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ABSTRACT

A general state-based peridynamics model is developed to simulate transport of fluids in an
arbitrary heterogeneous porous medium. The generality encompasses modeling of multiphase,
multi-component flow of non-Newtonian and compressible fluids, which is often encountered in
but not limited to subsurface reservoirs. Peridynamic model is especially useful for solving non-
local problems, such as crack propagation, since it does not assume spatial continuity of field
variables. Thus, the formulation presented here, combined with peridynamics-based damage
model, can be used to simulate hydraulic fracturing with complex fluids. To demonstrate its
capability to simulate multi-phase flow in porous media, the derived model is verified against the
analytical Buckley-Leverett solution for immiscible Newtonian two-phase flow. Further, the non-
Newtonian two-phase fluid flow in porous media is verified by simulating the polymer flood
process involving immiscible displacement of a Newtonian fluid by a non-Newtonian fluid against
a generalized solution obtained by Wu, Pruess, and Witherspoon (1991). The non-local solutions
are shown to be consistent with the corresponding local solutions in limiting cases. Moreover,
mass conservation of all the phases is satisfied, irrespective of discretization and extent of non-
locality.

1. Introduction

In a recent paper by Katiyar et al. (2014), a detailed mathematical formulation to obtain a
governing peridynamic equation of transport of a single Newtonian fluid of small and constant
compressibility through arbitrary heterogeneous porous media was developed. We use the
adjective “peridynamic” here due to the similarity of our formulation to the peridynamic theory
developed by Silling (2000) and Silling et al. (2007) within the field of solid mechanics. The
peridynamic formulation was verified by simulating the transport of a fluid of uniform properties
through a porous medium and comparing the results with those from a corresponding analytical
model derived from the classical theory of flow in porous media. The peridynamic porous flow
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in fractured heterogeneous reservoirs. Reservoir hydrocarbons can be compressible, non-
Newtonian and present in multiple phases. These fluids are also transported through the reservoirs
for different applications such as hydraulic fracturing. Therefore, to simulate more realistic
scenarios of fluid transport in heterogeneous porous media, the present work extends the
previously developed model (Katiyar et al., 2014) to a more general peridynamic model of
multiphase transport of a compressible, non-Newtonian fluid in porous media.

In Katiyar et al. (2014), motivations for developing a non-local peridynamic formulation for
modeling porous flow were discussed. For completeness of this article, we summarize here some
of the advantages. Fundamentally, the integral-equation based nonlocal peridynamic formulation
remains valid even when discontinuities in the field variables appear in the domain. The
peridynamic formulation also preserves both strong and weak discontinuities across domain
boundaries without the need of special interface conditions as required by an equivalent classical
model, for example an explicit flux continuity condition. Various complex systems in nature can
elucidate diffusion processes due to local as well nonlocal potential differences. Nonlocal transport
of fluids, observed in geological formations (Koch and Brady, 1988; Cortis and Berkowitz, 2004;
Ganti et al., 2010), can be attributed to a reservoir’s multi-scale heterogeneity in the form of
material properties and/or natural fractures. The integral equation based non-local theory of
peridynamics allows modeling of the transport effects of such spatial non-locality without
explicitly resolving the multiscale heterogeneities. In addition to capturing this non-local transport,
the fluid-flow formulation presented here provides a novel approach for simulating complex fluid-
driven cracks when coupling it with the existing fracture mechanics model from peridynamic
theory. Thus, it has practical applications in simulating hydraulic fracturing of unconventional
hydrocarbon reservaoirs.

The peridynamic theory was originally developed by Silling (2000) as a reformulation of the
classical equation of motion for modeling elasticity and material failure in solid materials and
structures. Bobaru and Duangpanya (2010) extended its application for simulating transient heat
conduction in bodies with evolving discontinuities. Katiyar et al. (2014) developed and
implemented a peridynamics theory for simulating fluid flow in porous media though limiting it
only to the Newtonian fluids of constant and small compressibility. In the present work, through
specializing the constitutive model of Seleson, Gunzburger, and Parks (2013), we relax such
limitations to simulate compressibility and non-Newtonian behavior of fluids.

2. Mathematical Model

In this paper, we use both lower-case and upper-case letters for scalars, e.g. p, u, t, A, V,
lower case boldface letters and symbols for vectors, e.g., x, u, &, upper-case bold face letters for
second-order tensors in the local theory, e.g., K and blackboard letters for the corresponding
second-order tensors in the non-local theory, e.g., K. Borrowing from the mathematical notation
of peridynamic mechanics, mathematical objects called peridynamic states have been introduced
for convenience (Silling et al., 2007). In this formulation, we have used vector and scalar valued
peridynamic states. Peridynamics states depend on position and time and operate on a vector
connecting any two continuum material points. Depending on whether the mapped value of this
operation is a scalar or vector, the state is called a scalar-state or a vector-state, respectively. To
differentiate, peridynamic scalar states are denoted with underlined letters or symbols and
peridynamic vector-states are denoted with underlined bold-faced letters. The mathematical
definition of these peridynamic states is provided wherever they have been used in this work. In
this article, we drop the explicit dependence on time, t to make the notation more concise.
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Figure 1. Left: schematic diagram of a peridynamic material point x and connected flow bonds
in its horizon. Right: schematic of a flow bond between a material point x and its non-local
neighboring material point x’ in 2D.

2.1. State-Based Peridynamic Formulation of Single-phase Transport of Non-Newtonian
and Compressible Fluid through Porous Media

The mass conservation equation for single-phase fluid flow in porous medium at position x €
B and time t, using classical theory (Chen, Huan, and Ma, 2006), is
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where p is the fluid density, @ is the medium porosity, u is the volumetric flux, K is the material
permeability tensor, u is the fluid viscosity, @ is the flow potential and R is the mass generation
per unit bulk volume per unit time. In peridynamics, a material is assumed to be composed of
material points of known density, and every material point interacts with all the neighboring
material points inside a nonlocal region around it. Each interaction pair of a material point with its
neighboring material point is referred as “bond”.

In Katiyar et al. (2014), using variational arguments, a governing state-based peridynamic equation
to simulate transport of single-phase flow of a liquid of small and constant compressibility through
heterogeneous porous medium was developed. The resulting formulation is summarized in this
sequel. Let a body in some reference configuration occupy a region B (Figure 1). The mass
conservation equation for single-phase fluid flow in porous medium at position x € B and time t,
using peridynamic theory, is
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where H, is the neighborhood of x referred as the “family of x”, which is a ball of radius §
referred to as the “horizon”, Q is the peridynamic mass flow scalar state, x' is the position vector

the neighboring points of x inside #,, dV,- is the differential volume of x’, and Q[x]() defined
at position x operating on a “bond” § = x' — x, maps the bond onto a net mass influx density in



that bond. In the local limit, the integral on the right-hand side of equation (2) replaces the
divergence of the volumetric flux term from the equivalent classical theory.
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For simplicity, we make an assumption that the governing peridynamic equation for porous flow
remains the same for multiple fluid phases and the extension of the model to simulate non-
Newtonian and compressible fluid is modeled through the constitutive response.

2.1.1. Constitutive model
We propose a modified constitutive model of the form (Katiyar et al., 2014; Seleson, 2010)

& K[x].&
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where y is a scaling factor dependent on dimension d of the domain and the horizon size J, w($)
is the influence function that provides an additional mechanism to modulate the nonlocal
interactions (Seleson and Parks, 2011) and K is a symmetric constitutive tensor defined such that
it ensures the convergence of the non-local model to the corresponding local model in the limit of
the horizon going to zero. To determine K[x], we seek to develop a relationship between K and
the material properties (medium permeability K[x], fluid density p[x] and fluid viscosity u[x]),
by imposing an equality between the nonlocal peridynamic model in the limit of horizon size § —
0 and the corresponding well-established local model. Substituting equation (4) into the governing
equation (2), we obtain
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For the purpose of establishing a connection to the local model, we momentarily assume
continuously differentiable fields in K and @ such that the following Taylor’s expansions are
admitted

Rlx'] = Klx] + § - VK[x] + 011, (6)
1
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Kix] + K[x'] = 2K[x] + § - VK[x] + 0(lI§]1%). (8)

Substituting equations (7) and (8) into equation (5), we obtain
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Taking & — 0, we recover equation (1) from equation (9). By writing equation (10) in component
form we establish a relationship between constitutive tensor K and material properties (medium
permeability K[x], fluid density p[x] and fluid viscosity u[x]) with a judicious choice of scaling
factor y
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Following Katiyar et al. (2014) and Seleson et al. (2013), it can be shown that the right hand side
in equation (11) simplifies to

dv,. (11)
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Choosing y = d, and using symmetry of K, equation (11) becomes
plx] = 1
ﬁKij[x]—K i[x ]+2Kkk[ 16 (13)
Solving for Ky, for any dimension d,
o 2 plx]
Substituting equation (14) into equation (13), we solve for ]Kl-j
Ry = 200 (K el — 5 Kiolxlo ) (19
Y pulx]\Y 2+d Y

Equation (15) relates the peridynamic constitutive tensor K with known material properties. In the
next subsection, we derive the scaling factor based on the dimension of the problem and the choice
of influence function.

2.1.2. Influence functions
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This influence function gives the same weight to all the neighbors in the horizon. For two
dimensions (d = 2), the horizon is a circle of radius § and using polar coordinates, we have &, =
r cos(8) and &, = r sin(0). Then, the scaling factor in two dimensions with w(§) = 1 is

UZH —rdrdHl =%. (16)

For three dimensions (d = 3), the horizon is a sphere of radius § and using spherical coordinates,
& =rsin(@) cos(0), & =rsin(p) sin(8) and é; = rcos(e). The scaling factor for three
dimensions with w(§) = 1 is
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This influence function allows linearly varying contribution of the neighbors based on their
proximity of the point of interest. Similar to equations (16) and (17), based on the dimension d we
obtain following scaling factors for the constitutive model in equation (4)




(18)

2T -1 24
{ .f f ———dd@ =?ford—2and

fznff drded6 —45fd 3.
kZ rsm<pr<p =53 ford =

Finally, for two dimensions (d = 2), we substitute the scaling factor from equation (16) for
w(&) = 1 and the constitutive tensor from equation (15) into the original proposed constitutive
model (4) to obtain
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For constant influence function w(§) = 1, equation (20) is the governing peridynamic equation of
single fluid porous flow in an arbitrary heterogeneous two dimensional medium. We simplify
equation (20) for homogeneous and isotropic permeability, K[x] = K[x'] = kI to obtain
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In the next subsection, we report the extension of the single-phase model to multicomponent-
multiphase transport of fluid through porous media.

2.2. State-Based Peridynamic Formulation of Multicomponent-multiphase Transport of
Non-Newtonian and Compressible Fluid through Porous Media
Consider the permeable body B through which N,, phases consisting of N. components flow.
Neglecting diffusive mass transport, the mass conservation equation for a component a at any
position x € B and time t, using the classical theory is
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where Sg, pg and R are the saturation, density and mass source of phase f respectively, weg is
the mass fraction of component o in phase B and ug is the phase volumetric flux obtained by
extending Darcy’s law for the physical properties of respective phases;
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Here krb,is the relative permeability of phase 3, accounting for the reduction in permeability due
to presence of the other phases, p4 is the viscosity of phase 5 and ®; is the flow potential in phase

B.
Analogous to equation (3), we can represent the divergence of the mass flux of component « in
equation (23) by

ug[x] = —K|[x] Vdg[x]. (26)
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We propose the following constitutive model to relate the mass flow state aaﬁ [x](§) to the flow
potential of phase S

Qaplx(§) = QplxI(§) waplx] (28)

where
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and the constitutive tensor IKB [x] for respective phase is obtained in terms of material properties
(medium permeability K[x], relative phase permeability k.. ;[x], phase density ps[x] and phase
viscosity ug[x]), by imposing an equality between the nonlocal peridynamic model in the limit of
horizon size § — 0 and the corresponding local model
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with constant scaling factor chosen the same as the single fluid formulation (Section 2.1). For
example, in 2-dimensions and w(§) = 1, the above proposed constitutive model in equation (28)
with appropriate scaling factor (equation (16)) becomes
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With a known constitutive model, the governing peridynamic equation for multicomponent-
multiphase flow can be obtained from equations (23) and (27).

For modeling multiphase fluid flow in reservoirs, generally three types of models are
considered: compositional models, black-oil models, and immiscible two-phase models (Coats et
al, 1998). In a compositional model, the composition of the hydrocarbon components and water
can strongly vary with space and time in different phases (aqueous, oleic, and gaseous) To track
the phase compositions accurately, conservation equations for each of the components and
appropriate equations of state are required, thereby making compositional models numerically
expensive. A less complex alternative is the black-oil model which is detailed in the sequel.

2.2.1. Black-Oil Model

In a black-oil model, there are three phases namely, aqueous, oleic, and gaseous. A black-oil
model is applicable when pressure is below the bubble point and mass can be transferred between
the two hydrocarbon phases (Chen, Huan, and Ma, 2006). It is assumed that no mass is transferred
between the aqueous and the other two phases. Gas solubility in oleic phase is assumed to depend
only on pressure. Thus, all the hydrocarbons are represented by two pseudo hydrocarbon
components, namely oil and gas.

In the following discussion, the two subscripts in the variables refer to components and phases
respectively, unless otherwise stated. In the first subscript, index 1, 2, and 3 correspond to water,
oil, and, gas components, respectively. In the second subscript, index 1, 2, and 3 correspond to
aqueous, oleic and gaseous phases respectively. It is assumed that water can occur only in the
aqueous phase, whereas oil and gas components can occur in either of the two hydrocarbon phases.
Thus, mass fractions translate as

Aqueous phase: wi1 =1, w21 =0, w31 =0
Oleic phase: wiz = 0, wzz = 1-Wz2
Gaseous phase: wis = 0, Wzs = 1-Ws3



Neglecting capillary pressure (i.e., pressure difference between two immiscible phases due to
surface and interfacial tension) between different phases, the LHS of equation (23) can be
expanded as
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where ¢, and c; are the rock and phase compressibility respectively and are functions of pressure:
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In equations (32) and (33), it is assumed that porosity is a function of pressure and phase densities
are functions of phase pressures alone, which is generally applicable for reservoir engineering
applications. For the black-oil model, equation (23) simplified with equations (27) and (31) can be
solved with appropriate initial and boundary conditions and known material properties. The black-
oil model can further be simplified to the immiscible two-phase flow model.

2.2.2. Immiscible Two-Phase flow

Immiscible two-phase flow is a special case of black-oil model, in which there is no gaseous
phase and no mass transfer takes place between phases. It is applicable when pressure is above the
bubble point so that all the gas remains dissolved in oleic phase. The aqueous phase consists of
only water component. Using the index notation described in the previous section, the above
assumption translates into following mass fractions

wir = Lwy, =0,wsy = 0,wyp = 0,wyy = wyy, Wiy =1 — wy,. (34)

2.2.2.1. The Pressure Equation for Compressible Immiscible Two-Phase Flow

Adding the conservation equations of the gas and oil components gives one mass conservation
equation for the oleic phase. From equations (23), (27), and (31), the conservation equation for
each phase takes the following form:
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pressure is considered as the pressure in the aqueous phase and that the phase pressure in the oleic
phase is obtained by accounting for capillary pressure. Relationships such as Brooks-Corey curves
(Brooks and Corey, 1964) are used to calculate capillary pressure in terms of aqueous phase
saturation.

where p is the total pressure, pg is the phase pressure and q.[x] = (

P =D
P2 = P1 T Pc21
Pc21 = f(Sw)

D¢ 21 refers to the capillary pressure between phases 1 and 2.

In the process of simplifying the integral term in RHS of equation (36), we introduce the phase
mobility A5 = k,z/ug. For tractability of the equations, we further choose to simplify the integral
term for a two-dimensional problem with homogeneous and isotropic permeability and w(§) = 1.
We also define the pressure and gravitational head scalar-states respectively for each phase as:

Pg[xI(§) = pplx'] —pplx],  Hplxl(§) = g(pplx'1z[x'] - pglx]z[x]) (37)

where g is the acceleration due to gravity, and z is the height measured from a reference datum.
Thus, the equation (36) becomes
2

0 dp
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X' x)(§) + Hy[x1(8) (38)
WU ( ]+Aﬁ[x]>(4f Jaa,

€112
+ q¢[x].
Equation (38) is the pressure equation for compressible two-phase immiscible flow.

2.2.2.2. The Pressure Equation for Incompressible Immiscible Two-Phase Flow

Another simplifying assumption is to consider the rock and the two fluid phases
incompressible, i.e. ¢, = ¢; = ¢, = 0. The pressure equation (38) then reduces to

11
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For better decoupling of the pressure equation from the saturation equation, we follow Chavent
and Jaffre (1986) and Aarnes, Gimse, and Lie (2007) and define a global pressure as p* = p, — p.
that contains the saturation-dependent pressure terms p. (complementary pressure) defined as
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where &[x](f) = pclx'] — pclx], P, [x(§) = P.,,[x'] — P, [x]. Thus, the pressure equation
(39) simplifies to

dAxl + qt[x] (41)
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in only one pressure, p* with P*[x](§) = p*[x'] — p*[x].

2.2.2.3. The Saturation Equation for Incompressible Immiscible Two-Phase Flow

Along with phase pressures, we also need to determine the phase saturations. For the two—
phase flow case, the unknown saturations are of aqueous (S;) and oleic (S,) phases. However, the
phase saturations are constrained by equation (23), so only one of the two phase-saturations needs
to be determined and the common practice is to solve for S;. From equation (35), the mass
conservation equation for water component, with the incompressible rock and fluid assumption, is

das 4k
olx = | M,
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which serves as the saturation equation for incompressible immiscible two-phase flow. The
pressure equation (41) is solved with the saturation dependent properties and the saturation
equation is solved with the global pressure obtained from the pressure equation (41).

(42)

I - 752 dA,, + Ry[x]
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3. Model Verification

We verify the peridynamics multiphase flow model by solving the immiscible displacement
of one fluid by another. One-dimensional flow is solved in a uniform horizontal reservoir with a
fluid injection source at one end and a production sink at the other. For simplicity, it is assumed
that the rate of fluid injection and the rate of fluid production at the respective ends are the same.

The model presented here can simulate complex fluids since it accounts for compressible and
non-Newtonian behavior. In this section, two verification problems are considered — one in which
Newtonian water displaces Newtonian oil and the other in which a non-Newtonian polymer
solution displaces Newtonian oil. In the petroleum engineering community, these displacement
processes are known as ‘water flood’ and ‘polymer flood’ respectively. The fluids are assumed to
be slightly compressible in both the problems.

3.1. Problem 1: Immiscible displacement of a Newtonian fluid (oil) by another Newtonian
fluid (water) — Water flood

A schematic of this verification problem is shown in Figure 2. The model parameters are
summarized in Table 1. A Brooks-Corey relationship (Brooks and Corey, 1964) is assumed for
calculating relative permeability of the two phases:

krw (Sw) = k79w * (SWD)NW (43)

kro (Sw) = k?o * (1 - SWD)N0 (44)

where S, is water saturation, kr" and kro? are end-point relative permeabilities, and Ny, and
No are relative permeability exponents of aqueous and oleic phase respectively. Suwp is
dimensionless water saturation and is defined as:

S _ Sw - Swr
WP 1- Sor - Swr.
where S,,- and S, are residual saturations of water and oil respectively.

(45)

Water Oil

} t

Figure 2. Schematic of water flood process. Cooler colors represent higher saturations of water,
whereas warmer colors represent higher saturations of oil (scale in the width direction is highly
exaggerated)

Table 1. Simulation parameters for Problem 1

Length of domain (L) 200 m
Porosity (¢) 30%
Permeability (x) 100 mD
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Initial pressure (Pini) 20 MPa
Initial water saturation (Sw, ini) 0.0
Residual saturations of both fluids (Swr and Sor) 0.0
End-point relative permeability for both fluids (k) 1.0
Relative permeability exponents for both fluids (N) 2
Density of both fluids (pw and po) 1 kg/m?®
Viscosity of both fluids (uw and o) 1cP
Rate of injection and production (Q) 4e-5 kg/s

3.1.1. Numerical discretization

The computational domain is discretized into uniform grid cells of size Ax = Ay = Az = Ly/ny,
where Ly is the length of the domain and nx is the number of grid cells in x-direction. Since our
objective is to simulate 1-D flow, there is just one cell in y- and z- directions. One computational
node is assumed at the center of each grid cell and is assigned a volume equivalent to that of one
cell, (ax)°.

3.1.2. Analytical local solution
The mobility ratio for an immiscible displacement process is defined as:

M= % _ kv /W
M, kro/uo

where M,, and M, are the mobilities of aqueous and oleic phases respectively.

(46)

For M <1, a piston-like displacement occurs which is characterized by the formation of a
shock-front. As in-situ fluid is displaced, it moves from injector well towards the producer well.
Before the shock-front reaches the producer well, only in-situ fluid is produced. When it has
reached the producer well, the displacing fluid breaks through and both fluids are produced
thereafter.

Neglecting gravity and capillary pressure between the aqueous and oleic phases, the
analytical local solution can be obtained by using the fractional flow theory established by Buckley
and Leverett (1941). For completeness, the steps for finding the analytical local solution have been
summarized here.

a) Fractional flow of water phase is given as:

Qw_ _ Krw (Sw)/ b
wt Qo krw(Sw)/w + Ko (Sw)/Ho

b) The water saturation at the shock front (S, ;) is obtained by solving the following
equation:

(47)

fw(Sw) = q
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c) The position of the shock front is determined as:
0 fw
Xp =75 *ip- 49
95y, (49)

d) The reservoir behind the shock front is swept by water, thereby increasing water
saturation in that region. For all water saturations greater than the shock front water

saturation obtained in equation (48), 3%| is calculated by differentiating equation
wis,
(47).

e) At a given dimensionless time (tp), the dimensionless position (x,) of each water
saturation greater than the shock front water saturation can be calculated as:

_ v

N

*1p (50)

f) The reservoir ahead of the shock front has not been swept by water yet. Thus, in the
region ahead of the shock-front:

Sw = Sw,ini (51)

3.1.3. Peridynamic solution

Figure 3 shows the analytical local and peridynamic solutions to the classical Buckley
Leverett problem for M=1. Dimensionless water saturation (Swp) is plotted against dimensionless
distance from the injector well (xp) at a dimensionless time (tp). These parameters are defined as:

X
Xp =7~ (52)
Ly
_ O~xt
ip = b %PV (53)

where Q is the injection rate (kg/s), p is density of injected fluid (kg/m?), and PV is the pore
volume injected (m®) (= Porosity * domain volume).
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Figure 3. Analytical local and peridynamic (PD) saturation profiles for water flood problem. (a):
before breakthrough (at tpo = 0.2). (b): after breakthrough (at to = 1.2). m is the number of non-
local neighbors for each cell (described in more detail in Section 3.1.4)

Dimensionless water saturation (SwD)

The sharp discontinuity in analytical local solution is the shock-front described above. Except for
the smearing of the shock-front in Figure 3 (a), the peridynamic solution matches water saturation
from the analytical local solution very well, both behind and ahead of the shock-front, and both
before and after the breakthrough. It should be noted that the smearing of the shock-front is a
characteristic of the non-local contributions to diffusion terms in equations (1) and (23). These
non-local contributions become smaller as the horizon size is shrunk (Bobaru and Ha 2011). Using
the curves shown in these figures, a convergence study for the waterflood problem is discussed in
the next sub-section.

3.1.4. Convergence study

Peridynamics is a non-local formulation and accounts for interactions from all its neighboring
nodes within a characteristic length scale, called horizon (6). If a 1-D domain is discretized into
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uniform cell size of length Ax, the number of non-local neighbors to each cell is m (=§/4x) in each
direction.

The non-local peridynamic solution converges to the local solution in the limit of 6 going to
zero and m being infinitely large simultaneously. Such a convergence study is referred to as 6-m
convergence study (Bobaru et al, 2009). Please note that this study is different from the m-
convergence study taken up in Katiyar et al. (2014). The objective in that work was to find an
optimum choice for both 6 and m by varying m for different values of 6. The objective here is to
show that the local solution can be recovered from non-local solution in the limiting case.

Four cases were considered with successively smaller & and larger m. The values for these
parameters are given in Table 2.

Table 2. Horizon size (6) and number of non-local neighbors (m) for the three cases

Case Horizon size (6) Number of non-local neighbors (m)
1 0.80m 2
2 0.60 m 3
3 0.40m 4
4 0.25m 5

Figure 4 demonstrates the convergence of non-local solution towards the local solution by
plotting relative differences for the four cases. With reference to Figure 3, relative difference is
defined as:

.S S .
Relative difference = xl wanalytical W'numemall * 100 (54)

Aanalytical

where Agnaiyticar 1S the area under the analytical local curves in Figure 3.
1.25 -

4

[

IS

e -

in n
1 1

Relative difference (%)
=
o

Case number

Figure 4. Relative difference in water saturation profile as horizon size (6) decreases and
number of non-local neighbors (m) increases simultaneously as shown in Table 2.
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A higher number of non-local neighbors requires higher computational resources owing to
denser coefficient matrices. Thus, unless otherwise stated, we use m=3 in the subsequent
simulations to get a reasonably accurate non-local solution, while retaining a low computational
cost. The choice of this value of m comes from our experience gained so far with peridynamic
simulations.

3.2. Problem 2: Immiscible displacement of a Newtonian fluid (oil) by a non-Newtonian
fluid (polymer) — Polymer flood

In this verification problem, Newtonian oil is displaced by a shear-thinning polymer solution
and a schematic is shown in Figure 5. Polymer solution is injected at different rates to study the
effect of injection rate on oil recovery. Except for the viscosity of the displacing fluid and the
injection and production rates, the rest of the parameters remain the same as in verification problem
1 and are summarized in Table 3. Power law relationship is assumed between polymer viscosity
and shear rate:

p = H ()" (55)

where p,, is the polymer viscosity, y is the shear rate, H is the intrinsic viscosity, and n is the
power law exponent.

Polymer Oil

y 1
ITTTTTITTTT TRNERERERTE

Figure 5. Schematic of polymer flood process. Cooler colors represent higher saturations of
polymer, whereas warmer colors represent higher saturations of oil (scale in vertical direction is
highly exaggerated)

Table 3. Simulation parameters for Problem 2

Length of domain (L) 200 m
Porosity (¢) 30%
Permeability (x) 100 mD
Initial pressure (Pini) 20 MPa
Initial polymer saturation (Sw, ini) 0.0
Residual saturations of both fluids (Sr) 0.0
End-point relative permeability for both fluids (k) 1.0
Relative permeability exponents for both fluids (N) 2
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Density of both fluids (pp and po)

1 kg/m?®

Viscosity of oil (lo) 1cP
Intrinsic viscosity of polymer (H) 1cP
Power law exponent (n) 0.5

Rate of injection and production (Q)

4e-5 kg/s in fast injection rate
4e-6 kg/s in slow injection rate

3.2.1. Analytical local solution

Following the incompressibility assumption, total flow of both the fluids at any cross-
section should remain constant with time and should be equal to the injection rate:

u(t) = Uinjection = Uoit T Upolymer

Using Darcy’s law, flow rates of oil and polymer solution can be written as:

Upolymer =

kr,oil a_P
Moj 0x

Upjp = —K

kr,polymer oP

Hpolymer 0x

(56)

(57)

(58)

We used the relationship for equivalent non-Newtonian viscosity derived by Wu et al.
(1991). Combining the above three equations with the constitutive relations (43), (44), and (55),
they plotted the pressure gradients as a function of non-Newtonian fluid saturation (polymer
saturation) for different injection rates.

Figure 6 demonstrates that at faster injection rates of the polymer, the pressure gradients
are higher for any given polymer saturation. This leads to higher shear rates, which in turn result
in lower viscosity of the shear thinning polymer. From Buckley-Leverett analysis, it is known that
lower viscosity of the displacing fluid leads to reduced sweep efficiency and hence less oil
recovery. This idea is used to verify the peridynamic solution for immiscible displacement by a

non-Newtonian fluid.
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Figure 6. Pressure gradient as a function of non-Newtonian fluid (polymer solution) saturation in
a polymer flood (Wu et al., 1991). In that study, it is assumed that us > uz > us.

3.2.2. Peridynamic solution

Figure 7 shows the saturation profiles for two different injection rates before the displacing
polymer solution breaks through at the producer well. Again, except for the smearing of the shock-
front, the peridynamics solution captures the polymer saturation very well both behind and ahead
of the shock-front.
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0.2) for polymer flood problem. (a): at fast injection rate (4e-5 kg/s). (b): at slow injection rate
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Figure 8 shows the saturation profiles for the same injection rates after the polymer solution breaks
through the producer well.
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Figure 9 shows the recovery plots for the corresponding injection rates. There is an excellent
match with the analytical local solution in these plots. At slower injection rate, the peridynamic
simulations predict a higher oil recovery which is consistent with the findings of Wu et al. (1991).
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Figure 9. Analytical local and peridynamic (PD) recovery plots for polymer flood problem. (a):
at fast injection rate (4e-5 kg/s). (b): at slow injection rate (4e-6 kg/s)

3.2.3. Convergence study

Following the same procedure as outlined in Section 3.1.3, Figure 10 has been obtained to
show the convergence of non-local solution towards analytical local solution. The differences in
this case are larger compared to those in the waterflood problem (Figure 4) because the shock-
front is smeared out further. However, they are still within the acceptable range of errors for
engineering applications and more accurate results can be obtained at the expense of higher
computational resources.

—e—Fastinjection —#—Slow injection

Relative difference (%)
(78]

Case number

Figure 10. Relative difference in polymer saturation profile as horizon size (&) decreases and
number of non-local neighbors (m) increases simultaneously as shown in Table 2.

Figure 11 shows the relative differences in oil recovery at tp = 0.2 PV. It should be noted that
although the shock-fronts in the saturation profiles are smeared out further, the relative differences
in oil recovery are negligible. This signifies that the mass conservation is honored in these
simulations.
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Figure 11. Relative difference in oil recovery as horizon size (6) decreases and number of non-
local neighbors (m) increases simultaneously as shown in Table 2.

3. Conclusions

In Katiyar et al. (2014), a state-based peridynamic formulation for single phase convective
transport of a fluid with small, constant compressibility and Newtonian flow characteristics was
presented. In this research, we have generalized the model to multi-phase, multi-component fluids
showing varying compressibility and non-Newtonian behavior. These non-local fluid flow models
have been derived with an intent of applying them to our peridynamics-based hydraulic fracturing
simulator (Ouchi et al., 2015). Thus, we have chosen to simplify the derived equations for different
kinds of multiphase models used in petroleum engineering. A compositional model is not
presented because of its associated computational costs. Less expensive models such as black-oil
and immiscible two-phase flow models are presented in detail.

We have demonstrated application of the multiphase model by solving 1-D linear, immiscible
displacement of oil by water (water flood) and by a shear-thinning polymer (polymer flood).
Saturation profiles show a characteristic shock front in such problems, which is smeared out in our
peridynamic solutions due to it being a non-local formulation. A J-m convergence study is
performed to recover the analytical local solution from numerical non-local solution by shrinking
the horizon size (9) and increasing the number of non-local neighbors (m) simultaneously. Thus,
saturation profiles retrieve the shock front for the two problems. Moreover, convergence of oil
recovery plots to the analytical local solution verifies overall mass conservation in the proposed
non-local model. In the polymer flood problem, our simulations also capture the observation that
oil recovery decreases at higher injection rates of a shear-thinning polymer.

Following this research, we are currently working on validating the developed peridynamics
model in higher dimensions with the laboratory-scale hydraulic fracturing experiments and field
scale observations involving multiple phases. These work have been reported in separate
publications (Agrawal et al., 2018; Agrawal and Sharma, 2018).
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