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These funds were used to support the research of 8 graduate students over six years on various projects 
focused on using systems approaches to improve production of biofuels and biochemicals in 
Synechococcus and other microbes. Below is a description of the research that was performed, which led 
to 8 publications, [3-10] 1 submitted manuscript, 1 manuscript in preparation, and 2 patents [11-12]. 
 
Engineering Synechococcus sp. PCC 7002 for Butanol Production 
A genome-scale metabolic model was used to guide engineering of the cyanobacterium Synechococcus 
sp. PCC 7002 for the production of short- to mid-chain alcohols (e.g. 2-methyl-1-butanol) that are 
potential biofuels. PCC 7002 is of particular interest as a cyanobacterial production strain due to its 
relatively rapid growth-rate and tolerance to saline and high-light conditions. Metabolic engineering 
strategies for improving the production of various 
alcohols in PCC 7002 were investigated via the 
metabolic model iSyp708 [6], which was previously 
developed by our lab. Using this modeling approach, a 
potential strategy for enhanced production of 2-methyl-
1-butanol in PCC 7002 was successfully identified 
(Figure 1). This strategy hinges on coupling the 
overproduction of the alcohols’ metabolic precursors to 
nitrate assimilation by rewiring PCC 7002’s native 
NADH-cycling pathways. Specifically, the strategy calls 
for replacing the native nitrate and/or nitrite reductases 
in PCC 7002, which are ferredoxin-dependent, with 
heterologous enzymes that instead use NADH to carry 
out their reactions. This novel engineered NADH-
demand in PCC 7002 is predicted to generate a 
metabolic pull on several upstream reactions in the 
production pathway for 2-methyl-1-butanol, and 
potentially several other related branched-chain 
alcohols, thereby directing increased flux toward the 
desired product. 
 
To test this strategy, the native nitrite reductase gene (nirA) in PCC 7002 was knocked out and replaced 
in the same genomic locus by the nitrite reductase from Bacillus subtilis (nasDE). The nasDE enzyme has 
been shown to specifically use NADH as its reducing 
cofactor [1]. The nirA∷nasDE strain showed a growth 
defect when grown with nitrate as a nitrogen source, 
but otherwise appeared healthy in terms of pigment 
content (as measured by absorption spectrum). To test 
whether this strain is an improved background for 
producing 2-methyl-1-butanol in, the branched-chain 
alcohol production pathway described by Shen & Liao 
[2] was engineered into the strain. An inducible operon 
containing the production pathway genes was 
expressed from either the chromosomal glpK locus or 
on a broad-host range RSF1010 plasmid. In both 
cases the engineered nirA∷nasDE strain showed 
improved alcohol titers relative to a WT PCC 7002 
background (Figure 2). We are currently conducting 
final tests to determine if expression of the alcohol 
pathway from other genomic loci yield improved 
production titers over those observed so far. 
 
This work demonstrates that replacing the native 
nitrate assimilation pathway in PCC 7002 with NADH-
dependent enzymes can generate a background strain 
with improved production characteristics for certain 

 
Figure 2. Alcohol production from different 
expression systems in wildtype (WT) and 
engineered PCC 7002 backgrounds. 

 
Figure 1. Engineering strategy to couple 
nitrate assimilation with butanol production. 
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classes of next-generation biofuel compounds, e.g. 
branched-chain alcohols. Additionally, this work further 
validates the utility of genome-scale metabolic models 
for guiding engineering studies in cyanobacterial 
production strains. We are completing final 
experiments for publication and plan to submit a 
manuscript describing this work later this year. 
 
Analyzing Experimental Data in the Context of 
Metabolic Models 
Incorporating experimental data into constraint-based 
models can improve the quality and accuracy of the 
models’ metabolic flux predictions. Unfortunately, 
routinely and easily measured experimental data such 
as growth rates, extracellular fluxes, transcriptomics, 
and even proteomics are not always sufficient to 
significantly improve metabolic flux predictions. We 
developed a new method (called REPPS) for 
incorporating experimental measurements of growth 
rates and extracellular fluxes from a set of perturbed 
reference strains and a parental strain to substantially 
improve the predicted flux distribution of the parental 
strain [3]. The reference strains are typically mutants 
derived from the parental strain. Using data from five single gene knockouts (reference strains) and the 
wild type strain of Escherichia coli (parental strain), we decreased the mean squared error of predicted 
central metabolic fluxes by ~47% compared to 
parsimonious flux balance analysis (pFBA) (Figure 
3). This decrease in error further improves flux 
predictions for new knockout strains. Furthermore, 
REPPS is less sensitive to the completeness of 
the metabolic network than pFBA. 
 
Transcriptomics and proteomics data have been 
integrated into constraint-based models to 
influence flux predictions. However, it has been 
reported recently for E. coli and Saccharomyces 
cerevisiae, that model predictions from 
parsimonious flux balance analysis (pFBA), which 
does not use any expression data, are as good or 
better than predictions from various algorithms 
that integrate transcriptomics or proteomics data 
into constraint-based models. We developed a 
novel constraint-based method called Linear 
Bound Flux Balance Analysis (LBFBA), which 
uses expression data (either transcriptomic or 
proteomic) to predict metabolic fluxes [4]. The 
method uses expression data to place soft 
constraints on individual fluxes, which can be 
violated. Parameters in the soft constraints are 
first estimated from a training expression and flux 
dataset before being used to predict fluxes from 
expression data in other conditions. We applied 
LBFBA to E. coli and S. cerevisiae datasets and 
found that LBFBA predictions were more accurate 
than pFBA predictions, with average normalized 
errors roughly half of those from pFBA (Figure 4). 
For the first time, we demonstrate a computational 

 
Figure 3. Sensitivity of REPPS predictions to 
the numbers of reference strains used. The 
box plots show the mean squared errors 
(MSE) for the parental strains estimated 
intracellular fluxes using either REPPSFIT. The 
dashed lines indicate the MSE for the parental 
strains calculated directly from the pFBA and 
the Fit methods, which do not use any 
reference strain data. 

 

 
Figure 4. Simulation result for LBFBA compared 
with pFBA for the E. coli dataset. The x-axis 
represents the 29 conditions with measured 
transcriptomics, proteomics and fluxomics data. 
The y-axis represents the normalized flux error. For 
each condition, data from the 28 other conditions 
was used to parameterize flux bounds before 
LBFBA was performed on the test condition. For 
most cases, pFBA (hollow diamond) has a higher 
normalized error than LBFBA integrating 
transcriptomics data (star) or proteomics data (solid 
triangle). Integrating proteomics data was more 
accurate than integrating transcriptomics for most 
conditions. The best case (hollow circle) represents 
the lowest possible error achieved by fitting 
constraint-based models to the measured fluxes.  
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method that integrates expression data into constraint-based models and improves quantitative flux 
predictions over pFBA.  

 
Analyzing Strategies to Produce Biofuels and Bioproducts 
Metabolic engineering uses microorganisms to 
synthesize chemicals from renewable resources. 
Given the thousands of known metabolites, it is 
unclear what valuable chemicals could be produced 
by a microorganism and what native and 
heterologous reactions are needed for their 
synthesis. To answer these questions, a systematic 
computational assessment of Escherichia coli’s 
potential ability to produce different chemicals was 
performed using an integrated metabolic model that 
included native E.coli reactions and known 
heterologous reactions [5]. By adding heterologous 
reactions, a total of 1,777 non-native products could 
theoretically be produced in E. coli under glucose 
minimal medium conditions, of which 279 non-native 
products have commercial applications. Synthesis 
pathways involving native and heterologous 
reactions were identified from eight central metabolic 
precursors to the 279 non-native commercial 
products. These pathways were used to evaluate the 
dependence on, and diversity of, native and 
heterologous reactions to produce each non-native 
commercial product, as well as to identify each 
product’s closest central metabolic precursor. 
Analysis of the synthesis pathways (with 5 or fewer 
reaction steps) to non-native commercial products 
revealed that isopentenyl diphosphate, pyruvate, and 
oxaloacetate are the closest central metabolic 
precursors to the most non-native commercial 
products. Additionally, 4-hydroxybenzoate, tyrosine, 
and phenylalanine were found to be common 
precursors to a large number of non-native 
commercial products.  Strains capable of producing 
high levels of these three central metabolites could 
be further engineered to create strains capable of 
producing a variety of commercial non-native 
chemicals.  
 
We have additionally extended this analysis to look 
at other organisms and feedstocks. We expanded 
our metabolic model of Synechococcus sp. PCC 
7002 (iSYP708) [6] and used it and models of E. coli 
and S. cerevisiae to compare maximum theoretical 
yields on either acetate, methane or methanol. This 
work was done in collaboration with Brian Pfleger’s research group. We found that the feedstock costs 
needed to make a fixed amount of products was lower for methane than glucose and that methanol in 
most scenarios was more expensive than glucose [7]. 
 
  

 
Figure 5. (A) Number of heterologous 
reactions needed to make the different 279 
non-native products. (B) Precursors analyzed 
in this work. (C). The number of products 
derived from each of the precursors within five 
steps is indicated by the blue columns. The 
red columns indicate the number of products 
that are closest to each precursor.  (D) Venn 
diagram of the non-native products that can be 
produced from three precursors within five 
reaction steps. 
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Application of Active and Machine Learning for Metabolic Engineering 
Many computational and experimental approaches exist to metabolically engineer strains to produce 
more of a desired chemical. Computational approaches typically rely on detailed mechanistic models 
(e.g., kinetic/stoichiometric models of metabolism)—requiring many time- and cost-expensive 
experimental datasets for their parameterization—while experimental methods may require creating large 
mutant libraries to explore the design space, and then screening (if possible) and/or selecting (if possible) 
for the few mutants with desired behaviors. To address these limitations, we developed an active and 
machine learning approach (ActiveOpt) to intelligently guide experiments to arrive at an optimal 
phenotype both quickly and with minimal and easily measured datasets. ActiveOpt was applied to two 
separate metabolic engineering case studies that improved valine yields and neurosporene productivity in 
Escherichia coli. The first case study was one in 
which we used computational models to design 
strains of E. coli to produce pyruvate and then used 
combinations of different plasmids which express 
the enzymes needed to convert pyruvate into valine 
using different ribosome binding sites (RBSs). These 
same enzymes have also been used to produce 
various forms of butanol. Our best strain achieved 
an elemental carbon yield of 45% (or 54.7% of the 
maximum theoretical (MT) valine yield from glucose 
and acetate) in a defined minimal medium—the 
highest carbon yield reported in E. coli. The second 
case used data from a previously published study 
where RBS strength was varied for three genes 
involved in the biosynthesis of neurosporene. 
 
Using our valine dataset, we found that machine 
learning models using linear classifiers could predict 
whether a set of RBSs would result in high or low 
valine yield. From a leave-one-out cross validation 
analysis we found the precision and recall was 0.80 
and 0.89, respectively. When the number of 
experiments used to train the classifier was reduced 
from 88 to ~11, the average precision  was 0.72 and recall 0.76. We subsequently developed an active 
learning approach (ActiveOpt) where starting from two experimental results a classifier was built to 
identify another experiment predicted to have high yield, and then those experiments were used to re-
train the classifier to choose another experiment (and so on).  In both the cases, ActiveOpt identified the 
best performing strain in fewer experiments than the case studies which did not use machine learning 
approaches to optimize strains. This work demonstrates that machine and active learning approaches 
can greatly facilitate metabolic engineering efforts to rapidly achieve metabolic engineering objectives. A 
manuscript describing this work has been submitted. 
 
Review Articles and Commentaries 
We published several review articles and commentaries that describe the application of metabolic models 
for metabolic engineering [8], the integration of regulatory models with metabolic models [9], and the 
application of metabolic models to study and engineer microbial communities (i.e., microbiomes) [10]. 
 
Patents 
This work led to two patents. The first patent describes strains of E. coli that were designed in silico to 
produce pyruvate [11]. We generated four strains experimentally and found they were capable of 
converting glucose into pyruvate with up to 95% of the maximum theoretical yield. These strains were 
subsequently given to a U.S. company who has been evaluating their use as a background to produce 
other chemicals derived from pyruvate. Our second patent [12] covers the computational method for 
predicting flux distributions by integrating mutant phenotyping data, which is described above. 
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Figure 6. The average from the 89 ActiveOpt 
(using different objectives: randomly chosen, 
experiment farthest from the classifier, closest 
to the classifier, or alternating between farthest 
and closest to the classifier) or Upper 
Confidence Bound (UCB) runs of the highest 
observed % valine yield is plotted as a function 
of the number of total experiments performed. 
A total of 89 experiments were performed in 
the case study. 
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