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These funds were used to support the research of 8 graduate students over six years on various projects
focused on using systems approaches to improve production of biofuels and biochemicals in
Synechococcus and other microbes. Below is a description of the research that was performed, which led
to 8 publications, [3-10] 1 submitted manuscript, 1 manuscript in preparation, and 2 patents [11-12].

Engineering Synechococcus sp. PCC 7002 for Butanol Production

A genome-scale metabolic model was used to guide engineering of the cyanobacterium Synechococcus
sp. PCC 7002 for the production of short- to mid-chain alcohols (e.g. 2-methyl-1-butanol) that are
potential biofuels. PCC 7002 is of particular interest as a cyanobacterial production strain due to its
relatively rapid growth-rate and tolerance to saline and high-light conditions. Metabolic engineering

strategies for improving the production of various
alcohols in PCC 7002 were investigated via the
metabolic model iSyp708 [6], which was previously
developed by our lab. Using this modeling approach, a
potential strategy for enhanced production of 2-methyl-
1-butanol in PCC 7002 was successfully identified
(Figure 1). This strategy hinges on coupling the
overproduction of the alcohols’ metabolic precursors to
nitrate assimilation by rewiring PCC 7002’s native
NADH-cycling pathways. Specifically, the strategy calls
for replacing the native nitrate and/or nitrite reductases
in PCC 7002, which are ferredoxin-dependent, with
heterologous enzymes that instead use NADH to carry
out their reactions. This novel engineered NADH-
demand in PCC 7002 is predicted to generate a
metabolic pull on several upstream reactions in the
production pathway for 2-methyl-1-butanol, and
potentially several other related branched-chain
alcohols, thereby directing increased flux toward the
desired product.
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Figure 1. Engineering strategy to couple
nitrate assimilation with butanol production.

To test this strategy, the native nitrite reductase gene (nirA) in PCC 7002 was knocked out and replaced
in the same genomic locus by the nitrite reductase from Bacillus subtilis (hasDE). The nasDE enzyme has

been shown to specifically use NADH as its reducing
cofactor [1]. The nirA:nasDE strain showed a growth
defect when grown with nitrate as a nitrogen source,
but otherwise appeared healthy in terms of pigment
content (as measured by absorption spectrum). To test
whether this strain is an improved background for
producing 2-methyl-1-butanol in, the branched-chain
alcohol production pathway described by Shen & Liao
[2] was engineered into the strain. An inducible operon
containing the production pathway genes was
expressed from either the chromosomal glpK locus or
on a broad-host range RSF1010 plasmid. In both
cases the engineered nirA:nasDE strain showed
improved alcohol titers relative to a WT PCC 7002
background (Figure 2). We are currently conducting
final tests to determine if expression of the alcohol
pathway from other genomic loci yield improved
production titers over those observed so far.

This work demonstrates that replacing the native
nitrate assimilation pathway in PCC 7002 with NADH-
dependent enzymes can generate a background strain
with improved production characteristics for certain
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Figure 2. Alcohol production from different
expression systems in wildtype (WT) and
engineered PCC 7002 backgrounds.
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classes of next-generation biofuel compounds, e.g.
branched-chain alcohols. Additionally, this work further
validates the utility of genome-scale metabolic models
for guiding engineering studies in cyanobacterial
production strains. We are completing final
experiments for publication and plan to submit a
manuscript describing this work later this year.

Analyzing Experimental Data in the Context of
Metabolic Models

Incorporating experimental data into constraint-based
models can improve the quality and accuracy of the
models’ metabolic flux predictions. Unfortunately,
routinely and easily measured experimental data such
as growth rates, extracellular fluxes, transcriptomics,
and even proteomics are not always sufficient to
significantly improve metabolic flux predictions. We
developed a new method (called REPPS) for
incorporating experimental measurements of growth
rates and extracellular fluxes from a set of perturbed
reference strains and a parental strain to substantially
improve the predicted flux distribution of the parental
strain [3]. The reference strains are typically mutants
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Figure 3. Sensitivity of REPPS predictions to
the numbers of reference strains used. The
box plots show the mean squared errors
(MSE) for the parental strains estimated
intracellular fluxes using either REPPSF. The
dashed lines indicate the MSE for the parental
strains calculated directly from the pFBA and
the Fit methods, which do not use any
reference strain data.

derived from the parental strain. Using data from five single gene knockouts (reference strains) and the
wild type strain of Escherichia coli (parental strain), we decreased the mean squared error of predicted

central metabolic fluxes by ~47% compared to
parsimonious flux balance analysis (pFBA) (Figure
3). This decrease in error further improves flux
predictions for new knockout strains. Furthermore,
REPPS is less sensitive to the completeness of
the metabolic network than pFBA.

Transcriptomics and proteomics data have been
integrated into constraint-based models to
influence flux predictions. However, it has been
reported recently for E. coli and Saccharomyces
cerevisiae, that model predictions from
parsimonious flux balance analysis (pFBA), which
does not use any expression data, are as good or
better than predictions from various algorithms
that integrate transcriptomics or proteomics data
into constraint-based models. We developed a
novel constraint-based method called Linear
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Figure 4. Simulation result for LBFBA compared

Bound Flux Balance Analysis (LBFBA), which
uses expression data (either transcriptomic or
proteomic) to predict metabolic fluxes [4]. The
method uses expression data to place soft
constraints on individual fluxes, which can be
violated. Parameters in the soft constraints are
first estimated from a training expression and flux
dataset before being used to predict fluxes from
expression data in other conditions. We applied
LBFBA to E. coli and S. cerevisiae datasets and
found that LBFBA predictions were more accurate
than pFBA predictions, with average normalized
errors roughly half of those from pFBA (Figure 4).
For the first time, we demonstrate a computational

with pFBA for the E. coli dataset. The x-axis
represents the 29 conditions with measured
transcriptomics, proteomics and fluxomics data.
The y-axis represents the normalized flux error. For
each condition, data from the 28 other conditions
was used to parameterize flux bounds before
LBFBA was performed on the test condition. For
most cases, pFBA (hollow diamond) has a higher
normalized error than LBFBA integrating
transcriptomics data (star) or proteomics data (solid
triangle). Integrating proteomics data was more
accurate than integrating transcriptomics for most
conditions. The best case (hollow circle) represents
the lowest possible error achieved by fitting
constraint-based models to the measured fluxes.
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method that integrates expression data into constraint-based models and improves quantitative flux

predictions over pFBA.

Analyzing Strategies to Produce Biofuels and Bioproducts

Metabolic engineering uses microorganisms to
synthesize chemicals from renewable resources.
Given the thousands of known metabolites, it is
unclear what valuable chemicals could be produced
by a microorganism and what native and
heterologous reactions are needed for their
synthesis. To answer these questions, a systematic
computational assessment of Escherichia coli's
potential ability to produce different chemicals was
performed using an integrated metabolic model that
included native E.coli reactions and known
heterologous reactions [5]. By adding heterologous
reactions, a total of 1,777 non-native products could
theoretically be produced in E. coli under glucose
minimal medium conditions, of which 279 non-native
products have commercial applications. Synthesis
pathways involving native and heterologous
reactions were identified from eight central metabolic
precursors to the 279 non-native commercial
products. These pathways were used to evaluate the
dependence on, and diversity of, native and
heterologous reactions to produce each non-native
commercial product, as well as to identify each
product's closest central metabolic precursor.
Analysis of the synthesis pathways (with 5 or fewer
reaction steps) to non-native commercial products
revealed that isopentenyl diphosphate, pyruvate, and
oxaloacetate are the closest central metabolic
precursors to the most non-native commercial
products. Additionally, 4-hydroxybenzoate, tyrosine,
and phenylalanine were found to be common
precursors to a large number of non-native
commercial products. Strains capable of producing
high levels of these three central metabolites could
be further engineered to create strains capable of
producing a variety of commercial non-native
chemicals.

We have additionally extended this analysis to look
at other organisms and feedstocks. We expanded
our metabolic model of Synechococcus sp. PCC
7002 (iISYP708) [6] and used it and models of E. coli
and S. cerevisiae to compare maximum theoretical
yields on either acetate, methane or methanol. This
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Figure 5. (A) Number of heterologous
reactions needed to make the different 279
non-native products. (B) Precursors analyzed
in this work. (C). The number of products
derived from each of the precursors within five
steps is indicated by the blue columns. The
red columns indicate the number of products
that are closest to each precursor. (D) Venn
diagram of the non-native products that can be
produced from three precursors within five
reaction steps.
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work was done in collaboration with Brian Pfleger’s research group. We found that the feedstock costs
needed to make a fixed amount of products was lower for methane than glucose and that methanol in

most scenarios was more expensive than glucose [7].
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Application of Active and Machine Learning for Metabolic Engineering

Many computational and experimental approaches exist to metabolically engineer strains to produce
more of a desired chemical. Computational approaches typically rely on detailed mechanistic models
(e.g., kinetic/stoichiometric models of metabolism)—requiring many time- and cost-expensive
experimental datasets for their parameterization—while experimental methods may require creating large
mutant libraries to explore the design space, and then screening (if possible) and/or selecting (if possible)
for the few mutants with desired behaviors. To address these limitations, we developed an active and
machine learning approach (ActiveOpt) to intelligently guide experiments to arrive at an optimal
phenotype both quickly and with minimal and easily measured datasets. ActiveOpt was applied to two
separate metabolic engineering case studies that improved valine yields and neurosporene productivity in
Escherichia coli. The first case study was one in =T 60

which we used computational models to design k) Satisfactory

strains of E. coli to produce pyruvate and then used | + E ~50 _Sia”ﬁ“tﬁ

combinations of different plasmids which express o m%

the enzymes needed to convert pyruvate into valine 'Q'TCT: =

using different ribosome binding sites (RBSs). These EE > 40 Random
same enzymes have also been used to produce °g= —e— Farthest
various forms of butanol. Our best strain achieved 22X 30} —=— Closest

an elemental carbon yield of 45% (or 54.7% of the <§ —e— Farthest-then-
maximum theoretical (MT) valine yield from glucose O 20 C|O§68t

and acetate) in a defined minimal medium—the 0 5 10
highest carbon yield reported in E. coli. The second
case used data from a previously published study
where RBS strength was varied for three genes
involved in the biosynthesis of neurosporene.

# of Expression Constructs Teste
Figure 6. The average from the 89 ActiveOpt
(using different objectives: randomly chosen,
experiment farthest from the classifier, closest
to the classifier, or alternating between farthest
and closest to the classifier) or Upper
Confidence Bound (UCB) runs of the highest
observed % valine yield is plotted as a function
of the number of total experiments performed.
A total of 89 experiments were performed in
the case study.

Using our valine dataset, we found that machine
learning models using linear classifiers could predict
whether a set of RBSs would result in high or low
valine yield. From a leave-one-out cross validation
analysis we found the precision and recall was 0.80
and 0.89, respectively. When the number of
experiments used to train the classifier was reduced
from 88 to ~11, the average precision was 0.72 and recall 0.76. We subsequently developed an active
learning approach (ActiveOpt) where starting from two experimental results a classifier was built to
identify another experiment predicted to have high yield, and then those experiments were used to re-
train the classifier to choose another experiment (and so on). In both the cases, ActiveOpt identified the
best performing strain in fewer experiments than the case studies which did not use machine learning
approaches to optimize strains. This work demonstrates that machine and active learning approaches
can greatly facilitate metabolic engineering efforts to rapidly achieve metabolic engineering objectives. A
manuscript describing this work has been submitted.

Review Articles and Commentaries

We published several review articles and commentaries that describe the application of metabolic models
for metabolic engineering [8], the integration of regulatory models with metabolic models [9], and the
application of metabolic models to study and engineer microbial communities (i.e., microbiomes) [10].

Patents

This work led to two patents. The first patent describes strains of E. coli that were designed in silico to
produce pyruvate [11]. We generated four strains experimentally and found they were capable of
converting glucose into pyruvate with up to 95% of the maximum theoretical yield. These strains were
subsequently given to a U.S. company who has been evaluating their use as a background to produce
other chemicals derived from pyruvate. Our second patent [12] covers the computational method for
predicting flux distributions by integrating mutant phenotyping data, which is described above.
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