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Abstract—As deep neural networks have been deployed in
more and more applications over the past half decade and are
finding their way into an ever i ncreasing number of operational
systems, their energy consumption becomes a concern whether
running in the datacenter or on edge devices. Hyperparameter
optimization and automated network design for deep learning is
a quickly growing field, but much of the focus has remained only
on optimizing for the performance of the machine learning task.
In this work, we demonstrate that the best performing networks
created through this automated network design process have rad-
ically different computational characteristics (e.g. energy usage,
model size, inference time), presenting the opportunity to utilize
this optimization process to make deep learning networks more
energy efficient a nd d eployable t o s maller d evices. Optimizing
for these computational characteristics is critical as the number
of applications of deep learning continues to expand.

Index Terms—neural networks, genetic algorithms, high-
performance computing, energy efficiency

I. INTRODUCTION

In the past decade, Deep Neural Networks (DNNs) have
attracted great attention due to their promising results in vari-
ous domains, including visual recognition [1], natural language
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processing [2], and artificial intelligence [3]. The general trend
is towards creating deeper and more complicated architectures
for achieving high accuracy, resulting in networks with large
computation and storage requirements. For example, AlexNet
[1], which achieved breakthrough results in the 2012 ImageNet
Challenge contains 61 million parameters with 249MB of
memory and 1.5B high precision operations to classify one
image, while ResNet [4] proposed for the same task in 2015
has 50 convolutional layers with over 95SMB memory for
storage and over 3.8 billion floating point multiplications. Even
models tailored for mobile deployment, such as SqueezeNet
[5], MobileNet [6] and ShuffleNet [7] can be quite large.

To address the significant computational requirements of
DNNS, several technology firms have created custom hardware
like Google’s Tensor Processing Unit [8], Intel Nervana [9],
and IBM TrueNorth [10]. While most users of deep learning
have similar energy efficiency or real-time processing needs,
they will likely not have access to these advanced hardware
systems, especially in the short term. Thus, rather than adapt-
ing the hardware to accommodate energy efficiency needs,
we instead propose an approach for discovering deep learning
models that are more energy efficient than their counterparts,
through hyperparameter optimization.

In this work, we discuss an approach for that utilizes high-
performance computing (HPC) to evolve the hyperparameters
and topology of convolutional neural networks. We utilize an
evolutionary approach that is capable of not only optimizing
the hyperparameters of individual layers but also the type
and arrangement of layers in the deep neural network [11].
This evolutionary approach allows us to explore a much
larger search space of layer hyperparameter configurations



than is possible with neural architecture search (NAS) [12]
while being more efficient than random search. We investi-
gate the ability of this approach to produce energy efficient
convolutional neural networks that can either be deployed at
workstations or in data centers for more efficient, rapid data
analysis. In particular, we analyze the performance of all of
the networks created over the course of the hyperparameter
optimization in terms of three metrics that are related to
energy efficiency: inference time, model size, and energy
consumption. We show that the different networks evolved can
have radically different performance characteristics, and that
as a byproduct of creating hundreds to thousands of different
network topologies, we can choose our “best” network from
among the evolved networks to suit our computational needs.
The key conclusions of this work are:

1) Automated network design approaches that do not opti-
mize for computational characteristics can have radically
different energy consumption, model size, and inference
time, and

2) There is an opportunity to utilize automated network de-
sign as an approach to creating more efficient networks
in addition to current work in network pruning, etc.

II. BACKGROUND AND RELATED WORK

There are a variety of approaches that are being developed
to produce more energy efficient networks [13] including
parameter pruning and sharing methods, quantization, low-
rank approximation of layers, designing efficient hardware and
other tailored optimization approaches.

Neural Network Optimization: Network pruning and
sharing has been used both to reduce network complexity
and to address the issue of over-fitting, and has been success-
fully applied to reduce resource requirements in convolutional
networks [14], [15]. Le Cun et al. [14] introduced Optimal
Brian Damage, which prunes weights with a theoretically
justified saliency measure. [15] reduces network redundancy
by identifying a subset of diverse neurons that do not require
retraining, while [16] propose a data-free pruning method to
remove redundant neurons. While pruning has been widely
used, all pruning criteria require manual setup of sensitivity for
layers, which demands fine-tuning of the parameters and could
be cumbersome for some applications. DNN quantization [17]
refers to the process of reducing the number of bits that
represent a number. Model weights are often quantized so that
parameters sharing the same value can be represented with
fewer bits [18], [19]. In this way, the decision model repre-
sented by a neural network gets simpler and can be described
using fewer number of bits, leading to better generalization
abilities. Han et al. [20] used pruning to decrease connections
by 9x, while quantization reduced the number of bits per
connection from 32 to 5. As a result, the storage required
from AlexNet dropped from 240MB to 6.9MB.

Low-rank factorization based techniques use matrix/tensor de-
composition to estimate the informative parameters of the deep
CNNs. Convolution operations correspond to bulk of the com-
putation in deep CNNs. Rigamonti et al. [21] introduced the

idea of learning separable 1D filters. [22], [23] used Canonical
Polyadic (CP) decomposition for decomposing kernel tensors
in convolutional layers and used iterative fine tuning to im-
prove accuracy on the decomposed network. [24] proposed the
use of tensor regression on fully-connected layers, showing an
80% space saving with only a 2% drop in ImageNet accuracy.
While low-rank approaches are generalizable, they require
layer by layer approximation with decomposition being a
computationally expensive operation. While these approaches
reduce the memory footprint, they do not necessarily translate
into a reduction in energy consumption or deliver energy
reduction that is proportional to the weight reduction. It is
worth noting that, we do not use any of these approaches to
improve performance. However, any of these approaches could
be combined with our proposed approach to further improve
performance.

Neural architecture search (NAS): NAS entails au-
tomatically designing effective neural network architectures
with good generalization properties. NAS can be viewed as a
hyperparameter optimization problem, since it requires setting
a multitude of hyperparameters including an optimization
method along with its associated set of hyperparameters, the
dropout rate and other regularization hyperparameters [25].
The search spaces used for NAS are generally larger and
control different aspects of the neural network architecture, the
underlying problem is the same as hyperparameter optimiza-
tion: find a configuration within the search space that performs
well on the target task. Different search methods proposed for
NAS include reinforcement learning [26]-[28], evolutionary
algorithms [11], [29], sequential model based optimization
[12], Bayesian optimization [30], [31], and Gradient-based
optimization [32], [33].

[26] presented the first modern algorithm automating struc-
ture design, and showed that resulting architectures can indeed
outperform human-designed state-of-the-art convolutional and
recurrent networks. NAS problems are computationally inten-
sive with results reporting hundreds or thousands of GPU-days
for discovering state-of-the-art architectures [12], [26], [34].
In NAS via reinforcement learning [26], [27], a controller
network is trained to sample promising architectures, while
NAS with evolutionary algorithms evolves a population of
networks for optimal DNN design [12], [35]. Recent work,
ProxylessNAS, uses novel gradient-based frameworks by con-
tinuously relaxing of the search space to search the final
models directly [36]. Our previous work, MENNDL [11] used
evolutionary algorithms to produce hundreds of thousands of
networks to find the most efficient network to optimize the
given objective.

Custom hardware: Another approach for dealing with
energy efficiency for deep learning systems is to use custom
hardware. Google’s Tensor Processing Unit (TPU) [8], cus-
tom accelerators now deployed in Google’s data centers, can
be used to achieve both significantly faster computation as
well as significantly higher operations per watt. There are a
variety of commercial products that are targeting faster, more
energy efficient inferencing at the edge, including NVIDIA’s



Jetson Nano [37], the Google’s Edge TPU [38], and Intel’s
Movidius Neural Compute Stick [39]. However, these systems
are typically not suitable for data center deployment, as
they may be focused on real-time deployment (batch size
of one). Neuromorphic systems, including Intel’s Loihi [40],
have also shown some promise for edge deployment with
respect to energy efficiency and inference time [41]; however,
neuromorphic computing systems are not readily available and
sometimes require significant additional tuning in order to map
deep learning networks to the neuromorphic architecture.

III. METHODS

Multi-node Evolutionary Neural Networks for Deep Learn-
ing (MENNDL) is an algorithm and software package de-
veloped at Oak Ridge National Laboratory. MENNDL uses
evolutionary algorithms and high-performance computing to
evolve the topology and hyperparameters for convolutional
neural networks. Previous iterations of MENNDL have been
used to tailor convolutional neural network topologies for
scientific datasets [11], [42]. MENNDL uses high-performance
computing (HPC) to quickly evaluate many models. In par-
ticular, it uses a master-worker approach, in which the master
runs an asynchronous genetic algorithm (GA) and the workers
calculate the fitness of each candidate model. Calculating the
fitness of the model requires training the candidate model, as
well as calculating the accuracy (and other relevant objectives)
on a validation set.

In all previous iterations of MENNDL, we simply took
the best performing model in terms of accuracy on the
validation set as the result of the hyperparameter optimization
process. However, MENNDL creates hundreds to thousands
of candidate models in just a few hours of computation time
when using an HPC system. In this work, we analyze the
resulting networks in terms of three additional evaluation
metrics beyond accuracy, each of which is described below.

A. Evaluation Metrics

We evaluate the performance of each model not only in
terms of accuracy on the testing set, but we also evaluate the
performance in terms of three additional metrics: inference
time, model size, and energy efficiency.

For inference time, we measure the amount of time required
for the model to perform inferencing on the validation set of
the dataset used. For this measurement, we run through the
entire validation set of the dataset using a batch size of 100
and measure the total time required to obtain classifications for
each image in the validation set. This timing includes the time
required for data loading to the GPU. Because there is a fixed
amount of time required for data movement, this provides a
lower bound on the time required for inference.

The second performance metric we use in this work is model
size. We use the number of parameters in the model as a
proxy for the model size. As part of the evolution process,
MENNDL can turn on and off layers. In this case, we used a
maximum of up to 32 layers, where the first 16 layers can be
one of convolution, inception, pooling, activation, or dropout,

and the last 16 layers can be one of inner product, activation,
or dropout. It is worth noting that a maximum of 32 layers is
simply the chosen hyperparameter of MENNDL in this work.
It can be extended to more layers or restricted to fewer layers
as needed.

The third performance metric we use in this work is energy
consumption. To obtain the energy consumption of the model,
we use the command line tool nvidia-smi to periodically
(once every 100ms) measure the GPU power usage. We then
integrate that power measurement to obtain the energy usage.
As in the case of inference time, we measure this value on the
validation or testing set of the dataset used, but we divide by
the number of images in the set to get an energy per inference.

B. Experimental Setup

We trained MENNDL on the Oak Ridge Leadership Com-
puting Facility (OLCF) supercomputer Summit. Each of Sum-
mit’s nodes has 2 IBM Power9 CPUs and 6 NVIDIA Volta
GPUs. We used a subset of Summit’s 4,608 nodes for training
networks in this work. For each dataset, we performed 2
MENNDL runs on 24 nodes for 6 hours each.

For this work, we used the CIFAR-10, CIFAR-100, and
CINIC-10 datasets. CIFAR-10 [43] is a multi-class dataset
consisting of 60,000 32x32 color images in 10 mutually
exclusive classes, with 6,000 images per class. CIFAR-10 is
split into a training set of 50,000 images (5,000 of each class)
and a testing set of 10,000 images (1,000 of each class).
CIFAR-100 [43] is a multi-class dataset, again consisting of
60,000 32x32 color images, but with 1000 mutually exclusive
classes. In this case, there are 600 images per class. CIFAR-
100 is split into a training set of 50,000 images (500 per class)
and a testing set of 10,000 images (100 per class). CINIC-
10 [44] expands the CIFAR-10 dataset by including down-
sampled images from the ImageNet dataset [45]. Like CIFAR-
10, CINIC-10 has 10 mutually exclusive classes, but it includes
270,000 32x32 color images. These are split into equally sized
training, testing, and validation sets. For this work, we train
using the training set, report the accuracy on the validation
set, and do not use the testing set. It is important to note that
we perform no dataset augmentation on any of these datasets,
as we are simply performing a study to determine if there is
an opportunity to optimize the computational characteristics
of the networks, and we are not trying to create the best
performing networks ever achieved for these datasets.

IV. RESULTS

MENNDL produces hundreds to thousands of networks in
each run at the scale used in these experiments. Each of those
networks has different performance characteristics, though
MENNDL’s target is optimizing or evolving for accuracy.

Figure 1 gives a summary of the performance (in terms
of accuracy and the three different computational metrics
we are interested in evaluating) of different models that are
generated over the course of MENNDL’s evolution for CIFAR-
10, CIFAR-100, and CINIC. In these plots, we highlight the
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Fig. 1. Computational Characteristics (Inference Time, Number of Learned Parameters, Energy Consumption) vs. Accuracy for Each Dataset. Please note
that these plots do not represent the entire range of values achieved for our computational metrics, but simply the range of interest for comparing the most
accurate network and the networks with more desirable performance against these metrics.

TABLE I
PERFORMANCE SUMMARY OF MODELS
Dataset CIFAR-10 CIFAR-100 CINIC

Model A B C D E F G H I J
Inference Time (s) 3.39 6.85 3.23 3.72 3.31 341 26.62 31.99 28.56 26.77
Number of Learned Parameters || 1070311 | 25506331 || 4422374 | 3504234 | 1422448 | 4079375 || 8109737 | 30105165 | 1355427 | 1005989
Energy per Inference (mJ) 16.05 33.68 15.72 53.77 36.41 15.83 25.90 19.755 42.03 14.64
Accuracy(%) 80.24 81.82 42.66 53.76 45 51.19 63.93 71.41 71.09 63.70

models that form the lower bound for each computational met-
ric of interest in order to show the differences in performance
and where trade-offs might be made. These highlighted models
belong to the Pareto frontier of the problem, where each point
represents a network in which it cannot be dominated by
any other network in terms of optimizing both performance

matrices. Network « dominates network 3 where dominance
is defined by a > ( or 8 < a, iff Vi; fi(a) < fi:(8) (f; is the
i-th performance function) [46].

As can be seen in this figure, the performance for different
models varies significantly, both in terms of accuracy as well
as the other metrics we are interested in. In general, for each
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Fig. 2. Model topologies on the Pareto frontier referenced in Figure 1. Non-linear activations have been removed for clarity.

of the metrics, there is a steady increase in inference time,
number of learned parameters, and energy to inference as the
accuracy increases along the lower bound. This is consistent
with what we would expect, which is that more complex
models are required for higher accuracy networks.

In each of the plots, we highlight the accuracy and metric
of interest for three models: the model with the lowest metric
of interest (inference time, number of parameters, or energy
to inference), the model with the highest accuracy, and the
model that had the lowest weighted-Euclidean distance to the
theoretical (but unattainable) best performance (0 inference
time, energy or model size and 100 percent accuracy), which
we call the “best trade-off” model. First, it is worth noting
that all of the models with the lowest metric of interest have
extremely low accuracies (often as bad as guessing on the
task). Second, though there is some correlation between the
three metrics of interest in terms of best performance for each
of those three metrics, it is not always the case that the model
with the lowest inference time is also the model with the fewest
parameters and the model with the lowest energy consumption.

In Figure 1, the model with the highest accuracy in each plot
and the best trade-off model are labeled with letters (A-J) to
indicate which models are the same. Figure 2 shows the high-
level model topology details of each of these models, though
we omit the nonlinear activation layers. It is worth noting
that the MENNDL process tunes the model topology and
hyperparameters with no human intervention and relatively
little restriction on what models “should” look like (models

are sequences of layers where input/output shapes that com-
putationally fit are chosen). Thus, hyperparameters may be
set to non-traditional values (e.g., 20 x 3 kernel size) or non-
traditional sequences of layers (e.g., model J in Figure 2 has
two max pooling layers in a row). We have also not removed
redundant computations; for example, MENNDL may produce
networks that have multiple ReLU layers in a row that perform
the same effective computation as a single ReLU layer. It may
be possible to further improve the inference time of the models
by eliminating redundant computations or condensing layers
into one.

In the case of the CIFAR-10 dataset, the best model in
terms of accuracy is model B and the beset trade-off model
is model A, and in Figure 2 we can see that model B is
significantly deeper than model A, but achieves very similar
accuracy (model A has an accuracy of 80.24% and model B
has an accuracy of 81.82%). In the case of CIFAR-10, the
best trade-off model is the same for all three potential metrics
of interest. This is not the case for the CIFAR-100 and the
CINIC datasets. In Table I, we summarize the performance
of each of the models A-J (labeled in Figure 1) for all of
metrics of interest. In the case of CIFAR-10, model A is the
best trade-off model for inference time, number of learned
parameters, and energy to inference. In both CIFAR-100 and
CINIC, however, there are three different best trade-off models
(one for each of the metrics). Using this table, we can see that,
for example, model I (the best trade-off model for number
of parameters for CINIC) has comparable accuracy with the




most accurate model (H), but also has lower inference time.
However, it has substantially higher energy than model H, so
if energy is most important, it is likely not to be the best
model to choose. Similarly, in the case of CIFAR-100, model
F (the best trade-off model for energy) is comparable to the
most accurate model (model D) for accuracy, but also has
lower inference time. However, the number of parameters is
substantially larger.

It is worth noting that using MENNDL takes significant
computational effort to produce a well-performing model and
that it may be counter-intuitive to use it to find a (set of) good
models that can be used for more energy efficient computation.
However, in terms of the life-cycle of the model, the majority
of time will be spent performing inference on new images.
Thus, it is likely worthwhile to spend the extra computational
time during training to get to a better performing network
during inference.

V. CONCLUSIONS AND FUTURE WORK

The results clearly indicate that there is a huge opportunity
to improve the computational performance of these networks
if these characteristics are taken into account when performing
automated network design. Even without steering the evo-
lutionary process of MENNDL based on the computational
characteristics of the networks, we see that there is often a 2x
improvement in energy usage, model size, and inference time
between the networks with the highest accuracy and one that
will perform almost as well. When it is expected for datacenter
energy usage will account for 8% of energy usage worldwide
in a decade [47], the ability to decrease the energy usage of
a common workload will have a dramatic effect.

Figure 1 demonstrates the need to systematically search for
the optimum neural architecture that maximizes all perfor-
mance matrices such as accuracy, inference time, network size,
and energy to inference. In future work, we will design a multi-
objective optimization framework to perform the network
search with minimum computational effort. We plan on using
joint Bayesian and GA-based optimization platforms that are
able to handle expensive black-box objective functions. This
systematic approach is an essential step toward designing
networks suitable for deploying on edge devices in resource-
constrained environments. Additionally, we plan to combine
this automated network design approach to creating efficient
networks with compression, quantization, pruning, and/or low-
rank approximations to push the bounds of efficient networks
further. Finally, we also plan to use MENNDL to target the
development of models specifically for edge deployment on
specialized hardware.
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