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ABSTRACT 

A general state-based peridynamics model is developed to simulate transport of fluids in an 

arbitrary heterogeneous porous medium. The generality encompasses modeling of multiphase, 

multi-component flow of non-Newtonian and compressible fluids, which is often encountered in 

but not limited to subsurface reservoirs. Peridynamic model is especially useful for solving non-

local problems, such as crack propagation, since it does not assume spatial continuity of field 

variables. Thus, the formulation presented here, combined with peridynamics-based damage 

model, can be used to simulate hydraulic fracturing with complex fluids. To demonstrate its 

capability to simulate multi-phase flow in porous media, the derived model is verified against the 

analytical Buckley-Leverett solution for immiscible Newtonian two-phase flow. Further, the non-

Newtonian two-phase fluid flow in porous media is verified by simulating the polymer flood 

process involving immiscible displacement of a Newtonian fluid by a non-Newtonian fluid against 

a generalized solution obtained by Wu, Pruess, and Witherspoon (1991). The non-local solutions 

are shown to be consistent with the corresponding local solutions in limiting cases. Moreover, 

mass conservation of all the phases is satisfied, irrespective of discretization and extent of non-

locality. 

1. Introduction 

In a recent paper by Katiyar et al. (2014), a detailed mathematical formulation to obtain a 

governing peridynamic equation of transport of a single Newtonian fluid of small and constant 

compressibility through arbitrary heterogeneous porous media was developed. We use the 

adjective “peridynamic” here due to the similarity of our formulation to the peridynamic theory 

developed by Silling (2000) and Silling et al. (2007) within the field of solid mechanics. The 

peridynamic formulation was verified by simulating the transport of a fluid of uniform properties 

through a porous medium and comparing the results with those from a corresponding analytical 

model derived from the classical theory of flow in porous media. The peridynamic porous flow  
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in fractured heterogeneous reservoirs. Reservoir hydrocarbons can be compressible, non-

Newtonian and present in multiple phases. These fluids are also transported through the reservoirs 

for different applications such as hydraulic fracturing. Therefore, to simulate more realistic 

scenarios of fluid transport in heterogeneous porous media, the present work extends the 

previously developed model (Katiyar et al., 2014) to a more general peridynamic model of 

multiphase transport of a compressible, non-Newtonian fluid in porous media. 

In Katiyar et al. (2014), motivations for developing a non-local peridynamic formulation for 

modeling porous flow were discussed. For completeness of this article, we summarize here some 

of the advantages. Fundamentally, the integral-equation based nonlocal peridynamic formulation 

remains valid even when discontinuities in the field variables appear in the domain. The 

peridynamic formulation also preserves both strong and weak discontinuities across domain 

boundaries without the need of special interface conditions as required by an equivalent classical 

model, for example an explicit flux continuity condition. Various complex systems in nature can 

elucidate diffusion processes due to local as well nonlocal potential differences. Nonlocal transport 

of fluids, observed in geological formations (Koch and Brady, 1988; Cortis and Berkowitz, 2004; 

Ganti et al., 2010), can be attributed to a reservoir’s multi-scale heterogeneity in the form of 

material properties and/or natural fractures. The integral equation based non-local theory of 

peridynamics allows modeling of the transport effects of such spatial non-locality without 

explicitly resolving the multiscale heterogeneities. In addition to capturing this non-local transport, 

the fluid-flow formulation presented here provides a novel approach for simulating complex fluid-

driven cracks when coupling it with the existing fracture mechanics model from peridynamic 

theory. Thus, it has practical applications in simulating hydraulic fracturing of unconventional 

hydrocarbon reservoirs.  

The peridynamic theory was originally developed by Silling (2000) as a reformulation of the 

classical equation of motion for modeling elasticity and material failure in solid materials and 

structures. Bobaru and Duangpanya (2010) extended its application for simulating transient heat 

conduction in bodies with evolving discontinuities. Katiyar et al. (2014) developed and 

implemented a peridynamics theory for simulating fluid flow in porous media though limiting it 

only to the Newtonian fluids of constant and small compressibility. In the present work, through 

specializing the constitutive model of Seleson, Gunzburger, and Parks (2013), we relax such 

limitations to simulate compressibility and non-Newtonian behavior of fluids.  

2. Mathematical Model 

In this paper, we use both lower-case and upper-case letters for scalars, e.g. 𝜌, 𝜇, 𝑡, 𝐴, 𝑉, 

lower case boldface letters and symbols for vectors, e.g., 𝒙, 𝒖, 𝝃, upper-case bold face letters for 

second-order tensors in the local theory, e.g., 𝑲 and blackboard letters for the corresponding 

second-order tensors in the non-local theory, e.g., 𝕂. Borrowing from the mathematical notation 

of peridynamic mechanics, mathematical objects called peridynamic states have been introduced 

for convenience (Silling et al., 2007). In this formulation, we have used vector and scalar valued 

peridynamic states. Peridynamics states depend on position and time and operate on a vector 

connecting any two continuum material points. Depending on whether the mapped value of this 

operation is a scalar or vector, the state is called a scalar-state or a vector-state, respectively. To 

differentiate, peridynamic scalar states are denoted with underlined letters or symbols and 

peridynamic vector-states are denoted with underlined bold-faced letters. The mathematical 

definition of these peridynamic states is provided wherever they have been used in this work. In 

this article, we drop the explicit dependence on time, t to make the notation more concise. 
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Figure 1. Left: schematic diagram of a peridynamic material point 𝒙 and connected flow bonds 

in its horizon. Right: schematic of a flow bond between a material point 𝒙 and its non-local 

neighboring material point 𝒙′ in 2D. 

2.1. State-Based Peridynamic Formulation of Single-phase Transport of Non-Newtonian 

and Compressible Fluid through Porous Media 

The mass conservation equation for single-phase fluid flow in porous medium at position 𝒙 ∈
ℬ and time t, using classical theory (Chen, Huan, and Ma, 2006), is 

𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙]) = −𝛻 ∙ (𝜌[𝒙]𝒖[𝒙]) + 𝑅[𝒙], 𝒖[𝒙] = −

1

𝜇[𝒙]
𝑲[𝒙]∇Φ[𝒙] (1) 

where 𝜌 is the fluid density, ∅ is the medium porosity, 𝒖 is the volumetric flux, 𝑲 is the material 

permeability tensor, 𝜇 is the fluid viscosity, Φ is the flow potential and 𝑅 is the mass generation 

per unit bulk volume per unit time. In peridynamics, a material is assumed to be composed of 

material points of known density, and every material point interacts with all the neighboring 

material points inside a nonlocal region around it. Each interaction pair of a material point with its 

neighboring material point is referred as “bond”.  

 

In Katiyar et al. (2014), using variational arguments, a governing state-based peridynamic equation 

to simulate transport of single-phase flow of a liquid of small and constant compressibility through 

heterogeneous porous medium was developed. The resulting formulation is summarized in this 

sequel. Let a body in some reference configuration occupy a region ℬ  (Figure 1). The mass 

conservation equation for single-phase fluid flow in porous medium at position 𝒙 ∈ ℬ and time t, 

using peridynamic theory, is 

𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙]) = ∫ (𝑄[𝒙]〈𝝃〉 − 𝑄[𝒙′]〈−𝝃〉) 𝑑𝑉𝑥′ + 𝑅[𝒙]

ℋ𝑥

 (2) 

where ℋ𝑥  is the neighborhood of 𝒙 referred as the “family of 𝒙”, which is a ball of radius 𝛿 

referred to as the “horizon”, 𝑄 is the peridynamic mass flow scalar state, 𝒙′ is the position vector 

the neighboring points of 𝒙 inside ℋ𝑥, 𝑑𝑉𝑥′ is the differential volume of 𝒙′, and 𝑄[𝒙]〈𝝃〉 defined 

at position 𝒙 operating on a “bond” 𝝃 = 𝒙′ − 𝒙, maps the bond onto a net mass influx density in 
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that bond. In the local limit, the integral on the right-hand side of equation (2) replaces the 

divergence of the volumetric flux term from the equivalent classical theory. 

−𝛻. (𝜌[𝒙]𝒖[𝒙]) = lim
ℋ𝑥→0

∫ (𝑄[𝒙]〈𝝃〉 − 𝑄[𝒙′]〈−𝝃〉)𝑑𝑉𝑥′
ℋ𝑥

 (3) 

For simplicity, we make an assumption that the governing peridynamic equation for porous flow 

remains the same for multiple fluid phases and the extension of the model to simulate non-

Newtonian and compressible fluid is modeled through the constitutive response. 

2.1.1. Constitutive model 

We propose a modified constitutive model of the form (Katiyar et al., 2014; Seleson, 2010) 

𝑄[𝒙]〈𝝃〉 =
𝛾

2
𝜔〈𝝃〉

𝝃. 𝕂̂[𝒙]. 𝝃

‖𝝃‖4
(Φ[𝒙′] − Φ[𝒙]), (4) 

where 𝛾 is a scaling factor dependent on dimension 𝑑 of the domain and the horizon size δ, 𝜔〈𝝃〉 
is the influence function that provides an additional mechanism to modulate the nonlocal 

interactions (Seleson and Parks, 2011) and 𝕂̂ is a symmetric constitutive tensor defined such that 

it ensures the convergence of the non-local model to the corresponding local model in the limit of 

the horizon going to zero. To determine 𝕂̂[𝒙], we seek to develop a relationship between 𝕂̂ and 

the material properties (medium permeability 𝑲[𝒙], fluid density 𝜌[𝒙] and fluid viscosity 𝜇[𝒙]), 
by imposing an equality between the nonlocal peridynamic model in the limit of horizon size 𝛿 →
0 and the corresponding well-established local model. Substituting equation (4) into the governing 

equation (2), we obtain 

𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙]) =

𝛾

2
∫ 𝜔〈𝝃〉

𝝃. (𝕂̂[𝒙] + 𝕂̂[𝒙′]). 𝝃

‖𝝃‖4
(Φ[𝒙′] − Φ[𝒙])𝑑𝑉𝑥′

ℋ𝑥

+ 𝑅[𝒙]. (5) 

For the purpose of establishing a connection to the local model, we momentarily assume 

continuously differentiable fields in 𝕂 and Φ such that the following Taylor’s expansions are 

admitted 

𝕂̂[𝒙′] = 𝕂̂[𝒙] + 𝝃 ∙ ∇𝕂̂[𝒙] + 𝒪(‖𝝃‖𝟐), (6) 

Φ[𝑥′] − Φ[𝑥] = (𝝃 ∙ ∇)Φ[𝒙] +
1

2
(𝝃 ∙ ∇)(𝝃 ∙ ∇)Φ[𝒙] + 𝒪(‖𝝃‖𝟑), (7) 

Giving 

𝕂̂[𝒙] + 𝕂̂[𝒙′] = 2𝕂̂[𝒙] + 𝝃 ∙ ∇𝕂̂[𝒙] + 𝒪(‖𝝃‖𝟐). (8) 

Substituting equations (7) and (8) into equation (5), we obtain 
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𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙]) = 𝛾∫ 𝜔〈𝝃〉

𝝃 ∙ (𝕂̂[𝒙] +
1
2 𝝃 ∙ ∇𝕂̂

[𝒙] + 𝒪(‖𝝃‖𝟐)) ∙ 𝝃

‖𝝃‖4
×

ℋ𝑥

((𝝃 ∙ ∇)Φ[𝒙]

+
1

2
(𝝃 ∙ ∇)(𝝃 ∙ ∇)Φ[𝒙] + 𝒪(‖𝝃‖𝟑))𝑑𝑉𝑥′ + 𝑅[𝒙]. 

 

Collecting terms 

𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙]) = 

= 𝛾∫

(

 
 
𝜔〈𝝃〉

𝜉𝑖𝜉𝑚𝕂̂𝑚𝑛[𝒙]𝜉𝑛𝜉𝑗
𝜕

𝜕𝑥𝑖𝑥𝑗
Φ[𝒙] + 𝜉𝑖𝜉𝑚

𝜕𝕂̂𝑚𝑛[𝒙]
𝜕𝑥𝑖

𝜉𝑛𝜉𝑗
𝜕
𝜕𝑥𝑗

Φ[𝒙]

2‖𝝃‖4

)

 
 

ℋ𝑥

𝑑𝑉𝑥′ + 𝒪(𝛿
2)

+ 𝑅[𝒙], 
 

= [𝛾 ∫ 𝜔〈𝝃〉
(𝝃⨂𝝃)𝕂̂[𝒙](𝝃⨂𝝃)

2‖𝝃‖4
𝑑𝑉𝒙′

ℋ𝑥

] : (∇⨂∇)Φ[𝒙]

+ ∇. [∫ 𝛾𝜔〈𝝃〉
(𝝃⨂𝝃)𝕂̂[𝒙](𝝃⨂𝝃)

2‖𝝃‖4
𝑑𝑉𝒙′

ℋ𝑥

] . ∇Φ[𝒙] + 𝒪(𝛿2) + 𝑅[𝒙], 

 

= (
𝜌[𝒙]

𝜇[𝒙]
𝑲[𝒙]) : (∇⨂∇)Φ[𝒙] + ∇. (

𝜌[𝒙]

𝜇[𝒙]
𝑲[𝒙]) . ∇Φ[𝒙] + 𝒪(𝛿2) + 𝑅[𝒙], 

 

= ∇ ∙ (
𝜌[𝒙]

𝜇[𝒙]
𝑲[𝒙]∇Φ[x]) + 𝒪(𝛿2) + 𝑅[𝒙], (9) 

where, 

𝜌[𝒙]

𝜇[𝒙]
𝑲[𝒙] = ∫ 𝛾𝜔〈𝝃〉

(𝝃⨂𝝃)𝕂̂[𝒙](𝝃⨂𝝃)

2‖𝝃‖4
𝑑𝑉𝑥′ .

ℋ𝑥

 (10) 

Taking 𝛿 → 0, we recover equation (1) from equation (9). By writing equation (10) in component 

form we establish a relationship between constitutive tensor 𝕂̂ and material properties (medium 

permeability 𝑲[𝒙], fluid density 𝜌[𝒙] and fluid viscosity 𝜇[𝒙]) with a judicious choice of scaling 

factor 𝛾  

𝜌[𝒙]

𝜇[𝒙]
𝐾𝑖𝑗[𝒙] = 𝛾𝕂̂𝑛𝑚[𝒙]∫ 𝜔〈𝝃〉

𝜉𝑖𝜉𝑛𝜉𝑚𝜉𝑗

2‖𝝃‖4
𝑑𝑉𝑥′ .

ℋ𝑥

 (11) 

Following Katiyar et al. (2014) and Seleson et al. (2013), it can be shown that the right hand side 

in equation (11) simplifies to  
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𝜌[𝒙]

𝜇[𝒙]
𝐾𝑖𝑗[𝒙] = 𝛾(𝕂̂𝑖𝑗[𝒙] + 𝕂̂𝑗𝑖[𝒙] + 𝕂̂𝑘𝑘[𝒙]𝛿𝑖𝑗)Iδ

𝑑  where Iδ
𝑑 =

1

3
∫ 𝜔〈𝝃〉

𝝃1
4

2‖𝝃‖4
𝑑𝑉𝒙′ .

ℋ𝒙

 (12) 

Choosing 𝛾 =
1

2𝐼δ
𝑑, and using symmetry of 𝕂̂, equation (11) becomes 

𝜌[𝒙]

𝜇[𝒙]
𝐾𝑖𝑗[𝒙] = 𝕂̂𝑖𝑗[𝒙] +

1

2
𝕂̂𝑘𝑘[𝒙]𝛿𝑖𝑗. (13) 

Solving for 𝕂̂𝑘𝑘 for any dimension 𝑑, 

𝕂̂𝑘𝑘[𝒙] =
2

2 + d
𝐾𝑘𝑘[𝒙]

𝜌[𝒙]

𝜇[𝒙]
. (14) 

Substituting equation (14) into equation (13), we solve for 𝕂̂𝑖𝑗 

𝕂̂𝑖𝑗[𝒙] =
𝜌[𝒙]

𝜇[𝒙]
(𝐾𝑖𝑗[𝒙] −

1

2 + 𝑑
𝐾𝑘𝑘[𝒙]𝛿𝑖𝑗). (15) 

Equation (15) relates the peridynamic constitutive tensor 𝕂̂ with known material properties. In the 

next subsection, we derive the scaling factor based on the dimension of the problem and the choice 

of influence function. 

2.1.2. Influence functions 

2.1.2.1. 𝝎〈𝝃〉 = 𝟏  

This influence function gives the same weight to all the neighbors in the horizon. For two 

dimensions (𝑑 = 2), the horizon is a circle of radius 𝛿 and using polar coordinates, we have 𝜉1 =
𝑟 cos(𝜃) and 𝜉2 = 𝑟 sin(𝜃). Then, the scaling factor in two dimensions with 𝜔〈𝝃〉 = 1 is  

𝛾 =
3

2
[∫ ∫

𝜉1
4

2𝑟4
𝑟𝑑𝑟𝑑𝜃

𝛿

0

2𝜋

0

]

−1

=
8

𝜋𝛿2
. (16) 

For three dimensions (𝑑 = 3), the horizon is a sphere of radius 𝛿 and using spherical coordinates, 

𝜉1 = 𝑟 𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜃),  𝜉2 = 𝑟 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝜃)  and 𝜉3 = 𝑟 𝑐𝑜𝑠(𝜑) . The scaling factor for three 

dimensions with 𝜔〈𝝃〉 = 1 is 

𝛾 =
3

2
[∫ ∫ ∫

𝜉1
4

2𝑟4
𝑟2 𝑠𝑖𝑛(𝜑) 𝑑𝑟𝑑𝜑𝑑𝜃

𝛿

0

𝜋

0

2𝜋

0

]

−1

=
45

4𝜋𝛿3
. (17) 

2.1.2.1. 𝝎〈𝝃〉 = 𝟏 −
𝒓

𝜹
 

This influence function allows linearly varying contribution of the neighbors based on their 

proximity of the point of interest. Similar to equations (16) and (17), based on the dimension 𝑑 we 

obtain following scaling factors for the constitutive model in equation (4) 
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𝛾 =

{
 
 

 
 3

2
[∫ ∫ (1 −

𝒓

𝜹
)
𝜉1
4

2𝑟4
𝑟𝑑𝑟𝑑𝜃

𝛿

0

2𝜋

0

]

−1

=
24

𝜋𝛿2
  for 𝑑 = 2 and

3

2
[∫ ∫ ∫ (1 −

𝒓

𝜹
)
𝜉1
4

2𝑟4
𝑟2 𝑠𝑖𝑛 𝜑 𝑑𝑟𝑑𝜑𝑑𝜃

𝛿

0

𝜋

0

2𝜋

0

]

−1

=
45

𝜋𝛿3
  for 𝑑 = 3.

 (18) 

Finally, for two dimensions (𝑑 = 2) , we substitute the scaling factor from equation (16) for 

𝜔〈𝝃〉 = 1 and the constitutive tensor from equation (15) into the original proposed constitutive 

model (4) to obtain 

𝑄[𝒙]〈𝝃〉 =
𝜌[𝒙]

𝜇[𝒙]

4

𝜋𝛿2

𝝃. (𝑲[𝒙] −
1
4 𝑡𝑟(𝑲[𝒙])𝑰) . 𝝃

‖𝝃‖4
(Φ[𝒙′] − Φ[𝒙]), (19) 

−𝑄[𝒙′]〈−𝝃〉 =
𝜌[𝒙′]

𝜇[𝒙′]

4

𝜋𝛿2

𝝃. (𝑲[𝒙′] −
1
4 𝑡𝑟(𝑲[𝒙

′])𝑰) . 𝝃

‖𝝃‖4
(Φ[𝒙′] − Φ[𝒙]), (20) 

𝜕

𝜕𝑡
(𝜌[𝒙]∅[𝒙])

=
4

𝜋𝛿2
∫

𝝃. (
𝜌[𝒙]
𝜇[𝒙]

(𝑲[𝒙] −
1
4 𝑡𝑟(𝑲[𝒙])𝑰) +

𝜌[𝒙′]

𝜇[𝒙′]
(𝑲[𝒙′] −

1
4 𝑡𝑟(𝑲[𝒙

′])𝑰)) . 𝝃

‖𝝃‖4
(Φ[𝒙′]

ℋ𝒙

−Φ[𝒙])𝑑𝐴𝒙′ + 𝑅[𝒙]. 

(21) 

 

For constant influence function 𝜔〈𝝃〉 = 1, equation (20) is the governing peridynamic equation of 

single fluid porous flow in an arbitrary heterogeneous two dimensional medium. We simplify 

equation (20) for homogeneous and isotropic permeability, 𝑲[𝒙] = 𝑲[𝒙′] = 𝜅𝑰 to obtain 

∂

∂𝑡
(𝜌[𝒙]∅[𝒙]) =

2

𝜋𝛿2
∫

(
𝜌[𝒙]
𝜇[𝒙]

+
𝜌[𝒙′]
𝜇[𝒙′]

)

‖𝝃‖2
(Φ[𝒙′] − Φ[𝒙])𝑑𝐴𝑥′ + 𝑅[𝒙]

ℋ𝑥

 (22) 

In the next subsection, we report the extension of the single-phase model to multicomponent-

multiphase transport of fluid through porous media. 

2.2. State-Based Peridynamic Formulation of Multicomponent-multiphase Transport of 

Non-Newtonian and Compressible Fluid through Porous Media 

Consider the permeable body ℬ through which 𝑁𝑝 phases consisting of 𝑁𝑐 components flow. 

Neglecting diffusive mass transport, the mass conservation equation for a component 𝛼 at any 

position 𝒙 ∈ ℬ and time t, using the classical theory is 
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𝜕

𝜕𝑡
(∅[𝒙]∑ 𝑆𝛽[𝒙]𝜌𝛽[𝒙]𝑤𝛼𝛽[𝒙]

𝑁𝑝

𝛽=1

)

= −𝛻. (∑ 𝜌𝛽[𝒙]𝒖𝛽[𝒙]𝑤𝛼𝛽[𝒙]

𝑁𝑝

𝛽=1

) +∑𝑤𝛼𝛽[𝒙]𝑅𝛽[𝒙]

𝑁𝑝

𝛽=1

 

(23) 

with constraints 

∑𝑆𝛽[𝒙] =

𝑁𝑝

𝛽=1

1 (24) 

and 

∑𝑤𝛼𝛽[𝒙] = 1

𝑁𝑐

𝛼=1

, 𝛽 = 1,2, ……𝑁𝑝 (25) 

where 𝑆𝛽, 𝜌𝛽 and 𝑅𝛽 are the saturation, density and mass source of phase 𝛽 respectively, 𝑤𝛼𝛽 is 

the mass fraction of component α in phase β and 𝒖𝛽 is the phase volumetric flux obtained by 

extending Darcy’s law for the physical properties of respective phases; 

𝒖𝛽[𝒙] = −𝑲[𝒙]
𝑘𝑟𝛽[𝒙]

𝜇𝛽[𝒙]
∇Φ𝛽[𝒙]. (26) 

Here 𝑘𝑟𝛽is the relative permeability of phase 𝛽, accounting for the reduction in permeability due 

to presence of the other phases, 𝜇𝛽 is the viscosity of phase 𝛽 and Φ𝛽 is the flow potential in phase 

𝛽.  

Analogous to equation (3), we can represent the divergence of the mass flux of component 𝛼 in 

equation (23) by 

 −𝛻. (∑ 𝜌𝛽[𝒙]𝒖𝛽[𝒙]𝑤𝛼𝛽[𝒙]

𝑁𝑝

𝛽=1

) = lim
ℋ𝑥→0

∫ ∑(𝑄𝛼𝛽[𝒙]〈𝝃〉 − 𝑄𝛼𝛽[𝒙′]〈−𝝃〉) 𝑑𝑉𝑥′

𝑁𝑝

𝛽=1ℋ𝑥

 (27) 

We propose the following constitutive model to relate the mass flow state 𝑄𝛼𝛽[𝒙]〈𝝃〉 to the flow 

potential of phase 𝛽 

𝑄𝛼𝛽[𝒙]〈𝝃〉 = 𝑄𝛽[𝒙]〈𝝃〉 𝑤𝛼𝛽[𝒙] (28) 

where 
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𝑄𝛽[𝒙]〈𝝃〉 =
𝛾

2
𝜔〈𝝃〉 (

𝝃. 𝕂̂𝛽[𝒙]. 𝝃

‖𝝃‖4
) (Φ𝛽[𝒙

′] − Φ𝛽[𝒙]) (29) 

and the constitutive tensor 𝕂̂𝛽[𝒙] for respective phase is obtained in terms of material properties 

(medium permeability 𝑲[𝒙], relative phase permeability 𝑘𝑟𝛽[𝒙], phase density 𝜌𝛽[𝒙] and phase 

viscosity 𝜇𝛽[𝒙]), by imposing an equality between the nonlocal peridynamic model in the limit of 

horizon size 𝛿 → 0 and the corresponding local model 

𝕂̂𝛽𝒊𝒋
[𝒙] = 𝜌𝛽[𝒙] (

𝑘𝑟𝛽[𝒙]

𝜇𝛽[𝒙]
) (𝐾𝑖𝑗[𝒙] −

1

2 + 𝑑
𝐾𝑘𝑘[𝒙]𝛿𝑖𝑗) 

with constant scaling factor chosen the same as the single fluid formulation (Section 2.1). For 

example, in 2-dimensions and 𝜔〈𝝃〉 = 1, the above proposed constitutive model in equation (28) 

with appropriate scaling factor (equation (16)) becomes 

𝑄𝛼𝛽[𝒙]〈𝝃〉 =
4

𝜋𝛿2
𝜌𝛽[𝒙] (

𝑘𝑟𝛽[𝒙]

𝜇𝛽[𝒙]
)
𝝃. (𝑲[𝒙] −

1
4 𝑡𝑟

(𝑲[𝒙])𝑰) . 𝝃

‖𝝃‖4
(Φ𝛽[𝒙

′]

− Φ𝛽[𝒙])𝑤𝛼𝛽[𝒙]. 

(30) 

With a known constitutive model, the governing peridynamic equation for multicomponent-

multiphase flow can be obtained from equations (23) and (27).  

For modeling multiphase fluid flow in reservoirs, generally three types of models are 

considered: compositional models, black-oil models, and immiscible two-phase models (Coats et 

al, 1998). In a compositional model, the composition of the hydrocarbon components and water 

can strongly vary with space and time in different phases (aqueous, oleic, and gaseous) To track 

the phase compositions accurately, conservation equations for each of the components and 

appropriate equations of state are required, thereby making compositional models numerically 

expensive. A less complex alternative is the black-oil model which is detailed in the sequel. 

2.2.1. Black-Oil Model 

In a black-oil model, there are three phases namely, aqueous, oleic, and gaseous. A black-oil 

model is applicable when pressure is below the bubble point and mass can be transferred between 

the two hydrocarbon phases (Chen, Huan, and Ma, 2006). It is assumed that no mass is transferred 

between the aqueous and the other two phases. Gas solubility in oleic phase is assumed to depend 

only on pressure. Thus, all the hydrocarbons are represented by two pseudo hydrocarbon 

components, namely oil and gas. 

In the following discussion, the two subscripts in the variables refer to components and phases 

respectively, unless otherwise stated. In the first subscript, index 1, 2, and 3 correspond to water, 

oil, and, gas components, respectively. In the second subscript, index 1, 2, and 3 correspond to 

aqueous, oleic and gaseous phases respectively. It is assumed that water can occur only in the 

aqueous phase, whereas oil and gas components can occur in either of the two hydrocarbon phases. 

Thus, mass fractions translate as 

 

Aqueous phase: w11 = 1, w21 = 0, w31 = 0 

Oleic phase: w12 = 0, w32 = 1-w22 

Gaseous phase: w13 = 0, w23 = 1-w33 
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Neglecting capillary pressure (i.e., pressure difference between two immiscible phases due to 

surface and interfacial tension) between different phases, the LHS of equation (23) can be 

expanded as 

𝜕

𝜕𝑡
(∅[𝒙]∑ 𝑆𝛽[𝒙]𝜌𝛽[𝒙]𝑤𝛼𝛽[𝒙]

𝑁𝑝

𝛽=1

)

= (∑𝑆𝛽[𝒙]𝜌𝛽[𝒙]𝑤𝛼𝛽[𝒙]

𝑁𝑝

𝛽=1

)∅[𝒙]𝑐𝑟
𝜕𝑝

𝜕𝑡

+ ∅[𝒙] [∑ (𝜌𝛽[𝒙]𝑤𝛼𝛽[𝒙]
𝜕𝑆𝛽[𝒙]

𝜕𝑡
+ 𝜌𝛽[𝒙]𝑆𝛽[𝒙]

𝜕𝑤𝛼𝛽[𝒙]

𝜕𝑡

𝑁𝑝

𝛽=1

+ 𝑆𝛽[𝒙]𝑤𝛼𝛽[𝒙]𝜌𝛽𝑐𝛽
𝜕𝑝𝛽

𝜕𝑡
)] 

(31) 

where 𝑐𝑟 and 𝑐𝑗 are the rock and phase compressibility respectively and are functions of pressure: 

𝑐𝑟(𝑝) =
1

∅

𝑑∅

𝑑𝑝
 (32) 

and 

𝑐𝛽(𝑝𝛽) =
1

𝜌𝛽

𝑑𝜌𝛽

𝑑𝑝𝛽
. (33) 

In equations (32) and (33), it is assumed that porosity is a function of pressure and phase densities 

are functions of phase pressures alone, which is generally applicable for reservoir engineering 

applications. For the black-oil model, equation (23) simplified with equations (27) and (31) can be 

solved with appropriate initial and boundary conditions and known material properties. The black-

oil model can further be simplified to the immiscible two-phase flow model. 

2.2.2. Immiscible Two-Phase flow 

Immiscible two-phase flow is a special case of black-oil model, in which there is no gaseous 

phase and no mass transfer takes place between phases. It is applicable when pressure is above the 

bubble point so that all the gas remains dissolved in oleic phase. The aqueous phase consists of 

only water component. Using the index notation described in the previous section, the above 

assumption translates into following mass fractions 

𝑤11 = 1,𝑤21 = 0,𝑤31 = 0,𝑤12 = 0,𝑤22 = 𝑤22, 𝑤32 = 1 − 𝑤22. (34) 

2.2.2.1. The Pressure Equation for Compressible Immiscible Two-Phase Flow 

Adding the conservation equations of the gas and oil components gives one mass conservation 

equation for the oleic phase. From equations (23), (27), and (31), the conservation equation for 

each phase takes the following form: 
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𝜌𝛽[𝒙] [∅[𝒙]𝑆𝛽[𝒙] (𝑐𝑟
𝜕𝑝

𝜕𝑡
+ 𝑐𝛽

𝜕𝑝𝛽

𝜕𝑡
) + ∅[𝒙]

𝑑𝑆𝛽

𝑑𝑡
]

= ∫ (𝑄𝛽[𝒙]〈𝝃〉 − 𝑄𝛽[𝒙′]〈−𝝃〉) 𝑑𝑉𝑥′
ℋ𝑥

+ 𝑅𝛽[𝒙], 𝛽 = 1,2. 
(35) 

We divide equation (35) by 𝜌𝛽[𝒙] and sum-up the resulting equation for both the phases to 

obtain 

𝑐𝑟∅[𝒙]
𝜕𝑝

𝜕𝑡
+ ∅[𝒙]∑ 𝑐𝛽𝑆𝛽[𝒙]

𝜕𝑝𝛽

𝜕𝑡

2

𝛽=1

= ∑
1

𝜌𝛽[𝒙]
∫ (𝑄𝛽[𝒙]〈𝝃〉 − 𝑄𝛽[𝒙′]〈−𝝃〉) 𝑑𝑉𝑥′
ℋ𝑥

2

𝛽=1

+ 𝑞𝑡[𝒙] 

(36) 

where 𝑝 is the total pressure, 𝑝𝛽 is the phase pressure and 𝑞𝑡[𝒙] = (
𝑅1[𝒙]

𝜌1[𝒙]
+
𝑅2[𝒙]

𝜌2[𝒙]
). Generally, total 

pressure is considered as the pressure in the aqueous phase and that the phase pressure in the oleic 

phase is obtained by accounting for capillary pressure. Relationships such as Brooks-Corey curves 

(Brooks and Corey, 1964) are used to calculate capillary pressure in terms of aqueous phase 

saturation.  

𝑝 = 𝑝1 

𝑝2 = 𝑝1 + 𝑝𝑐,21 

𝑝𝑐,21 = 𝑓(𝑆𝑤) 
𝑝𝑐,21 refers to the capillary pressure between phases 1 and 2. 

 

In the process of simplifying the integral term in RHS of equation (36), we introduce the phase 

mobility 𝜆𝛽 = 𝑘𝑟𝛽/𝜇𝛽. For tractability of the equations, we further choose to simplify the integral 

term for a two-dimensional problem with homogeneous and isotropic permeability and 𝜔〈𝝃〉 = 1. 

We also define the pressure and gravitational head scalar-states respectively for each phase as: 

𝑃𝛽[𝒙]〈𝝃〉 = 𝑝𝛽[𝒙
′] − 𝑝𝛽[𝒙], 𝐻𝛽[𝒙]〈𝝃〉 = 𝑔(𝜌𝛽[𝒙

′]𝑧[𝒙′] − 𝜌𝛽[𝒙]𝑧[𝒙]) (37) 

where g is the acceleration due to gravity, and z is the height measured from a reference datum. 

Thus, the equation (36) becomes 

𝑐𝑟∅[𝒙]
𝜕𝑝

𝜕𝑡
+ ∅[𝒙]∑ 𝑐𝛽𝑆𝛽[𝒙]

𝜕𝑝𝛽

𝜕𝑡

2

𝛽=1

=
2𝜅

𝜋𝛿2
[∫ (

𝜌𝛽[𝒙
′]

𝜌𝛽[𝒙]
𝜆𝛽[𝒙

′] + 𝜆𝛽[𝒙])
(𝑃𝛽[𝒙]〈𝝃〉 + 𝐻𝛽[𝒙]〈𝝃〉)

‖𝝃‖2
𝑑𝐴𝑥′

ℋ𝑥

]

+ 𝑞𝑡[𝒙]. 

(38) 

Equation (38) is the pressure equation for compressible two-phase immiscible flow.  

2.2.2.2. The Pressure Equation for Incompressible Immiscible Two-Phase Flow 

Another simplifying assumption is to consider the rock and the two fluid phases 

incompressible, i.e. 𝑐𝑟 = 𝑐1 = 𝑐2 = 0. The pressure equation (38) then reduces to  
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2𝜅

𝜋𝛿2
[∫ 𝑀𝜌𝜆𝛽

[𝒙, 𝒙′]
(𝑃𝛽[𝒙]〈𝝃〉 + 𝐻𝛽[𝒙]〈𝝃〉)

‖𝝃‖2
𝑑𝐴𝑥′

ℋ𝑥

] + 𝑞𝑡[𝒙] = 0 (39) 

where 

𝑀𝜌𝜆𝛽
[𝒙, 𝒙′] = (

𝜌𝛽[𝒙
′]

𝜌𝛽[𝒙]
𝜆𝛽[𝒙

′] + 𝜆𝛽[𝒙]) 

For better decoupling of the pressure equation from the saturation equation, we follow Chavent 

and Jaffre (1986) and Aarnes, Gimse, and Lie (2007) and define a global pressure as 𝑝∗ = 𝑝2 − 𝑝𝑐 
that contains the saturation-dependent pressure terms 𝑝𝑐 (complementary pressure) defined as 

𝑝𝑐 = ∫ 𝑓1(𝜁)
𝑆1

1

𝜕𝑝𝑐21(𝜁)

𝜕𝜁
𝑑𝜁, 𝑓1 =

𝑀𝜌𝜆1

[𝑀𝜌𝜆1
+𝑀𝜌𝜆2

]
 (40) 

⇒ 𝑝𝑐[𝒙
′] − 𝑝𝑐[𝒙] = 𝑓1(𝑃𝑐21[𝒙

′] − 𝑃𝑐21[𝒙]) 

⇒ (𝑀𝜌𝜆1
+𝑀𝜌𝜆2

) 𝑝𝑐(𝑆1)[𝒙]〈𝝃〉 = 𝑀𝜌𝜆1
𝑃𝑐21(𝑆1)[𝒙]〈𝝃〉 

where 𝑃𝑐[𝒙]〈𝝃〉 = 𝑝𝑐[𝒙
′] − 𝑝𝑐[𝒙], 𝑃𝑐21[𝒙]〈𝝃〉 = 𝑃𝑐21[𝒙

′] − 𝑃𝑐21[𝒙]. Thus, the pressure equation 

(39) simplifies to 

 

4𝜅

𝜋𝛿2
[∫ ((𝑀𝜌𝜆1

+𝑀𝜌𝜆2
)
𝑃∗[𝒙]〈𝝃〉

‖𝝃‖2
+
(𝑀𝜌𝜆1

𝐻1[𝒙] + 𝑀𝜌𝜆2
𝐻2[𝒙]) 〈𝝃〉

‖𝝃‖2
)𝑑𝐴𝑥′

ℋ𝑥

] + 𝑞𝑡[𝒙]

= 0 

(41) 

in only one pressure, 𝑝∗ with 𝑃∗[𝒙]〈𝝃〉 = 𝑝∗[𝒙′] − 𝑝∗[𝒙]. 

2.2.2.3. The Saturation Equation for Incompressible Immiscible Two-Phase Flow 

Along with phase pressures, we also need to determine the phase saturations. For the two–

phase flow case, the unknown saturations are of aqueous (𝑆1) and oleic (𝑆2) phases. However, the 

phase saturations are constrained by equation (23), so only one of the two phase-saturations needs 

to be determined and the common practice is to solve for 𝑆1 . From equation (35), the mass 

conservation equation for water component, with the incompressible rock and fluid assumption, is 

∅[𝒙]
𝑑𝑆1
𝑑𝑡

=
4𝜅

𝜋𝛿2
∫ 𝑀𝜌𝜆1

(𝑃∗[𝒙]〈𝝃〉 −
𝑀𝜌𝜆2
𝑀𝜌𝜆1

𝑝𝑐[𝒙]〈𝝃〉) + 𝐻1[𝒙]〈𝝃〉

‖𝝃‖2
𝑑𝐴𝑥′

ℋ𝑥

+ 𝑅1[𝒙] 
(42) 

which serves as the saturation equation for incompressible immiscible two-phase flow. The 

pressure equation (41) is solved with the saturation dependent properties and the saturation 

equation is solved with the global pressure obtained from the pressure equation (41).  
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3. Model Verification 

We verify the peridynamics multiphase flow model by solving the immiscible displacement 

of one fluid by another. One-dimensional flow is solved in a uniform horizontal reservoir with a 

fluid injection source at one end and a production sink at the other. For simplicity, it is assumed 

that the rate of fluid injection and the rate of fluid production at the respective ends are the same.  

The model presented here can simulate complex fluids since it accounts for compressible and 

non-Newtonian behavior. In this section, two verification problems are considered – one in which 

Newtonian water displaces Newtonian oil and the other in which a non-Newtonian polymer 

solution displaces Newtonian oil. In the petroleum engineering community, these displacement 

processes are known as ‘water flood’ and ‘polymer flood’ respectively. The fluids are assumed to 

be slightly compressible in both the problems. 

3.1. Problem 1: Immiscible displacement of a Newtonian fluid (oil) by another Newtonian 

fluid (water) ─ Water flood 

A schematic of this verification problem is shown in Figure 2. The model parameters are 

summarized in Table 1. A Brooks-Corey relationship (Brooks and Corey, 1964) is assumed for 

calculating relative permeability of the two phases: 

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤
0 ∗ (𝑆𝑤𝐷)

𝑁𝑤 (43) 

𝑘𝑟𝑜(𝑆𝑤) = 𝑘𝑟𝑜
0 ∗ (1 − 𝑆𝑤𝐷)

𝑁𝑜 (44) 

where 𝑆𝑤 is water saturation, krw
0 and kro

0 are end-point relative permeabilities, and Nw and 

No are relative permeability exponents of aqueous and oleic phase respectively. SwD is 

dimensionless water saturation and is defined as: 

𝑆𝑤𝐷 =
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑜𝑟 − 𝑆𝑤𝑟
. (45) 

where 𝑆𝑤𝑟 and 𝑆𝑜𝑟 are residual saturations of water and oil respectively. 

 

 

 

 

 

 

 

Figure 2. Schematic of water flood process. Cooler colors represent higher saturations of water, 

whereas warmer colors represent higher saturations of oil (scale in the width direction is highly 

exaggerated) 

 

Table 1. Simulation parameters for Problem 1 

 

Length of domain (Lx) 200 m 

Porosity (φ) 30% 

Permeability (κ) 100 mD 

Water Oil 
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Initial pressure (Pini) 20 MPa 

Initial water saturation (Sw, ini) 0.0 

Residual saturations of both fluids (Swr and Sor) 0.0 

End-point relative permeability for both fluids (kr) 1.0 

Relative permeability exponents for both fluids (N) 2 

Density of both fluids (ρw and ρo) 1 kg/m3 

Viscosity of both fluids (µw and µo) 1 cP 

Rate of injection and production (Q) 4e-5 kg/s 

3.1.1. Numerical discretization 

The computational domain is discretized into uniform grid cells of size Δx = Δy = Δz = Lx/nx, 

where Lx is the length of the domain and nx is the number of grid cells in x-direction. Since our 

objective is to simulate 1-D flow, there is just one cell in y- and z- directions. One computational 

node is assumed at the center of each grid cell and is assigned a volume equivalent to that of one 

cell, (Δx)3. 

3.1.2. Analytical local solution 

The mobility ratio for an immiscible displacement process is defined as: 

𝑀 =
𝑀𝑤

𝑀𝑜
=
𝑘𝑟𝑤 µ𝑤⁄

𝑘𝑟𝑜 µ𝑜⁄
 (46) 

where 𝑀𝑤 and 𝑀𝑜 are the mobilities of aqueous and oleic phases respectively. 

 

For M ≤ 1, a piston-like displacement occurs which is characterized by the formation of a 

shock-front. As in-situ fluid is displaced, it moves from injector well towards the producer well. 

Before the shock-front reaches the producer well, only in-situ fluid is produced. When it has 

reached the producer well, the displacing fluid breaks through and both fluids are produced 

thereafter. 

Neglecting gravity and capillary pressure between the aqueous and oleic phases, the 

analytical local solution can be obtained by using the fractional flow theory established by Buckley 

and Leverett (1941). For completeness, the steps for finding the analytical local solution have been 

summarized here. 

a) Fractional flow of water phase is given as: 

𝑓𝑤(𝑆𝑤) =
𝑞𝑤

𝑞𝑤 + 𝑞𝑜
=

𝑘𝑟𝑤(𝑆𝑤)/µ𝑤
𝑘𝑟𝑤(𝑆𝑤)/µ𝑤 + 𝑘𝑟𝑜(𝑆𝑤)/µ𝑜

 (47) 

b) The water saturation at the shock front (𝑆𝑤𝑓) is obtained by solving the following 

equation: 
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𝜕𝑓𝑤
𝜕𝑆𝑤

|
𝑆𝑤𝑓

=
𝑓𝑤𝑓

𝑆𝑤𝑓 − 𝑆𝑤,𝑖𝑛𝑖
 (48) 

c) The position of the shock front is determined as: 

𝑥𝐷 =
𝜕𝑓𝑤
𝜕𝑆𝑤

|
𝑆𝑤𝑓

∗ 𝑡𝐷 . (49) 

d) The reservoir behind the shock front is swept by water, thereby increasing water 

saturation in that region. For all water saturations greater than the shock front water 

saturation obtained in equation (48), 
𝜕𝑓𝑤

𝜕𝑆𝑤
|
𝑆𝑤

 is calculated by differentiating equation 

(47). 

 

e) At a given dimensionless time (𝑡𝐷), the dimensionless position (𝑥𝐷) of each water 

saturation greater than the shock front water saturation can be calculated as: 

𝑥𝐷 =
𝜕𝑓𝑤
𝜕𝑆𝑤

|
𝑆𝑤

∗ 𝑡𝐷 (50) 

f) The reservoir ahead of the shock front has not been swept by water yet. Thus, in the 

region ahead of the shock-front: 

𝑆𝑤 = 𝑆𝑤,𝑖𝑛𝑖 (51) 

3.1.3. Peridynamic solution 

Figure 3 shows the analytical local and peridynamic solutions to the classical Buckley 

Leverett problem for M=1. Dimensionless water saturation (SwD) is plotted against dimensionless 

distance from the injector well (xD) at a dimensionless time (tD). These parameters are defined as: 

𝑥𝐷 =
𝑥

𝐿𝑥
 (52) 

𝑡𝐷 =
𝑄 ∗ 𝑡

𝜌 ∗ 𝑃𝑉
 (53) 

where Q is the injection rate (kg/s), 𝜌 is density of injected fluid (kg/m3), and PV is the pore 

volume injected (m3) (= Porosity * domain volume). 
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(a) 

 

(b) 

Figure 3. Analytical local and peridynamic (PD) saturation profiles for water flood problem. (a): 

before breakthrough (at tD = 0.2). (b): after breakthrough (at tD = 1.2). m is the number of non-

local neighbors for each cell (described in more detail in Section 3.1.4)  

  

The sharp discontinuity in analytical local solution is the shock-front described above. Except for 

the smearing of the shock-front in Figure 3 (a), the peridynamic solution matches water saturation 

from the analytical local solution very well, both behind and ahead of the shock-front, and both 

before and after the breakthrough. It should be noted that the smearing of the shock-front is a 

characteristic of the non-local contributions to diffusion terms in equations (1) and (23). These 

non-local contributions become smaller as the horizon size is shrunk (Bobaru and Ha 2011). Using 

the curves shown in these figures, a convergence study for the waterflood problem is discussed in 

the next sub-section. 

3.1.4. Convergence study 

Peridynamics is a non-local formulation and accounts for interactions from all its neighboring 

nodes within a characteristic length scale, called horizon (δ). If a 1-D domain is discretized into 
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uniform cell size of length Δx, the number of non-local neighbors to each cell is m (=δ/Δx) in each 

direction. 

The non-local peridynamic solution converges to the local solution in the limit of δ going to 

zero and m being infinitely large simultaneously. Such a convergence study is referred to as δ-m 

convergence study (Bobaru et al, 2009). Please note that this study is different from the m-

convergence study taken up in Katiyar et al. (2014). The objective in that work was to find an 

optimum choice for both δ and m by varying m for different values of δ. The objective here is to 

show that the local solution can be recovered from non-local solution in the limiting case. 

Four cases were considered with successively smaller δ and larger m. The values for these 

parameters are given in Table 2. 
 

Table 2. Horizon size (δ) and number of non-local neighbors (m) for the three cases 

 

Case Horizon size (δ) Number of non-local neighbors (m) 

1 0.80 m 2 

2 0.60 m 3 

3 0.40 m 4 

4 0.25 m 5 

 

Figure 4 demonstrates the convergence of non-local solution towards the local solution by 

plotting relative differences for the four cases. With reference to Figure 3, relative difference is 

defined as: 

Relative difference =
∑ |𝑆𝑤,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑆𝑤,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|𝑥

𝐴𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
∗ 100 (54) 

where 𝐴𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 is the area under the analytical local curves in Figure 3. 

 
Figure 4. Relative difference in water saturation profile as horizon size (δ) decreases and 

number of non-local neighbors (m) increases simultaneously as shown in Table 2. 



18 

 

A higher number of non-local neighbors requires higher computational resources owing to 

denser coefficient matrices. Thus, unless otherwise stated, we use m=3 in the subsequent 

simulations to get a reasonably accurate non-local solution, while retaining a low computational 

cost. The choice of this value of m comes from our experience gained so far with peridynamic 

simulations.  

3.2. Problem 2: Immiscible displacement of a Newtonian fluid (oil) by a non-Newtonian 

fluid (polymer) – Polymer flood 

In this verification problem, Newtonian oil is displaced by a shear-thinning polymer solution 

and a schematic is shown in Figure 5. Polymer solution is injected at different rates to study the 

effect of injection rate on oil recovery. Except for the viscosity of the displacing fluid and the 

injection and production rates, the rest of the parameters remain the same as in verification problem 

1 and are summarized in Table 3. Power law relationship is assumed between polymer viscosity 

and shear rate: 

µ𝑝 = 𝐻 ∗ (𝛾̇)
𝑛−1 (55) 

where µ𝑝 is the polymer viscosity, 𝛾̇ is the shear rate, H is the intrinsic viscosity, and n is the 

power law exponent.   

 

 

 

 

Figure 5. Schematic of polymer flood process. Cooler colors represent higher saturations of 

polymer, whereas warmer colors represent higher saturations of oil (scale in vertical direction is 

highly exaggerated) 

 

Table 3. Simulation parameters for Problem 2 

 

Length of domain (Lx) 200 m 

Porosity (φ) 30% 

Permeability (κ) 100 mD 

Initial pressure (Pini) 20 MPa 

Initial polymer saturation (Sw, ini) 0.0 

Residual saturations of both fluids (Sr) 0.0 

End-point relative permeability for both fluids (kr) 1.0 

Relative permeability exponents for both fluids (N) 2 

Polymer Oil 
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Density of both fluids (ρp and ρo) 1 kg/m3 

Viscosity of oil (µo) 1 cP 

Intrinsic viscosity of polymer (H) 1 cP 

Power law exponent (n) 0.5 

Rate of injection and production (Q) 
4e-5 kg/s in fast injection rate 

4e-6 kg/s in slow injection rate 

3.2.1. Analytical local solution 

Following the incompressibility assumption, total flow of both the fluids at any cross-

section should remain constant with time and should be equal to the injection rate: 

𝑢(𝑡) = 𝑢𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑢𝑜𝑖𝑙 + 𝑢𝑝𝑜𝑙𝑦𝑚𝑒𝑟 (56) 

Using Darcy’s law, flow rates of oil and polymer solution can be written as: 

𝑢𝑜𝑖𝑙 = −𝜅
𝑘𝑟,𝑜𝑖𝑙
µ𝑜𝑖𝑙

𝜕𝑃

𝜕𝑥
 (57) 

𝑢𝑝𝑜𝑙𝑦𝑚𝑒𝑟 = −𝜅
𝑘𝑟,𝑝𝑜𝑙𝑦𝑚𝑒𝑟

µ𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝜕𝑃

𝜕𝑥
 (58) 

We used the relationship for equivalent non-Newtonian viscosity derived by Wu et al. 

(1991). Combining the above three equations with the constitutive relations (43), (44), and (55), 

they plotted the pressure gradients as a function of non-Newtonian fluid saturation (polymer 

saturation) for different injection rates. 

Figure 6 demonstrates that at faster injection rates of the polymer, the pressure gradients 

are higher for any given polymer saturation. This leads to higher shear rates, which in turn result 

in lower viscosity of the shear thinning polymer. From Buckley-Leverett analysis, it is known that 

lower viscosity of the displacing fluid leads to reduced sweep efficiency and hence less oil 

recovery. This idea is used to verify the peridynamic solution for immiscible displacement by a 

non-Newtonian fluid. 
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Figure 6. Pressure gradient as a function of non-Newtonian fluid (polymer solution) saturation in 

a polymer flood (Wu et al., 1991). In that study, it is assumed that u3 > u2 > u1. 

3.2.2. Peridynamic solution 

Figure 7 shows the saturation profiles for two different injection rates before the displacing 

polymer solution breaks through at the producer well. Again, except for the smearing of the shock-

front, the peridynamics solution captures the polymer saturation very well both behind and ahead 

of the shock-front. 
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(a) 

 
(b) 

Figure 7. Analytical local and peridynamic (PD) saturation profiles before breakthrough (at tD = 

0.2) for polymer flood problem. (a): at fast injection rate (4e-5 kg/s). (b): at slow injection rate 

(4e-6 kg/s) 

 

Figure 8 shows the saturation profiles for the same injection rates after the polymer solution breaks 

through the producer well. 

 

 
(a) 
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(b) 

Figure 8. Analytical local and peridynamic (PD) saturation profiles after breakthrough (at tD = 

0.2) for polymer flood problem. (a): at fast injection rate (4e-5 kg/s). (b): at slow injection rate 

(4e-6 kg/s) 

 

Figure 9 shows the recovery plots for the corresponding injection rates. There is an excellent 

match with the analytical local solution in these plots. At slower injection rate, the peridynamic 

simulations predict a higher oil recovery which is consistent with the findings of Wu et al. (1991). 

 

 
(a) 
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(b) 

Figure 9. Analytical local and peridynamic (PD) recovery plots for polymer flood problem. (a): 

at fast injection rate (4e-5 kg/s). (b): at slow injection rate (4e-6 kg/s) 

3.2.3. Convergence study 

Following the same procedure as outlined in Section 3.1.3, Figure 10 has been obtained to 

show the convergence of non-local solution towards analytical local solution. The differences in 

this case are larger compared to those in the waterflood problem (Figure 4) because the shock-

front is smeared out further. However, they are still within the acceptable range of errors for 

engineering applications and more accurate results can be obtained at the expense of higher 

computational resources. 

 
Figure 10. Relative difference in polymer saturation profile as horizon size (δ) decreases and 

number of non-local neighbors (m) increases simultaneously as shown in Table 2. 

 

Figure 11 shows the relative differences in oil recovery at tD = 0.2 PV. It should be noted that 

although the shock-fronts in the saturation profiles are smeared out further, the relative differences 

in oil recovery are negligible. This signifies that the mass conservation is honored in these 

simulations. 
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Figure 11. Relative difference in oil recovery as horizon size (δ) decreases and number of non-

local neighbors (m) increases simultaneously as shown in Table 2. 

3. Conclusions 

In Katiyar et al. (2014), a state-based peridynamic formulation for single phase convective 

transport of a fluid with small, constant compressibility and Newtonian flow characteristics was 

presented. In this research, we have generalized the model to multi-phase, multi-component fluids 

showing varying compressibility and non-Newtonian behavior. These non-local fluid flow models 

have been derived with an intent of applying them to our peridynamics-based hydraulic fracturing 

simulator (Ouchi et al., 2015). Thus, we have chosen to simplify the derived equations for different 

kinds of multiphase models used in petroleum engineering. A compositional model is not 

presented because of its associated computational costs. Less expensive models such as black-oil 

and immiscible two-phase flow models are presented in detail. 

We have demonstrated application of the multiphase model by solving 1-D linear, immiscible 

displacement of oil by water (water flood) and by a shear-thinning polymer (polymer flood). 

Saturation profiles show a characteristic shock front in such problems, which is smeared out in our 

peridynamic solutions due to it being a non-local formulation. A δ-m convergence study is 

performed to recover the analytical local solution from numerical non-local solution by shrinking 

the horizon size (δ) and increasing the number of non-local neighbors (m) simultaneously. Thus, 

saturation profiles retrieve the shock front for the two problems. Moreover, convergence of oil 

recovery plots to the analytical local solution verifies overall mass conservation in the proposed 

non-local model. In the polymer flood problem, our simulations also capture the observation that 

oil recovery decreases at higher injection rates of a shear-thinning polymer. 

Following this research, we are currently working on validating the developed peridynamics 

model in higher dimensions with the laboratory-scale hydraulic fracturing experiments and field 

scale observations involving multiple phases. These work have been reported in separate 

publications (Agrawal et al., 2018; Agrawal and Sharma, 2018). 
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