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Abstract—In Monte Carlo neutron transport simulations, a
computational routine commonly known as the ”cross-section
lookup” has been identified as being the most computationally
expensive part of these applications. A tool which is commonly
used as a proxy application for these routines, named ”XSBench”,
was created to simulate popular algorithms used in these routines
on CPUs. Currently, however, as GPU-based HPC resources have
become more widely available, there has been significant interest
and efforts invested in moving these traditionally CPU-based
simulations to GPUs. Unfortunately, the algorithms commonly
used in the cross-section lookup routine were originally devised
and developed for CPU-based platforms, and have seen limited
study on GPUs to date. Additionally, platforms such as XSBench
implement approximations which may have a negligible effect on
CPUs, but may be quite impactful to performance on GPUs given
the more resource-limited nature of the latter. As a result, we have
created VEXS, a new tool for modeling the cross-section lookup
routine which removes or at least reduces the approximations
made by XSBench in order to provide a more realistic prediction
of algorithm performance on GPUs. In this paper, we detail our
efforts to remove and reduce these approximations, show the
resulting improvement in performance prediction in comparison
to a reference production code, Shift, and provide some basic
profiling analysis of the resulting application.

Index Terms—Monte Carlo, GPU, XSBench, VEXS

I. INTRODUCTION

Monte Carlo neutron transport simulations are a powerful
simulation method used often in the field of nuclear en-
gineering to analyze scenarios of interest, such as reactor
core design and radiation dose calculations. These codes
have gained a reputation of being mostly ”embarrassingly
parallel” [1], however a specific routine which is common
to all neutron transport simulations, the cross-section lookup
routine, has been identified as composing a significant fraction
of problem runtime [2]. This routines require that a search
for a given neutron energy be performed on a given energy
grid, with the end goal being the retrieval of the upper and
lower indices that a given energy is between so that the
resulting cross section value can be interpolated. This routine
has been found to be generally memory-bound, and often
latency-bound in particular. This routine must be performed
potentially many billions of times over the course of a single

simulation [3], resulting in a significant portion of simulation
runtime being spent waiting for data to reach compute devices.
As a result of this memory-bound behavior and the critical
nature of this routine to neutron transport simulations, several
algorithms have been developed to reduce the time-to-solution
for these routines. These algorithms have had great success
reducing computation time on their original architectures,
CPUs, however they have not seen as significant study or
even implementation on GPUs. As GPU-based HPC resources
continue to be built and developed for [4], the question of
whether these algorithms perform as well on GPUs as they do
on CPUs is open for study and experimentation.

In an effort to broaden contributions from the scientific
community external to nuclear engineering, the proxy appli-
cation XSBench was written in 2013 [5]. This application has
come to be widely cited for CPU-based studies of random
memory accesses [6] [7] [8] [9] and is generally held to be
representative of the behavior expressed by OpenMP-based
Monte Carlo codes. However, several approximations are
made in XSBench which enable ease-of-use and performance
portability. While these approximations may be reasonable
for CPUs, GPUs represent significantly different compute
models and even resource availability [10], such that these
approximations may result in false or insufficient prediction
of performance improvements. As a result, we have created a
new application, called VEXS (Very Easy XS), which removes
or reduces these approximations in order to bring performance
prediction closer to those available from real-world production
codes.

A. Contributions

The scientific contributions made by this work are as
follows:

1) A detailed description and analysis of the computational
scenario that XSBench and VEXS seek to emulate, as
well as an analysis of the reference code Shift.

2) Introduction to implementation details of the XSBench
and VEXS applications, and explanation of the motive
behind removing certain approximations.



3) Detailing of the algorithms of interest expressed in all
three codes, as well as an initial analysis of potential
algorithm behavior.

4) Comparison of performance results from XSBench and
VEXS vs. Shift.

5) Comparison of profiling results from XSBench and
VEXS vs. Shift.

II. APPLICATION DETAILS

A. Production-code scenario

Monte Carlo neutron transport codes rely on the averaging
of billions of random interactions provided by simulated
neutrons to produce an estimate of realistic particle behavior
in a given reactor configuration. In order to capture how
neutrons behave in aggregate through these spaces, these
codes utilize cross-sections, which are basic indicators of the
probability of a neutron with a given energy interacting with
a given material’s member elements. In a normal interaction
at least a few cross-sections must be computed independently,
with many interactions requiring the computation of a few
hundred cross-sections in the case of those materials which are
composed of many independent elements. As neutrons most
commonly decrease in energy as they interact with, and lose
energy to, the simulated environment, and can also dynam-
ically change material during the course of the simulation,
the cross-section values which represent their location and
probability of interaction must be constantly recalculated and
updated. As this procedure must be done for every particle, the
number of values that must be stored becomes impossible to
reliably cache and results in significant latency-bound behavior
for many simulations. The computational challenges that are
present with this routine boil down to a few key challenge
points shown below:

1) The element of randomness inherent to Monte Carlo
simulations predictably introduces significant issues for
compiler-based optimization methods geared towards
prediction of application behavior.

2) The energy grids that must be searched over are from a
computational perspective very distinct from each other,
with some energy grids containing only a few hundred
points and some grids containing upwards of a few
hundred thousand points. Additionally, most of these
energy grids contain entirely different distributions of
points that cannot easily be correlated to each other.

3) Many simulations that are of relevance require many
hundreds of these energy grids be available for search,
meaning any algorithm that hopes to provide a perfor-
mance improvement that is of interest to the broader
community needs to essentially handle at-scale scenarios
as well as small-scale scenarios.

4) Any computed cross-sections must be discarded almost
as soon as they are computed, as the interaction de-
termined by their computation will immediately prompt
a change of neutron energy and possibly a change in
material.

B. XSBench

The XSBench mini-app was written to address items 1, 3
and 4 of the challenge points shown in II-A. Originally written
in C with OpenMP instrumentation, it has very recently been
extended to also support OpenACC and SYCL instrumen-
tation as well as hand-written CUDA implementations. The
fundamental unit of almost all XSBench’s data structures is a
struct containing an energy value as well as five cross-section
values, as shown in Figure 1. The energy value as well as all

Fig. 1. Diagram of fundamental unit in most XSBench data structures [11].

cross-section values associated with that energy are randomly
selected to be between zero and one, with the energy value
being the quantity of importance (as this will be the value
search methods will compare against) and the cross-section
values only being used to simulate memory consumption for
Monte Carlo simulations as well as provide a small amount
of computational work that must be done. The struct shown
in Figure 1 is used to build uniformly-sized sorted grids of
11,303 points; this model of placing data in memory is best
described as ’Array-of-Structs’.

This approach works well for CPUs, however there are a
few key approximations made which are not accurate to real-
life scenarios. One such assumption is the use of uniformly-
sized energy grids, which as stated in item 2 of the challenge
points shown in II-A, is not close to actual Monte Carlo
simulations other than being an average of the number of
points across all grids. The reason for this approximation
was ease of programming and ease of explanation, and the
assertion that the in-memory size of data is not as important
for CPUs as assuring that memory accesses are random across
enough data to produce latency-bound characteristics. Another
approximation made is that energy points are stored in terms
of lethargy (all energy points are stored in the domain (0,1]),
which is not implemented in all production codes (actual
energy values vary in the domain (0,20 ∗ 106]) and removes
the need for some complexity which would otherwise be
required. Finally, another approximation is made in that the
Array-of-Structs implementation is inherently inefficient for
rapid searching, with a Struct-of-Arrays theoretically having
significantly better performance for the cross-section lookup
routine due to better spatial locality and absence of unused data
[12]. While a CPU-based execution model may not be sensitive
to these approximations, GPUs with significantly more limited



resources may be quite sensitive to differences in memory
and computational complexity when it comes to performance
modeling.

C. VEXS

The VEXS application was inspired by XSBench, however
was carefully engineered to remove or reduce the number of
approximations made by the XSBench application. The first
approximation that was removed was the use of uniformly-
sized energy grids. To accomplish this, we use energy points
taken from actual nuclear datasets, without the associated
cross-sections that contain export-controlled information, and
use these points to form differently-sized energy grids that
synthetic data is assembled on. This transforms the in-memory
scenario from one where all array sizes remain constant, to
one where array sizes vary similarly to actual production-
code scenarios. Diagrams of the datasets used in VEXS and
XSBench are shown in Figures 2 and 3, respectively.

Fig. 2. Diagram of energy grid datasets as they are stored in XSBench [13]

Fig. 3. Diagram of energy grid datasets as they are stored in VEXS [13]

The changes shown in Figure 3 also include using energy
levels in the domain (0,20 ∗ 106], prompting the removal of
another approximation where the computational complexity
required by some algorithms is fully restored. Lastly, the data
structures used in VEXS were reorganized from the form
shown in Figure 1 to a Struct-of-Arrays format, which is
closer to that implemented by the Shift reference application.
Ideally, these primarily in-memory changes are significant
enough that both the memory and compute models will exhibit
performance characteristics closer to those produced by Shift.

D. Shift

The Shift production code is a continuous-energy Monte
Carlo neutron transport code developed at Oak Ridge National
Laboratory for the purpose of performing at-scale neutron
transport simulations on HPC systems comprised of CPUs and,
if available, GPUs [14] [15]. This objective requires the inclu-
sion of a number of different types of physics and computation
routines, with development still ongoing to implement needed
physics and produce code implementations that can run at-
scale on current platforms (Summit) and upcoming platforms
(Frontier).

Some differences between Shift and both mini-apps that are
impossible to capture, due to Shift’s nature as a production
Monte Carlo neutron transport code, are the following:

1) Shift uses actual cross-section data in its calculations,
which will be much more varied and physics-dependent,
prompting an even larger amount of variance in memory
usage than that simulated by the VEXS and XSBench
mini-app. Additionally, this cross-section data is com-
monly export controlled, and inclusion of this data in
mini-app design would immediately limit the usefulness
of these mini-apps to those external to the nuclear
engineering field.

2) Shift requires a significantly larger amount of data be
computed and used compared to either mini-app, with
neutron geometry states and additional program-specific
data being required in addition to basic particle energy
information.

3) Because of items 1 and 2, there is a significant amount
of extra memory indirection in the Shift application
compared to either mini-app. This stems from all threads
both mini-apps only simulating the cross-section lookup
routine, while the diverse set of physics that must be
included in Shift necessitates small subsets of particles
being active at different times, resulting overall in very
non-contiguous device memory access patterns.

Despite these substantial differences, it is nevertheless
interesting to analyze whether the approximations used by
XSBench produce trends that are similar to Shift, and whether
the improvements made by VEXS have any significant effects
in improving performance prediction.

III. ALGORITHM DETAILS

Given the critical and latency-bound nature of the cross-
section lookup routine, several algorithms have been developed
by the nuclear community to reduce the time-to-solution for
this routine. XSBench implements a total of three algorithms
used for the cross-section lookup, two of which are acceler-
ation algorithms and one of which is essentially a baseline.
Shift, being a production code, only implements the baseline
algorithm and one acceleration algorithms. The results shown
today will therefore be based on the performance analysis of
these two algorithms: a baseline binary search, and a hash-
accelerated search. The following section details each of these
algorithms’ computational details and memory requirements.



A. Baseline binary search

The baseline binary search represents the absolute minimum
in terms of memory requirements of current algorithms, as it
relies upon searches being performed on each material member
independently and does not require additional data structures
to perform. The memory requirement goes as follows:

Mmember =

N∑
i=0

ni ∗ 6 ∗ s(float) (1)

where Mmember is the total memory consumed in bytes, ni is
the number of energy points in the i’th material member, and
N is the total number of members in a given material. The
multiplicative factor of 6 is derived from the fact that each
energy point consists of a single energy value and five cross
section values, and the s(float) factor denotes the size of a
floating-point value on the target system.

This algorithm is expected to use on the order of hundreds
of megabytes, and is thus not expected to be heavily bandwidth
bound but is expected to be heavily latency bound. It is also
expected to be the most divergent of any proposed algorithm
(as most algorithms and approaches are currently focused on
either removing or reducing the number of search iterations
required).

One theoretical argument that can be made for the use
of realistically-sized datasets is a basic analysis using Big
O notation. For a binary search, it is widely known that
the search will generally go as O(log2(n)) with n being
input size. Thus, for the case illustrated in Figures 2 and
3, where N is 34, Big O time would go approximately as∑N

i=1O(log ni), where N is the total number of energy grids
in the problem. Using this notation, XSBenchs method of
representing data results in a value of approximately 458,
while using realistically-sized grids results in a value of
approximately 71. This is not a formal mathematical proof
that using uniformly-sized grids will give false performance
results, however it is an indication that the same algorithm may
give significantly different performance results depending on
approximations used. This is relevant if we wish to create a
mini-app that capture performance metrics of the target codes
well, as overestimation of the baseline computational load may
result in false prediction of performance improvement for new
optimizations or algorithms developed using this mini-app.
This was our motivation for implementing realistically-sized
energy grids in the VEXS application.

B. Hash-accelerated search

The hash-accelerated search was originally proposed for
CPU-based Monte Carlo simulations [2], and has been the
only adopted acceleration algorithm in the Shift code. In this
physics-based algorithm, a given energy is run through a basic
hashing computation, shown in 2, which produces an index
used to retrieve lower and upper index values from a pre-
computed index table ugrid. The index values pulled from
this grid form a ”reduced window” for each material member,
where the hashed energy point is guaranteed to be located

in between these two indices. In this way, the search space
is reduced from potentially hundreds of thousands of energy
points to only a small (on the order of ten or less) energy
points for each material member, thus resulting in significantly
reduced time to solution on CPU-based systems. The overall
algorithm is illustrated in Figure 4.

u = 1 + bdu ∗ (ln(E)− umin)c (2)

Fig. 4. Overview of the hash-accelerated search algorithm [2].

The memory requirement for the hash-accelerated search
goes as:

Mhash = (G+ 1) ∗N ∗ s(int) +Mmember (3)

where Mhash is the memory required to store the index table
ugrid and Mmember is the memory requirements introduced
by 1.

One implementation detail of the hash-accelerated search is
that, with search windows of potentially ten or fewer points,
there is a conceivable benefit to using a linear search over
a binary search to complete the index search within the
reduced search window in terms of increased cache locality.
While this has been studied and found to not be substantial
on CPU-based systems, GPU-based systems which need to
account for application divergence may receive a much more
significant benefit from using a linear over a binary search.
Both implementations of this algorithm are present in the Shift
and VEXS application, and a linear search was implemented
in XSBench in order to provide a fair comparison.

Even for larger values of G such as 16,000+ the resulting
memory requirement indicated by (3) only results in a memory
increase on the order of tens of megabytes for normal problem
sizes, making it intuitively very favorable for implementation
on GPUs as these devices are normally limited by memory in
the problem sizes they can represent. Of particular note for
this algorithm is that the logarithm required by the original
algorithm shown in 2 (and as it is implemented in Shift)
involves the computation of a logarithm which XSBench, due
to the approximations made, removes due to it being unnec-
essary. While one logarithm computation may not feasibly
be impactful on a single or set of cores, on GPUs where
each thread has much more limited resource availability the
presence or absence of this logarithm feasibly would play a
significant role in relative performance trends. This was our
motivation for implementing the algorithm’s full complexity
in VEXS using realistically-depicted energy points.



IV. RESULTS & ANALYSIS

XSBench and VEXS approximate the random behavior of
simulated particles in production codes such as Shift by both
selecting random energies and also randomly selecting the
material for a lookup simulation according to a probabil-
ity distribution. This material selection component has been
identified as being very computationally important, as there
are certain materials known as ’fuel’ materials which can, in
real-life scenarios, evolve through time from being composed
of only a few member elements (’fresh’ scenarios ) to a
very large number of member elements (’depleted’ scenarios
), presenting very different performance behavior. Therefore,
the following results are split into three sections: the first is
a comparison against Shift unit tests designed to measure
cross-section lookup performance. The second section is a
comparison against a full simulation problem run through
Shift, in order to capture application behavior that might
otherwise be lost when using unit tests. The third section is
profiling of certain algorithm implementations on the depleted
scenario on both GPUs, in order to analyze how well VEXS
and XSBench model the target application in terms of achieved
occupancy and branch efficiency on multiple platforms. In the
case of the first two scenarios, ’Acceleration’ is defined as:

Acceleration =
throughputhash−accelerated

throughputbaseline
(4)

where throughputbaseline is the throughput from the full
binary search being run over all material members, and
throughputhash−accelerated is the throughput from the hash-
accelerated search being run over all material members. The
hash-accelerated search was either implemented using a hash-
accelerated binary search, in all results is indicated by a dotted
line, or can be implemented using a hash-accelerated linear
search, in all results is indicated by a solid line. Finally,
in all results green lines represent those taken from the
Shift reference, while black lines represent those taken from
XSBench and blue lines represent those taken from VEXS.

Results shown are all collected from systems provided by
the Oak Ridge Leadership Computing Facility. The systems
used were Summitdev and Summit [16], which both use
multiple P100s and V100s per node, respectively, to enable ap-
plication acceleration. All results were collected from single-
node jobs with exclusive node access. Error bars are shown
on all results for the first two sections, while the third section
does not possess error bars as these results were collected from
the profiling tool nvprof.

A. Comparison against Shift unit tests

Shown in Figure 5 is a comparison between Shift unit tests,
XSBench and VEXS for a fresh scenario on a P100 GPU.
XSBench appears to predict that the hash-accelerated binary
search and hash-accelerated linear search will be very close
to each other in terms of performance, and appear to be very
agnostic to the number of hash bins used in the calculation.
This is in direct contrast to the Shift unit tests, which indicate
that there will be a significant performance difference between

Fig. 5. XSBench, VEXS and Shift unit test simulations of a fresh scenario
on a P100 GPU [13].

the two implementations and that the hash-accelerated linear
search seems to show a heavy dependence on the number
of hash bins used. By comparison, VEXS correctly captures
the hash bin-sensitive behavior for the hash-accelerated binary
search, the hash bin dependency shown in the reference for the
hash-accelerated linear search, and the performance degrada-
tion at lower numbers of hash bins. It does appear unable to
capture the reference’s achieved performance above unity for
higher numbers of hash bins, however it does seem to capture
very well the asymptoting behavior shown by the two curves
in the reference, where the hash-accelerated linear search
achieved increasing performance with increasing numbers of
hash bins but is not able to achieve the performance shown by
the hash-accelerated binary search. The result is a significant
gap between the two algorithm implementations at the 16,000-
bin mark which appears to be very similar to that produced
by Shift.

Fig. 6. XSBench, VEXS and Shift unit test simulations of a depleted scenario
on a P100 GPU [13].

Shown in Figure 6 is a comparison between Shift unit
tests, XSBench and VEXS for a depleted scenario on a P100
GPU. XSBench again appears to predict that the two algorithm



implementations will be very close in terms of performance,
although there now appears to be a dependence upon the
number of hash bins used for both algorithms. This is still
not completely in line with the Shift reference, where the
hash-accelerated binary search appears to be agnostic to the
number of hash bins used and there is a significant discrepancy
between the two algorithm implementations. By comparison,
VEXS correctly captures the agnostic behavior of the hash-
accelerated binary search and the discrepancy in performance
between the two algorithm implementations. Again VEXS
captures performance degradation at low hash bin numbers
without being able to capture a rise above unity as shown in
the reference, however it does capture the relative asymptoting
behavior of the hash-accelerated linear search.

Fig. 7. XSBench, VEXS and Shift unit test simulations of a fresh scenario
on a V100 GPU [13].

Shown in Figure 7 is a comparison between Shift unit
tests, XSBench and VEXS for a fresh scenario on a V100
GPU. XSBench does appear to predict that there will be some
discrepancy between the hash-accelerated linear search and
the hash-accelerated binary search, which matches with Shift
results, however it also predicts a dependence on the number of
hash bins for both implementations which disagrees with the
reference (the hash-accelerated binary search remains agnostic
to the number of hash bins). It also predicts that there will be
some performance degradation as the number of hash bins is
increased, which is directly counter to the behavior expected
from the algorithm and also counter to results collected from
Shift. By comparison, VEXS does not indicate a degradation
of performance with increasing number of hash bins for
either algorithm implementation, and also appears to correctly
capture the hash bin-agnostic behavior of the hash-accelerated
binary search correctly and the asymptoting behavior between
the two algorithms shown by the reference.

Shown in Figure 8 is a comparison between Shift unit
tests, XSBench and VEXS for a depleted scenario on a V100
GPU. XSBench does not show performance degradation with
increasing numbers of hash bins as seen in Figure 7, and
does show a discrepancy between the two algorithm imple-
mentations contrary to those results obtained from a P100 in

Fig. 8. XSBench, VEXS and Shift unit test simulations of a depleted scenario
on a V100 GPU [13].

Figure 6. However the hash-accelerated binary search does
again show a dependence on hash bin number that is not shown
by the reference, and in both cases the relative difference
between the two algorithm implementations stays roughly the
same, which is contrary to the asymptoting behavior shown
in all other results. By comparison, VEXS correctly captures
the hash bin-agnostic behavior of the hash-accelerated binary
search and captures the general asymptoting behavior shown
in all other results, although it does asymptote too quickly in
contrast to the reference.

B. Comparison against full Shift problem

Fig. 9. XSBench, VEXS and full Shift simulations of a fresh core on a V100
GPU [13].

Shown in Figure 9 is a comparison between a full Shift
calculation, XSBench and VEXS for a fresh scenario on a
V100 GPU. These results are largely in line with those shown
by the unit test in Figure 7, although one interesting behavior
exhibited by a full application run is that there does appear
to be a significantly wider discrepancy between the hash-
accelerated linear and hash-accelerated binary searches, even
at 16,000 hash bins. This discrepancy does not appear to



be captured successfully by VEXS, although the asymptoting
behavior previously noted as being common across all unit
tests does appear to be captured well.

Fig. 10. XSBench, VEXS and full Shift simulations of a depleted core on a
V100 GPU [13].

Shown in Figure 10 is a comparison between a full Shift
calculation, XSBench and VEXS for a depleted scenario on a
V100 GPU. These results are again largely in line with those
shown by the unit test in Figure 8, although the discrepancy
between the two algorithm implementations is not as wide
as that shown in Figure 9. Again VEXS does not capture
this discrepancy very well, and again captures the general
asymptoting trend for the hash-accelerated linear search while
still not closely resembling the trend shown by the reference.

C. Profiling

Fig. 11. Comparison of the achieved occupancy for XSBench, VEXS and
Shift unit tests for the baseline binary search (hash bins = 0) and the hash-
accelerated linear search (hash bins = 4,000 - 16,000) on a P100 GPU [13].

Shown in Figures 11 and 12 is a comparison of the achieved
occupancy using a Shift unit test, XSBench and VEXS when
running the baseline binary search and the hash-accelerated
linear search for a depleted scenario on a P100 and V100
GPU, respectively. XSBench predicts fairly good occupancy,
around sixty percent on both devices. By comparison, VEXS
predicts an achieved occupancy of approximately forty percent

Fig. 12. Comparison of the achieved occupancy for XSBench, VEXS and
Shift unit tests for the baseline binary search (hash bins = 0) and the hash-
accelerated linear search (hash bins = 4,000 - 16,000) on a V100 GPU [13].

on the P100 GPU and thirty percent on the V100 GPU.
This is closer in both cases to the Shift reference, which is
around twenty percent on both devices. Interestingly, on the
P100 all three applications show a noticeable dip in achieved
occupancy when switching to use of the hash-accelerated
linear search (hash bin = 4,000), but on the V100 VEXS
appears to be largely flat with increasing numbers of hash
bins while XSBench actually predicts that there will be an
increase in achieved occupancy for the same point.

Fig. 13. Comparison of the branch efficiency for XSBench, VEXS and
Shift unit tests for the baseline binary search (hash bins = 0) and the hash-
accelerated linear search (hash bins = 4,000 - 16,000) on a P100 GPU [13].

Shown in Figures 13 and 14 is a comparison of the
calculated branch efficiency using a Shift unit test, XSBench
and VEXS when running the baseline binary search and the
hash-accelerated linear search for a depleted scenario on a
P100 and V100 GPU, respectively. For both cases VEXS
correctly captures a significant increase in branch efficiency
when switching from the baseline binary search to the hash-
accelerated linear search, although in both cases it then ex-
hibits decreasing branch efficiency with increasing hash bin
number, which only matches the reference on the V100 GPU,
with the P100 hash-accelerated linear search remaining largely
agnostic to the number of hash bins used. By contrast, on
both devices XSBench actually predicts a decrease in branch



Fig. 14. Comparison of the branch efficiency for XSBench, VEXS and
Shift unit tests for the baseline binary search (hash bins = 0) and the hash-
accelerated linear search (hash bins = 4,000 - 16,000) on a V100 GPU [13].

efficiency when switching to the hash-accelerated linear search
and then predicts an increase in branch efficiency as the
number of hash bins is increased, which is in direct contrast
to the reference in all cases.

Overall, VEXS does appear to more closely capture ref-
erence behavior in terms of achieved occupancy and branch
efficiency on both devices. This is relevant to performance
analysis on GPUs, as achieved occupancy is an overall mea-
sure of actual application efficiency when all features (includ-
ing latency-hiding efforts by the GPU) are taken into account,
branch efficiency is a good overall measure of how divergent
an application is, and Monte Carlo codes in particular are
known to be both latency-bound and very divergent.

V. SUMMARY AND CONCLUSIONS

In this paper, we have shown the necessity of taking into
account the memory model when designing a new Monte
Carlo mini-app for GPUs, VEXS. We first began by intro-
ducing the computational scenario the mini-app attempts to
describe, and detailed the similarities and differences between
this new mini-app and XSBench, an already-established Monte
Carlo mini-app which uses several approximations for the
memory model. We then described the reference code Shift,
and explained algorithm and implementation details in each
code for the purposes of justifying the additional work that
went into VEXS. We then analyzed the trends exhibited by
each code for quantities of interest (throughput ratios) and
profiling information (achieved occupancy, branch efficiency).
We showed that without taking into account memory details
particular to the Shift reference code, mini-apps which use ap-
proximations for these in-memory details (such as XSBench)
may produce trends that are very different from those exhibited
by actual production codes. We also showed that when using
a mini-app that attempts to take these details into account
(VEXS) the resulting trends are significantly closer to those
in Shift.

VI. FUTURE WORK

Future efforts to develop new algorithms and optimizations
for the cross-section lookup routine, if using a mini-app as a
testbed, may need to incorporate memory considerations simi-
lar to those employed by VEXS in order to get accurate results.
If new algorithms are developed without taking these memory
considerations into account, false performance benefits may
arise that would otherwise not be present. Mini-apps such as
XSBench and VEXS will likely need to implement further
engineering in order to account for different memory models
and implementations. A study of what specific in-memory
alterations led to the improved performance trends shown here
is underway. In the future, the authors of VEXS would like
to further incorporate the in-memory details of Monte Carlo
codes into the mini-app so as to bring performance trends
further in line with those exhibited by production codes.
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APPENDIX
AVAILABILITY OF MATERIAL

The VEXS mini-app is available openly at https://github.
com/fshriver/VEXS. All figures, plotting scripts and most of
the data that was used to generate them are available openly
under the CC-BY license [13].

APPENDIX
REPRODUCIBILITY

All results shown in this paper were taken from the Summit-
dev (P100 GPU) and Summit (V100 GPU) systems maintained
by the Oak Ridge Leadership Computing Facility (OLCF).
To reproduce these exact results, one should ideally use an
allocation on these machines obtained from the OLCF; similar
results are likely but not guaranteed to be obtained using
similar GPUs found in other clusters.

The following steps may be taken in order to reproduce
most of the results shown in this paper:

A. VEXS

1) Main: The latest public-facing version of the VEXS
codebase (which can be used to reproduce the results shown
in this paper) can be found here: https://github.com/fshriver/
VEXS.

Once the VEXS repository is cloned into a location
where the user has appropriate access, the user should
first follow the Quickstart guide located on the main
page to generate initial binary data files. They should
then move to the directories of those kernels they wish
to collect data on (for the case of this paper, those lo-
cated under packages/GPU/CUDA/xsbench-like/naive/struct-
of-arrays, packages/GPU/CUDA/xsbench-like/hash/struct-of-
arrays/binary-completion and packages/GPU/CUDA/xsbench-
like/hash/struct-of-arrays/linear-completion). The user should
make sure the appropriate flags for their architecture and
configuration are set in the Makefile; a full explanation is given
in the VEXS wiki under the user manual, however good ones
to watch out for are the SM flag (default sm 60 for a P100,

change to sm 70 if operating on a V100) and the cache flag
(default cg, set to ca for the purposes of collecting data similar
to this paper).

2) Acceleration results: Once the above is done, the user
should write scripts that are set to parse and filter program
output; the keyword to parse for will be ’Rate =’. The user
should filter on this expression, and should write their scripts
to collect the number that follows. This is the basis of sections
one and two of the above paper.

To collect exact results, the user should run the
packages/GPU/CUDA/xsbench-like/naive/struct-of-arrays
kernel with the following options:

./VEXS -i detailed model [SCENARIO] core -b –
gputhreads 256 –gpublocks [NUMBER]

where [SCENARIO] is toggled to either fresh or depleted
by the user depending on the scenario in the above paper
they wish to capture, and [NUMBER] is set to 16384 if
[SCENARIO] = fresh and 4096 if [SCENARIO] = depleted.

The user should run similar code in the
packages/GPU/CUDA/xsbench-like/hash/struct-of-
arrays/binary-completion and packages/GPU/CUDA/xsbench-
like/hash/struct-of-arrays/linear-completion directories,
however should add the following parameters:

-hashbins [4000 - 1000 - 16000]

where [4000 - 1000 - 16000] indicates that the scripts should
be written in such a way as to run VEXS with this parameter
varied from 4000 to 16000 in increments of 1000. Each test
should be repeated ten times to collect statistics.

3) Profiling results: To collect the performance
metrics, the user should run the kernels under
packages/GPU/CUDA/xsbench-like/naive/struct-of-arrays/
and packages/GPU/CUDA/xsbench-like/hash/struct-of-
arrays/linear-completion like so:

./nvprof –kernels xs lookup –metrics
achieved occupancy,branch efficiency –log-file metrics.txt
–csv -f ./VEXS -i detailed model [SCENARIO] core -b
–gputhreads 256 –gpublocks [NUMBER] –hashbins [4000 -
1000 - 16000]

where the above parameters are either present or absent as
detailed above and vary depending on the kernel that is being
profiled.

B. XSBench

1) Main: To latest version of XSBench can be found here:
https://github.com/ANL-CESAR/XSBench. Once this reposi-
tory has been cloned, the user should only need to work in the
cuda/ directory under the top level of the repository. The user
should again make sure that the appropriate flags are set in the
Makefile for their architecture. The user should also assure that
in the Simulation.cu file, they edit the nthreads variable under
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the run event based simulation baseline function to equal
256. They should also implement their own linear search in the
XSBench codebase under those sections targeted towards use
of the hash-accelerated search, as XSBench does not natively
possess a linear search.

2) Acceleration results: Once the above is done, the user
should write scripts that are set to parse and filter program
output; the keyword to parse for will be Lookups/s:. The
user should filter on this expression, and should write their
scripts to collect the number that follows. This is the basis
of sections one and two of the above paper. Once this has
been implemented, the user should write scripts to run the
following code:

./XSBench -k 0 -m event -G [TYPE] -s [SIZE] -l
[NUMBER] -h [4000 - 1000 16000]

where [TYPE] is set to either nuclide or hash depending on
the results that the user wishes to be obtained, [SIZE] is set
to either small or large depending on whether the user wishes
to collect fresh (small) or depleted (large) scenario results,
[SIZE] is set to either 1048576 if the user chose [SIZE] =
large or 4194304 if the user chose [SIZE] = small and the
last parameter, -h, is passed only if [TYPE] is set to hash
and takes on a range from 4000 to 16000 in increments of
1000, similar to the range used for VEXS. Depending on
whether the user wishes to collect hash-accelerated linear or
hash-accelerated binary search results, they should comment
out either the binary search or the linear search in the relevant
parts of the codebase.

3) Profiling: To collect the performance metrics, the
user should run the nvprof visual profiler on the XSBench
application like so:

./nvprof –kernels xs lookup kernel baseline –metrics
achieved occupancy,branch efficiency –log-file metrics.txt
–csv -f ./XSBench -k 0 -m event -G [TYPE] -s [SIZE] -l
[NUMBER] -h [4000 - 1000 16000]

where the above parameters are either present or absent as
detailed above and vary depending on the kernel that is being
profiled.

C. Shift

Unfortunately Shift is an export-controlled Monte Carlo
code, developed at ORNL, and so cannot be navigated to,
downloaded or used without appropriate permissions by the
U.S. government.
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