedure (CF) constitutes
the action of a degree m (typically 30-50) Chebyshev poly-
nomial filter on Ψ̃, computed using a recursive iteration
which involves m H̃X evaluations. Each H̃X evaluation is
performed using a blocked approach to reduce peak memory.
To this end, blocks of Bf wavefunction vectors, denoted
by Xb, are filtered sequentially. We significantly reduce the
memory access costs in the core computational kernel H̃Xb

by employing FE cell level dense matrix operations as shown
in Fig. 2, instead of global sparse matrix approaches. In
particular, we recast the Yb = H̃Xb kernel as

Yb = ASEMB
{

H̃ciXci
b

}
, (1)

where ci denotes the ith FE cell, H̃ci and Xci
b are matrices

with sizes Mcell × Mcell and Mcell × Bf respectively, with
Mcell

9 denoting the number of DoFs in a FE cell. ASEMB
denotes the assembly operation of vector contributions from
all FE cells. The above FE cell level matrix operations
involving many small dense matrix-matrix multiplications
are performed simultaneously for all cells on GPUs using
cuBLAS’s XgemmStridedBatched routine. Furthermore,

6Denotes data transfer in both directions.
7Currently there is no GPU alternative to ScaLAPACK, but upcoming

libraries like SLATE (https://icl.utk.edu/slate/) will address this gap.
8As reported in Table IV, these operations constitute 10.3% of the SCF

wall-time for a 61,640 electrons system.
9We employ a polynomial degree of 4, which corresponds to Mcell = 125.
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as shown in Fig. 2, we structure the memory layout of Xb to
ensure coalesced memory access across GPU threads, thereby
significantly reducing memory access costs in extracting Xci

b

from Xb and in the assembly operation into Yb.
We minimize communication latencies and overheads in

H̃Xb by exploiting the fact that all wavefunction vectors have
identical MPI point-to-point communication pattern across the
FE domain decomposition partition boundaries. This allows
us to perform the MPI communication for all wavefunction
vectors in Xb simultaneously, which incurs minimal network
latency compared to communicating the wavefunction vectors
one by one. The above optimization further benefits from
the memory layout of Xb (see Fig. 2) when copying the
wavefunctions data to and from the MPI buffer. Furthermore,
we use FP32 for this MPI communication and it has been
observed to retain FP64 accuracy in ground-state solutions
while reducing the communication cost by a factor of 2.
However, we still observed significant overheads on GPUs
resulting from invoking independent CUDA kernel launches10

needed for copying the wavefunctions data of each DoF on
the FE partition boundary to and from the MPI buffer. We
overcame this bottleneck by caching the FE partition boundary
DoF indices in an array at the beginning of the program, and,
subsequently, during the communication steps in H̃Xb, we are
able to handle all the boundary DoF indices simultaneously
inside the CUDA kernel using the cached index array.

These implementation innovations lead to a high overall
throughput for CF, as demonstrated in Fig. 3. Notably, we
achieved 20.5% of the FP64 peak using block size11 Bf = 200
on a single Tesla V100 GPU of Summit. We note that efforts
to efficiently port the H̃X kernel to GPUs have been attempted
in the context of finite-difference (FD) discretization [34].
However, a much lower throughput of 7.6% of FP64 peak
was realized using a single Tesla K20X GPU. The significantly
higher throughput demonstrated in this work is attributed to
the aforementioned optimizations realized by utilizing the FE
cell structure, which are not accessible in a FD discretization.

D. Mixed precision computation in CholGS and RR

Mixed precision computing strategies are being increasingly
used in many scientific computing areas to accelerate per-
formance on modern computing architectures due to signif-
icant reductions in computational cost, data movement costs
and memory size. However, there has only been a limited
exploration of mixed precision ideas in DFT solvers [35].
Furthermore, mixed precision algorithms have not been ex-
plored in the context of the ChFSI procedure, where the sub-
space spanned by the Chebyshev filtered vectors Ψ̃ adaptively
approaches the eigensubspace corresponding to the lowest
N states of H̃. In DFT-FE [13], we have exploited this
behaviour of the ChFSI procedure to develop and validate
mixed precision strategies for both CholGS (cf. Algorithm 3)

10Each CUDA kernel call has a launch overhead which can become a
significant cost if a large number of CUDA kernel launches are performed.

11For smaller block sizes, increased memory access costs and other over-
heads reduce the throughput.

Fig. 2: Schematic of H̃Xb computation over four FE cells distributed
over two MPI tasks using batched Xgemm operations. Memory layout
of Xb where wavefunction values are stored contiguously for each
degree of freedom provides coalesced memory access across GPU
threads. Mloc denotes number of DoFs owned locally by a MPI task.

Fig. 3: Chebyshev filtering (CF) throughput on a single Tesla V100
GPU of Summit using 3 MPI tasks (via Multi Process Service) for
various block sizes (Bf ). FP64 peak of Summit’s Tesla V100: 7.3
TFLOPS (cf. Sec. VI-C). Case study: Mg super cell with mono-
vacancy containing 310 electrons. FE Mesh DoFs: 254,097.

and RR (cf. Algorithm 4) steps. This renders a majority
(∼ 85%) of the total FLOP count in the ChFSI procedure
being performed in FP32 for the large-scale performance
demonstrations in Sec. VII, while the remaining are performed
in FP64. The above mixed precision algorithms are designed
such that the contribution of the FP32 computations to the
electron-density tend to zero as the SCF approaches con-
vergence, and thereby the ground-state solution (energy and
forces) retains FP64 accuracy. Further, we are able to achieve
robust SCF convergence, with no change in the number of
SCF iterations [13]. In Table I, using Summit GPU nodes,
we demonstrate mixed-precision performance improvements
of ∼ 2× in the O(MN2) scaling steps of CholGS and RR.
We note that the use of FP32 in network communication (all-
to-all communication of N2 entries via MPI_Allreduce)
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is crucial to realizing this enhanced performance. We remark
that similar 2× mixed-precision speedups have been realized
in DFT-FE on NERSC’s12 Cori-KNL CPU nodes [13].

Overall, as demonstrated in Table II, all the innovations
discussed above have led to substantial GPU acceleration,
with overall SCF iteration (including all steps) speedups of
19.6× on Summit nodes.

Algorithm 3 Mixed precision algorithm for CholGS.
DP{} denotes FP64 computing, and SP{} denotes FP32 computing.

1: [CholGS-S-MP] Compute overlap matrix in mixed precision:

S = DP {Sd}+ SP {Sod}

Sd and Sod are matrices containing the diagonal and off-
diagonal entries of S, respectively.

2: Perform CholGS-CI in double precision.

3: [CholGS-O-MP] Construct orthonormal basis in mixed precision:

Ψ̃
o
= DP

{
Ψ̃L−1

d

†
}
+ SP

{
Ψ̃L−1†

od

}
L−1

d

† and L−1
od

† are matrices containing the diagonal and off-
diagonal entries of L−1† respectively.

Algorithm 4 Mixed precision algorithm for RR.
DP{} denotes FP64 computing, and SP{} denotes FP32 computing.

1: [RR-P-MP] Compute projected Hamiltonian in mixed precision:[
Ĥoc−oc Ĥoc−fr

Ĥfr−oc Ĥfr−fr

]
= SP

{
Ψ̃

o†

ocH̃Ψ̃
o

oc

}
SP

{
Ψ̃

o†

ocH̃Ψ̃
o

fr

}
SP

{
Ψ̃

o†

fr H̃Ψ̃
o

oc

}
DP

{
Ψ̃

o†

fr H̃Ψ̃
o

fr

}


Sub-matrices Ĥoc−oc, Ĥoc−fr, Ĥfr−oc, and Ĥfr−fr have sizes
Noc ×Noc, Noc ×Nfr, Nfr ×Noc, and Nfr ×Nfr, respectively,
with Noc+Nfr = N . Noc denotes the number of eigenstates with
orbital occupancy fi = 1, and Nfr denotes remaining fractionally
occupied or unoccupied eigenstates. Nfr is (10 − 15)% of N
for metallic systems. We note that, as the SCF approaches
convergence, the error in electron-density introduced due to FP32
computation of Ĥoc−oc tends to zero [13].

2: Perform RR-D in double precision.

3: [RR-SR-MP] Perform subspace rotation step in mixed precision:

Ψ̃
R

= DP
[
Ψ̃

o
Qd

]
+ SP

[
Ψ̃

o
Qod

]
Qd and Qod are matrices containing the diagonal and off-
diagonal entries of Q respectively.

VI. HOW PERFORMANCE WAS MEASURED.
A. Systems and Environment

All simulations reported in this work using hybrid CPU-
GPU architecture were executed on the Summit supercom-

12National Energy Research Scientific Computing Center

TABLE I: Performance improvement due to mixed precision com-
putation in CholGS-S and RR-P. Similar speedups are achieved for
CholGS-O and RR-SR. Case study: 61,640 electrons Mg dislocation
system using 1,300 Summit nodes (FP64 peak: 56.65 PFLOPS).

Step Wall-time Flop count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CholGS-S 13.3 224.1 16.8 (29.7%)
RR-P 16.2 228.7 14.1 (24.9%)

(a) Double precision.

Step Wall-time Flop count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CholGS-S-MP 7.5 224.1 29.9 (52.8%)
RR-P-MP 9.5 228.7 24.1 (42.5%)

(b) Mixed precision.

TABLE II: GPU speedup of single SCF iteration step with respect to
CPU on Summit nodes. Case study: 18,480 electrons Mg dislocation
system using 140 nodes. CPU simulation used 40 MPI tasks per node,
with each task bound to 1 CPU core (total 42 cores in each node).
CPU linear algebra performed using IBM ESSL. GPU simulation
used 18 MPI tasks across 6 GPUs (via MPS) on each node.

Step Wall-time Wall-time Speedup
CPU (sec) GPU (sec)

Single SCF Total 844.8 43.1 19.6×

puter, whereas the simulations using CPUs were conducted
on the Theta and Cori supercomputers.

Summit is currently the fastest supercomputer in the world,
with 200.79 PFLOPS FP64 peak. Summit comprises of 4,608
IBM Power System AC922 nodes with two IBM POWER9
processors (42 physical cores) and six NVIDIA Volta V100
GPUs in each node. Each node contains 512 GB of DDR4
memory for use by the POWER9 processors and 16 GB of
HBM2 for each V100 GPU. Summit nodes are connected to
a dual-rail EDR InfiniBand network providing a node injec-
tion bandwidth of 23 GB/s. On Summit, we have compiled
DFT-FE using NVIDIA CUDA/10.1.105, GCC/6.4.0, IBM
Spectrum-MPI/10.3.0.0, and IBM ESSL/6.1.0.

Theta comprises of 4,392 compute nodes with 11.69
PFLOPS peak. Each compute node has: single 1.3 GHz Intel
Xeon Phi 7230 SKU chip with 64 cores, 16 GB MCDRAM
and 192 GB DDR4 memory. Theta uses Dragonfly topology
interconnect with bisection bandwidth of 7.2 TB/sec. Cori,
the second CPU based supercomputer we have used, contains
9,688 compute nodes with 29.5 PFLOPS peak. Each compute
node has: single-socket 1.4 GHz Intel Xeon Phi 7250 processor
with 68 cores, 16 GB MCDRAM and 96 GB DDR4 memory.
Cori uses a Cray Aries with Dragonfly topology for inter-
node communication with 45.0 TB/s global peak bidirectional
bandwidth. On Theta and Cori, we have compiled DFT-FE
using Intel/18 compiler, Cray-MPICH, and Intel MKL.

B. What Applications were used to Measure Performance

In a recent work on the effect of alloying elements on
ductility in Magnesium (Mg) [17], it was shown that small
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energy difference between pyramidal I and II screw dislo-
cations can be tuned to significantly improve the ductility
of Mg. In order to use DFT calculations to guide the alloy
design, it is imperative to compute the energy difference
between pyramidal I and II screw dislocations (∆EI−II) to an
accuracy that is better than 10−4 Ha/Å [17]. Achieving this
requires employing a systematically convergent basis, as well
as the capability to handle large system sizes involving many
thousands of atoms to compute the energetics of dislocations
accurately. Such large-scale and accurate DFT calculations
on metallic systems are currently not feasible using state-
of-the-art DFT codes. Thus, in this work, we choose an
isolated pyramidal II screw dislocation in Mg, with system
sizes ranging up to 105,080 electrons, as the primary appli-
cation problem on which we demonstrate the performance of
DFT-FE in Sec. VII. We consider three different system sizes:
pyrIIScrewA with 18,480 electrons (1,848 atoms), pyrIIS-
crewB with 61,640 electrons (6,164 atoms), and pyrIIScrewC
with 105,080 electrons (10,508 atoms). Additionally, we have
also considered pyramidal I and II screw dislocations on
smaller computational domains with less than 1,000 atoms,
where we conducted a convergence study with respect to FE
discretization to determine the discretization parameters to
achieve the targeted accuracy13 of better than 10−4 Ha/Å in
∆EI−II. These discretization parameters have been used for
pyrIIScrewA, pyrIIScrewB and pyrIIScrewC simulations.

Further, we consider other metallic benchmark systems
involving HCP Mg periodic supercells with a vacancy, ranging
from 2,550 to 39,990 electrons, to assess the scalability
and time to solution afforded by DFT-FE in comparison to
state-of-the-art DFT codes. The discretization parameters in
DFT-FE, QE, and QBox for the above benchmark systems
are chosen to be commensurate with chemical accuracy (dis-
cretization errors of ∼ 10−4 Ha and ∼ 10−4 Ha/Bohr in
energy per atom and ionic forces, respectively).

C. Measurement Methodology

Performance of DFT-FE is measured by using the large-
scale metallic systems discussed in Sec. VI-B. Comparison of
DFT-FE is carried out with state-of-the-art PW DFT codes
like QBox v1.66.2 [10] and QUANTUM ESPRESSO v6.3 [11]
(QE) using some of the aforementioned materials systems.
In the comparison of DFT-FE with QE, we use the stable
single SCF iteration time14 as a metric. We note that, although
different solution methodologies are employed in DFT-FE
(ChFSI) and QE (Davidson solver), we use the same electron-
density mixing schemes and other appropriate parameters in
both these codes that results in a similar number of SCF
iterations. We have verified this on smaller benchmark systems
by allowing the ground-state energy to converge to 10−8

Ha/atom between successive SCF iterations. Thus, the stable
single SCF iteration time between DFT-FE and QE serves

13Discretization parameters can also be chosen to achieve tighter accuracy
of 5× 10−5 Ha/Å or better in ∆EI−II.

14It takes a few initial SCF iterations for the times to become stable in both
DFT-FE and QE.

as an equivalent relative performance metric, and avoids the
use of significant computational resources for large system
sizes given the limited parallel scaling of QE. In the case of
QBox, we conduct a comparative study by considering the full
ground-state solution time15, including initialization costs, for
one representative benchmark materials system to achieve the
same ground-state energy convergence criterion as above.

For simulations using DFT-FE, we used 3 MPI tasks per
GPU (using Multi-Process Service) or equivalently 18 MPI
tasks per node on Summit, 32 MPI tasks per node and 4
OpenMP threads per MPI task on Theta, and 32 MPI tasks
per node and 2 OpenMP threads per MPI task on Cori. QE
simulations were run on Cori using 16 MPI tasks per node
and 4 OpenMP threads per MPI task for smaller problem
sizes (< 10, 000 electrons), and 8 MPI tasks per node and 4
OpenMP threads per MPI task for larger problem sizes where
more memory per MPI task is required. QBox simulations
were run on Theta with 32 MPI tasks per node and 4 OpenMP
threads per MPI task.

Time measurements for the various computational steps
and the total run-times in DFT-FE were performed using
MPI_Wtime for CPU only simulations, and a combination of
MPI_Wtime and cudaDeviceSynchronize for hybrid
CPU-GPU simulations on Summit. FLOP counts were mea-
sured for a single SCF iteration step in the hybrid CPU-GPU
simulations using nvprof with the DFT-FE solver mode set
to double precision16, while timings were measured with the
solver mode set to mixed precision. We note that FLOP count
measurements using nvprof are very slow (many hours in
wall time) when measured for all the MPI tasks in large scale
runs (> 500 Summit nodes). To circumvent this, we measured
the FLOP counts at two different MPI tasks, and used the
average FLOP count per MPI task multiplied by total number
of MPI tasks to obtain the total FLOP count. The total FLOP
count obtained in this manner is very close (∼ 3% error17)
to explicitly measuring and adding FLOP counts for all MPI
tasks, as the load balancing in DFT-FE ensures almost equal
number of FE DoFs in each MPI task. Finally, we remark
that the theoretical peak FP64 FLOPS, for a given number of
Summit nodes, are obtained based on scaling with respect to
the reported 200.79 DP-PFLOPS18 for 4,608 nodes.

VII. PERFORMANCE RESULTS

In this section, we demonstrate the parallel scaling per-
formance, time-to-solution, and sustained performance of
DFT-FE on large-scale metallic systems involving accurate
pseudopotential DFT calculations reaching 105,800 electrons.
GGA [36] exchange correlation functional of the PBE type
[37] and norm-conserving ONCV [38] pseudopotentials from

15We did not achieve a stable single SCF time in the case of QBox.
16FLOP counts have been measured in uniform precision as per ACM

Gordon Bell guidelines.
17We verified this on a small system with 254,097 DoFs and using 6 MPI

tasks, where we find the difference in the FLOP count between the two
approaches is 3.3%.

18https://www.top500.org/list/2019/06/
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Fig. 4: Strong scaling of wall-time per SCF iteration on Theta using
DFT-FE. Case study: Mg HCP supercell with 8,630 electrons (863
atoms) discretized using 23.36 million DoFs (FE basis) using FE
polynomial degree 4.

the SG15 database [39] are employed in all the DFT simula-
tions presented here.

A. Scalability & Time-to-Solution

We first examine the strong parallel scalability of DFT-FE
on HCP Mg supercell with a vacancy containing 8,630 elec-
trons (863 atoms), a representative medium-sized metallic
system employing periodic boundary conditions. The scal-
ing study conducted on Theta is shown in Fig. 4, which
employed domain decomposition parallelism till 8,192 MPI
tasks (corresponding to 2,852 DoFs per MPI task). To extend
the scalability beyond 8,192 MPI tasks, parallelism across
wavefunctions [13] is employed in conjunction with domain
decomposition. A relative speedup of 26.7× is obtained re-
ducing the wall-time per SCF iteration from 1,175 sec on
512 MPI tasks to around 44 sec on 32,768 MPI tasks. To
further highlight the implications of the scaling performance of
DFT-FE, we conducted a comparative study with QBox [10],
state-of-the-art PW code and a previous Gordon Bell prize
winner [20]. To this end, we first obtained the minimum wall-
time/SCF iteration by conducting a scaling study on QBox,
which was attained at 8,192 MPI tasks on 256 Theta nodes.
Notably, DFT-FE outperforms QBox by 4.6×, when solved
to chemical accuracy, as shown in Table III. This is a result of
the low communication costs afforded by locality of FE basis,
and the algorithmic and implementation innovations discussed
in Sec. V. To further corroborate the computational efficiency
afforded by DFT-FE in comparison to state-of-the-art PW
codes, we conducted a comparative study of minimum wall-
times per SCF iteration obtained using DFT-FE and QE on
increasing system sizes of Mg HCP supercells with a vacancy.
As shown in Fig. 5, DFT-FE significantly outperforms QE,
and, notably, attains 9× speedup for the system containing
20,470 electrons.

TABLE III: Comparison of total run time of DFT-FE ground-state
calculation with QBox on Theta. Case study: Mg supercell with a
vacancy (8,630 electrons).

Code Wall-time (sec) MPI tasks Energy/atom (Ha)
Qbox 6480 8192 -54.32655

DFT-FE 1403 32768 -54.32650
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Fig. 5: Comparison of minimum wall-time per SCF iteration between
DFT-FE and QE on Cori KNL nodes. Case study: Mg supercells with
increasing system size.

We next consider our primary application problem, the
pyramidal II screw dislocation in Mg. The strong scaling
study conducted on pyrIIScrewA containing 18,480 electrons
(1,848 Mg atoms) is shown in Fig. 6 for Theta and Fig. 7
for Summit. We obtain 82% efficiency on Theta at 16,384
MPI tasks with 3,385 DoFs per task. This corresponds to a
relative speedup of 14.5×, thus, reducing the wall-time per
SCF iteration from 1,511 sec on 2,048 MPI tasks to 104 sec on
65,536 MPI tasks19. On Summit GPU nodes, we obtain 96%
efficiency at 280 nodes (5,040 MPI tasks) with 11,000 DoFs
per task. The wall-time per SCF iteration reduced from 97.6
sec on 1,260 MPI tasks to around 13.99 sec on 20,160 MPI
tasks. We remark that DFT-FE’s scaling range on Summit
is smaller compared to that obtained using Theta due to the
high GPU compute speedups of DFT-FE relative to CPUs (cf.
Table II for GPU speedups obtained on the same system).

Subsequently, we examine the weak scaling performance of
DFT-FE on Summit nodes. DFT-FE simulations have been
set up such that the memory associated with the wavefunctions
per MPI task (O(MlocN)), which constitutes the dominant
memory footprint, remains a constant across all benchmark
systems. In DFT-FE, the computational complexity of CF
scales asO(MlocN) per MPI task, while the scaling of CholGS
and RR is O(MlocN

2). The departure from ideal weak scaling
efficiency in Fig. 8 is expected because of the O(MlocN

2)
complexity becoming dominant with increase in the number
of electrons.

19This run used 2,048 nodes, which corresponds to half the total number of
Theta nodes. Scalability of DFT-FE has also been demonstrated on 192,000
MPI tasks using ∼60% of Cori-KNL nodes [13].
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Fig. 6: Strong scaling of wall-time per SCF iteration on Theta using
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DoFs.
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Fig. 8: Weak scaling efficiency of wall-time per SCF iteration on
Summit (MPI tasks used are 54, 180, 576, 3294, 12744 and 38250).
Case study: Mg supercells with increasing system size.

Fig. 9: Electron density contour of pyramidal II screw dislocation
system in Mg with 61,640 electrons (6,164 Mg atoms).

B. Large-scale dislocation systems performance: Time-to-
Solution & Sustained Performance

We now demonstrate the performance of DFT-FE on
large-scale Mg dislocation systems: pyrIIScrewB with 61,640
electrons (6,164 Mg atoms), and pyrIIScrewC with 105,080
electrons (10,508 Mg atoms) using Summit GPU nodes. First,
in Table IV, we report the time-to-solution and performance
of the pyrIIScrewB system, which has been discretized with
179.03 million DoFs. This simulation achieved 16.7 PFLOPS
(29.5% efficiency) sustained performance in the ground-state
calculation involving 56 SCF iterations20, and almost similar
sustained performance of 14.7 PFLOPS (26.0% efficiency)
over the entire run time of the program including initialization
costs21. In Table IV, we also measured the performance of the
various computational steps in a SCF iteration, demonstrating
the significantly high efficiencies achieved in the range of
42.5% – 119.5% for the O(MN2) scaling mixed-precision
compute steps, which constitute 82.4% of the total FLOP
count. We note that the FLOP counts of CholGS-S-MP,
CholGS-O-MP and RR-P-MP are smaller compared to RR-
SR-MP, which is attributed to the optimizations we have
performed by exploiting the Hermiticity and triangular nature
of the matrices involved [13].

Finally, in Table V, we report the wall-time and sustained
performance of a single SCF iteration step22 of the pyrIIS-
crewC system, the largest system size considered in this work
with 105,080 electrons (10,508 Mg atoms) and discretized
with 304.92 million DoFs (17.69 trillion wavefunction values).

20Multiple calls to the ChFSI procedure (cf. Algorithm 2) are performed
in the initial few SCFs. Hence total FLOP count is calculated by multiplying
the single SCF iteration step FLOP count with total number of ChFSI calls.

21The initialization costs will be reduced in half after a known issue in
deal.II library (https://github.com/dealii/dealii/issues/7053) is resolved in the
short-term. Our current temporary fix involves an expensive serial operation.

22Due to our limited resource allocation on Summit, we could not perform
a full ground-state calculation on the pyrIIScrewC system (105,080 electrons).
However as demonstrated on the pyrIIScrewB system (61,640 electrons) in
Table IV the performance of a single SCF iteration step is very close (within
12%) to that of the full run-time.
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TABLE IV: Time-to-solution and performance of pyrIIScrewB
(61,640 electrons) system. Simulation performed using 1,300 Summit
nodes (FP64 peak: 56.65 PFLOPS).

Procedure Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

Initialization 981 - -
Ground-state 7377 123174 16.7 (29.5%)

Total 8358 123174 14.7 (26.0%)

(a) Total program run time and sustained performance. Breakdown
of run time into initialization and ground-state calculation costs.

Step Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

CF 36.3 212.6 5.9 (10.3%)
CholGS-S-MP 7.5 224.1 29.9 (52.8%)

CholGS-CI 1.6 - -
CholGS-O-MP 5.6 228.9 40.9 (72.2%)

RR-P-MP 9.5 228.7 24.1 (42.5%)
RR-D 7.0 - -

RR-SR-MP 6.6 446.6 67.7 (119.5%)
DC 0.9 27.7 30.8 (54.3%)
EP 4.6 - -

Others 3.7 - -

Single SCF Total 83.3 1368.6 16.4 (29.0%)

(b) Breakdown of performance of single SCF iteration. FLOP count
for operations on CPU (CholGS-CI, RR-D and EP), which constitute
a minor portion of the total FLOP count are not measured, though
their wall-times are considered in the single SCF total time.

TABLE V: Wall-time and sustained performance of a single SCF
iteration step of pyrIIScrewC (105,080 electrons) system. Simulation
performed using 3,800 Summit nodes (FP64 peak: 165.58 PFLOPS).

Step Wall-time FLOP count PFLOPS
(sec) (PFLOP) (% of FP64 peak)

Single SCF 142.7 6,563.7 46 (27.8%)

(a) Performance of single SCF iteration.

Step Wall-time (sec)
CF 6.1

Chol-GS 36.9
RR 54.0

DC+EP+Others 5.7

(b) Breakdown of single SCF iteration wall-time into major steps.

We note that the SCF wall-time in Table V is obtained by
taking the average over 10 calls to the ChFSI procedure (cf.
Algorithm 2), thus demonstrating sustainability of the perfor-
mance. This simulation achieves two significant landmarks.
First, the single SCF wall-time of 142.7 sec demonstrates that
fast large-scale and chemically accurate Kohn-Sham DFT sim-
ulations of metallic systems reaching ∼ 100, 000 electrons are
now possible. Second, we achieve an unprecedented sustained
performance of 46 PFLOPS (27.8% efficiency) utilizing 3,800
nodes out of total 4,608 nodes on Summit, which is 3.1×
higher than the current DFT record of 15 DP-PFLOPS [21].

VIII. IMPLICATIONS

Applications: The recent disruptive advancements in com-
puting architectures require a paradigm shift in the design
and implementation of computational algorithms to exploit
these developments and enable accurate DFT calculations
at larger length- and time-scales than possible heretofore.
This work constitutes an important step in this direction.
In particular, the advances reported here, make possible, for
the first time, accurate DFT calculations on metallic systems
with tens of thousands of atoms computationally feasible
and practical. This opens the possibility of tackling a wide
range of scientifically and technologically important problems
that have been out of reach. For instance, accurate ab initio
studies on dislocation energetics now becomes a reality, which
can guide and accelerate the discovery of new light weight
structural alloys. To elaborate, the electronic ground-state
of a dislocation system containing ∼ 5,000 – 10,000 atoms
(∼ 50,000 – 100,000 electrons) can be computed in ∼ 2 –
4 hrs, which is unprecedented—current state-of-the-art codes
will require a few days to a week. Other application areas
that benefit from the ability to handle large-scale metallic
systems in an efficient manner, to name a few, include: design
and discovery of new catalytic materials, studies on high
entropy alloys, novel energy storage materials, organometallic
complexes in biomolecular electronics. Furthermore, the sig-
nificant improvement in the time-to-solution will also enable
large-scale ab initio MD simulations for longer time-scales
than possible thus far, which will be instrumental in studying
transport (electronic and ionic), reaction kinetics, kinetics of
phase transitions etc., over a wide range of materials systems.

Future architectures: The upcoming exascale machines are
expected to have significantly more compute capability per
node, in addition to having more compute nodes, compared to
current pre-exascale machines. However, the data movement
and memory bandwidths are not expected to increase signif-
icantly. In this regard, the innovations realized in DFT-FE,
which significantly improved arithmetic intensity and reduced
data movement costs, make it well-placed to leverage future
exascale machines. Further, DFT-FE will also be able to take
advantage of larger number of compute nodes on exascale
machines to extend the parallel scalability, through the use of
parallelization across wavefunctions (band parallelization)23,
to enable simulations of even larger metallic systems. Imple-
mentation of enriched finite-element basis [40] in DFT-FE,
which has the potential to substantially reduce DoFs for
pseudopotential DFT calculations, while maintaining the same
accuracy and parallel scaling, can further expand the accessible
system sizes to millions of electrons on exascale machines.
At such extreme sizes, building on the developments reported
here, further algorithmic advancements such as development of
accurate “divide and conquer” approaches for generic materi-

23Band parallelization was not activated on Summit for the ∼ 100, 000
electrons system as we exhausted almost all the compute nodes (3,800 out of
4,608) for performing domain decomposition parallelization.
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als systems have the potential to push DFT-FE’s performance
into the exaFLOPS range.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support from DOE-BES
(DE-SC0008637) and Toyota Research Institute. This work
used resources of OLCF (DE-AC05-00OR22725), ALCF (DE-
AC02-06CH11357), and NERSC (DE-AC02-05CH11231).
V.G. also gratefully acknowledges support from AFOSR and
ARO that supported some algorithmic developments, and B.T.
acknowledges support of LDRD program of ORNL.

REFERENCES

[1] W. Kohn, L. J. Sham, Self-consistent equations including exchange and
correlation effects,Phys. Rev. 140(4A) (1965) A1133.

[2] https://www.nobelprize.org/prizes/chemistry/1998/summary/
[3] R. M. Martin, Electronic structure: basic theory and practical methods,

Cambridge university press (2004).
[4] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod.

Phys. 71 (1999) 1085–1123.
[5] D. R. Bowler, T. Miyazaki, O(N ) methods in electronic structure

calculations, Rep. Prog. Phys. 75(3) (2012) 036503.
[6] L.-W. Wang, Z. Zhao, J. Meza, Linear-scaling three-dimensional frag-

ment method for large-scale electronic structure calculations, Phys. Rev.
B 77 (2008) 165113.

[7] M. Eisenbach, C.-G. Zhou, D. M. Nicholson, G. Brown, J. Larkin, and
T. C. Schulthess, A scalable method for ab initio computation of free
energies in nanoscale systems, In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (2009).

[8] J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, cp2k: atom-
istic simulations of condensed matter systems, Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 4(1) (2014) 15–25.

[9] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam,
D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, NWChem:
A comprehensive and scalable open-source solution for large scale
molecular simulations, Comput. Phys. Commun. 181(9) (2010) p.1477.

[10] F. Gygi, Architecture of Qbox: A scalable first-principles molecular
dynamics code, IBM J. Res. Dev. 52 (2008) 137–144.

[11] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli,
M. Calandra, R. Car,C. Cavazzoni, D. Ceresoli, M. Cococcioni, N.
Colonna, I. Carnimeo, A. D. Corso, S. de Giron-coli, P. Delugas, R.
A. D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer,U.
Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A.
Kokalj, E. Kkbenli,M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.
L. Nguyen, H.-V. Nguyen, A. O. de-laRoza, L. Paulatto, S. Ponc, D.
Rocca, R. Sabatini, B. Santra,M. Schlipf, A. P. Seitsonen,A. Smogunov,
I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced
capabilities for materials modelling with QUANTUM ESPRESSO, J.
Phys. Condens. Matter. 29(46) (2017) 465901.

[12] G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set, Physical review
B, 54(16) (1996) 11169.

[13] P. Motamarri, S. Das, S. Rudraraju, K. Ghosh, D. Davydov, V. Gavini,
DFT-FE: A massively parallel adaptive finite-element code for large-
scale density functional theory calculations, arXiv:1903.10959.

[14] L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: From
single atoms to nanoclusters and nanoparticles, Chem. Rev. 118(10)
(2018) 4981–5079.

[15] J. Janek, and W.G. Zeier, A solid future for battery development, Nat.
Energy, 500(400) (2016) 30.

[16] O. El-Atwani, N. Li, M. Li, A. Devaraj, J. K. S. Baldwin, M. M.
Schneider, D. Sobieraj, J. S. Wróbel, D. Nguyen-Manh, S. A. Maloy,
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