Intelligent Reservoir Generation for Liquid State
Machines using Evolutionary Optimization

John J. M. Reynolds, James S. Plank

Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, Tennessee 37996
Email: [jreyno40, jplank]@vols.utk.edu

Abstract—Neuromorphic Computing is a burgeoning field of
research. Many groups are exploring hardware architectures
and theoretical ideas about spiking recurrent neural networks.
The overarching goal is to exploit the low power promise of
these neuromorphic systems. However, it is difficult to train
spiking recurrent neural networks (SRNNs) to perform tasks
and make efficient use of neuromorphic hardware. Reservoir
Computing is an attractive methodology because it requires no
tuning of weights for the reservoir itself. Yet, to find optimal
reservoirs, manual tuning of hyperparameters such as hidden
neurons, synaptic density, and natural structure is still required.
Because of this, researchers often have to generate and evaluate
many networks, which can result in non-trivial amounts of
computation. This paper employs the reservoir computing tech-
nique (specifically liquid state machines) and genetic algorithms
in order to develop useful networks that can be deployed on
neuromorphic hardware. We build on past work in reservoir
computing and genetic algorithms to demonstrate the power of
combining these two techniques and the advantage it can provide
over manually tuning reservoirs for use on classification tasks.
We discuss the complexities of determining whether or not to
use the genetic algorithms approach for liquid state machine
generation.

Index Terms—spiking neural networks, reservoir computing,
genetic algorithms, machine learning, neuromorphic computing.

I. INTRODUCTION

Spiking recurrent neural networks (SRNN) are an increas-
ingly popular model of computation. This is in part due to
the rise of commercial spiking neuromorphic systems such as
IBM’s TrueNorth and Intel’s Loihi [1] [2] [3]. Because of their
theoretical capabilities [4], they are able to tackle complex
tasks such as spatiotemporal data processing [5]. A key
question associated with SRNNs is that of training, both for
general SRNNs and for those developed with intent to deploy
on real neuromorphic systems. Specifically, determining the
network’s topology (number of neurons and synapses and
their connectivity) as well as the parameters of the network
(weights, thresholds, etc.) is not a straightforward task. To
achieve the full computational power of SRNNs and thus
of neuromorphic systems, it is imperative that we develop
effective algorithms for building SRNNS tailored to real tasks.

In this work, we explore two optimization techniques
for randomly creating reservoirs in a liquid state machine
implementation of reservoir computing. The first technique

Catherine D. Schuman
Computational Data Analytics
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
Email: schumancd@ornl.gov

is a grid search on two hyperparameters — hidden neurons
and synaptic density — where random reservoirs are created
on each instance of the grid search. The second technique
employs a genetic algorithm called Evolutionary Optimization
of Neuromorphic Systems (EONS), where smaller random
populations of reservoirs are created and then evolved to
optimize the reservoirs. We compare the two approaches on a
classification problem implemented by a spiking neuromorphic
system called DANNA2 [6]. We also explore the impact
of standard metrics for reservoirs on each of the reservoirs
generated by both techniques.

II. BACKGROUND AND RELATED WORK

Spiking neural networks gained prominence in neural net-
work literature in the late 1990’s. One of the most important
distinguishing factors between spiking neural networks and
previous generations is the non-trivialization of time in the
computation of the network. In particular, the timing of
events in a spiking neural network are integral to the way
that computation occurs [4]. Since then, they have become
increasingly popular, partially due to the rise of commercial
spiking neuromorphic hardware [1]. Spiking recurrent neural
networks (SRNNs) are those that allow for recurrent connec-
tions. Typically, these networks are not organized in a layered
structure that is typical with other neural network types.

As noted in the introduction, a key issue associated with
spiking neural networks is how to train them. Gradient-descent
or back-propagation-based spiking neural network training
algorithms have been proposed [7], but they typically rely on a
pre-determined network topology and do not fully leverage the
computational capabilities of the networks. One of the most
common training approaches for spiking neural networks in
general (including spiking recurrent neural networks) is spike-
timing dependent plasticity or STDP [8]. Again, in this case,
elements of the network like synaptic delays and topology may
not be defined by the training algorithm, leaving them for the
user to define, often in an ad hoc manner.

Defining network topology in a systematic way has been
done for both traditional neural networks and spiking neural
networks using algorithms in the field of neuroevolution [9].
Neuroevolution methods have been used to determine all
aspects of neural networks, including determining network

topology and parameters simultaneously [10] and determining
network topology while utilizing a more traditional weight
training algorithm [11]. Neuroevolution methods have also
been used specifically for evolving spiking neural networks
[12], [13] and spiking neural networks for neuromorphic
implementation [14], [15].

Reservoir computing is another widely used approach for
utilizing recurrent neural networks [16]. As previously men-
tioned, it is particularly attractive because no tuning of reser-
voir synaptic weights is required. However, the technique still
typically requires the tuning of hyperparameters, which we
discuss later in this work. The two main reservoir computing
approaches are echo state networks and liquid state machines.
Echo state networks [17] use non-spiking recurrent neural
networks for the reservoir. Liquid state machines [18] use
spiking recurrent neural networks. Reservoir computing and
liquid state machines have successfully utilized spiking re-
current neural networks for a variety of applications, such as
robotics controls, object tracking, motion prediction, pattern
classification, signal processing, and time-series prediction/-
classification [19], [20], [21], [22].

Using memristive devices and neuromorphic architectures
for reservoir computing is also an active area of research
[23], [24], [25], [26]. The ability for spiking architectures to
provide interesting complex computation without training the
full network leads to energy efficient hardware applications.
Further, reservoir computing can be implemented with other
sufficiently dynamical physical systems. For instance, research
groups have demonstrated implementations of reservoir com-
puting using actual liquid [27], optoelectronics [28], and
quantum systems [29].

III. SPIKING RECURRENT NEURAL NETWORK MODEL
AND TRAINING METHODS

A. Spiking Recurrent Neural Network Model

For this work, we use the DANNA2 neuromorphic model
[6]. DANNA2 offers a software simulation and a digital
hardware architecture for spiking recurrent neural networks
(SRNN). Each network is a collection of neurons arranged
within a two-dimensional coordinate system. Neurons follow
a simple accumulate and fire model in which each neuron
accumulates charge over time until a specified threshold is
reached leading to an output spike. After a neuron fires, it
enters a configurable refractory period in which it may not
fire again until refractory is complete. Further, neurons have
a configurable leak parameter. Spikes propagate from one
neuron to another through synapses. Each synapse transfers a
spike from one neuron to another with a configurable weight
value and temporal delay. The weight parameter for a given
synapse can be dynamically modified during operation using
Spike Timing Dependent Plasticity (STDP). Weights can be
both negative and positive, thus allowing for both excitatory
and inhibitory connections. In this work, STDP is not utilized.

012345...

State

Input Vector|

Probability
Distribution

Fig. 1: Diagram of reservoir computing. Input is passed into the
reservoir (liquid in this case), then after a predetermined amount
of time, the reservoir is sampled and the sample is passed into the
readout layer as a feature vector.

B. Training: Reservoir Computing

A Liquid State Machine (LSM), shown in Figure 1 is a
computational model incorporating the time-varying behavior
of recurrent spiking neural networks as a filter for information.
The LSM model includes three parts; an input layer, the
liquid, and a readout layer. In order to act successfully as the
liquid or reservoir, a spiking neural network must have two
important properties: input separability and fading memory.
Input separability simply means that the liquid filters the
data in such a way that, provided different inputs, different
states are reached. Without this property, a readout mechanism
will be unable to differentiate between the different inputs.
For example, measures such as Euclidean distance can be
used to track rates of separability across output vectors [4].
Fading memory is the requirement that a single input will
not recursively propagate ad infinitum. Several measures of
reservoir stability have been explored, such as the spectral
radius and the Jacobian of the weight matrix [30]. These
features give numerical measures of reservoir stability with
respect to fading memory, and they have been used in studies
of genetic algorithms for reservoir generation [31].

If a network has input separability and fading memory, it
can be proven to be a universal function approximator via
the Stone-Weierstrass theorem [20]. In theory, if a spiking
neural network has these two characteristics, then it can act
as the liquid for a LSM. Thus, the only training step for the
spiking neural network component is ensuring that the network
is sufficiently complex as to have both properties required
of the liquid. This can make randomly generated liquids
sufficient. However, the likelihood of a randomly generated
network working well for a given problem depends on prior
information, such as a relative size for the randomly generated
liquid. It also depends on the problem to be solved. Hyper-
parameters like the number of hidden neurons, the synaptic
density, the actual topology (connections), leak values, and
any other tunable network parameters can have an impact
on reservoir success. In this respect, researchers often have
to generate and evaluate many networks before arriving at
a successful or optimal reservoir, even when a valid set of
hyperparameters are selected. As we discuss in this paper,
genetic algorithms can help to generate successful topologies
without needing to have intuition about these properties in
advance.

After the potential liquid has been generated, it is stimulated

to generate states for post-processing. The readout layer is
trained to classify information from the extracted reservoir
state vectors. In particular, the readout layer is typically trained
with linear regression, though the definition of a Liquid State
Machine is general enough to allow for different kinds of
readout layers such as support vector machines, perceptrons,
or multivariate logistic regression (softmax).

Here, we use a multinomial logistic regression (a softmax
classifier) for the readout layer. The weight matrix is trained
with gradient descent and the backpropagation algorithm. In-
put is fed into the liquid, which transforms its state throughout
the process of spiking events. It is this altered state (the outputs
of the liquid) that is captured for processing by the readout
layer. After a predetermined number of simulation cycles,
the state of the liquid is taken and passed to the softmax
classifier. The state representation of the liquid is contained
within a vector. The state vector Z that we utilize in this work
consists of the number of spikes an output produces throughout
simulation, and contains elements equal to the number of
outputs of the network. A state corresponding to a particular
input may be reused; it does not have to be re-simulated
for every training step. Mathematically, the representation is
described as follows:

N
Zi = ZOutputi,j (1)

J

N is equivalent to the number of simulated timesteps. The
vector Qutput; ; contains a 0 if the output neuron ¢ did not
fire on timestep j, and a 1 if it did fire. Z; represents the state
for output ¢. The state vector is computed after simulation and
passed to the readout layer. Instead of a snapshot of the entire
state of the liquid at a particular time, the state vector tracks
the dynamical behavior of the network through output spikes.
Note that this is merely one possible state representation used
for the ease of computation. Other possibilities exist and can
improve classification performance through the use of more
extensive information from the spike trains, such as low-pass
exponential filtering of the generated spike signals.

The representation described above is passed through the
readout layer to determine the final output. During the training
phase, the readout layer then computes the error gradient of
the softmax and squared error cost function. Lastly, backprop-
agation is used to update the weights.

C. Training: Evolutionary Optimization of Neuromorphic Sys-
tems

For our genetic algorithm, we use Evolutionary Optimiza-
tion of Neuromorphic Systems (EONS), which has been
employed previously to train SRNNs intended for use on
neuromorphic systems [14], [32]. What makes EONS interest-
ing is that it optimizes not only the numeric hyperparameters
of the SRNN’s, but also their structure. Networks in the
EONS populations are represented as graphs in which the
nodes and edges have optimizable parameters. Crossover and
mutation operations leverage this graph-based representation.

Each application must implement a fitness function that takes
a network as input and returns a single numerical score, in
which higher fitness scores correspond to better performing
networks. The EONS framework determines both the topology
of the network (number of neurons and synapses and connec-
tivity pattern) and the parameters of the network (weights,
thresholds, etc.) Note that having to define a fitness function
which determines what output comprises high success rates is
different than that of a readout layer in reservoir computing.

D. EONS Applied to LSMs

We explore two methods for training liquid state machines:
grid search and EONS. To use EONS, we must provide a
value of fitness for each network in the population. The
value of fitness is computed in multiple steps. First, the
network is stimulated by applying spikes over time. After
the predetermined number of time-steps have passed, the state
vectors are collected in the format described in the preceding
section. Then, the readout layer is trained. The fitness achieved
by the readout layer is returned as the fitness value. Several
other fitness values for genetic algorithms training liquid
state machines have been explored, such as using metrics
describing the network separability or spectral radius [33]. As
we demonstrate in our results, relying on those properties may
not be the best approach to finding successful reservoirs.

IV. EXPERIMENT AND RESULTS

The classification accuracies of reservoir computing on
many well known datasets have been demonstrated in previ-
ous work by other researchers [34]. Here we focus on the
Ionosphere dataset as a case study [35], as our goal is to
demonstrate the usefulness of EONS when compared to grid
search. First, we will describe the dataset. Then, we will delve
into the experiment we performed. Finally, we will examine
the results obtained with each of the individual methods.

A. Ionosphere

The Ionosphere dataset is a collection of information gen-
erated by a phased array of 16 high-frequency antennas. The
antennas send a multipulse pattern targetting free electrons
in the ionosphere. A receiver is activated in-between pulses.
The result is 17 pulse numbers each composed of 2 complex
attributes representing the electromagnetic signal, resulting
in a total of 34 continuous valued features. Each of the 34
samples is converted into a range of 10 pulses on an individual
input neuron, with an interval of 1 time step between pulses.
Thus, 34 inputs, each spiking a number of pulses proportional
to the input value. The phase shift of returns is measured to
determine the target velocity. In specific, an autocorrelation
function is computed on the returned signal, which can be
used to determine the Doppler velocity of the target. If a
target is moving with constant velocity, the autocorrelation
function will show a phase shift proportional to the pulse
number. A sample is determined to be a “good” radar return if
structure was detected (and the phase shift is proportional), and
determined to be “bad” otherwise. Reservoir computing results

Training Accuracy

0.95
10

20
0.90
30 A

40 -
0.85
50 1

Neurons

60
0.80
70 A
80
0.75
90

100

0.70

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Synapse density

Training Accuracy

0.95
60 -

61 4

0.90
62

0.85

Neurons

0.80

67 -
0.75
68 -

69 -

0.70

T T T T T T T T T T
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
Synapse density

Testing Accuracy

0.95
10

20
0.90
30 A

40 -
0.85
50 1

Neurons

60
0.80
70 A
80
0.75
a0

100

0.70

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Synapse density

Testing Accuracy

0.95
60

61

0.90
62

0.85

Neurens

0.80

67 4
0.75
68 4

69

0.70

T T T T T T T T T T
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
Synapse density

Fig. 2: The heat maps above were generated from a two-level grid search on randomly created reservoirs trained on the ionosphere dataset.
Each block in the heat map represents the best accuracy from a population of 100. The number of hidden neurons and the synaptic density
are varied on the y and x axes respectively. Note that the y-axis refers to number of hidden neurons, and that the synaptic density refers
to hidden + 20 outputs, so (hidden + 20) x density for all possible connections. The bottom heat maps are of a second level search
across the 60 neurons block centered on the best accuracy from the top level grid search: 0.15 synaptic density. This demonstrates that the

hyperparameter configuration is an integral part of reservoir success.

from randomly generated reservoirs are previously reported as
92%, but an accuracy of 96% is typical of traditional machine
learning algorithms, with a high of 98% [34].

B. Experiment Design

For our experiment we evaluated 60,000 networks using
both grid search and EONS, which resulted in a total of
120,000 network evaluations. The number of tests was kept the
same to demonstrate the results of each method with the exact
same number of network simulations. There are 34 inputs to
the reservoir, 20 outputs from the reservoir to the readout, and
a softmax layer with two outputs for the readout. Each method
was evaluated on the ionosphere dataset with a 50/50 train/test
split. The readout was trained on each individual network
for 1,000 epochs with a learning rate of 0.001 (determined
experimentally). DANNA2 synaptic weights range from -256

to 255, and delays range from O to 255 [6]. Values are
uniformly distributed across this range for generation.

We recorded the training and testing accuracy of each
of the 120,000 evaluated networks as well as the metrics
relevant to reservoir computing discussed in previous sections.
Specifically, we look at the spectral radius of networks, which
is related to the fading memory property. We also recorded
the silhouette coefficient, which is a commonly used metric in
statistics ranging from -1.0 to 1.0. The silhouette coefficient
represents the validity of clusters generated by clustering
methods. A coefficient value of -1.0 means that all points are
incorrectly clustered, and a value 1.0 represents fully valid
clusters [36]. In the context of reservoir computing, it is a
single value that can be viewed as a representation of the
ability of a liquid to separate information, and it is computed

Coarse-grained Grid Search Distribution

8.0%
mmm Train Accuracy

Test Accuracy
4.0%

3.0%

2.0%

1.0% A I I

0.0% {2 B 1 . . : i
0.5 0.6 0.7 0.8 0.9

Accuracy

7.0% A

6.0% A

5.0% A

Percentage of Networks

1.0

8.0%

Fine-grained Grid Search All Configurations Distribution
B Train Accuracy
Test Accuracy

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

7.0% A

6.0% -

5.0% A

4.0%

3.0% A

Percentage of Networks

2.0% A

1.0% A

0.0%

Fig. 3: The histograms depicted above represent the accuracy dis-
tribution across configurations utilized in the grid search. It is clear
that a valid choice of hyperparameters still does not ensure successful
reservoirs. Further, even within a fine-grained search across a good
choice of hyperparameters, many liquid evaluations may be required.
The accuracy distribution is higher on average in the fine-grained
approach, but the highest performing reservoirs are still a small
portion of the overall distribution.

from the state vectors generated by sampling a liquid after
stimulation.

C. Grid Search Results

Knowing where to start with the hyperparameters for liquid
state machine generation can be unclear. There are guidelines
and recommendations for reservoir computing [37], but often
researchers have to generate many random networks to find
a satisfactory solution. To demonstrate this, we performed a
grid search varying the number of hidden neurons and the
synaptic density (relative to the number of hidden neurons).
The number of hidden neurons was varied from 10 to 100 in
increments of 10, and the synaptic density was varied from 5%
to 50% in increments of 5%. For each of these configurations,
100 random networks were generated. After the coarse-grained
grid search, the five best hyperparameter settings for number
of hidden neurons and synaptic density were chosen, and a
fine-grained grid search was performed in which we fine-tuned
the search to vary across the best performing configurations
in increments of 1 neuron and 1% synaptic density (also with
100 networks per configuration). In total, the coarse-grained

Spectral Radius for Accuracy

N N
(=) (S
I
——
—

Spectral Radius
=
. ! "

o ll T il
N ' : . |
HM MMﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂuw“w T”"
oloo#ﬁM&mﬁimﬁ&&iﬂMMUWWVWW

T —— e —

Train Accuracy

Fig. 4: These graphs are generated from all 60k of the grid search
tests. The average silhouette coefficient increases with accuracy, but
still has a wide range of values. The spectral radius also narrows
to a certain range with higher accuracy, but spectral radius values
in that range exist across a majority of the spectrum of accuracy, so
having a value in that range does not guarantee success, nor prevent
it.

grid search was 10,000 tests, and each fine-grained grid search
was 10,000 tests, for a total of 60,000 tests.

The relevant results are shown in the heat maps in Figure 2.
The top two heat maps are of the coarse-grained grid search
training and testing accuracy. It is clear that certain configu-
rations outperform others, with the highest synaptic densities
resulting in far lower levels of accuracy. This is a result of the
network activity becoming too chaotic to convey information.
The success depends upon the combination of neurons &
synaptic density rather than on one of the two parameters.
In other words, this forms a joint probability distribution.
To further demonstrate that hyperparameter configuration is
important, we display results from the fine-grained search
on the best training accuracy spot: 60 neurons centered on
a synaptic density of 0.15. The bottom heat maps are of
this search, and show that high accuracy is attained across
the spectrum of hyperparameters when an appropriate coarse-
grained configuration is found. However, it is important to

note that these heat maps are demonstrating the best accuracy
achieved out of 100 networks for each configuration. Even
after finding an appropriate selection of hyperparameters, the
distribution of reservoir success can vary wildly. This is
shown in Figure 3, and serves as an example of the need to
evaluate multiple reservoirs before finding a successful one.
An exhaustive search is required in order to know the true
distribution of successful reservoirs.

As mentioned earlier in this paper, metrics associated with
reservoirs are often evaluated in order to determine the validity
and success of said reservoir. While there certainly can be
a correlation between certain metrics and accuracy, having a
“good” value for such a metric does not guarantee success.
On the other hand, having high accuracy does not mean one
will have good reservoir values. This is demonstrated in the
box plots in Figure 4. We can see that the average silhouette
coefficient increases with accuracy, but still has a wide range
of values. Further, the highest accuracy networks seemingly
do not follow the trend, and thus appear to be outliers. Notice
the lack of range on some of the x points, as they appear to be
single instances of these high accuracy networks rather than
repeatable scores. They are included because this data was all
generated by the experiments performed as a part of this work,
and the outliers demonstrate the necessity of hyperparameter
tuning to achieve high levels of reservoir performance.

The spectral radius also narrows to a certain range with
higher accuracy, but spectral radius values in that range exist
across a majority of the spectrum of accuracy, so having a
value in that range does not guarantee success [37]. Because
the spectral radius alone is an inadequate measure of reser-
voir capability, and separability metrics all rely on gather-
ing state vectors from reservoir simulation, it is essentially
a requirement that the liquids be simulated for evaluating
success accurately. Therefore, the number of computations can
easily become the same as that of performing an intelligent
generation of liquids, as is done with EONS.

It is important to note that the rate of success from random
generation can essentially go to zero if networks are not
complex enough or too complex, even when the spectral radius
falls into the recommended region from literature (which is
less than 1.0, but not too low to not generate activity). The
size of the network required depends entirely upon the problem
attempting to be solved, and thus to truly map the distribution
of rates of success from random generation for a particular
problem, one would need to perform an exhaustive parameter
sweep across the number of neurons, number of synapses,
number of outputs being sampled, limiting delays on synapses,
leak on/off, synaptic plasticity on/off, and any other adjustable
network parameters. This is clearly comparable in complexity
to utilizing a structured run of EONS.

D. EONS LSMs

We set the population of each EONS run to be 50 networks.
We performed 100 runs, each lasting 12 epochs, and each
of which matched a different configuration from the coarse-
grained grid search performed for random generation. In other

10° Grid Search Top Network Distribution

B Train Accuracy
Test Accuracy

102

10t ‘
10° T T T I I T
0.95

0.75 0.80 0.85 0.90
Accuracy

Number of Networks

1.00

10° EONS Top Network Distribution

BN Train Accuracy
Test Accuracy

102

Number of Networks

101 4

10° T T T T
0.75 0.80 0.85 0.90 0.95 1.00
Accuracy

Fig. 5: Top 500 performing networks from each of the methods. The y-
axis is presented on a log scale. The plots demonstrate that the EONS
results are skewed towards higher performance. Slight over-fitting can
be remedied through manual tweaking of parameters, and becomes
less apparent when reviewing more than the top 500 performers.

words, one EONS run population was initialized randomly
with 10 hidden neurons and 5% density, another was 10
hidden neurons and 10% density. That way, for each grid
configuration, there was a matching configuration for a run
of EONS. These parameters were selected to match the grid
search, as 50x100x12 = 60,000, the same number of networks
as the grid search.

In order to perform a direct comparison of the success
between the grid search and the EONS runs, we sorted all
60,000 tests for each method by training accuracy. Then, the
top 500 liquids were taken for each method (based on training
accuracy), and the distribution of accuracy was plotted. Figure
5 demonstrates that although both methods are capable of
reaching expected levels of accuracy, the structured search
performed by EONS skews the distribution towards higher
performing networks. Further, looking at Figure 6, we can see
that EONS converges to the expected accuracy regardless of
the beginning population initialization configuration. In other
words, even though each EONS run began with a different
number of hidden neurons and synaptic density combination,
they all converge. This fits our thesis, which is that sim-
ply allowing an intelligently structured search from EONS
to generate reservoirs arrives at successful hyperparameters

Epoch 0

1.0 %0
0.9
40
0.8
>
3
§ 07 30
<
[§
206 L
B 20
(0]
I,_
0.5
0.4 10
0.3
0
03 04 05 06 07 08 09 10
Training Accuracy
Top Level Grid Search
1.0 300
0.9 250
. 08
8 200
g o7
< [|
g 06 150
%]
2
0.5 100
0.3
0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Training Accuracy

Epoch 11
1.0 140
0.9 ‘ 120
> 0.8 100
I
§ 0.7 80
<
jo))
£ 06
Z 60
Q
- 0.5
' 40
0.4
20
0.3
0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Training Accuracy
Fine Grained Grid Search
10 800
0.9 700
0.8 600
3
I
3 07 500
g0
<
Zos 400
@
° 300
0.5
200
0.4
100
0.3
0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Training Accuracy

Fig. 6: The top two figures are hex-bin plots of the EONS tests performed. The top-left plot is epoch 0, and the top-right plot is epoch
11. Each plot is of all 50 networks from all 100 runs for a total of 5k. Each hexagon represents a bin, and all of the samples falling into
that region are integrated into that bin. The color gradient represents the number of samples in a bin. EONS converges to the expected
accuracy regardless of the starting configuration, which is an inherently different result than the two plots at the bottom; the left being the
coarse-grained grid search, and the right being of all 5 fine-grained grid searches.

regardless of the starting condition. As demonstrated, this
conclusion does not hold for random generation.

V. DISCUSSION

The number of neurons in a system has an effect on the
complexity that a neural network can represent. For reservoir
computing, knowing exactly how many neurons are necessary
to adequately separate one’s problem set does not have an
answer. Choosing to use too many can result in needlessly
large networks, while choosing too few can easily result in
networks that are incapable of separating the information. In
the context of neuromorphic computing, where low power is a
key promise, using an unnecessarily large size will use more
power than necessary.

The properties of simulation and evaluation of SRNNs are
dependent on many different factors. For instance, higher

levels of connectivity typically generate more events, and are
thus slower to simulate. Further, the number of neurons being
sampled for output can contribute to the overall success of
reservoir systems. In order for random generation of LSMs
to succeed, one must be randomly generating networks with
sufficient complexity. Certainly, one may perform a search
over the many different parameters, but this can end up taking
just as much time as EONS and perform comparably in
terms of accuracy. As demonstrated in this paper, generating
satisfactory reservoirs for a given problem can depend on prior
knowledge, which often leads to researchers generating many
random networks before arriving at one that works. In many
scenarios, we would recommend that systems like EONS be
put into place, as they can more efficiently search through that
same problem space.

VI. CONCLUSION

In this paper, we have explored reservoir generation for
a spiking recurrent neural network implementation of liquid
state machines on a classification problem. We explored two
well-known hyperparameter optimization techniques — a two-
level grid search, and a genetic algorithm called EONS, which
includes network structure of the reservoir in its optimization.
In our tests, the EONS optimization discovered better networks
on the whole, and also converged more reliably. We used
our experiment to evaluate the metrics of spectral radius
and silhoutte coeficient on reservoir effectiveness. While the
two metrics showed converging trends for networks that train
better, when used in isolation, they are not sufficient to be
used to construct good reservoirs.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.
P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Y. Nakamura,
B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir,
M. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million
spiking-neuron integrated circuit with a scalable communication network
and interface,” Science, vol. 345, pp. 668-673, 2014.

M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82—
99, January 2018.

W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659-1671, 1997.
A. Polepalli, N. Soures, and D. Kudithipudi, “Reconfigurable digital
design of a liquid state machine for spatio-temporal data,” in Proceedings
of the 3rd ACM International Conference on Nanoscale Computing and
Communication. ACM, 2016, p. 15.

J. P. Mitchell, M. E. Dean, G. Bruer, J. S. Plank, and G. S. Rose,
“DANNA 2: Dynamic adaptive neural network arrays,” in International
Conference on Neuromorphic Computing Systems. Knoxville, TN:
ACM, July 2018.

S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17-37, 2002.

T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” PLoS computational
biology, vol. 3, no. 2, p. e31, 2007.

D. Floreano, P. Diirr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47-62,
2008.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99-127, 2002.

E. Alba and J. F. Chicano, “Training neural networks with ga hybrid
algorithms,” in Genetic and Evolutionary Computation Conference.
Springer, 2004, pp. 852-863.

N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Krishnamurthi,
M. Othman, and P. Parmar, “Evolving spiking neural networks for
personalised modelling, classification and prediction of spatio-temporal
patterns with a case study on stroke,” Neurocomputing, vol. 134, pp.
269-279, 2014.

N. Pavlidis, O. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. Vra-
hatis, “Spiking neural network training using evolutionary algorithms,”
in Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE Interna-
tional Joint Conference on, vol. 4. 1EEE, 2005, pp. 2190-2194.

C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in Neural Networks (IJCNN), 2016 International Joint
Conference on. 1EEE, 2016, pp. 145-154.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

K. D. Carlson, N. Dutt, J. M. Nageswaran, and J. L. Krichmar, “Design
space exploration and parameter tuning for neuromorphic applications,”
in Proceedings of the Ninth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis. 1EEE Press,
2013, p. 20.

M. LukoSevicius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI - Kiinstliche Intelligenz, vol. 26, no. 4, pp. 365-371, Nov
2012. [Online]. Available: https://doi.org/10.1007/s13218-012-0204-5
H. Jaeger, “The echo state approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

W. Maass, T. Natschldger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531-2560,
2002.

B. Schrauwen, D. Verstraeten, and J. V. Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the 15th European Symposium on Artificial Neural
Networks, 2007, pp. 471-482.

W. Maass and H. Markram, “On the computational power of circuits
of spiking neurons,” Journal of computer and system sciences, vol. 69,
no. 4, pp. 593-616, 2004.

E. Goodman and D. Ventura, “Spatiotemporal pattern recognition via
liquid state machines,” in Neural Networks, 2006. IICNN’06. Interna-
tional Joint Conference on. 1EEE, 2006, pp. 3848-3853.

Z. Yanduo and W. Kun, “The application of liquid state machines in
robot path planning,” Journal of Computers, vol. 4, 11 2009.

M. S. Kulkarni and C. Teuscher, “Memristor-based reservoir computing,”
in Nanoscale Architectures (NANOARCH), 2012 IEEE/ACM Interna-
tional Symposium on. 1EEE, 2012, pp. 226-232.

M. LukoSevicius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI-Kiinstliche Intelligenz, vol. 26, no. 4, pp. 365-371, 2012.
N. Soures, L. Hays, and D. Kudithipudi, “Robustness of a memristor
based liquid state machine,” in Neural Networks (IJCNN), 2017 Inter-
national Joint Conference on. 1EEE, 2017, pp. 2414-2420.

D. Kudithipudi, Q. Saleh, C. Merkel, J. Thesing, and B. Wysocki, “De-
sign and analysis of a neuromemristive reservoir computing architecture
for biosignal processing,” Frontiers in neuroscience, vol. 9, p. 502, 2016.
C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in
European Conference on Artificial Life. Springer, 2003, pp. 588-597.
Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-
terman, and S. Massar, “Optoelectronic reservoir computing,” Scientific
reports, vol. 2, 2012.

K. Fujii and K. Nakajima, “Harnessing disordered quantum dynamics
for machine learning,” arXiv preprint arXiv:1602.08159, 2016.

D. Verstraeten and B. Schrauwen, “On the quantification of dynamics in
reservoir computing,” in International Conference on Artificial Neural
Networks. Springer, 2009, pp. 985-994.

A. A. Ferreira and T. B. Ludermir, “Genetic algorithm for reservoir
computing optimization,” in Neural Networks, 2009. IJCNN 2009.
International Joint Conference on. 1EEE, 2009, pp. 811-815.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S. Rose, “The
TENNLab exploratory neuromorphic computing framework,” Preprint at
doi.ieeecomputersociety.org/10.1109/LOCS.2018.2885976, 2018.

E. Hourdakis and P. Trahanias, “Improving the classification perfor-
mance of liquid state machines based on the separation property,” in
Engineering Applications of Neural Networks, L. liadis and C. Jayne,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 52-62.
L. A. Alexandre, M. J. Embrechts, and J. Linton, “Benchmarking
reservoir computing on time-independent classification tasks,” in Neural
Networks, 2009. IJCNN 2009. International Joint Conference on. 1EEE,
2009, pp. 89-93.

V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. B. and, “Classification
of radar returns from the ionosphere using neural networks,” Johns
Hopkins APL Tech. Dig, vol. vol. 10, pp. 262-266, 1989, in.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53 — 65, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0377042787901257

M. Lukosevicius, “A practical guide to applying echo state networks,”
in Neural Networks: Tricks of the Trade, 2012.

