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Abstract—Collaboration among cancer registries is essential to
develop accurate, robust, and generalizable deep learning models
for automated information extraction from cancer pathology re-
ports. Sharing data presents a serious privacy issue, especially in
biomedical research and healthcare delivery domains. Distribut-
ing pretrained deep learning (DL) models has been proposed to
avoid critical data sharing. However, there is growing recognition
that collaboration among clinical institutes through DL model
distribution exposes new security and privacy vulnerabilities.
These vulnerabilities increase in natural language processing
(NLP) applications, in which the dataset vocabulary with word
vector representations needs to be associated with the other model
parameters. In this paper, we propose a novel privacy-preserving
DL model distribution across cancer registries for information
extraction from cancer pathology reports with privacy and
confidentiality considerations. The proposed approach exploits
the adversarial training framework to distinguish private features
from shared features among different datasets. It only shares
registry-invariant model parameters, without sharing raw data
nor registry-specific model parameters among cancer registries.
Thus, it protects both the data and the trained model simulta-
neously. We compare our proposed approach to single-registry
models, and a model trained on centrally hosted data from
different cancer registries. The results show that the proposed
approach significantly outperforms the single-registry models and
achieves statistically indistinguishable micro and macro F1-score
as compared to the centralized model.

Index Terms—Privacy-preserving, convolutional neural net-
work, natural language processing, information extraction.
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I. INTRODUCTION

Cancer pathology reports represent a critical component
for cancer surveillance. They contain important information,
such as cancer characteristics and medical history, that is
necessary to support cancer incidence reporting. Manually
extracting information from unstructured text in pathology
reports is time-consuming and very costly. Moreover, training
experienced staff will also take a lot of time. Therefore,
automating the process is of interest to cancer registries. Tradi-
tional natural language processing (NLP) methods rely heavily
on time-consuming and labor-intensive feature engineering.
They cannot be easily generalized across data sources and
information extraction tasks. Also, the variability and diversity
in describing cancer characteristics lead to enormous syntactic
and semantic variabilities which hinder the ability of conven-
tional NLP techniques to effectively tackle the challenge. In
recent years, different deep learning approaches have been
developed to automatically extract information from cancer
pathology reports and have shown unprecedented performance
as compared to rule-based models and traditional machine
learning techniques [1], [2]. To achieve this performance,
deep learning models require a vastly larger labeled corpus
for training, where data availability is a key consideration
for effective deep learning solutions for real-world problems.
Since the availability of labeled data samples at each cancer
registry is limited, collaboration among them is essential to
develop robust and generalized deep learning models [3]. The
ideal scenario of collaboration is to share the raw data with
a centralized host and train a deep learning model on all
available data.

Such collaboration is hindered by security and privacy
concerns that result from sharing pathology reports be-
tween cancer registries due to regulations [4]. Thus, privacy-
preserving approaches have to be developed to offer secure



avenues for collaboration among data holders. One approach
of collaboration without privacy violation is through text
de-identification by detecting and scrubbing protected health
information (PHI) from cancer pathology reports. However,
manual de-identification approach is costly and time con-
suming, and automatic clinical text de-identification [5], [6]
is highly challenging [7], [8]. Therefore, existing solutions
typically cannot guarantee de-identification up to regulatory
standards. Another approach of secure collaboration among
cancer registries can be done through deep learning model
distribution. This approach protects confidential features by
distributing a trained model without sharing raw data. Model
distribution methods, such as federated learning [9] and large
batch synchronous stochastic gradient descent SGD [10], re-
quire sharing the model architecture, which can be attacked by
recovering the raw data using adversarial networks [11]. Other
techniques like SplitNN [4] protect the model parameters;
however, they require a relatively larger overall communi-
cation bandwidth [12]. The challenge of model distribution
increases when dealing with deep learning NLP models even
if the model architecture is protected. Thus, simply distributing
models across different institutes does not satisfy the privacy-
preserving condition. Recently, data encryption techniques,
such as differential privacy [13] and homomorphic encryp-
tion [14], have been used to protect deep learning model
distribution. However, the additional computational cost re-
quired by these methods limits their application. Moreover,
encrypted models can be attacked by untrusted platforms and
unauthorized users.

In this paper, we present a novel privacy-preserving model
distribution approach for cancer registries by exploiting the
adversarial training framework. In the proposed approach,
each registry dataset is assigned a private convolutional neural
network (CNN) and a shared CNN. Our privacy-preserving
model distribution protects the data such that no raw data
needs to be shared across cancer registries. It also protects
the dataset-dependent parameters — the private CNN — that
captures the private features by only distributing the dataset-
invariant parameters — the shared CNN - that capture the
shared features among datasets. Our approach also attempts to
maximize the benefits of collaboration across data holders by
sharing useful features that are related to all sources. The pro-
posed approach is used to develop a deep learning model for
information extraction from cancer pathology reports collected
from two different National Cancer Institute’s Surveillance,
Epidemiology, and End Results (SEER) cancer registries. We
compare the distributed learning model performance with two
training approaches: (1) the single-registry models, in which
the model is trained and tested on one registry dataset and
neither data nor model parameters shared across registries,
and (2) the centralized model, in which a global NLP model
trained on centrally hosted pathology reports collected from
both registries. The centralized model works when there is no
violation in sharing data across cancer registries.

II. MATERIALS AND METHODS

A. Datasets and Pre-processing

The datasets used in this paper are 374,899 and 172,128
pathology reports obtained from two independent SEER pro-
gram sources: the Louisiana Tumor Registry (LTR) and Ken-
tucky Cancer Registry (KCR) respectively. The LTR corpus
spans the period 2004-2018 while the KCR corpus spans the
period 2009-2018. This research was conducted in accordance
to the institutional review board protocol DOE000152 and
under a data use agreement between UT-Battelle, LLC. and
both registries. Each pathology report is identified by a com-
bination of patient ID and tumor ID, which is called case
ID. Documents generated within 10 days between the date
of diagnosis and either path specimen collection date or the
surgery date were identified as relevant to the specific case
ID. The 10-day window was based on an analysis of the
pathology report submissions with the vast majority of reports
and addenda included within that time frame. The remaining
pathology reports which were outside the 10-day window
were excluded from the study. Ground truth labels associated
with each unique case are obtained from the registry record
associated with the pathology report. In this paper, we consider
the International Classification of Diseases for Oncology,
Third Edition (ICD-O-3), topography' (i.e., site/subsite) as
the data element of interest as it is a fundamental information
extraction task for cancer reporting. The total number of cancer
subsite labels observed in LTR and KCR datasets is 313.
These labels represent tumor topographies across 70 organs
where cancer may appear. To simulate real world production
environment, we used the pathology report date to split each
registry dataset into train, validation and test sets. Specifically,
reports collected in 2016 and later are used for testing, while
the rest of the reports are used for train and validation with
80:20 ratio. Since multiple cancer pathology reports might
have the same case ID, all reports associated with the same
case ID are grouped together into only the train, validation
or test set to avoid any positive bias in the reported results.
The train, validation and test set sizes are summarized in
Table 1. After excluding metadata in cancer pathology reports,
text is cleaned by removing any consecutive punctuation
and lowercasing all alphabetical characters. To reduce the
vocabulary space, all words with document frequency less
than five are replaced with an “unknown_word” token, all
decimals are converted to a “decimal” word token, and all
integers larger than 100 are converted to a “large_integer”
word token. Each cancer pathology report is clipped or padded
to 1500 words, and each word in a report is represented by a
length 300 word vector that is initialized randomly and learned
through training. These hyperparameters were empirically set
based on prior studies [2], [15].

B. Conventional Deep Learning Model

To process our cancer pathology reports, we use a CNN
similar to the one described in [16]. This architecture is
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TABLE I
TRAIN, VALIDATION, AND TEST SPLIT OF LTR, KCR, COMBINED

DATASETS
Dataset Train Validation Test
LTR 169,011 42,380 48,852
KCR 89,404 22,686 37,731
Combined 258,415 65,066 86,583
Word Embeddings
‘ Conv-3 ‘ Conv-4 ‘ ‘ Conv-5 ‘
Maxpool Maxpool Maxpool
‘ Concatenate ‘
‘ Softmax ‘

Fig. 1. Architecture diagram of the CNN model.

widely used across various clinical NLP tasks [17]-[19], and
previous work has shown that it achieves strong performance
in classifying cancer pathology reports while maintaining low
computational cost and fast training time [15], [20].

The architecture of our CNN is shown in Figure 1. We
use three parallel 1-D convolution layers which respectively
examine three, four, and five consecutive words at a time —
these layers act as feature extractors which identify important
combinations of words for a given task. We concatenate the
outputs of these convolutions and then use a temporal maxpool
to filter the most salient word combinations generated by each
convolution filter. The final selected features represent the most
important word n-grams in the document for the task at hand;
this is fed into a softmax layer for classification.

C. Privacy-preserving Deep Learning Model

Given a scenario in which there are multiple cancer reg-
istries that are unable to share data with each other, the
simplest approach is for each registry to independently train
its own CNN, as illustrated in Figure 2 (independent training).
In this approach, each registry trains only on its own data and
it is unable to benefit from data belonging to other registries.

In our privacy-preserving approach, we propose a privacy-
preserving CNN which is shown in Figure 2 by exploiting
the adversarial multitask learning architecture [21]. Similar to
training an independent CNN for each registry, this architec-
ture assigns separate convolution and maxpool layers for each
registry — these registry-specific layers are designed to learn
features useful for data from that specific registry. However,
our privacy-preserving CNN also utilizes shared convolution

Independent Training

‘ Registry 1 ‘ ‘ Registry 2 ‘

' '

‘ Convolutions ‘ ‘ Convolutions ‘

' '

‘ Maxpool ‘ ‘ Maxpool ‘
‘ Softmax ‘ ‘ Softmax ‘

Privacy-Preserving CNN

Registry 1 Registry 2

h r

Convolutions Convolutions Convolutions
]
Maxpool LR
A
Adversarial
Training

Fig. 2. Architecture diagrams of the independent training and the privacy-
preserving CNN model.

and maxpool layers that are used for all registries — these
shared layers are designed to learn registry-agnostic features
that are useful for data from all registries. The outputs of these
shared layers are concatenated with the output for the registry-
specific layers before the final softmax classification.

In contrast to the independent training approach, our
privacy-preserving CNN is able to train on data from all
registries without requiring them to directly share their data.
Also, the registry-specific model architecture and parameters
are protected since they are not shared among registries. This
can be achieved during training by keeping registry-specific
data and layer parameters on secure servers, while the shared-
layer parameters are stored on a central shared server. Once
trained, the shared-layer parameters do not include any privacy
information and can be shared with other registries.

D. Adversarial Training and Orthogonality Constraints

Our privacy-preserving CNN utilizes registry-specific layers
for each registry and shared layers for all registries; our goal is
to ensure that the registry-specific layers learn features private
to that specific registry dataset, while the shared layers learn
registry-agnostic features from all registry datasets. To achieve
this, we utilize two additional losses in addition to the cross
entropy loss associated with our classification task — (1) ad-



versarial training loss and (2) orthogonality loss. These losses
are presented in [21] to separate the interference between task-
specific and task-invariant feature spaces in multitask learning.

Adversarial training is used on the output from the shared
layers to encourage the shared layers to learn registry-agnostic
features. Given an input document, we train a separate softmax
discriminator to attempt to identify the source registry using
only the output generated from the shared layers. Simulta-
neously, we use adversarial loss to incentivize our privacy-
preserving CNN to minimize the performance of the discrim-
inator, thereby encouraging the shared layers to generate only
features that do not contain any registry-specific information.

R N,
L = o (Ao 3> o DEE)
Our adversarial loss is described in Equation 1, where d] is the
ground truth label indicating if an input document =" belongs
to registry 7, D(E(z")) is the softmax probability assigned by
the discriminator that the document belongs to registry r, and
0, and Op are the parameters of the privacy-preserving CNN
and discriminator.

Secondly, we use orthogonality constraints to further en-
courage registry-agnostic features to be learned in the shared
layers rather than in the registry-specific layers. We achieve
this by using an additional orthogonal loss term that penalizes
the network if the outputs of the registry-specific convolution
layers are similar to the outputs of the shared convolution
layer.

R 2
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Our orthogonal loss is described in Equation 2, where || . Hi,

is the squared Frobenius norm and S™ and H" are the
respectively the outputs generated by the shared convolutions
and registry-specific convolutions for a given document.

Ltotal = Ltask + )\Ladv + ’YLorth (3)

Our combined loss function is described in Equation 3, where
Lyqs1 is the cross entropy loss for the given classification
task, Lyq, and L., are the adversarial and orthogonal loss
values, and A and ~y are tunable hyperparameters. We optimize
our privacy-preserving CNN using a standard gradient descent
optimizer, such as Adadelta, to minimize this total combined
loss.

III. EXPERIMENTS
A. Experimental Setup

In this study, we develop a privacy-preserving distributed
CNN model as shown in Figure 2 for extracting cancer subsite
from cancer pathology reports obtained from two SEER cancer
registries. In this approach registry-specific parameters are
updated based on their local data. Only the registry-invariant
parameters are shared. The shared parameters are either up-
dated by the LTR or KCR datasets. The parameter updates
by one of the registry datasets are aggregated to generate a

server model to be shared with the other registry dataset. Also,
this approach protects the patient data, since raw data is not
shared among cancer registries. However, we need to share
the vocabulary list.

We benchmarked the proposed approach to two baseline
models. The first model is single-registry model. In which a
CNN model is trained and tested on each registry separately
without sharing any information across them. This approach
offers the highest data privacy and protection since nothing is
shared across cancer registries. However, the limited dataset
size available in each cancer registry may compromise overall
model accuracy. The second model is the centralized model
in which pathology reports are collected from LTR and KCR
cancer registries and hosted in a centralized location. Then, a
global CNN model is trained on the whole corpus and shared
with cancer registries for testing. This approach does not offer
any privacy with respect to raw data and model parameters
sharing. It is expected though that this approach also offers
the best classification accuracy as all the data is aggregated to
train a global model.

B. Performance Evaluation

We evaluate the performance of all models using the stan-
dard NLP metrics of micro and macro Fl-score. Micro F1-
score is not sufficient to evaluate model performance when
the dataset has extreme class imbalance because it assigns
weight to each class proportional to the class prevalence in the
dataset. Thus we also report macro Fl-score, which averages
by class without weighing by class prevalence, to evaluate
the model performance on the less prevalent classes. For both
the micro and macro F1l-score, we calculate 95% confidence
intervals by bootstrapping [22] from the test set to estimate the
variability of each model performance metric. The confidence
intervals are used to determine the statistical significance of
the difference in performance between the various approaches.

IV. RESULTS

The performance evaluation of the proposed privacy-
preserving DL distribution and the baseline training ap-
proaches — single-registry model and centralized model — are
summarized in Tables II and III. For both datasets, the single-
registry model has the lowest performance as compared to
other approaches. Specifically, the micro and macro Fl-score
of LTR and KCR datasets are (0.631,0.319) and (0.624,0.294),
respectively. The inferior performance of the single registry
model highlights the importance of collaboration among can-
cer registries by sharing raw data or trained model param-
eters. The results show that the centralized model, which
is concurrently trained on LTR and KCR data, significantly
outperforms the performance of the single-registry models for
both the datasets. Specifically, it achieves micro and macro
Fl-score of (0.647,0.348) and (0.646,0.343) on LTR and
KCR datasets, respectively. However, this approach does not
provide any privacy protection to the raw data or the model
architecture and parameters. The performance improvement is
particularly notable for the macro Fl-score, which suggests



TABLE II

MICRO AND MACRO F1-SCORE (WITH 95% CONFIDENCE INTERVALS) OF
DIFFERENT MODEL TRAINING APPROACHES FOR LTR DATASET.

Model

Micro F1-score

Macro F1-score

Single-Registry

0.631 (0.627, 0.636)

0.319 (0.314, 0.336)

Centralized

0.647 (0.643, 0.651)

0.348 (0.343, 0.366)

Privacy-Preserving

0.647 (0.642, 0.651)

0.343 (0.338, 0.359)

TABLE III

MICRO AND MACRO F1-SCORE (WITH 95% CONFIDENCE INTERVALS) OF
DIFFERENT MODEL TRAINING APPROACHES FOR KCR DATASET.

Model

Micro Fl-score

Macro Fl1-score

Single-Registry

0.624 (0.619, 0.629)

0.294 (0.291, 0.312)

Centralized

0.646 (0.642, 0.651)

0.343 (0.336, 0.362)

Privacy-Preserving

0.642 (0.637, 0.647)

0.342 (0.337, 0.362)

that low prevalent classes benefit more from collaboration
since the dataset size increases from single-registry data to
multiple-registry data. The centralized model performance
serves as the optimal one for the privacy-preserving model to
reach while preserving patient privacy. The privacy-preserving
distributed DL model training significantly outperforms the
baseline single-registry model with micro and macro F1-score
of (0.647,0.343) and (0.642,0.342) for LTR and KCR datasets
respectively. Compared to the centralized model, the proposed
approach is statistically indistinguishable for both registries. In
addition, this approach offers high data privacy and protection
since neither registry-specific data nor model parameters are
shared across cancer registries. Although both LTR and KCR
datasets benefit from the collaboration, the centralized and the
privacy-preserving models improve the performance of KCR
single-registry model more than the LTR single-registry model.
This performance difference can be attributed to the larger size
and more inclusive class representation of the LTR dataset
compared to the KCR dataset.

To show the performance of data sharing and model dis-
tribution approaches on tackling the class imbalance problem,
which is common in clinical datasets, we compute the F1-
score per class label of all models. Since we have hundreds of
subsite labels, we illustrate in Figures 3 and 4 the performance
of different training approaches on the most and least repre-
sented classes with at least 100 samples. The figures clearly
show that non-private data sharing, the centralized model, and
privacy-preserving model distribution approaches improve the
classification accuracy of low prevalent class labels. However,
all models perform equally well on the more prevalent classes.

V. CONCLUSION

In this paper, we propose a privacy-preserving model distri-
bution across cancer registries technique. It shares the registry-
agnostic DL model parameters across cancer registries, and
excludes any registry-specific parameters that may compro-
mise privacy violations. The proposed method eliminates the
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need of a centralized host for datasets and the need of complex
encryption techniques to privately distribute DL models across
the collaborating institutes. The experiments demonstrate that
our proposed DL training approach significantly outperforms
the single-registry model and achieves a comparable perfor-
mance to the centralized model. Future directions of this
work include applying the proposed approach on more cancer
registries and information extraction tasks as well as using the
proposed approach to securely distribute deep learning model
across registries through recently developed model distribution
techniques, such as cyclical weight transfer [23].
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