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Abstract

Mobile radiation detector systems are important tools for detecting radiologi-

cal and nuclear sources outside of regulatory control, but due to their mobility,

they are subject to complex and varying backgrounds in most realistic opera-

tional scenarios. Recent work has found correlations between non-radiological

contextual information and gamma-ray spectral features that can be used to de-

crease false alarm rates, however a more complete understanding of background

source terms has been elusive. A measurement campaign developed a full ra-

diological characterization of a controlled facility that roughly corresponded to

two city blocks. As part of the campaign, the Radiological Multi-sensor Anal-

ysis Platform (RadMAP) collected extensive multi-sensor data. In this work,

RadMAP’s panoramic video data were used to visually identify several different

materials and quantify the detector response to each material. A linear model

was fit between the material responses and radiological features, and the re-

sults demonstrate reasonable agreement with ground truth flux measurements
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for each material. This paper will describe the data collection, processing, and

analysis of the gamma-ray and video data from RadMAP. The paper will con-

clude with perspectives on the applicability of such a method to less controlled

environments both with respect to achieving better understanding the sources

of variability of background radiation in urban environments and whether such

methods could be leveraged in operational scenarios.

Keywords: Gamma-ray detection, Background radiation, Data fusion,

Homeland security

1. Introduction1

Vehicle-borne radiological detector systems are becoming increasingly im-2

portant tools for radiological and nuclear security because they can carry large3

(∼ 1 m2) gamma-ray and neutron detectors and are thus more capable than4

smaller detectors of detecting weak sources [1–3]. However, larger detectors also5

collect more background events and are more sensitive to background fluctua-6

tions [4, 5]. Recent approaches have used multiple contextual (non-radiological)7

sensors to obtain data about the environment to find correlations between con-8

textual and radiological features [6, 7]. However no system has yet shown the9

ability to completely attribute all of the measured background to the environ-10

ment around the system. Such background “inversion,” if possible, could allow a11

detector system to become less prone to alarms due to benign anomalies, which12

would result in improved sensitivity to threat sources in a search scenario. In-13

version would also enable physics modeling of scenarios based on volumes of14

real-world data previously impractical to obtain.15

The RadMAP system was developed as a testbed to explore correlations16

between radiological and contextual data [8]. RadMAP combines large volume17

gamma-ray and neutron detectors with contextual sensors such as panoramic18

video, LiDAR, and hyperspectral imagery. This paper describes measurements19

conducted with the RadMAP system in the Military Operations in Urban Ter-20

rain (MOUT) facility at the Fort Indiantown Gap (FTIG) National Guard21
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training facility that were part of the Multi-agency Urban Search Experiment22

(MUSE) in 2016 [9, 10]. MUSE seeks to thoroughly model and benchmark urban23

radiological environments, and as part of the effort at the FTIG MOUT facility,24

a thorough set of in situ ground truth measurements were taken with HPGe de-25

tectors [11]. The capabilities of RadMAP, combined with the site ground truth26

measurements, makes the FTIG MOUT dataset ripe for background inversion27

analysis.28

The background inversion analysis presented herein is based on three streams29

of data generated by RadMAP: the NaI(Tl) gamma-ray detector array, the30

two Point Grey Ladybug3 panoramic video systems, and the NovAtel inertial31

navigation system (INS). The reader is referred to [8] for more detail on the32

specific systems used. Combining these three streams of data, we demonstrate33

correlations between the fraction of field of view subtended by visible objects34

and the radiological data generated by the on-board NaI(Tl) array.35

2. Methodology36

We assume a linear model that attributes detected gamma rays to pixels37

subtending the angular space surrounding the detector system. This model38

neglects air attenuation and second-order effects such as skyshine and scatter39

between objects in the environment. A full 3-D model of the environment would40

enable consideration of these effects, but they are neglected here.41

All 4π steradians of solid angle surrounding the detector system are divided42

into small elements. Visual panoramic images are used to label all elements43

by material class, and a simulated detector model is used to estimate the re-44

sponse. Corrections to the response are applied to account for the placement45

of the panoramic video cameras relative to the detector system. Thereafter the46

measured spectral features are fit to a linear combination of the image-derived47

responses, where a constant activity for each material class is assumed. The re-48

sulting activities are compared to the gamma-ray emission source terms based49

on the ground truth measurements in Section 3.3.50
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2.1. Linear emission model51

For a surface element j of area aj with activity per area αj emitting into52

2π steradians, the flux (photons/second/area) at a distance rij and angle from53

surface normal θij is54

αj
aj cos θij

2πr2ij
. (1)

Here and hereafter, a far-field approximation is assumed. For a detector at55

position i that has an effective area (product of detector efficiency and geometric56

area) Aij in the direction of surface j, the measured photons yij for a dwell time57

∆ti can be approximated by58

yij ≈ αj
aj cos θij

2πr2ij
Aij∆ti (2)

≈ αj
∆Ωij

2π
Aij∆ti, (3)

where ∆Ωij ≡ aj cos θij/r
2
ij is the solid angle of surface j as seen by the detector59

at position i. Assuming the environment around the detector has been com-60

pletely divided into surface elements indexed by j, the total number of photons61

measured at position i is62

yi ≈ ∆ti
∑
j

Aij
∆Ωij

2π
αj . (4)

This sum becomes63

yi ≈ ∆ti
∑
C

αC

∑
j∈C

∆Ωij

2π
Aij (5)

≡ ∆ti
∑
C

RiCαC (6)

by assuming surface elements are grouped into classes C of equal surface flux αC64

based on visual information. The quantity65

RiC ≡
∑
j∈C

∆Ωij

2π
Aij (7)
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is referred to as the response for class C at detector position i.66

2.2. Dataset preparation67

A period of continuous motion of the RadMAP vehicle from 10:37:28 to68

11:33:18 EDT on 1 September 2016 was used in the analysis. During this pe-69

riod, the vehicle traveled in multiple laps around the entire MOUT facility.70

The typical vehicle speeds during the dataset were 2 − 8 m/s. Although the71

panoramic cameras on RadMAP were triggered at a rate of 15 Hz, images were72

downsampled to a rate of 3 Hz in order to align with binnings of the gamma-ray73

data that result in relative statistical uncertainties of . 2% instead of ∼ 4%.74

There are a total of 10,047 images used during the 3,350 s dataset, and the full75

resolution of each image was 5400×2700 pixels.76

To generate a set of panoramic images that cover all 4π steradians around77

the vehicle, synchronous images from the “port” and “starboard” panoramic78

cameras were first fused to generate a unified field-of-view video stream (Fig-79

ure 1). The resulting images remove the vehicle from the panoramic images,80

although the area beneath the cameras remains occluded.81

The Ladybug3 cameras are located in front of the detector array in the82

RadMAP vehicle. To account for this, the time range for detector events is83

delayed by the velocity-derived time offset between the gamma-ray and image84

timestamps.85

To determine the gamma-ray time bins corresponding to the image locations,86

the following calculation was performed. Using the image timestamps, the mid-87

point timestamps timg
i between subsequent images were calculated. The vehicle88

speed s(t) was obtained from RadMAP’s Inertial Navigation System (INS), and89

the corresponding NaI midpoint timestamps tnaii were calculated by numerically90

integrating s(t) to satisfy91

∆x =

∫ tnaii

timg
i

s(t)dt (8)

where ∆x = 4.5 m is the horizontal distance between the NaI array and the92

cameras. Since the typical vehicle speed during the dataset was 2 − 8 m/s,93
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Figure 1: Example of the fusion of a port side panoramic image (top) with a starboard side
image (middle) to create a combined panoramic image (bottom) that eliminates most of the
occlusion due to the vehicle. (Color online.)

the typical delay between the image timestamps and the NaI timestamps is94

0.5 − 2.5 s, and changes in speed result in slight variations in gamma-ray time95

bin intervals.96

The NaI(Tl) array’s timestamps tnaii were then used as time boundaries to97

calculate binned energy spectra. For simplicity, the individual spectra of the98

100 NaI(Tl) detectors of RadMAP’s 1 m2 array were summed together into one99

spectrum, making the array essentially one large monolithic NaI(Tl) detector.100

The set of spectra will be denoted xi, and the dwell times ∆ti. In the end, one101

spectrum for each image in the set was created, with dwell times ranging from102

≈ 0.25− 0.45 s.103
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2.3. Image classification104

Each frame in the fused video stream was subjected to an automated seg-105

mentation algorithm, Simple Linear Iterative Clustering (SLIC) [12], producing106

12,000 “superpixels” for each image. From each superpixel, a 111-dimensional107

feature vector consisting of the following features was extracted:108

• Minimum, mean, and maximum of:109

– Tangent of elevation angle when object is directly to the side: tan θside =110

tan θ/| sinφ|, where θ, φ are the elevation and azimuth angles111

• Mean and standard deviation of:112

– RGB colors R, G, and B113

– Lab colors L, a, and b114

• Histograms of colors (0–255, 16 bins) for:115

– RGB colors R, G, and B116

– Lab colors L, a, and b117

A subset of 46 images were manually labeled with eleven classes: grass, for-118

est, building rooftop, concrete, asphalt, gravel, sky, vehicles, and red, brown,119

and gray buildings. Each image was then segmented using SLIC, and the super-120

pixels that were completely labeled by exactly one class were then used to train121

a random forest classifier, which was then applied to all of the images. One-third122

of the ground truth superpixels were randomly withheld from training and used123

to generate a confusion matrix for the classifier. Figure 2 shows the normalized124

confusion matrix, which reveals that most of the classes are found with > 85%125

accuracy, however some of the rare classes (building roof, white building, and126

vehicles) are confused often with more common classes. Further work could be127

done to improve the classifications through improving the feature vector used or128

using a more advanced technique such as a neural network, although unsuper-129

vised methods would be more broadly applicable and these could additionally130
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Figure 2: Confusion matrix for the eleven classes classified by the random forest described in
the text.

draw from other sources of information such as RadMAP’s hyperspectral- and131

LiDAR-derived clusters and objects.132

To fill in the occluded foreground of the images, nearby images were used133

to infer the unknown region in the following way. The position and heading134

given by RadMAP’s INS were used to transform images within ±5 s of a given135

image into the frame of the image assuming that the camera is 3.1 m above136

an infinite plane. Starting with the images closest in time to a given image,137

images further and further in time are examined until at least two images have138

the same classification for the unknown pixel or the images being examined are139

more than 5 s away from the original image. Any remaining unknown pixels are140

assigned using a flood-fill from nearby pixels.141

One last step is applied to smooth out the classified images. Like the previous142

step, nearby images are transformed into the frame of a given image, but now143

assuming the vehicle is within a rectangular box of finite size in order to account144

for the unknown distance to each pixel. A box of dimensions 10 m to each side,145

50 m to front and back, and 3.1 m to the ground yielded qualitatively acceptable146
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Figure 3: Example of processing a single panoramic image. The original image (top) is
divided into superpixels and classified (second). The third image shows the result of using
nearby images to fill in the obscured region beneath the cameras, and the last image is the
result of using nearby images to smooth out noisy pixels. (Color online.)

results. The image plus the four images closest in time are examined to find147

the areas where four out of the five images agree on the classification. For the148

pixels where no four images agree, the original classification is retained.149

The results of these image classification and processing steps for a single150

image are shown in Figure 3.151
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2.4. Detector effective area152

The effective area Aij was calculated using Monte Carlo simulations of the153

RadMAP vehicle. A mass model of the entire vehicle and its detector systems154

was developed in MEGAlib [13] (see Figure 4). To obtain the measured spec-155

trum for each of the NaI(Tl) detectors from gamma rays originating from any156

point in 4π steradians, monoenergetic point sources were simulated at 520 points157

subtending the unit sphere, and the results were interpolated. The points were158

at a distance of 10 m from the NaI(Tl) array center so as to be in the far field.159

All simulations were performed in a vacuum. The energies chosen were major160

background and source lines: 238, 295, 351, 583, 609, 662, 911, 968, 1112, 1460,161

1764, 2200, and 2615 keV. Since the spectral features examined in Section 3 are162

summed counts in a spectrum, the effective area was determined by summing163

over the entirety of the simulated energy deposition spectra. Figure 5 shows164

the effective area derived from these simulations for incident 1460 keV photons165

that deposit any energy in the detectors.166

To determine the effective area for a non-monoenergetic source AS , a simple167

estimation was performed in the following fashion. Let S(E) be the measured168

spectrum of the source whose effective area we want to estimate, and let Ej be169

the set of energies that were simulated. Then the effective area for S(E) was170

estimated using a weighted average of the monoenergetic effective areas:171

AS ≈
∑

j A(Ej)S(Ej)∑
j S(Ej)

(9)

where we have implicitly assumed that the incident spectrum is similar to the172

measured spectrum S and that the discrete set of energies Ej sufficiently spans173

the energy space. Then AS is an approximation to the effective area for an174

incident photon from a spectrum S to interact in the detector array.175

2.5. Solid angle176

The solid angle ∆Ωij was calculated using the projection of the panoramic177

images. In this case, the projection was equal in angles, so each pixel of the178
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Figure 4: Cutaway visualization of the MEGAlib mass model used for the RadMAP vehicle
showing the NaI(Tl) array (white) toward the rear of the vehicle behind a coded mask (lead
mask elements are yellow). View is from the front starboard side of the vehicle. (Color online.)

Figure 5: Simulated effective area (product of geometric area and detector efficiency) for
the RadMAP NaI(Tl) array calculated for monoenergetic 1460 keV photons that deposit any
energy in the detectors. The elevation angle is θ and azimuth is φ. The projection of this
image is made to directly correspond to the visual panoramic images, so (θ, φ) = (0◦, 90◦)
points directly out the right (starboard) side of the vehicle and is also the center of the NaI(Tl)
coded mask field of view, while (θ, φ) = (0◦,−90◦) points directly out the left (port) side of
the vehicle.

image had the same width in elevation and azimuth. The solid angle of a pixel179
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at elevation angle θ and azimuth φ is therefore180

∆Ω = cos θ∆θ∆φ (10)

where ∆θ and ∆φ are the height and width of each pixel in radians.181

However, because the panoramic cameras are located at a significantly higher182

elevation than center of the detector system (3.12 m versus 2.29 m), ∆Ω will183

be distorted. This distortion will be especially pronounced for nearby pixels,184

particularly those on the ground near the vehicle. Note that no significant185

overhanging features exist at the FTIG facility. To correct for the decreased186

distance to points on the ground, solid angles with θ < 0 are multiplied by the187

factor188

∆Ω′

∆Ω
=

z2

sin2 θ + z2 cos2 θ
(11)

where z is the ratio of the camera height to the center of the NaI(Tl) array,189

or 1.37. This factor accounts only for changes in distance, not changes to the190

surface normals, although for a full correction the surface normal would need to191

be known.192

2.6. Image response193

Finally, with 4π panoramic images labeled according to material class, NaI(Tl)194

spectra collocated with the images, spectrum dwell times ∆t calculated, effec-195

tive area AS estimated from simulations, and solid angle ∆Ω calculated from196

the image projection, we can calculate the response matrices R using Equa-197

tion (7) and fit the linear emission model (Equation (6)). Figure 6 shows the198

responses R at 1460 keV for the different material classes derived from a subset199

of the image dataset that comprised one “figure eight” of the MOUT facility. In200

the following section, the responses for the entire dataset will be fit to different201

spectral features.202

12



Figure 6: Responses for each image class for monoenergetic photons at 1460 keV. The data
shown are a subset of the total data set, a 165 s long “figure eight” around the FTIG MOUT
facility. (Color online.)

3. Correlation analyses203

With the image-derived responses and gamma-ray spectra in hand, we now204

turn to the problem of finding correlations and comparing the results with the205

ground truth.206

3.1. Gross counts207

The simplest feature to examine in the gamma-ray data is the gross count208

rate, which is plotted as the colorization of the mobile system path for a portion209

of the dataset in Figure 7. The figure shows that the gross count rate is highest210

away from the buildings and lowest along the central street.211

The responses for each material class were fit using maximum likelihood ex-212

pectation maximization (MLEM) to the gross counts according to Equation (6).213

Fit results are shown in Figure 8, and comparisons to ground truth measure-214

ments are shown in Table 1.215

3.2. Non-negative matrix factorization216

In order to fit the full spectrum instead of only gross counts, non-negative217

matrix factorization (NMF) [14, 15] was employed as a spectral dimensionality-218

reduction technique. Though well known in other fields of study, NMF has219
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Figure 7: The gross count rate for the “figure eight” loop around the FTIG MOUT facility
shown in Figure 6. The vehicle track begins at the green point and ends at the red point.
Color online. (Map imagery: Google.)

Figure 8: A linear combination of image class responses fit to the gross counts for the summed
NaI(Tl) array. The grass/soil class is the dominant contributor, followed by the sky. Data
shown are for the 165 s “figure eight” loop around the FTIG MOUT facility shown in Figures 6
and 7, and the fit was performed only on the subset of data shown. (Color online.)

only recently been applied to gamma-ray spectroscopic data [16]. NMF seeks a220

decomposition of a matrix of non-negative data X into non-negative matrices221
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of coefficients A and components V, i.e.,222

X ≈ A ·V, (12)

that minimizes the Poisson negative log likelihood of X given X̂ ≡ A ·V, i.e.,223

Λ(X|X̂) =
∑(

X̂−X� log(X̂)
)
, (13)

where multiplication (�) and log are applied elementwise. For this analysis,224

X is a matrix where each row is a measured spectrum xi. For example, a225

two-component NMF decomposition has the form:226


x0

T

x1
T

x2
T

...

 ≈

a00 a01

a10 a11

a20 a21
...

...

 ·
 v0

T

v1
T

 (14)

where v0 and v1 are the two spectral components that describe the data. There-227

fore, each spectrum can be expressed as a linear sum of the two components:228

229

xi ≈ x̂i = ai0v0 + ai1v1 (15)

where x̂i is the NMF fit to the spectrum xi.230

NMF was chosen for dimensionality reduction over other methods due to its231

non-negativity, consistency with Poisson statistics, and linearity — all of these232

properties allow the model to represent the underlying photon source emissions233

in a valid manner. The dimensionality reduction methods Principal Component234

Analysis (PCA) and Singular Value Decomposition (SVD) are similar but are235

disfavored because their weights and components can be negative, and they as-236

sume Gaussian statistics. In addition, Poisson Principal Component Analysis237

(PPCA) [17] was not used because although PPCA is non-negative and abides238

by Poisson statistics, the decomposition is neither linear nor additive, but is239
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instead multiplicative. One drawback to using NMF over other methods is that240

the number of components must be chosen before calculating the decomposi-241

tion. Although the NMF model is consistent with radiation physics, like all242

dimensionality-reduction methods, it is not guaranteed to represent the true243

photon emission spectra.244

The one-component NMF decomposition is nearly identical to gross counts245

since the single component will approximate (normalized) mean spectrum and246

the weight will approximate the gross counts in the spectrum. Therefore the247

one-component NMF analysis is essentially the same as the gross count analysis248

in Section 3.1. Instead, we will examine the results from a two-component NMF249

model.250

The two-component NMF solution yields two spectral components with dif-251

ferent spectral features (Figure 9). The first component can be interpreted as252

being due to distant and skyshine sources because of the lack of strong line fea-253

tures and the high continuum present near 100 keV, presumably due to multiple254

scatters in the environment. Component 2 may result from nearby sources due255

to several line features and a higher low energy rollover. These interpretations256

are supported by the component weights when displayed on a map — compo-257

nent 1 is dominant in open areas away from the buildings, while component 2 is258

strongest in the areas near buildings and when surrounded by soil (Figure 10).259

For simplicity, the component weights for components 1 and 2 were fit sep-260

arately to the data using weighted non-negative least squares to solve Equa-261

tion (6). The weights used were the inverse of the standard errors for the262

component weights, which were derived from Λ. The resulting fits are shown in263

Figure 11.264

3.3. Comparison with ground truth265

Table 1 shows the ground truth activities determined using in situ HPGe266

measurements [11] compared to fits to gross counts and NMF components from267

RadMAP. Overall, the activities derived from gross counts are similar in mag-268

nitude to the ground truth, and the soil/grass class has the largest activity.269
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Figure 9: The two NMF components found using maximum likelihood to fit the spectra in
the FTIG MOUT dataset. (Color online.)

However, nearly all of the activities are significantly higher than the ground270

truth values, but this discrepancy may be due to the fact that the ground truth271

analysis isolated the foreground material from any materials behind it, which272

also would contribute to the photon flux passing out of the surface.273

Another feature of the results is that in general the two NMF component ac-274

tivities all approximately sum to the gross counts activity, so it is illustrative to275

compare how the class activities are apportioned between the two components.276

The soil/grass activity gets nearly evenly split between both components, indi-277

cating that it is a significant contributor both to nearby and distant sources. The278

building material types are apportioned more heavily to component 2, which is279

consistent with that component representing nearby sources. Likewise forest280

and sky are more heavily apportioned to component 1, and these classes are281

clear markers that the detectors are in open areas and thus more sensitive to282

distant sources.283

Table 2 shows the same fit results as Table 1 but from a fit of only 165 s284

of data from the single “figure eight” lap of the facility, which was shown in285

Figures 6, 7, 8, 10, and 11. In comparison to Table 1, significantly less flux is286
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Figure 10: The two NMF component weights for the “figure eight” loop around the FTIG
MOUT facility shown in Figures 6, 7, and 8. Color online. (Map imagery: Google.)

attributed to the sky and the forest, while more flux is attributed to vehicles,287

especially for NMF component 2.288
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Figure 11: A linear combination of image class responses fit to the two NMF components
for the 165 s “figure eight” loop around the FTIG MOUT facility shown in Figures 6, 7, 8,
and 10. The fit was performed only on the subset of data shown. (Color online.)

4. Discussion289

The analysis of RadMAP data has shown that it is possible to use the pre-290

sented radiological background inversion method to achieve a semi-quantitative291

understanding of the radiological gamma-ray source terms of an environment292

around a detector system. This method leveraged a thoroughly understood293

angle-dependent detector response model and assumed the environment can be294

divided up into a small number of radiologically distinct materials. This re-295

sult gives hope that results of similar quality could be obtained from analyses296

of data collected in urban environments. Such a method of determining the297

gamma-emitting characteristics of benign materials found in urban settings can298
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Class Ground truth (phot/s/cm2) Gross counts NMF comp. 1 NMF comp. 2
soil/grass 2.462 3.629± 0.017 1.660± 0.025 1.936± 0.023
concrete 0.985 1.291± 0.018 0.694± 0.026 0.537± 0.024
asphalt 0.836 0.871± 0.019 0.654± 0.029 0.160± 0.027
gravel 0.831 1.545± 0.021 0.804± 0.030 0.726± 0.028

red building 0.397 2.050± 0.007 0.717± 0.009 1.352± 0.009
dark tan building 0.446 2.354± 0.008 0.720± 0.012 1.660± 0.011
light tan building 0.658 ? ? ?

white building 0.311 1.632± 0.022 0.750± 0.032 0.905± 0.031
gray building 0.501 ? ? ?
building roof N/A 0.000± 0.084 0.000± 0.144 0.000± 0.134

vehicle N/A 0.870± 0.038 0.144± 0.056 0.609± 0.052
forest N/A 2.684± 0.021 1.828± 0.031 0.960± 0.029
sky N/A 1.537± 0.012 1.047± 0.017 0.550± 0.016

Table 1: Comparison of ground truth surface fluxes with fits to the spectral features described
in the text. Units are photons/s/cm2 and errors are statistical. The ? symbol indicates that
the “dark tan” and “light tan” classes and the “white” and “gray” classes were separate in
the HPGe ground truth measurements but were combined for the RadMAP analysis.

Class Ground truth (phot/s/cm2) Gross counts NMF comp. 1 NMF comp. 2
soil/grass 2.462 4.50± 0.10 1.77± 0.15 2.74± 0.14
concrete 0.985 2.09± 0.09 0.90± 0.14 1.18± 0.13
asphalt 0.836 1.43± 0.10 0.88± 0.15 0.56± 0.14
gravel 0.831 2.15± 0.11 0.81± 0.16 1.44± 0.14

red building 0.397 2.36± 0.05 0.69± 0.07 1.72± 0.06
dark tan building 0.446 2.03± 0.05 0.52± 0.06 1.52± 0.06
light tan building 0.658 ? ? ?

white building 0.311 2.00± 0.10 0.82± 0.14 1.23± 0.14
gray building 0.501 ? ? ?
building roof N/A 0.00± 0.61 0.00± 0.89 1.09± 0.83

vehicle N/A 2.59± 0.28 0.49± 0.41 1.55± 0.37
forest N/A 1.86± 0.10 1.78± 0.14 0.13± 0.14
sky N/A 1.08± 0.06 0.98± 0.09 0.12± 0.09

Table 2: Comparison of ground truth surface fluxes with fits to only the 165 s “figure eight”
subset shown in Figures 8 and 11. Units are photons/s/cm2 and errors are statistical.

facilitate a broader understanding of both observed and expected radiological299

measurements in mobile radiological search scenarios. This method has the po-300

tential to revolutionize the way that such searches are planned and performed,301

and to enable search algorithms to leverage additional sources of information.302

However there are caveats to this conclusion.303

The first caveat is that the ground truth measurements have revealed that304
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the FTIG MOUT facility does not have a large degree of variability in potas-305

sium, uranium, and thorium levels [11]. In addition, the site was cleared and306

constructed out of relatively uniform materials within a relatively short amount307

of time, which is not going to be true of many urban scenes in the world. So308

it is likely that the MOUT facility is an unusually simple case for background309

inversion.310

The second caveat is that one cannot know a priori how many material311

classifications are needed, nor whether a particular class is even radiologically312

uniform. Having a small, consistent site like the MOUT facility avoids this313

problem for now but it will be a major hurdle when analyzing other urban314

scenes. New developments in semantic segmentation may help with the prob-315

lem of discovering a reasonable number of material classes, but the radiological316

uniformity of those classes will always be unknown.317

The third caveat is that even if the model is the correct representation of318

the radiological environment, the inversion solution will always be affected by319

the measurement uncertainties. With infinitesimally small uncertainties, the320

background inversion solution would be exact so long as the rank of R is at321

least the number of material classes. The matrix R could be rank deficient either322

from having fewer images than material classes, or having at least one column323

be a linear combination of the other columns. The first problem is avoided by324

analyzing a sufficient amount of data, and the second problem becomes less325

likely as the environment becomes more complex. Assuming R is not rank326

deficient, the measurement uncertainties would be responsible for systematic327

errors and for high variances on the activities derived for classes with relatively328

small responses (e.g., the building roof and vehicle classes).329

Despite these caveats, there are still many reasons to pursue background330

inversion and more areas to explore. One reason is that there is much more331

information in the RadMAP radiological data to be exploited than was explored332

in this work. For example, the NaI(Tl) array on RadMAP was built as a coded333

mask imager, but here it was considered as a single large detector. Further334

data analysis separately treating each detector, its position, and its calculated335
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response could make the inversion analysis both more sensitive to the spatial336

distribution of background gamma-ray emissions and less subject to errors in337

the near field. Indeed, an entire array of HPGe detectors was neglected in this338

work but could also be utilized in future analyses.339

Another area to explore is the robustness of inversion, which could be ex-340

amined by fitting different subsets of the larger dataset. Already this work has341

shown the difference between the analysis of the hour-long dataset (Table 1)342

and the analysis of a 165 s “figure eight” subset of the dataset (Table 2). Al-343

though the vehicle drove around the entire MOUT facility in the “figure eight”344

subset, it was not a uniform sample of the full dataset since in the full dataset345

the vehicle traversed each road in both directions over multiple passes. The346

differences between Table 1 and Table 2 are beyond what could be justified by347

statistical uncertainties, which gives some indication of how differing perspec-348

tives can impact this analysis. Exploring the robustness of this background349

inversion analysis across subsets of this dataset could better inform the system-350

atic nature of the uncertainties that are observed in the comparison between351

the tables. For example, the solutions for identical laps at the MOUT facility352

could be compared to each other to examine the repeatability of inversion over353

multiple nearly identical measurements. Another investigation would be to fit354

only the previous T seconds of data and see how well the fit matches the next355

few seconds of data, for different values of T .356

A final reason that background inversion could have promise in the general357

case is that there is still much more information about the environment than358

has been analyzed here. This work has examined panoramic visual imagery,359

but RadMAP also operated two rotating LiDAR units, so three-dimensional360

models of the environment can be constructed. RadMAP also carried two hy-361

perspectral cameras, so better material classification and identification can be362

performed than RGB cameras allow. With a three-dimensional model of the en-363

vironment with better material identification, a much more sophisticated model364

could be developed and compared with the measurements (e.g., air attenuation365

and second-order scattering could be considered). Three-dimensional models366
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also eliminate the need to compensate for the relative positioning of the cameras367

and detectors, and the need to fill in occluded areas unseen by the cameras, since368

such information would be intrinsic to the model rather than “patched” later369

on. Developing a background inversion framework that uses three-dimensional370

models and leverages individual detectors in the subject of future study.371
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