2019 IEEE International Conference on Big Data (Big Data)

Bayesian-based Hyperparameter Optimization for
Spiking Neuromorphic Systems

Maryam Parsa
Department of ECE, Purdue University
West Lafayette, Indiana, USA
mparsa@purdue.edu

Robert M. Patton
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
pattonrm @ornl.gov

Abstract—Designing a neuromorphic computing system in-
volves selection of several hyperparameters that not only affect
the accuracy of the framework, but also the energy efficiency and
speed of inference and training. These hyperparameters might
be inherent to the training of the spiking neural network (SNN),
the input/output encoding of the real-world data to spikes, or the
underlying neuromorphic hardware. In this work, we present a
Bayesian-based hyperparameter optimization approach for spik-
ing neuromorphic systems, and we show how this optimization
framework can lead to significant improvement in designing ac-
curate neuromorphic computing systems. In particular, we show
that this hyperparameter optimization approach can discover
the same optimal hyperparameter set for input encoding as a
grid search, but with far fewer evaluations and far less time.
We also show the impact of hardware-specific hyperparameters
on the performance of the system, and we demonstrate that by
optimizing these hyperparameters, we can achieve significantly
better application performance.

Index Terms—Hyperparameter Optimization, Spiking Neuro-
morphic Computing, Accurate and Energy Efficient Machine
Learning

[. INTRODUCTION

The inherent challenges of cloud computing infrastructures
such as power management and sustainability, that emerged
with the ever-increasing amount of data [1], inspired seeking
alternative computing platforms such as spiking neuromorphic
systems. These biologically-inspired computing platforms not
only offer tremendous energy efficiency for computing in
resource-constrained environments such as mobile and edge
devices, but also extend the ability to solve challenging
machine learning problems due to its massive connectivity of

This manuscript has been authored [in part] by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

J. Parker Mitchell
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
mitchelljpl @ornl.gov

Thomas E. Potok
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
potokte @ornl.gov

Catherine D. Schuman
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
schumancd @ornl.gov

Kaushik Roy
Department of ECE, Purdue University
West Lafayette, Indiana, USA
kaushik @purdue.edu

synthetic neurons and synapses [2]. The in-memory computing
capability of neuromorphic systems proposes a promising
alternative or complement to von Neumann architectures that
suffer from the low bandwidth between CPU and memory,
also known as the von Neumann bottleneck [3]. In addition,
the brain-like structure of spiking neuromorphic systems is
suitable for on-line, real-time learning for certain tasks such
as smart healthcare diagnosis on edge devices, special purpose
applications on drones, and robotics.

Spiking Neuromorphic Computing System

Input (real data, e.g. image
captured by a drone)

"

Output (action, eg speed and
angle of movement for a drone)

ﬁ_

Fig. 1. High-level Overview of a Spiking Neuromorphic Computing System

Spiking Neural Network

Input/ Output Encoding

Neuromorphic Hardware

As shown in Figure 1, a spiking neuromorphic computing
systems consists of two key building blocks, namely a spik-
ing neural network (SNN) and an underlying neuromorphic
hardware. There are different techniques available to train an
SNN [4]-[6]. As for the spike-based neuromorphic systems
there have been various CMOS-based [7]-[9] and beyond-
CMOS [10] neuromorphic accelerators introduced in literature.

Each of these building blocks have inherent hyperparame-
ters that directly affect the final performance of the system,
such as accuracy, energy efficiency, inference time, and net-
work size. While one set of hyperparameters might satisfy one
or all performance metrics, a minor change can drastically alter
the resulting performance.

Bayesian optimization is among the most prominent tech-
niques to optimize hyperparameters of networks that are

expensive to evaluate. This stochastic method is suitable
for problems with unknown objective functions such as the
accuracy of spiking neural network or the energy efficiency of
a neuromorphic hardware [11]-[13].

In this work, we propose a Bayesian-based hyperparame-
ter optimization framework that defines the optimum set of
hyperparameters with only a few evaluations of SNNs. This
iterative, heuristic optimization algorithm predicts how perfor-
mance matrices change by altering hyperparameters. Instead
of optimizing a black-box, expensive objective function (i.e.,
the performance metrics), the optimum set of hyperparameters
is predicted by approximating a posterior Gaussian distribu-
tion and optimizing a surrogate model. We consider several
types of hyperparameters ranging from input encoding to
SNN’s training and neuromorphic hardware implementation.
We perform sensitivity analysis on various hyperparameter sets
and demonstrate how critical some sets of hyperparameters
are, directly impacting the performance of the system. We
further analyze different input encoding schemes and show
how combining multiple schemes might boost the performance
of the system.

We made the following contributions:

1) We propose a simple, effective, and generalizable hy-
perparameter optimization algorithm that can be applied
to any type of spiking neuromorphic algorithm or archi-
tecture.

2) We perform a sensitivity analysis on spiking neuromor-
phic system hyperparameters, discussing strategic role
of some sets of hyperparameters on the system’s final
performance.

3) We show that hyperparameters of a resilient training
framework for spiking neuromorphic systems such as
EONS [4] have the least impact on the final perfor-
mance of the system compared to the input encoding
or hardware-specific hyperparameters.

4) To best of our knowledge, for the first time in the
literature, we introduce a hyperparameter optimization
technique for spiking neuromorphic computing system
and analyse the effect of different types of hyperparam-
eters on the overall performance of the system

II. BACKGROUND AND RELATED WORK

With the ambition to mimic the biological brain, the core
of any spiking neuromorphic system is millions of neurons
and synapses communicating with asynchronous spikes. This
high-dimensional, and nonlinear computational framework,
although offering exceptional assets, pose fundamental hur-
dles when deploying in real applications [2], [14]. A high-
performance neuromorphic system requires substantial com-
petence in encoding real data to spikes and vice-versa, model-
ing neurons/synapses, designing neuromorphic algorithms and
architectures, and advancements in neuromorphic spike-based
hardware.

Figure 1 demonstrates an overview of a spiking neuro-
morphic system. The input/output (I/O) encoding block is an
indispensable bridge that is necessary to input real data as

spikes into neuromorphic systems. For example, in the case
of controlling a drone, the real data are the images captured
by the camera on the drone. In the I/O coding block, these
input images will be encoded to spikes and used to train
a spiking neural network on a neuromorphic hardware. The
output of the spiking network is decoded to the real data,
which are the drone control actions for this example (speed,
angle of movement, etc). The data conversion (input data to
spikes and output spikes to decisions) has a substantial effect
on the performance of the computing system, not only on
the accuracy, but also on energy efficiency. Binning-based,
rate-based, and temporal-based coding schemes are among the
most common approaches to code real data to spikes and vise-
versa [15].

There are different techniques to train a densely con-
nected network of neurons and synapses. These include deep
spiking neural networks (SNN) with back-propagation using
spike-timing dependent plasticity (STDP) [16], [17], genetic
algorithm-based training such as EONS [4], [18], SNNs
created by converting traditional artificial neural networks
(ANN) [5] with binary communications [6], liquid state ma-
chines and reservoir computing [19]. Within each of these
training approaches are several inherent hyperparameters that
could directly impact the performance of the spiking neu-
romorphic system. These include but not limited to ANN’s
hyperparameters (such as number of layers) and the conversion
parameters such as sharpening values for this SNNs trained
by converting ANN to SNN [6], back-propagation and STDP
hyperparameters [17], and population size, crossover and mu-
tation rates for genetic algorithm-based trainings [4].

There are also several hardware-specific hyperparameters
such as the ranges and resolutions of neuron thresholds and
synaptic weights [7], and number of crossbars and crossbar
sizes for memristor-based neuromorphic devices [10].

Grid search, random search and stochastic grid search [12],
[20], [21] are among the most common approaches to find the
optimum set of hyperparameters. Other iterative approaches
such as simulated annealing (SA), genetic algorithms (GA),
and Bayesian optimization are also introduced to find the
optimum set of HPs for an artificial neural network [12],
[13], [22]. These techniques are mostly focused on the math-
ematics of the optimization problem regardless of the type of
hyperparameters and their impact on the overall performance
of the system. To the best of our knowledge, for the first
time in literature, we tackle hyperparameter optimization for
spiking neuromorphic systems; in particular, we use Bayesian
optimization to not only determine the optimum set of HPs, but
also to analyze how the optimization procedure moves toward
the optimum point, and the impacts of different types of HPs
on the final performance.

III. HYPERPARAMETER OPTIMIZATION FRAMEWORK

Designing a spiking neuromorphic system requires several
testbeds such as specialized hardware, software, network con-
figuration, and application. To this end, we use the TENNLab
Exploratory Neuromorphic Computing Framework [23] that

not only provides support to develop and test various neuro-
morphic applications and devices, but also is suitable for hy-
perparameter optimization problems that require concurrent in-
ference on neuromorphic applications and devices for different
sets of hyperparameters and evaluation metrics. In addition, the
primary learning algorithm used in this framework is EONS
(Evolutionary Optimization for Neuromorphic Systems) [4],
which is a well-suited approach for our hyperparameter op-
timization problem. This is mainly due to the flexibility of
using this approach with different input/output coding schemes
without the need to change the entire algorithm [15].

Bayesian optimization methods are widely used to solve
problems where the objective functions are expensive to eval-
uate. In hyperparameter optimization for spiking neuromorphic
systems, objective functions are different performance metrics
vary from network accuracy, and inference time to hardware
energy consumption or area usage. The Bayesian-based hy-
perparameter optimization approach that we propose can be
applied to any spiking neuromorphic system on any underlying
neuromorphic hardware. For the purpose of this work, we
use TENNLab framework with one neuromorphic application
(pole-balance [24], [25]), on one CMOS-based neuromorphic
hardware (DANNA2 [7]).

A. TENNLab Framework

1) Input/Output Coding Module: Neuromorphic devices
and architectures run only on spikes; however, the real-world
applications communicate their states through values, and
only accept values as their input. The TENNLab framework
facilitates value to spike encoding and vice-versa through
an encoding/decoding module. This module accepts different
state-of-the-art input/output coding schemes such as direct,
binning [15], rate coding [16], and temporal coding [18]. In
this work we considered a combination of several coding
techniques that can handle a wide range of data within a
short time period for real-time online applications (specially
for edge devices) [15].

¢ Binning. Encoding an input with single spike in a single
time step, through creating multiple neurons and spiking
on a particular neuron based on the value of the input.

o Spike-count. Converting input values to a number of
spikes at a fixed rate.

o Charge-injection. Injecting a specific charge value into a
neuron rather than a fixed magnitude spike.

o Combined coding schemes. Combining all above tech-
niques in a hierarchy by introducing three different inter-
bin functions of simple, flip-flop, and triangle. Simple
inter-bin function linearly maps the values between the
preassigned charge values for each bin, whereas in flip-
flop, this mapping is only for odd-numbered bins and
then flips for even-numbered ones. This function enables
continuous mapping across the bins. Finally, the triangle
inter-bin function creates overlapped bins to encourage
smooth mapping.

Details of the above input/output coding schemes are given

in [15]. Each of these methods have inherent hyperparameters

that directly impact the performance of the system. Here our
main focus is finding the optimum set of input encoding
hyperparameters to maximize the performance of spiking
neuromorphic system for a specific application and hardware.

2) EONS: EONS trains a graph representation of a spiking
neural network for a neuromorphic hardware system using
Genetic Algorithms (GA). This graph representation of a
neuromorphic network generates an initial population of ran-
dom graphs based on the application inputs and hardware
specifics. Next generations are produced by duplicating, merg-
ing, mutation or crossover on current generations based on
their fitness values. The resulting generations are converted
to spiking neural networks, and the new performance values
are calculated. The process repeats until the desired fitness is
reached or terminated due to the running time [4], [23].

3) Neuromorphic Hardware: EONS is a graph based rep-
resentation of a spiking neural network. Neurons and synapses
are the building blocks of this graph and are inherent to the
device characteristics. Synaptic weights and delays ranges,
neurons thresholds, as well as their leaky rates or plasticity
parameters are defined by the neuromorphic hardware and are
also targeted in our proposed optimization framework.

B. Bayesian-based Hyperparameter Optimization

Bayesian optimization is a derivative-free technique that
estimates an unknown objective function by building a sur-
rogate model based on Gaussian distributions for the known
observations. The procedure starts with evaluating the ob-
jective function for two random sets of hyperparameters. A
posterior Gaussian process is estimated using the two known
observations. An acquisition function is then calculated as
a surrogate model to optimize in each iteration. There are
different techniques to calculate an acquisition function, which
are all based on building a surrogate model that explores and
exploits the search space. By exploration we mean evaluating
the objective function for different sets of HPs in various
locations of search space to avoid trapping in local minimums,
and exploitation means to leverage the decent available sets of
HPs. In this work we used Expected Improvement acquisition
function [12]. The optimum point of the acquisition function
(surrogate model) is the best next set of HP to evaluate in the
next iteration. For all previous observations as well as the new
set of HP, we re-estimate the Gaussian distribution, and repeat
the process of calculating the surrogate model, and optimizing
it to find the best next set of HP. The process repeats until the
best next point is already observed or until termination.

C. Experimental Setup

In this work we use TENNLab’s framework [23] for input
encoding, EONS, and neuromorphic hardware hyperparameter
(HP) optimization to find the optimum set of HPs that max-
imizes the overall performance of the system. We considered
the fitness value (accuracy) as the performance metric of the
system; however, this can be easily modified to any other
metric such as energy requirement or inference time.

TABLE I
CASE STUDY ONE: EVALUATED PARAMETERS

[Hyperparameter | Range |
by, (Number of bins) 1,2,4,8
pr (Number of pulses per bins, i.e. spikes) | 1,2,4,8

[0,0.51,[0,11,[0.25,0.5],
[0.25,1],[0.5,0.5],[1,1]
simple, flip-flop, triangle

[ck, Ck] (Range of charge values)

Inter-bin encoding function

TABLE 11
CASE STUDY ONE: FIXED PARAMETERS
[Parameter | Value |
Interval 1
population size 1000
Mutation rate 0.9
Crossover rate 0.5
Synaptic weight [-255,255]
Neuron threshold | [0, 1023]
Synaptic delay 127

For all different case studies, we utilize a canonical pole
balancing control task [24], [25] on the DANNA2 neuromor-
phic hardware [7]. DANNAZ2 is a digital programmable device
with integrate-and-fire neurons, and can be deployed either on
an FPGA or a custom chip.

For the Bayesian optimization framework, we chose Matern
covariance function with the Kernel function shown in Equa-
tion 1.

1—v

Cy(d) —022—(\/561) KV(\/EEI) (1
L'(v) p p

where d is a distance function, I" is the gamma function, K,

is the modified Bessel function of the second kind, p and v are

positive parameters. For this paper, we found out the fastest

most accurate HP optimization results are obtained when p =

1, and v = 1.5. We selected Matern kernel function due to
smooth Gaussian distribution estimate it provides.

IV. RESULTS

We investigate and validate our Bayesian-based hyperpa-
rameter optimization approach across four case studies. For
the first case study, we start with finding the optimum set
of HP for the input encoding hyperparameters of an SNN.
For this problem, a grid search technique has previously been
applied for all HP combination settings and thus, the optimum
HP set is known [15]. Table I shows the possible values for
different HPs. The ranges are all based on reasonable and
acceptable values for each of the HPs and the combinations
that do not make sense are removed from the search space.
The HPs that are fixed and not included in the optimization
search are summarized in Table II.

Figure 2 shows the grid search results for hyperparameter
combinations shown in Table I compared to the results ob-
tained from our proposed hyperparameter optimization tech-
nique. The grid search results are achieved after 100 runs on
each of the valid 240 different HP combinations [15]. Our
proposed Bayesian-based HP optimization technique reaches

Total Number of HP Combinations: 288

Grid search |
(24,000 evaluations)

Fitness Value

0.8 Bayesian-based HP optimization

(400 evaluations)

0.0"

Fitness Value

=3
i

- -'...I-a-‘;l-.-

b, Different Input Encoding HPs sorted by Median Fitness Value

Fig. 2. Case study one: Comparing grid search with HP optimization for
problem with HP combinations shown in Table I. a. Grid search: 100 runs for
each of the valid 240 different HP sets according to [15]. b. Bayesian-based
HP optimization: 10 runs for selected 40 HP combinations. Both techniques
report the same optimum HP set (b = 2, pr, = 8, charge = [0,0.5],
function = flip — flop) with median fitness value of 52%.

to exactly the same optimum HP combination, only after 40 it-
erations, and for only 10 runs for each of the HP combinations
evaluated. This reduces the number of evaluations required in
order to find the optimum point from 24,000 to 400.

charge function
b k
e
E
2
o
2
2 2
1 4 8 12 4 w = & = @ = smple flipflop tnangl
S g83
4 s =2

Fig. 3. Case study one: Histogram of the HP combinations for 40 evaluations.

The iterative Bayesian-based HP optimization finds the opti-
mum set of HPs by exploring and exploiting the search space.
This means that it not only maintains the HP combinations that
creates the highest fitness values, but also explores the search
space to avoid trapping in local minima. The frequency of
selecting the value for each hyperparameter for case study
one is shown in Figure 3. The hyperparameter value with
maximum number of calls is consistent with the optimum
HP set defined by the optimization technique (b, = 2,p; =
8, charge = [0,0.5], function = flip — flop).

For case study two, we change one of the fixed hyperpa-
rameter values related to the hardware implementation (the

TABLE III
COMPARING FITNESS VALUE FOR DIFFERENT CASE STUDIES

Input Encoding HPs EONS HPs Hardware HPs Fitness Val
inter-bin | . population | mutation | crossover synaptic neuron synaptic 1ness value
br | px | charge function interval size rate rate weight threshold delay
Case study one || 2 | 8 | [0,0.5] | flip-flop 1 1000 0.9 0.5 —255,255] | [0,1023 127 52%
Case study two 2 8 0,0.5 flip-flop 1 1000 0.9 0.5 —511,511 0,1023 127 60%
Case study three || 2 | 8 | [0,0.5] | flip-flop 1 1000 0.9 0.5 —511,511] | [0,1023 255 67.40%
Case study four 2 12 0,0.5 flip-flop 5 1500 0.9 0.4 —127,127 0,1023 255 70.99%
synaptic weight range) and repeat the experiment from case TABLE IV
study one. Table III shows that if we maintain the exact CASE STUDY FOUR: EVALUATED PARAMETERS
simulation environment and HP set for case studies one and ‘ [Parameter [Range
two, and only change the. synaptlc weight range given in b . _
Table I, the fitness value will increase from 52% to 60%. For Tnput (Number of bins)
case study three, in addition, we also increase the synaptic Encoding || Pk . Lo, 12
i R L (Number of spikes)
delay range. In this case, the resulting accuracy will increase HPs [ch, Cr] [0.051.[0.1..0.25.051,
to 67.40%. This proves the need to optimize not only the input (Range of charge values) [0.25,11,[0.5,0.5],[1,1]
encoding HPs of the spiking neuromorphic system, but also %Et:;};‘ln encoding function Sllmple’sﬂlp'ﬂ(’p’ triangle
other HPs such as EONS or hardware-related ones. o 600. 800, 1000, 1200,
In case study four we considered three types of HP com- EONS Popu ation size 1500, 2000
binations; input encoding related, EONS, or hardware-related HPs g‘(‘)‘i‘;‘i‘;rr?:e 8'2’ 8'1’ 8'2’ 8'2 o
hyperparameters. The summary of the evaluated parameters EE— [-127. 127]. [:255. 255].
and their corresponding ranges are given in Table IV. In this Hardware || SYnaptic Weights [-511, 511], [-1023, 1023]
experiment the total number of hyperparameter combinations HPs Neuron Thresholds 255, 511, 1023
Synaptic Delay 15, 31, 63, 127, 255

is 54,432,000. This shows how drastically the number of
hyperparameter sets increase in real problems where there
are multiple HPs involved in different modules, frameworks,
algorithm, and architectures. In Figure 4 we plotted the median
fitness value for 50 HP combinations sets (50 iterations of
Bayesian optimization) each repeated for 100 times. It is
evident from the figure that the method ensures obtaining
the optimum HP set through exploring the search space by
evaluating HP combinations with low fitness values that were
chosen outside the predicted range of optimum HPs, while
performing exploitation by maintaining the predicted optimum
HPs in overall higher fitness value domains.

Total Number of HP Combinations: 54,432,000

. * o
L] * %
L] L4 -

L

=]

i 4

S 05 L4

]

L

E

2

=]

(o

g

i

=

.. [P L
0.0 { eesete®Ses” esfeten®s soeete ® Tet 0 0
T T T
0 20 40
Iteration Number

Fig. 4. Case study four: Median fitness value after 100 runs with 50 different
HP evaluations for the parameters given in Table IV. The optimum set of HP
combination in this case study is shown in Table III with median fitness value
of 70.99%

Figure 5 demonstrates a partial dependence plot for non-
categorical hyperparameters in case study four. Inter-bin func-
tion types and population size are considered as categorical
HPs and therefore not shown in this plot. The black dots are
the set of parameters we have evaluated and the red dot is
the best parameter we found. In these plots colors are the
surrogate model built by the Gaussian Process. Light regions
are the best (highest fitness values) while the darker ones
are the worst. To make each of these partial dependence
plots, we make a grid for a set of two parameters. We
then calculate the surrogate model with fix values for those
two parameters while generating random values for all other
parameters. We repeat the process and average the fitness
values and plot the color map. These plots are only used
for extra analysis on the optimization search process and
are not deterministic due to the inherent variability of the
built surrogate models for Gaussian distribution with random
parameter selections. In this figure for some HPs the counter
plots show the convergence toward the optimum values. For
example for p;, versus synapticdelay partial dependence plot
it is clear that the higher the value for both parameters is the
better performance. However for all partial dependence plot
for parameter by, as long as the optimum set stays in any
of the light regions, it does not matter what combination we
choose for the next iteration.

A. Key Observations

1) Observation One: Different hyperparameters have dif-
ferent impact on the final performance of the neuromorphic

b_k

charge

interval

mut_rate

syn weight

cross_rate
—

syn delay nrn threshold

mut_rate nrn threshold

cross_rate

syn weight

Fig. 5. Case study four: Partial dependence plot

p_k b_k interval
0.8 T T
o 0.6 |
=]
p—
<
>
[75) 0.4
%]
()
5
= 0.2 .
00| —— L. — -
Worst Best Worst Best Worst Best
L J L J
Y / Y
Input Encoding Only EONS Only Hardware Only

Fig. 6. Observation: Sensitivity analysis on different types of HPs. Comparing
the fitness values for best and worst HP combinations

system. Figure 6 demonstrates how critical it is to select the
optimum set of input encoding and hardware hyperparameters

to obtain the maximum fitness value. In both cases the worst
HP combination lead to almost 0% fitness value. However,
EONS hyperparameters such as crossover and mutation rates
have less impact on the final performance of the system. This
shows resiliency of EONS framework. Details of the HP sets
in each network is given in Table V.

2) Observation Two: Table III shows a minor change
on critical hyperparameters of the system could drastically
improve the overall performance.

V. CONCLUSION AND FUTURE WORK

Neuromorphic computing systems provide a potential solu-
tion for energy efficient machine learning. However, there are
many aspects of spiking neuromorphic computing systems that
are not well understood, including how to input information
into the spiking neuromorphic computing system, how to train
associated spiking neural networks for these systems, and
hardware details themselves. In this work, we demonstrate
a Bayesian-based hyperparameter optimization approach for
neuromorphic computing systems. We show that this approach

OBSERVATION ONE: EVALUATED PARAMETERS FOR BEST AND WORST

TABLE V

NETWORKS FOR ISOLATED HP OPTIMIZATION ANALYSIS

[[Best Network

| Worst Network

b =2

br =8

Onl
Inpli pp =38 pp =1
. [k, Ck] =10,0.5] [ck, Ck] =10.5,0.5]
Encoding e R
HPs function = flip-flop function = simple
Interval = 1 Interval = 1
Fitness Value || 52% 0.4%

EONS
HPs

Population size = 1000

Population size = 1000

Mutation rate = 0.9

Mutation rate = 0.6

Crossover rate = 0.6

Crossover rate = 0.3

Fitness Value

54.4%

25.2%

Synaptic Weights

Synaptic Weights

Hardware = [-511,511] = [—1023,1023]
HPs Neuron Thresholds Neuron Thresholds
= [0,1023] = [0, 255]
Synaptic Delay Synaptic Delay
=127 =15
Fitness Value || 61.86% 0.8%

can discover the appropriate hyperparameters for input encod-
ing for neuromorphic systems in many fewer iterations than
a grid search. We also show that selecting the appropriate
hyperparameters can have a tremendous impact on application
performance.

For future work, we intend to expand this framework to mul-
tiple applications, neuromorphic hardware implementations,
and other neuromorphic training approaches. We also intend
to explore hyperparameter optimization for multi-objective
optimization approaches. In this work, we focused simply
on improving the accuracy of the system on an application.
For our multi-objective approach, we may also consider addi-
tional factors, such as time-to-solution, energy efficiency, and
working within hardware design constraints. In general, we
will continue to investigate approaches for automatically op-
timizing the hyperparameters for all aspects of neuromorphic
computing systems so that they can be more easily and rapidly
applied to real-world applications.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC05-000R22725.

REFERENCES

[1]1 O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive circuits
for edge computing: A review,” IEEE transactions on neural networks
and learning systems, 2019.

[2] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[3] D. Monroe, “Neuromorphic computing gets ready for the (really) big
time,” Communications of the ACM, vol. 57, no. 6, pp. 13-15, 2014.

[4] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in 2016 International Joint Conference on Neural Net-
works (IJCNN). 1EEE, 2016, pp. 145-154.

[51

(6]

(71

(8]

(91

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, 2019.

W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Whetstone: A method for training deep artificial neural networks for
binary communication,” arXiv preprint arXiv:1810.11521, 2018.

J. P. Mitchell, M. E. Dean, G. R. Bruer, J. S. Plank, and G. S. Rose,
“Danna 2: Dynamic adaptive neural network arrays,” in Proceedings of
the International Conference on Neuromorphic Systems. ACM, 2018,
p- 10.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82-99, 2018.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam er al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.
1537-1557, 2015.

A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 715-731.

I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization
of deep neural networks,” arXiv preprint arXiv:1604.07269, 2016.

J. S. Bergstra and e. al., “Algorithms for hyper-parameter optimization,”
in Advances in neural information processing systems, 2011, pp. 2546—
2554.

M. Parsa, A. Ankit, A. Ziabari, and K. Roy, “Pabo: Pseudo agent-based
multi-objective bayesian hyperparameter optimization for efficient neural
accelerator design,” arXiv preprint arXiv:1906.08167, 2019.

M. Davies, “Benchmarks for progress in neuromorphic computing,”
Nature Machine Intelligence, vol. 1, no. 9, pp. 386-388, 2019.

C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj, “Non-traditional
input encoding schemes for spiking neuromorphic systems,” in JCNN:
The International Joint Conference on Neural Networks, Budapest, 2019.
D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a memristor-
based spiking neural network immune to device variations,” in The 2011
International Joint Conference on Neural Networks. 1EEE, 2011, pp.
1775-1781.

C. Lee, S. S. Sarwar, and K. Roy, “Enabling spike-based backpropaga-
tion in state-of-the-art deep neural network architectures,” arXiv preprint
arXiv:1903.06379, 2019.

J. V. Arthur and K. Boahen, “Learning in silicon: Timing is everything,”
in Advances in neural information processing systems, 2006, pp. 75-82.
P. Wijesinghe, G. Srinivasan, P. Panda, and K. Roy, “Analysis of liquid
ensembles for enhancing the performance and accuracy of liquid state
machines,” Frontiers in neuroscience, vol. 13, p. 504, 2019.

H. Larochelle and e. al., “An empirical evaluation of deep architectures
on problems with many factors of variation,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 473—
480.

J. Bergstra and e. al., “Random search for hyper-parameter optimiza-
tion,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281-305, 2012.

J. Snoek and e. al., “Practical bayesian optimization of machine learning
algorithms,” in Advances in neural information processing systems,
2012, pp. 2951-2959.

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S. Rose, “The
tennlab exploratory neuromorphic computing framework,” IEEE Letters
of the Computer Society, vol. 1, no. 2, pp. 17-20, 2018.

A. P. Wieland, “Evolving neural network controllers for unstable sys-
tems,” in IJCNN-91-Seattle International Joint Conference on Neural
Networks, vol. 2. 1EEE, 1991, pp. 667-673.

F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Efficient non-linear
control through neuroevolution,” in European Conference on Machine
Learning. Springer, 2006, pp. 654-662.

