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Abstract—Titan was the flagship supercomputer at the Oak
Ridge Leadership Computing Facility (OLCF). It was deployed
in late 2012, became the fastest supercomputer in the world and
was retired on August 2, 2019. With Titan’s mission complete,
this paper provides a first-order examination of the usage of
its critical resources (CPU, Memory, GPU, and I/O) over a
five-year production period (2015-2019). In particular, we show
quantitatively that the majority of CPU time was spent on the
large-scale jobs, which is consistent with the policy of driving
ground-breaking science through leadership computing. We also
corroborate the general observation of the low CPU-memory
usage with 95% jobs utilizing only 15% or less available memory.
Additionally, we correlate the increase of total job submissions
and the decrease of GPU-enabled jobs during 2016 with the
GPU reliability issue which impacted the large-scale runs. We
further show the surprising read/write ratio over the five-year
period, which contradicts the general mindset of the large-scale
simulation machines being “write-heavy”. This understanding
will have potential impact on how we design our next-generation
large-scale storage systems. We believe that our analyses and
findings are going to be of great interest to the high-performance
computing (HPC) community at large.

I. INTRODUCTION

Titan served as the Oak Ridge Leadership Computing Fa-
cility (OLCF)’s flagship computing platform from 2012 until
its decommission on August 2019. It was ranked No.1 on the
TOP500 list at the time of its deployment and was still No.12
when it was retired. U.S. Department of Energy funded the
Titan system with the mission to provide a leadership compute
platform to a limited number of high-impact, grand-challenge
scale projects. Architecturally, Titan was a hybrid-architecture
Cray XK7 system that had 18,688 nodes connected with a
proprietary Gemini 3D torus network. Each node consisted of
a 16-core AMD Interlagos CPU and an NVidia K20X Kepler
GPU, as well as 32 GiB of DDR3 system memory and 6 GiB
of GDDR5 GPU memory. Further details on Titan can be
found in [2], [3].

During its production lifetime, Titan provided more than
26 billion core hours of computing time to scientists. Through-
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out this period, an extensive operational dataset - called the
Resource Utilization Report (RUR) - was collected from the
Titan system. This RUR data, on one hand, is extremely
coarse-grained: in order to avoid any noticeable disturbance
to the production jobs, only a small amount of data could
be collected and stored. On the other hand, the RUR data
is extremely comprehensive in the sense that it provides a
log record for every job submitted to Titan from April 2015
to July 2019. These records provide a unique window into
operational resource usage at an extreme scale and over a long
term. Our work presents a first-order analysis of the RUR data
from Titan; however, it is also worth noting that this work by
no means represents an exhaustive look and analysis of the
entire RUR data. We expect to provide further analyses on
this data in future.

II. RESOURCE UTILIZATION REPORT

The Resource Utilization Report (RUR) is a Cray-
developed, resource-usage data collection and reporting system
that strives to be systematic, extensive, and lightweight. There
are two key ideas behind the design. The first is the concept of
pre-job and post-job wrappers. A pre-job wrapper is invoked
before a job run. Its primary responsibility is to take a snapshot
of system state, which is to be used as a point of reference
later. The post-job wrapper takes another snapshot after the job
exit (failed or successful), and performs both tally and size-
reduction on the data that needs to be recorded. The second
key design idea is the plugin infrastructure. As there are many
system components of interest to be tracked and monitored,
it is not possible to cover them all. Thus, the RUR data
collection is essentially a collection of individual scripts that
are called based on site-specific needs. Since the pre- and post-
wrapper only run at the beginning and ending stages of each
job session (i.e., not while the actual job is running), there is
no performance disturbance to the job itself. An earlier design
paper by Andrew Barry [1] provided additional information
on related work and design philosophy.

For each job, we aggregate the per-component raw data
into a single json-formatted output, as shown in the following
snippet:
{

# from Cray job scheduler (alps)
"alps_width": [2048],
"alps_depth": [1],
"aprun_id": 9698386, ...
# from taskstats plugin



TABLE I
TITAN RUR DATA

Year Raw
data size

# of job sub-
missions

# of failed
jobs

% of failed
jobs

2015 1.5 GB 1,529,972 292,699 19%
2016 4.3 GB 4,745,305 691,094 14%
2017 2.8 GB 2,814,838 328,187 11%
2018 2.2 GB 2,370,860 250,773 10%
2019 1.3 GB 1,520,971 104,173 6%

"taskstats":{
"max_rss":31196,"rchar":40948218,
"stime":6308596000, ...

},
# from gpu plugin
"gpustat":{"gpupids":0,"gpusecs":0,
"maxgpusecs":0,"maxmem":0,"summem":0},
...

}

For a list of supported plugins, metrics and their definitions,
please refer to Cray’s official document [4]. Jim Rogers
discussed particular issues and challenges in analyzing GPU
usage with Cray’s RUR on Titan [6].

Table I summarizes the collected RUR data. On disk, the
raw data files are organized in three-level structures: by year,
month, and day. For the ease of analysis, we coalesced all the
files into a single raw file on a yearly basis. The column raw
data size shows the size of raw data files for every year. By
carefully controlling what to collect and how much to report,
we can minimize the post-scripts’ runtime and make storage-
needs more manageable. The number of job submissions
column shows the number all job submitted for every year.
And the fourth column is a tally of failed job submissions
based on the RUR alps exit status field - it is a successful run
only if job return status is zero.

There are two related trends observed from this data. First,
we notice that the overall failed job rate steadily declined over
the five-year production life, which reflects both the maturity
of the system, as well as the improved user proficiency
and experience. Second, we observe that the number of job
submissions in 2016 far exceeded the rest of the years. This
coincided with a period when Titan experienced an increased
number of GPU failures (stating in late 2015, peaking in 2016,
and ending in early 2017) [7], [8], resulting in an increased
number of job failures. These failures were mostly due to a
manufacturing defect (a non-ASR resistor being used in the
GPU board assembly), where the result was the formation of
silver-sulfide on these components causing an electrical open
circuit. Once triggered, this was a permanent fail-stop failure,
and the remedy was to replace the NVIDIA SXM/GPU. For
these errors to manifest, GPUs were not required to be actively
in use - simply having an electrical current present on the
component was sufficient. Further details on the nature, effects,
and remedy of these failures can be found in [7].

As a consequence of these GPU failures, the GPU-enabled
jobs (and also CPU-only jobs up to a degree, if a failed GPU
happened to be physically in a given job’s allocation) were
impacted. As a result of this, users altered their behavior. Some
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Fig. 1. CPU time allocation (percent) vs. binned job sizes across the five-year
production period

users chose to run smaller scale jobs in hopes of avoiding
the “bad” GPUs (this also contributed to the increase in the
number of jobs). Some users allocated 1-2 spare nodes and
set the job launcher’s automatic retry flag that uses a spare
node and restarts the process. Some users may have tried both
strategies within the same job.

III. RUR DATA ANALYSIS

Our analysis of RUR data focuses on three aspects of critical
system resources: CPU time and memory, GPU time and
memory, and I/O.

A. CPU and Memory Usage Analysis
Titan’s CPU time is reported by stime (system time)

and utime (user time) metrics. In addition, Job start time
and end time metrics are also reported. Combined with the
node count data, we can then deduce the actual core-hours
spent on a given job. Based on our analysis, 60% of the jobs
are 1-node jobs, and roughly 90% of jobs fall below 256
nodes - this is understandable given most of the development
and testing happens at the smaller scale. Figure 1 shows the
distribution of total CPU hours percentage with respect to the
binned job-sizes across the five-year production period. We
clearly observe that the majority of the CPU hours were spent
on medium- to large-scale jobs (1/5th to full Titan scale jobs).
Further analysis shows that, across the five-year production
period, Titan consistently spent more than 54% of the CPU
hours on job sizes equal to or larger than 2,048 nodes.

To analyze the memory usage, we utilize the RUR parameter
max rss which reports an estimate of the maximum resident
CPU memory used by an individual compute node through
the lifespan of a job run: it may not reflect the true peak
resident memory size if the memory consumption decreases
from the peak allocated amount during the job runtime on a



TABLE II
MEMORY USAGE PROFILING

Year Mean of rss max (MiB) Max of rss max (MiB) Percent
2015 680.96 29902.63 2.08%
2016 798.72 30624.80 2.44%
2017 586.68 30591.70 1.79%
2018 2022.00 30596.95 6.17%
2019 573.44 30480.81 1.75%

TABLE III
MEMORY INTENSIVE APPLICATIONS

Year # of Total jobs # of Unique apps Top 5 apps
2015 2,606 115 51.66%
2016 7,299 127 63.28%
2017 8,380 150 61.85%
2018 6,415 127 52.31%
2019 1,741 88 50.54%

given compute node. For completeness sake, we mention here
that each Titan compute node is equipped with a 16-core CPU
with a total of 32 GiB CPU memory, and every CPU is paired
with a single GPU with a 6 GiB GPU memory.

Figure 2 shows a profiling of the average memory usage
binned by the node count or job size, across five years.
We make two observations. First, the general trend is such
that memory usage increases as the job size grows. This
observation is supported by the Pearson product-moment cor-
relation coefficients. These were calculated as 0.69, 0.74, 0.83,
0.80, 0.83, from 2015 to 2019, respectively. These positive
correlations show that memory usage increases as the job size
grows. Second, we observe that the average memory usage is
around 4.5 GiB for large-scale jobs, which is only a fraction
of the available CPU memory, but it is close to the 6 GiB GPU
memory limit. We infer that many applications would allocate
CPU memory less than or close to what the GPU memory
limit is for facilitating data transfers to and from the CPU,
which would explain the close affinity of these two values.

Table II provides a more quantitative summary on the mean
and maximum CPU memory usage (derived from rss max) for
each year, as well as the usage percentage, i.e., rss max out of
the total available physical CPU memory (32 GiB). We note
that there are certainly some applications using the maximum
amount of CPU memory, which suggests that they are indeed
memory bound. That said, the observed average memory usage
is very low, which is consistent with observations made in [9].

Figure 3 provides a further analysis of the memory usage in
quantiles (50%, 75%, 95%), and suggests that 95% of the jobs
were using 4 GiB or less CPU memory (the 2018 data point
is a clear outlier). Figure 4 provides a closer look at the daily
average CPU memory usage in 2018. From late June to August
of 2018, we see an influx of memory intensive applications that
drove up the overall memory usage. The peaks in March and
July correspond to the initial Gordon Bell submission deadline
and the finalists’ scaling runs, respectively.

Considering 50% of total physical memory (32 GiB) as the
threshold, we analyzed the memory-intensive applications, and

these results are summarized in Table III. The second column
shows the total number of memory intensive jobs that represent
an extremely small fraction of total number of jobs (i.e., 0.2%
to 0.3%). Among these jobs, we identified the number of
unique applications (provided in the third column) based on
the application binary names and working directories data. The
fourth column details the number of runs (as a percent) of
the top five applications compared to the entire population of
memory-intensive application runs. We observe that this set is
extremely small, as the top five applications account for more
than half of the total runs - many of these were repeated runs
over 350 times per year. We consider this observation to be
another characteristic of the leadership computing workload -
there is a clear concentration of limited selection of leadership
scale applications taking a large percent of platform runs.

B. GPU Time and GPU Memory Analysis

The gpustats plugins 1 provide GPU data in three values:
maxmem represents the maximum memory used across all
nodes; summem is the total memory used across all nodes,
and gpusecs is the time spent on GPUs. However, for most
sites, this data is not enough to capture the GPU usage.
At OLCF, in particular, two extra modes are present via
gpu mode field that indicates how GPUs are used. Without any
special flag, the GPU is in an exclusive mode, where only one
process can operate a context to the GPU. With a special flag,
an application can request the default mode, where multiple
processes can communicate with a GPU. Accounting for the
GPU usage is challenging for the default mode, because the
GPU usage time can be inflated to n-fold, where n represents
the number of ranks launched on a single node. Furthermore,
the exclusive mode also presents an accounting challenge,
where the NVIDIA GPU provides a functionality called the
multiple process service (MPS) [10]. With MPS, an application
can have multiple ranks leveraging a GPU through a proxy
service. However, in reality only one process communicates
to the GPU (the proxy), thus logically equating this to the
exclusive mode. Our analysis shows that only 0.36% of all
GPU-enabled jobs used special flags to enable the default
mode, and therefore, we focus only on the exclusive mode.

Figure 5 gives an overview on GPU-enabled jobs over the
five year period (2019 only has seven months of data). Looking
at the percentage of jobs using the GPU each year, the peak
usage (28%) occurs in 2018 as Titan itself enters the most
mature and productive year. On average, we observe that 1/5th

of total jobs are GPU-enabled. However, this does not paint a
fair picture of the Leadership Computing mission at OLCF. If
we zoom into the job sizes and re-analyze the GPU-enabled
jobs, as in Table IV, we reach a very different conclusion.

The percentage of GPU-enabled jobs generally increases as
the job sizes scale up. It reaches as high as 76% and 77% of
large-scale jobs in 2017 and 2018, respectively. The decrease
in the GPU/CPU usage ratio (see Fig 5) that occurred in 2016

1http://pubs.cray.com/content/S-2393/CLE%206.0.UP01/xctm-series-
system-administration-guide-cle-60up01/the-gpustat-data-plugin
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Fig. 2. Average memory usage over five years
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Fig. 4. Daily average CPU memory usage in 2018

was caused by GPU reliability issues that we have discussed
earlier. During the late 2015 to early 2017 period, the larger
sized jobs tended to fail more often due to GPU errors, and
we observed through discussions with users and help tickets
that users naturally refrained from submitting large-scale jobs.
The 2019 data shows a drop in the largest jobs and we posit
that these users were migrating over to Summit after it came
online in January 2019.
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Fig. 5. GPU usage across five years

TABLE IV
GPU-ENABLED LARGE JOB ANALYSIS

Year Job size, K=1024
[2K,4K) [4K,8K) [8K, 10,000) [10,000, 18688]

2015 39.36% 56.86% 57.34% 58.50%
2016 53.24% 63.39% 40.90% 41.58%
2017 44.14% 54.78% 64.84% 77.87%
2018 45.27% 68.38% 67.52% 76.69%
2019 43.49% 65.38% 30.86% 48.26%

C. I/O Analysis
Traditionally, storage systems serving large-scale computing

platforms are designed for sequential I/O workloads with
large I/O sizes. One of the most dominant and critical I/O
workloads on such platforms is defensive checkpoints which
provide for a restart capability in case of node or job failures.
With checkpoints, an application takes a snapshot of its state
and persists it to the file system. In the event of a node
or job failure, the application can read the checkpoint and
restart the computation from a known prior state. As such,
there is a long-held belief that such a simulation system will
generally produce a write-heavy I/O workload. Even though
it was anticipated that users/applications can conduct post
data analysis on such systems (generating a read-heavy I/O
workload), this was not expected to alter the system-wide
overall I/O workload towards an aggregate read-heavy state.

There have been earlier studies analyzing the number of
read/write requests from the storage system’s (i.e., parallel file
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Fig. 6. Monthly data read or written over five years

system) perspective [5] and clearly pointing to an aggregated
write-heavy I/O workload. The particular storage system that
was used in this work was a shared-resource serving multiple
computational platforms, including Jaguar (Titan’s predeces-
sor). At any given time, multiple applications were running on
each platform, and the storage system observed an aggregated
mix of I/O from all applications running on all connected
platforms. Titan’s RUR data, on the other hand, provides a
different view from the perspective of applications that ran
on Titan. Therefore, the storage-system and application views
are providing different pieces of the same puzzle and both are
needed to understand the complete I/O picture.

Figure 6 shows a time series breakdown of monthly I/O
usage across the five-year period. Two fields, rchar and wchar,
are monitored for each application run, respectively denoting
the bytes read and bytes written per process. Noting that since
these two metrics report bytes read and written during the
entire job run and HPC I/O workload tends to be extremely
bursty, it could be that the average bandwidth is low, but with
bandwidth spikes across the session. Therefore, we cannot in
general calculate any I/O bandwidth (or I/O rate) information
based on these metrics.

Overall, we notice that the amount of reads and writes
fluctuate, and it is not exactly obvious how we can infer
any seasonal trend out of the pattern on per year periods.
However, from Figure 6, we counted that in 44 months out of
61 months, read volume exceeds the write volume. It is even
more apparent if we analyze the overall read to write ratios
on a yearly basis, as given in Table V. On average, we see
44% more read I/O than write2.

In Figure 6, we see that the overall amount of I/O is
increased in 2016 compared to the remaining four years. The
increase in I/O activity holds true for both reads and writes.
This period overlaps with the increased GPU failures and
perhaps a correlation between the two can be established (e.g.,
applications checkpointed frequently to guard against GPU
failures and restarted more). This observation requires further
analysis to provide a conclusive answer.

2The captured read data also includes I/O issued for gathering application
binaries and shared libraries

TABLE V
YEARLY READ/WRITE RATIO

Year Read (PiB) Write (PiB) Ratio (R/W)
2015 185 116 1.60
2016 395 287 1.37
2017 213 159 1.33
2018 278 163 1.70
2019 188 153 1.23

IV. CONCLUSION

Titan was a large-scale computational platform that was
retired in August 2019 and has provided a wealth of resource
utilization data. Our work provides a first-order analysis of
this data spanning five years of operations.

We observed that the per compute client CPU memory
usage increased with increasing job sizes (number of compute
nodes). Also, we noticed that the average per client CPU
memory usage was similar to the GPU memory capacity,
perhaps suggesting that the CPU memory was used as a
staging area for GPU memory. Our analysis also showed that
GPU usage increased with respect to the increasing job sizes.
Another interesting finding was the read-dominance of the I/O
issued from Titan.

Our future work will focus on providing a similar analysis
periodically from OLCF’s new Summit supercomputer.
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