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Executive Summary

In 2014 a multi-institution team led by Vaisala, Inc. was selected by the Department of Energy (DOE) to
partner with multiple DOE and National Oceanic and Atmospheric Administration (NOAA) laboratories
on a project designed to improve the quality of wind power forecasts in areas of complex terrain. This
was the second Wind Forecast Improvement Project (hereafter WFIP2) funded by DOE and it extended
from late 2014 through the middle of 2018. It encompassed an 18-month observational field campaign,
numerical weather prediction (NWP) model development, extensive analysis of data and NWP output,
and the creation of decision support tool algorithms to convey forecast information to end users in the
wind industry.

WFIP2 focused on improvements to the representation of near-surface and boundary-layer physics in
NOAA'’s High-Resolution Rapid Refresh (HRRR) model. Improvements to HRRR, which is run
operationally over the continental United States, benefit the wind industry in multiple ways. Forecasts
from the operational HRRR are used directly by wind power forecast vendors and the operators of wind
plants. In addition, because HRRR is built using the widely-used Weather Research and Forecasting
(WRF) model, improvements to its parameterizations become available to commercial and research
institutions using WRF for a myriad of purposes.

The geographic area studied by WFIP2 was a region of the Columbia River basin located to the east of
the Cascade Mountains between Oregon and Washington. Home to over 6 GW of installed capacity for
wind energy production, this area also hosts a variety of atmospheric phenomena either unique to or
augmented by complex topography. This makes it an attractive test-bed for the analysis of wind
forecast in complex terrain, though results found are should be applicable in any area of topographic
complexity.

WEFIP2 succeeded as a collaborative effort, and while this report focuses on the activities of the team
led by Vaisala, the work described here is part of a larger whole. The Vaisala team accomplished a
number of specific tasks as described in this report, while also contributing to this larger effort.

The primary accomplishments of the Vaisala team under WFIP2 were:
e Creation of an experimental design for the overall project.
e Logistical arrangements for field study locations.
¢ Deployment/maintenance/removal of instruments for the field study.
e Analysis of field study data.
o Development of a 3D PBL parameterization for WRF.
o Creation of a data catalog to enhance the value of the field study observations.
o Creation and analysis of historical NWP forecast simulations.
o Generation and validation of wind power forecasts based on NWP model output.
o Creation of decision support algorithms and development of a prototype display.

WFIP2 was conducted in an open and collaborative manner, with data and model improvements shared
publicly wherever possible.

DE-EE0006898
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1 Introduction

With wind energy now producing more than 6% of electrical generation in the United States, the need for
accurate forecasts of wind generation is greater than ever. Operation of the country’s electrical
infrastructure, as well as efficiency in our energy markets, critically depends on the quality of wind
forecasts, and this dependency is expected to grow with increased penetration of wind generation into
the mainstream energy industry (Marquis et al. 2011). Forecasts are required on a variety of time
horizons, and this project focuses on the time range of 0-15 hours.

Hours-ahead to days-ahead wind power forecasts are typically generated via a combination of data
analysis, numerical modeling of the atmosphere, and engineering models to convert simulated weather
into anticipated generation. The first two of these are meteorological in nature and highlight two
significant challenges to the production of accurate forecasts: estimation of the current state of the
atmosphere, and the evolution in time of that state using parameterized equations within a numerical
weather prediction (NWP) model.

The gradual buildout of wind energy projects across the United States has increasingly led to
development of utility-scale wind installations in areas of complex terrain, and this impacts both of these
forecasting challenges. In regions of complex orography, observations are representative of smaller
regions of the atmosphere than in flat orography, and also the necessary representation of physics within
NWP models becomes more complex as assumptions valid in flat orography no longer hold true. Many
atmospheric phenomena such as gravity waves, cold pools, topographic wakes, and gap flows are either
unique to or enhanced by complex terrain.

Skillful weather forecasting in complex terrain requires the accurate prediction of phenomena at a range
of spatio-temporal scales as well as the ability to correctly diagnose interactions between scales. When
represented in NWP models at sufficient resolution, complex terrain provides a forcing that can make the
general weather pattern easier to predict; for example, high pressure west of an east-west mountain gap
will yield wind that is generally west to east and modified by the terrain. However, complex topography
also amplifies errors in the synoptic scale forecast and produces phenomena that are poorly represented
in NWP models either due to limited resolution or shortcomings in model physics. Phenomena poorly
represented in models include frontal passages with stable mix-out, gap flows, mountain waves,
mesoscale topographic wakes, convective outflows, marine pushes, land-sea breezes, slope and
drainage flows, and low-level jets. All of these features have two things in common: 1) they are created
or enhanced by topography, and 2) their evolution depends on the interaction between the boundary
layer and the large-scale flow, a well-known weakness in NWP models, especially during stable
conditions.

What would be a relatively simple transition associated with a frontal passage in the Plains States takes
on very complex attributes as it interacts with terrain. Surface and upper air features often become
decoupled and existing low-level features such as inversions and gap flows may produce results that are
counter to those that would occur in less complex terrain. In addition, higher spatial and temporal
resolution observations are needed to correctly diagnose phenomena because the area and time over
which an observation is representative is reduced, yet often the density of observations in complex
terrain is low due to the logistical problems of instrumenting remote locations.

Thus, forecasting wind power generation in a complex terrain environment is very challenging. Small
errors in wind speed forecasts are magnified by the cubic relationship between wind speed and power. In
simpler terrain, transitions from low to high output and vice versa usually occur smoothly, but in complex
terrain these transitions can be punctuated by embedded up and down ramps that are not easily
simulated by NWP models. To compensate for this, statistical models are commonly used, especially at
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0-6 hour forecast horizons when nearby observations can provide predictive value. Available
observations are often too sparse to properly initialize or validate the models. Complex terrain also
makes it far more difficult to use statistical methods to correct for model error and thus much more
important to correctly diagnose features, especially when one considers North American wind farms are
often 200 MW or larger and extend across hundreds of square kilometers. In areas of complex terrain
some turbines may be 500 m higher in elevation than others in the same project. Thus, within one
project, several key phenomena may influence different parts of the wind farm at the same time and may
also interact with each other. For instance, a wake from a large mountain may reduce the output of the
southern part of a plant, while channel flow may be enhancing the flow in the northern part, and gravity
waves from a nearby ridge might be influencing the flow throughout. All these effects also have non-
linear feedbacks upon each other.

Considerable field work and associated analysis and modeling studies have been carried out in the last
15 years to help us understand these various processes and interactions. In the late 1990s, projects
such as SABLES-98 (Cuxart et al., 2000) and CASES-99 (Poulos et al., 2002) helped us understand the
behavior of the stable and transitioning boundary layer independent of complications of terrain
complexity, with heavily instrumented measurement campaigns over relatively flat areas of North
America and Europe. These studies provided insights into the structure and evolution of the stable
nocturnal boundary layer, including the development of nocturnal inversions, and mechanisms for
formation and maintenance of low-level jets. Low-level jets are of particular importance in wind energy,
because they are characterized by a vertically localized maximum in wind speed that is typically near the
hub height of modern utility-scale wind turbines. Small errors in predicting the height or intensity of low
level jets can have profound impacts on the accuracy of wind power forecasts.

Since 2000, several field studies have investigated the rich palette of flow structures created by complex
topography, either through thermal forcing (katabatic flows, mountain/valley circulations, etc.) or the
dynamical response of air flow to topography (vertically propagating mountain waves, lee waves, gap
flows, topographic wakes, etc.) The Vertical Transport and Mixing Experiment (VTMX; Doran et al.,
2002) examined topographically influenced flows and boundary layer processes in the Salt Lake Valley in
2000. This study elucidated the structure and evolution of shallow katabatic flows on sloped terrain, and
the existence of a mesoscale low-level jet driven by diurnal thermal forcing across multiple basins. Other
VTMX studies looked at model performance with different vertical coordinates and boundary layer
closures, idealized simulations and theoretical descriptions of katabatic flows, and valley flows. More
recent follow-up studies in the same area include an investigation of the Weber Canyon valley flow,
examining how valley flows evolve into exit jets at the opening of the valley, and the recent Mountain
Terrain Atmospheric Modeling and Observations (MATERHORN; Fernando and Pardyjak 2013) study,
which used a variety of instruments in the Dugway Proving Grounds to document complicated microscale
topographic flows, and interactions between flows generated by neighboring mountain features.
MATERHORN has illustrated microscale features and flow interactions that cannot be explicitly
represented in current models with parameterized boundary layers, punctuating the challenge of
improving such models.

Closer to the WFIP2 area, the Columbia Basin Wind Energy Study (CBWES; Berg et al., 2012) was
carried out from 2010-2012, on Vansycle Ridge, a wind energy producing region approximately 30 km
southeast of the confluence of the Snake and Columbia Rivers. This study measured the vertical profile
of wind across the boundary layer over the course of several months, and analyzed the occurrence of
hub-height wind ramps and their predictability with the WRF mesoscale model. The study found that in
stable conditions, up-ramps were associated with rapid accelerations of nocturnal low-level jets as the
boundary layer decoupled from the surface. These wind ramps generally formed under weak synoptic-
scale forcing, but may have been influenced by terrain-induced pressure gradients. In unstable
conditions, up-ramps were categorized as those influenced by a strong upper-level trough, those with a
low-level jet driven by synoptic forcing, those associated with frontal passages, and those influenced by
small-scale variations that are probably thermally or terrain induced.

DE-EE0006898



WFIP2: Complex Terrain - Page 7

Some studies have examined the role of dynamically driven topographic flows such as mountain/lee
waves, gap flows, and topographic wakes on near-surface winds within complex terrain, especially in
terms of interactions with stable and transitioning boundary layers. The Terrain-Induced Rotor
Experiment (T-REX; GrubiSi¢ et al., 2008) examined mountain wave dynamics, but focused on more
extreme downslope windstorms and rotors in the lee of the Sierra Nevada mountain range barrier.
Observational and modeling studies of the gap-flow dynamics within the Columbia River Gorge (Sharp
and Mass 2002, 2004), overlapping the proposed study area, have elucidated the relationship between
the within-gap flow and the acceleration at the gap exit region.

As discussed in Shaw et al. (2019), the DOE has been actively supporting the advancement of wind
power forecasting for a number of years. As far back as the 1970’s, DOE’s Atmospheric Studies in
Complex Terrain (ASCOT) program funded a series of field studies that analyzed boundary layer flow
over complex topography (Orgill and Schreck 1985, Clements et al. 1989, Coulter and Martin 1996).
More recently, a DOE wind industry workshop held in 2008 (Schreck et al., 2008) identified the need for
NWP forecast improvement, and was followed by the first Wind Forecast Improvement Project (hereafter
WFIP 1) in 2011-12 (Wilczak et al., 2015). WFIP 1 addressed the forecast initialization problem by
examining the effects of assimilating improved observations on forecast accuracy. A second DOE
workshop in 2012 focused on complex atmospheric flows and identified four broad scales of processes
that influence wind generation. These were described as volumes of the atmosphere containing turbine
scale, wind power plant scale, mesoscale and global processes. Mesoscale processes, influenced by the
global and plant scales, drive the variability of wind generation on the hours-ahead to days-ahead time
horizon.

The importance of mesoscale processes combined with the increase of wind plants located in complex
terrain led the DOE in 2014 to initiate a second Wind Forecast Improvement Project (hereafter WFIP2),
this time focused on observing and improving the modeling of flow in complex terrain by better
representing boundary layer physics and related processes in a mesoscale model. WFIP2 was
conducted as public-private partnership under the DOE’s Atmosphere to Electron (A2e) Initiative. Direct
involvement of the wind industry both facilitated access to observational data from wind plants and
helped guide the project toward solutions relevant to wind plant operations.

WFIP2 extended through four calendar years and included three distinct but closely related components:
an 18-month multi-scale field study, model development work, and the development of support tools to
support the industry in wind power forecasting. Four associated journal papers describe the activities of
the broad WFIP2 team: Shaw et al. 2019 introduces the project, Wilczak et al. 2019 presents an
overview of the observational campaign, Olson et al. 2019 presents the model development effort, and
Grimit et al. 2019 presents the development of decision support tools. These papers provide valuable
context for the work conducted by the Vaisala team that is described in this report.

1.1 Role of the Vaisala Team within WFIP2

The complete WFIP2 project team included DOE and NOAA labs as well as a team led by Vaisala that
further included multiple universities, wind industry participants, and the National Center for Atmospheric
Research (NCAR). We refer to the Vaisala-led component of the overall team as the ‘Vaisala Team’
throughout this report and aim to highlight the activities and contributions of this team within the context
of the overall WFIP2 effort. The institutional members of the Vaisala Team, along with primary contacts,
are listed in Table 1.

DE-EE0006898
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Table 1. Members of the Vaisala WFIP2 Team

Vaisala Team Members Primary Contacts

Lockheed Martin, Inc. Keith Barr, keith.barr@Imco.com

z\lNa(t:lzrl;a;l Center for Atmospheric Research Branko Kosovic, branko@ucar.edu

Sharply Focused, LLC Justin Sharp, justin@sharply-focused.com
Texas Technical University (TTU) Brian Ancell, brian.ancell@ttu.edu

University of Colorado (CU) Julie Lundquist, julie.lundquist@colorado.edu
University of Notre Dame (UND) Joe Fernando, hfernand@nd.edu

Vaisala, Inc. Jim McCaa, jim.mccaa@vaisala.com

The Vaisala Team had a unique role within the overall project, having proposed the study area in its
application for a funding opportunity award, and representing the only industry participants in the project.
Our rationale for proposing the Columbia Basin was twofold: it is both meteorologically interesting and
important to the wind industry. The region separates Washington and Oregon and is an exceptional
natural observatory for studying meteorological phenomena associated with complex terrain. It is most
well-known for the near sea-level gap that takes the Columbia River through the Cascade Range, a
barrier that averages about 5000 to 6000 feet high. However, the terrain complexity goes well beyond the
steep walls surrounding the Columbia River. The Cascade Range itself contains several elevated gaps,
and the volcanoes of Mount Hood (3,429 m; 11,250 ft) and Mount Adams (3,743 m; 12280 ft) tower
above the near sea-level valleys to the east and west. The canyon carved by the Columbia River
continues eastward for over a hundred km east of the Cascade Crest, and numerous feeder channels
are formed by its tributaries. The vast Columbia Basin to the east is formed by mountains on all four
sides. The properties of the two air-sheds are often radically different, yielding large gradients in
temperature and pressure in the lower atmosphere. Air may be guided downslope and channeled, piled
up in natural reservoirs, or forced up over more stable air below depending on atmospheric conditions.
The results are cold pools, gap flows, mountain waves, mountain wakes, downslope flows, mountain-
valley circulations and every manner of other terrain driven circulation at every scale and varying
depending on the atmospheric conditions.

At the same time as having more than its fair share of important atmospheric phenomena, the region is
also home to over 6 GW of wind energy capacity. Not only does the region experience exceptional wind
resource, but also benefits from substantial federally-funded electric transmission infrastructure built to
support the Columbia River’s significant hydroelectric resource. Numerous wind plant operators (listed in
Table 2) chose to join the WFIP2 effort by providing valuable data to the project.
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Table 2. WFIP2 Data Partners

Wind Industry Partners

Avangrid

Eurus Energy

NextEra Energy

Portland General Electric

Siemens Heavy Industries

Southern California Edison Company
White Creek Wind

While credit for the successes of WFIP2 must be distributed among all of its members, the Vaisala Team
played a key role in maintaining an industry focus for the larger team’s activities.

1.2 Objectives and Goals of the Project

The overall mission and first goal of the WFIP2 project was to quantitatively improve forecast skill
through better understanding and representation of the physics in the foundational models comprising an
NWP-based forecasting system. Working in complex terrain meant that the project first needed to
characterize physical phenomena, processes, and the atmospheric properties that occur in regions of
complex topography. Particular focus was to be spent on phenomena likely to impact wind speeds and
direction at the hub heights of wind turbine generators.

A second goal of the project was to develop new or improved mesoscale model schemes or atmospheric
modeling to better represent the identified physical processes. Increasing the accuracy of time-averaged
wind and wind variability in the 0 to 15 hour forecasts should have positive implications for day-ahead
forecasts made with these foundational weather models.

A third goal was to develop prototype decision support tools that could convey probabilistic forecast
information, uncertainty quantification and forecast reliability for system operations.

As members of the larger WFIP2 effort, the Vaisala Team had specific objectives within the overall
project. These included:

1. Design and implementation of an observational field campaign in the Columbia Gorge area to
detect and analyze phenomena that cause wind variability in complex terrain.

2. Identification of the diverse physical phenomena, processes, and atmospheric physics in the
study area.

3. Improvement of surface layer and planetary boundary layer (PBL) parameterizations within
the Weather Research and Forecasting (WRF) model.

4. Development of decision support tools to provide enhanced short term forecast context and
uncertainty quantification, in direct collaboration with wind facility and electric system
operators.

5. Dissemination of verified decision support algorithms, contribution of open source code to the
WRF-ARW model, and distribution of project data.

These objectives were of course pursued in close collaboration with the full WFIP2 team, but are focal
points for our analysis of our contributions to the project.

DE-EE0006898
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1.3 Project Management

The overall WFIP2 team had over a dozen participating institutions and over one hundred active
participants and required a large enough project management effort that we mention here four effective
tools that helped keep things on track.

1.3.1 Steering Committee

The WFIP2 steering committee was the main decision-making body for the project, and was comprised
of five members: one each representing the DOE laboratories, the NOAA laboratories, and the Vaisala
Team, and in addition a representative from the DOE contract office and from DOE headquarters.
Steering committee meetings were held bi-weekly through the project, with activities that ranged from
decisions on spending and technical matters to cross-institution presentations of scientific and technical
research developments.

1.3.2 Teams Structure

Under the steering committee, the WFIP2 activities were undertaken by a variety of topical teams with
multi-institutional representation on each. These included teams for each of the following:

e Experimental Design

¢ Instrument Deployment, Maintenance, and Monitoring
e Data

o Verification and Validation (V&V)

¢ Uncertainty Quantification (UQ)

o Model Development

o Decision Support Tools (DST)

Each team had a formal charter with defined responsibilities and reported to the steering committee.
1.3.3 Communications

The project made extensive use of Google Drive and Google Groups to facilitate sharing of information,
data, and presentation materials. We sought to provide a way from people across multiple organizations
to collaborate effectively and securely, with the following goals:

o Ensure emails reach the right people by emailing teams rather than individuals.
e Provide filtering and digest options to manage email volume.

o Promote online collaboration in the drafting of docs, spreadsheets and slides with concurrent
access and updates, tracking of changes, and version control.

e Create an online repository for project documents accessible by anyone on the team from
anywhere with an internet connection.

e Use groups to enable dynamic team membership that is easily updated.

Most people and organizations attached to the project were able to adopt without significant effort,
though some experienced limited access, and group communication was a paradigm shift for some.

DE-EE0006898
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1.3.3.1 DOE’s Data Acquisition and Portal (DAP)

The entire WFIP2 project shared data effectively between each other and the public via the Data Archive
and Portal, a facility that is part of DOE’s Atmosphere to Electrons (A2E) initiative. At the end of the
project, WFIP2 had 280 unique datasets on the DAP, making up over 200 TB of data. See
https://a2e.energy.gov/about/dap for more information.

2 Project Overview

The WFIP2 team approached the improvement of forecasting in complex terrain through an integrated
observational and modeling approach. This was driven by the desire to deliver applicable results that
could be rapidly deployed to operational weather forecasting while being informed by a data-driven
research campaign. With this in mind, two main scientific goals were identified:

1. Improvement of the physical understanding of atmospheric processes that directly impact
wind power forecasts in areas of complex terrain.

2. Incorporation of the new understanding into a foundational weather forecasting model in order
to improve wind power forecasts.

These goals served to guide the project’s field campaign and model development effort. The
observational campaign needed to be multi-scale to be able to capture the wide variety of scales
associated with the physical processes the control wind speeds across wind plants. Based on the
resulting observations, representation of physical processes in model parameterizations were modified.
The results of the implemented changes were evaluated through assessment of the improvements in
forecast skill, and decision support algorithms were developed to facilitate the operational use of
improved forecasts.

In order to capture the large and small scale features that determine the horizontal and vertical profiles of
wind speed and turbulence, the domain for the WFIP2 observational campaign stretched from the Pacific
Ocean to eastern Washington. As described below, a series of observational ‘nests’ measured finer
scales all the way down to that of a single mesoscale model grid cell. Suites of instruments contributed
by DOE and NOAA laboratories as well as the Vaisala Team were deployed to provide complementary
data streams, and these were used throughout the project. A project web site set up by NOAA was
integral to facilitate real-time comparison of observations and model output.

An early decision was to target model improvements for NOAA'’s High Resolution Rapid Refresh (HRRR)
model, which led to a variety of opportunities and constraints. NCEP’s operational HRRR output is widely
used for wind power forecasting, both as a direct source of hub height wind fields, and as an input to
custom NWP simulations run by industry forecast providers. In addition, HRRR is an implementation of
the widely used Weather Research and Forecasting model Advanced Research WRF (WRF-ARW). As
such, improvements to HRRR are available to the broad WRF research community.

WFIP2 concentrated on forecasts with lead times of 0-15 hours, with the expectation that physics-based
improvements in this time frame should carry over to day ahead forecasts. The operational HRRR is run
hourly over the continental United States at a horizontal resolution of 3km. In addition, during the period
of WFIP2 NOAA’s ESRL laboratory ran a special 750 m nest over the WFIP2 study area.

Targeting a model used for many additional purposes beyond wind power forecasting meant that
improvements for the sake of wind power forecasts could ‘do no harm’ to other model fields and were
broadly applicable in all weather conditions. This influenced the requirement that the observational
campaign collect data through a full annual cycle.
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Observational data were used throughout the WFIP2 project to both inform model development and
validate model output. Near the end of the project, a full year of control and experimental historical
forecasts were created to facilitate a formal comparison.

As a partner to the DOE and NOAA laboratories, the Vaisala Team assumed responsibility for a specific
set of tasks, which are summarized in Table 3. Almost all of these tasks were completed in close
coordination with DOE and NOAA, making it a challenge in some areas to separate out Vaisala Team
accomplishments from those of the larger project. We consider this a positive outcome.

The following sections of this report describe in more detail the results of the Vaisala Team effort in the
field campaign, model development, model analysis, and decision support tool efforts.

DE-EE0006898



WFIP2: Complex Terrain - Page 13

Table 3. Vaisala Team Tasks

Task | Summary Notes
1 Plan for instrumentation | Planning for the field study occupied the early months of the project and
layout and deployment resulted in an experimental design document and a deployment plan. Both of
schedule for the field these are available on the DAP.
study
2 Logistical arrangements | Responsibilities for the logistical arrangements for field study sites were
for field study sites shared with the broader WFIP2 team. Each site with multiple instruments had
a coordinator to facilitate organized communication between the various
institutions deploying instruments. Vaisala was responsible for the Physics
Site.
3 Deployment of The Vaisala team was responsible for the deployment of its instruments.
instruments Vaisala Team instruments are discussed in Section 3.1.2.
4 Management of field Members of the Vaisala Team played an active role throughout the field
study study in monitoring the flow of data from the field, analyzing current weather,
and coordinating maintenance of equipment. See Section 3.1.3 for a
discussion of the Event Log.
5 Model development NCAR was the primary participant from the Vaisala Team in model
development. Section 3.2.1 discusses their development of a 3D PBL
parameterization.
6 Model validation and Activities under this task included CU’s analysis of a wind plant wake model
improvement (Section 3.2.2) and TTU’s work on uncertainty quantification (Section 3.3.3).

7 Catalog of phenomena An annotated list of important meteorological events observed during the field
observed during field campaign and a set of common case study dates were created. See Section
study 314

8 Selection of improved This was an effort led by NOAA with participation from the entire WFIP2
model physics suite team. Results are discussed in Olson et al. (2019).

9 Evaluation of model In support of this activity, Vaisala worked with NOAA and the Argonne
improvements within Leadership Computing Facility (ALCF) to complete a full year of retrospective
HRRR control and experimental forecast simulations on the full 3km HRRR domain

as well as the 750m WFIP2 nest. All model output was delivered to the DAP.
10 Wind power forecast Vaisala processed the output from the retrospective simulations into wind
generation power forecasts, as discussed in Section 3.3.4.
11 Forecast validation Validation of the wind power forecasts is discussed in Section 3.3.4.2.
12 Decision support tool The Vaisala Team worked with WFIP2 and industry partners to develop
development prototype decision support tools to present actionable information from power
forecasts, as discussed in Section 3.4.
13 Final Vaisala team Vaisala was responsible for the creation of this report.

project report
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3 Project Results

3.1 Field Campaign

The overarching goal of the observational campaign was to provide insights into the relevant
meteorological phenomena in order to improve wind power forecasting. Because the targeted
phenomena involve the interaction of the large-scale flow with the boundary layer and the surface itself, it
was necessary to capture salient features ranging in size from the meso-beta (20-200 km scales)
through the meso-gamma (2-20 km) to the microscale (< 1 km). Also, since some of the targeted
phenomena are strongly seasonal, a full annual cycle was measured to capture both typical and unusual
phenomena that affect wind forecasts throughout the year.

The campaign was tightly integrated across the full WFIP2 team, with a single shared experimental
design, and many observational sites featured colocated instruments from multiple institutions.
Instruments were in the field for 18 months, from Oct 2015 through March 2017. The field campaign is
discussed in detail in Wilczak et al. (2019) and here we will focus on the contributions of the Vaisala
team to the larger effort.

3.1.1 Experimental Design

The field study design strategy is best understood by zooming in from the broadest scale to the smallest.
At the regional scale, a concentration of wind farms exists in the eastern exit region of the Columbia
Gorge, but much of what drives winds east of the Cascades originates to the west, so it was important to
identify and quantify approaching frontal systems and upper-level troughs; collect upstream tropospheric
vertical profiles of wind and stability that affect the gravity wave response to flow across the Cascade
barrier; determine marine air mass conditions prior to and during onshore push events; and monitor
convective systems that developed over or west of the Cascade crest and then propagated eastward.

Within the large energy-producing area to the east of the Cascades, the large-scale flow encounters an
area of considerable terrain complexity, highlighted by the broad east-west valley of the Columbia River
itself and a series of north-south canyons and valleys through which flow tributaries of various sizes. The
wind energy plants are generally located on the elevated terrain between these valleys (see Figure 1), in
a semi-arid agricultural zone. In this area, a higher concentration of instruments were deployed in a
‘supersite’ in order to observe the interaction of the large-scale flow with the boundary layer and surface.
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Figure 1. Typical terrain of wind energy plants in the WFIP2 region. Photo courtesy Justin Sharp.

The general layout of the instrument deployment is shown in Figure 2. Because the observing strategy
needed to capture features across such a broad range of atmospheric scales, a set of cascading nests of
instruments were deployed:

1.

One set of instruments was be placed at meso-alpha scale (200-2000 km) distances from the
areas of concentrated wind energy production. These provided insight into large-scale
features and helped determine whether they were accurately represented in the HRRR model
output.

An intermediate-scale set of instruments captured meteorological processes affecting
boundary-layer winds over a variety of terrain types, including locations both east and west of
the Cascade Mountains.

A fine-scale set of instruments was focused on a high concentration of wind energy plants in
the central part of the domain.

Finally, a ‘physics site’ (see Figure 3 below) deployed a variety of near-surface instruments in
an effort to characterize interactions of the large-scale flow with terrain at scales normally
within in single grid cell of an NWP simulation.

Visible in Figure 2 are the north-south feature of the Cascade Mountains through which the Columbia
flows, along with the locations of WFIP2 instrument clusters.
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Figure 2. Locations of WFIP2 instruments. Yellow polygons depict the cascade of nesting scales.
White crosses indicate instruments, and magenta crosses indicate multi-instrument locations.

Figure 3. Layout of the physics site. Yellow lines represent distinct land ownership.
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3.1.2 Instrument deployment

Vaisala Team equipment was deployed for WFIP2 as part of the overall experimental strategy, and as a
result was widely distributed across the region, as shown in Figure 4.

o

Figure 4. Locations of Vaisala Team SODARs (lavender icons), LIDARs (green icons), and
radiometer (mailbox icon).

The full set of Vaisala Team equipment deployed to the field is listed in Table 4, which shows the type of
instruments, locations, and dates of deployment and removal from the program. It should be noted that a
total of eight Tritons were deployed — after repeated vandalism, one of the eight was relocated to a ninth
site. Another had to be replaced after being consumed in a wildfire.

The Vaisala Team played a large role in the logistics for instrument deployment for the larger WFIP2
team, and in particular was responsible for the arrangement of land leases for the Physics Site, as seen
in Figure 3.

All data collected during the WFIP2 campaign was transferred to the DOE’s Data Archive and Portal
(DAP) for use by WFIP2 and other researchers. See https://a2e.energy.gov/projects/wfip2 for more
information.

3.1.3 Event Log

A critical task in establishing the usefulness of the WFIP2 observational dataset was documenting the
meteorological events captured within it. Both a daily log of events, as well as curated collection of
‘important’ events were assembled and delivered to DOE as part of the project.

Each week for the duration of the field program, WFIP2 scientists along with other industry participants
engaged in a conference call to review the previous 7 days of weather in the region. In addition to the
field campaign observations, model forecasts from the real-time 13-km RAP, 3-km HRRR and 750-m
WFIP2 HRRR-nest models were discussed. Comparisons were made to time series of aggregate wind
power generation within the regional grid operator’s (Bonneville Power Administration - BPA) balancing
area to establish phenomena that were leading to various levels of forecast skill. Additional data products
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that proved useful were global model forecasts, the University of Washington regional forecast model,
satellite imagery, local NWS soundings, and ASOS/AWOS surface observations.

For each day of the 18-month field campaign, a brief synopsis of the weather was written, assessing the
significance of the key phenomena that impacted wind power generation, along with success of the
forecast for that day. Active phenomena including cross-barrier westerly flow, cold pools, mountain
waves, topographic wakes, convective outflows, and easterly flow were identified. The cross-barrier flow
type was further subdivided into cases forced by low-level mesoscale effects, and those forced by
synoptic features, with the latter further subdivided into evolving, mature, and decaying. Cold pools were
characterized as deepening, steady state or decaying due to warm advection and mixdown from aloft,
cold advection aloft or insolation eroding them from below.

The event log provides a comprehensive list of weather events that occurred during the field campaign
along with an assessment of whether those events were important for wind power forecasting. After the
completion of the event log, and second, more selective listing of events of particular interest to the
projects was compiled as a catalog to assist future researchers. These documents are available on
DOE’s Data Archive and Portal (DAP).

3.1.4 Event Catalog and Common Case Study Set

At the end of the field study, the Vaisala Team organized the analysis of meteorological events that were
recorded in the Event Log through the full observational period to identify key atmospheric structures and
processes of interest to the project and likely to expose atmospheric physics improvements in the model
PBL schemes, from both a phenomenological and statistical perspective. Each season of the year was
evaluated, and both canonical and marginal events were identified. The goal was to form a set of
annotated dates and events that could be used to improve understanding of phenomena, increase the
ability to predict them, and improve the ability to model those events through improved modeling or PBL
schemes. The dates and times identified became the Common Case Study Set which was used to
highlight representative forecast skill during important times, and the annotated list of them is the Event
Catalog, which was delivered to the DAP and will hopefully be of assistance to future researches in
effectively utilization WFIP2 data.
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Instrument Location Instrument Owner Install Date End Date
Class

LIDAR Gordons Leosphere v2 profiling lidar Ccu 11/16/2015 | 3/13/2017
Ridge, OR

LIDAR Troutdale, OR | Leosphere v1 profiling lidar cu 11/18/2015 | 1/27/2017

LIDAR Wasco, OR Leosphere v1 profiling lidar Cu 2/23/2016 | 1/27/2017

Microwave Condon, OR Radiometrics MWR-3000A cu 11/17/2015 | 1/2/2017

Radiometers

LIDAR Gordons WindTracer scanning lidar LMCO 11/19/2015 | 3/12/2017
Ridge, OR

Ceilometer Wasco, OR Vaisala CL31 UND 12/2/2015 | 1/25/2017

LIDAR Boardman Halo Photonics Stream Line UND 12/4/2015 | 1/25/2017

Scanning Doppler LiDAR

Microwave Rufus, OR Radiometrics MWR-3000A UND 11/19/2015 | 1/25/2017

Radiometers

SODAR Rufus, OR scintec mfas UND 12/1/2015 | 1/27/2017

Sonics 10m PS-01 Sonic 10m tower (sonic, T,RH UND 2/15/2016 | 8/1/2017

tower @3m,10m, Licor @3m)

Sonics 10m PS-11 Sonic 10m tower (sonic, T,RH UND 2/15/2016 | 8/1/2017

tower @3m,10m)

Sonics 20m PS-02 Sonic 20m tower (sonic UND 2/15/2016 | 1/25/2017

tower @3m,10,17m; T,RH @3m,17m)

Sonics 20m PS-06 Sonic 20m tower (sonic UND 2/15/2016 | 1/25/2017

tower @3m,10,21m; T,RH @3m,21m)

SODAR 15 Mile Road Triton-AON7 Vaisala 10/1/2015 | 7/31/2017

SODAR Gilhouley Triton-AONS8 Vaisala 12/7/2015 4/9/2016
Road

SODAR Gordon Ridge | Triton-AON6 Vaisala 10/1/2015 | 7/31/2017

SODAR Old Tree Road | Triton-AON2 Vaisala 10/1/2015 | 7/31/2017

SODAR Plymouth Triton-AON3 Vaisala 10/1/2015 | 7/31/2017

SODAR PS01/Scott Triton-AON4 Vaisala 12/5/2015 | 7/31/2017
Canyon Rd

SODAR Sand Hollow Triton-AON1 Vaisala 10/1/2015 | 7/31/2017
Road

SODAR Shell Rock Triton-AON9 Vaisala 11/19/2016 | 7/31/2017
Road

SODAR Van Gilder Triton-AON5 Vaisala 10/1/2015 | 7/31/2017
Road
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3.2 Model Development

Atmospheric flows in complex terrain include many phenomena in which the assumption of horizontal
homogeneity implicit in many model parameterizations is not valid. These include slope flows, gravity
waves, topographic wakes, thermally-driven valley circulations, gap flows, and cold pools. Even
synoptically-forced flows are influenced by local terrain and variations in land cover which lead to
heterogeneous surface fluxes of heat and moisture. Modeling such non-stationary flows requires
consideration of the turbulent mixing of state variables through the horizontal components of turbulence,
which can be as large as the vertical in some cases. In addition, conventional assumptions of horizontal
surface homogeneity, stationarity and a constant flux layer near the surface are no longer valid. Even if
model resolution is increased to better represent the surface variability, the numerics of mesoscale
models can become less accurate as model resolutions approach the dominant turbulence length scales
(the “terra incognita” of Wyngaard 2004). The accuracy of prediction of hub height wind speed is
significantly affected by the accuracy in representing the effect of boundary layer turbulence on the mean
velocity field.

3.2.1 3D PBL parameterization

As a key contribution to WFIP2, NCAR developed and implemented a new PBL parameterization in the
WRF-ARW that does not rely on assumptions that limit its accuracy in simulations of flows in complex
terrain.

The WRF model is a community-developed, public-domain, mesoscale NWP system designed to serve
both operational forecasting and atmospheric research needs for multiple applications (Skamarock 2004;
Skamarock et al. 2005; Skamarock and Klemp 2008). The High- Resolution Rapid Refresh (HRRR) NWP
framework under development by National Atmospheric and Oceanic Administration (NOAA) uses WRF-
ARW to produce hourly forecasts over the Continental United States (CONUS) at three-kilometer
resolution (Benjamin et al. 2015). The HRRR is an important component of any short-term wind power
forecasting system. NCAR is among the main contributors to the development of WRF-ARW. WRF-ARW
includes multiple options for parameterization of physical processes in the atmosphere including
parameterization of the effects of unresolved complex terrain.

Improving NWP models in complex terrain requires improved understanding of flows and processes in
complex terrain. High-resolution, high-quality flow observations are essential in to achieve better
understanding of flows in complex terrain. However, in various terrain induced flow phenomena
represent a challenge not only for wind forecasting, but also for observations and analysis. These
phenomena include: mountain waves, topographic wakes, gap flows, clod pools, drainage flows, etc.
Until recently there were only a few filed studies that comprehensively addressed complex terrain flow
phenomena. The WFIP2 project was designed with a goal to provide information needed to improve wind
forecasting. To that end Vaisala, Inc. team, together with collaborators, designed a year-long
observational field study in the Columbia River Gorge. The Columbia River Gorge was selected for the
filed study because it hosts one of the world’s largest concentrations of wind turbines, nestled in an area
of extremely complex terrain. A year-long observational field study provided a wealth of data for better
characterization of the phenomena that undermine wind forecasts.

To tackle challenges presented by developing better understanding of flows in complex terrain that will
lead to better prediction needed are:

e approaches, methods, and technologies for observing flows in complex terrain,
e analysis tools for characterizing complex flows,

e metrics for quantitative characterization of complex flows,

e parameterizations of physical processes in NWP models,

e ways of assessing model performance, and
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e standards for acceptable error and uncertainty levels.

Addressing each of these challenges requires a careful consideration and an extensive study. Previous
studies that addressed these challenges include Vertical Transport and Mixing (VTMX, Doran et al.
2002), MAP (Rotach and Zardi 2007), T-REX (Grubisi¢ et al. 2008), METCRAX (Whiteman et al. 2008),
and MATERHORN (Fernando et al. 2015). The WFIP2 project was designed to address most of them. In
this project NCAR team primarily focused on development of a new turbulence parameterization for high-
resolution, sub-kilometer grid cell size, mesoscale simulations. The WFIP2 filed study data were used to
assess the performance of the new parameterization.

Wind forecast in an atmospheric boundary layer and therefore at a hub-height of a utility scale wind
turbine is significantly affected by shear and critically depends on the accuracy of the parameterization of
turbulent stresses and fluxes. In NWP models evolution of a flow filed including: velocity, potential
temperature, moisture and other constituents is represented using Reynolds Averaged Navier-Stokes
(RANS) equations (see Appendix). The RANS equations are usually truncated at some higher moments
of field variables and therefore do not represent a closed system of equations. In order to close the
system of equations it is necessary to provide parameterizations of higher order moments. In NWP
models usually second moments, i.e. turbulent stresses and fluxes, must be parameterized. Until
recently NWP models utilized computational grids with grid cell sizes of ten or more kilometers. Recently,
continuous development of high-performance computing (HPC) platforms enabled increased resolution
of NWP models and grid cell sizes of one kilometer or less. For wind energy applications high resolution
mesoscale simulations are essential to capture details of the flow within the first hundred meters above
the surface where wind turbines operate. High-resolution simulations are of particular importance in
complex terrain where the topography and terrain heterogeneity affect flow evolution and determine flow
features at smallest resolved scales. However, in order to improve NWP models for forecasts in complex
terrain there are a number of challenges that need to be addressed.

Turbulence parameterizations in mesoscale models are based on volume averaged RANS equations. As
the grid cell volume decreases below characteristic atmospheric boundary layer length (ABL) scale, e.g.
boundary layer height, the assumptions commonly used to develop these parameterizations are violated.
The range of scales of motion between the characteristic ABL scale (approximately one kilometer) and
the inertial range of turbulence (less than 100 m in ABLs), where large eddy scale (LES)
parameterizations can be used, is often labeled a “grey zone,” or according to Wyngaard (2004) “terra
incognita.” Recently a number of modifications to existing parameterizations were proposed in order to
develop a “scale aware” parameterization that could seamlessly be used across a range of scales, down
into the “terra incognita.” While Wyngaard (2004) proposed to replace a scalar eddy diffusivity with a
diffusivity tensor, others focused on modifying length scales used in one-dimensional planetary boundary
layer (1D PBL) parameterizations (Efstathiou and Beare 2015; Efstathiou et al. 2016; Shin and Dudhia
2016).

Beare (2014) as well as Honnert and Masson (2014), on the other hand, attempted to estimate the length
scale below which a 3D parameterization would need to be used. Honnert and Masson (2014)
determined that the exact value varies significantly depending on whether convection is free or forced.
Boutle et al. (2014) adopted a blending approach to the grey zone parameterization by combining a 1D
PBL parameterization with a subgrid model commonly used in LES.

While a flow over a flat, uniform terrain can be considered horizontally homogeneous, a flow over
complex terrain induces circulations resulting in horizontal inhomogeneities. However, at present, most
NWP models use 1D PBL parameterizations based on the assumption of horizontal homogeneity. Such
models do not account for a range of processes that control production, redistribution, transport, and
dissipation of turbulent kinetic energy (TKE) and that in addition to vertical shear and potential
temperature gradients also depend on horizontal shear and horizontal potential temperature gradients. In
addition, such parameterizations commonly assume that turbulence is in a local equilibrium, i.e. that local
production and dissipation of turbulence are in balance. The effects of horizontal gradients of wind and
potential temperature are more pronounced at smaller scales and therefore, as the resolution increases,

DE-EE0006898



WFIP2: Complex Terrain - Page 22

neglecting these effects result in an inaccurate representation of turbulent stresses and fluxes and
consequently errors in a prediction of mean fields. As the NWP model simulation resolution increases it
is therefore essential to account for the effects of horizontal shear and temperature gradients on the
production and evolution of turbulence including turbulent stresses and turbulent fluxes. We have
therefore developed a 3D PBL parameterization that accounts for these effects.

3.2.1.1 Algorithm Development

i Model Formulation

Although heterogeneity effects represented through horizontal gradients on a mesoscale grid are likely
significantly smaller than vertical gradients, long term effects on the accuracy of wind forecast could be
appreciable. We therefore explored implications of eliminating the homogeneity assumption in the
development of an improved PBL parameterization. The homogeneity assumption significantly simplifies
RANS equations resulting in equations for horizontal components of velocity of the following form
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Here, angle brackets denote grid-cell-volume averaging and capital letters denote grid-cell- volume-
averaged quantities, V; denotes velocity components and, ® potential temperature. Lower case letters
denote fluctuating quantities: u; are fluctuating velocity components, and 6 is a fluctuating potential
temperature. Repeated indices indicate summation. Under the homogeneity assumption horizontal
gradients of turbulent stresses and fluxes are identically zero. This means that only two components of
turbulent stress, (u;us) and (uzuz), and one component of turbulent flux, (us 6 ), and their vertical
gradients affect the evolution of mean fields. Therefore, 1D PBL parameterizations include only these
three terms. By eliminating the homogeneity assumption, the prognostic equations for the mean
momentum and potential temperature are:
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Now all six components of the symmetric turbulent stress tensor need to be parameterized and a full
divergence of the stress tensor computed. Similarly, all three components of the turbulent flux must be
parameterized and a full divergence of the flux vector computed.

Three-dimensional parameterizations of turbulent stresses and fluxes are commonly used in engineering
RANS equations-based model. However, due to large grid cell aspect ratios previously used in NWP
models, horizontal gradients in a boundary layer were many orders of magnitude smaller than vertical
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gradients. Therefore, the effect of horizontal gradients on boundary layer turbulence development and
evolution was neglected. Nevertheless, following development of limited area models in early 1970’s
(Warner 2010) Mellor and Yamada (1974) outlined a hierarchy of turbulence parameterizations for
atmospheric flow simulations that included a fully 3D PBL parameterization. They classified turbulence
parameterizations in four levels based on the assumptions made deriving them, with level four
representing the full three- dimensional parameterization including prognostic equations for all the
second order turbulence moments. In this work we follow the developments of Mellor and Yamada
(1982) variant of which were also implemented in the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL
parameterization (Nakanishi 2001; Nakanishi and Niino 2004, 2009; Ito et al. 2015). We implemented
Mellor- Yamada (Mellor and Yamada 1982) level 2 parameterization that neglects material derivatives of
second order moments including the TKE and instead diagnostic equations are provided. First, the TKE
is computed using a diagnostic equation
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Here, g is twice the TKE, A;is the length scale (sometimes labeled the “dissipation length scale), § is the
coefficient of thermal expansion, and gis gravitational acceleration. Once the TKE is diagnosed, second
order moments are computed by inverting the following system of linear algebraic equations at each grid
cell
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Here, 41, A1, €2, and A, are length scales that are proportional to each other, so they can be expressed in
terms of a master length scale ¢:

151 A 1y Azjzf)[Al B1 Az BzJ

The constants, 4, B, Az Bz and (; are determined from experimental data. The original values used by
Mellor and Yamada (1982) are

[Ay By Az By (1] =[092 16.6 0.74 10.1 0.08]

As an intermediate step to implementing a full 3D PBL parameterization we have developed a hybrid
approach where all the six components of turbulent stress tensor and three components of the sensible
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heat gradient vector are diagnosed and the full divergence of both stress tensor and flux vector
computed, but a 1D PBL approximation (i.e. neglecting horizontal derivatives) is used to develop
diagnostic equations. This approach leads to the following simplified set of linear algebraic equations
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ii. Model Implementation

We implemented the new 3D PBL parameterization in the WRF-ARW NWP model. Unlike 1D PBL
parameterizations implemented in WRF-ARW that are grouped together with other vertical column-based
parameterizations of physical processes in subdirectory /phys the 3D PBL parameterization we included
in the /dyn_em subdirectory. All the subroutines directly related to the 3D PBL parameterization are
collected in the Fortran module module_turb_mixing_3d.F. Additional changes include introduction of
state variables and namelist configuration parameters associated with the 3D PBL parameterization in
the regqistry file Registry. EM_COMMON. The WRF-ARW source code with the 3D PBL parameterization
has been stored in a github repository at: https://github.com/NCAR/WFIP2-WRF-
3DPBL/blob/master/wrf3.8.1.

iii. Mesoscale Simulations over Idealized Heterogeneous Terrain

The new PBL scheme is able to account for horizontal heterogeneity of boundary-layer flows not only
due to complex topography and heterogenous land use, but also due to large convective eddies,
convective cells and rolls. Convective rolls and cells generally scale with the boundary layer height and
therefore, as the grid cell size approaches boundary-layer height, these structures are being captured by
NWP models, however, they are under-resolved (Ching et al. 2014). Since the structures are under-
resolve their characteristic length scales are not realistic. It is therefore important to account for the
effects of velocity and potential temperature gradients induced by convective structures that result in
enhanced turbulence diffusion. Other convectively induced secondary circulations caused by, for
example, heterogeneous surface characteristics are often not resolved properly using NWP models with
1D PBL parameterizations and grid cell size in “terra incognita” (i.e. gray zone) range.

Before proceeding with simulations over heterogeneous terrain, model parameters were tuned using
simulations of a convective boundary layer over homogeneous terrain. We found that when using
parameters determined by Bougeault and Lacarrere (1989) the 3D PBL parameterization produces the
correct mixed layer ABL structure while the original set of parameters presented by Mellor and Yamada
(1982) result in a diabatic profile of potential temperature (Martilli, personal communication). Therefore,
the parameters that we used in all the simulations presented here are:

[A;, By A, B, Ci]=[03 84 033 6.4 0.08]

Not accounting for the effects of horizontal gradients on turbulence production, transport, and dissipation
results in inaccurate levels of turbulence and therefore inaccurate turbulent diffusion. We demonstrated
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this by carrying out idealized mesoscale simulations of an ABL over heterogeneous surface. The results
of these simulations are verified by comparing them to the results of an ensemble of LES. The idealized
mesoscale simulation setup includes periodic lateral boundary conditions with a weak, 2 ms™, southerly
wind and surface heat flux of 160 Wm on the west half of the domain and 320 Wm™ on the east half of
the domain. The horizontal grid cell size in both directions was 200 m. Two mesoscale simulations were
carried out, one using the MYNN 1D PBL parameterization and the other using the new 3D PBL
parameterization.

Additionally, an ensemble of 20 LES was carried out over the lateral boundary conditions and the same
domain but with grid cell size of 50 m. The ensemble was created by adding a uniformly distributed
random perturbation to the surface heat flux. All the simulations were run for two hours of physical time.
The results of these simulations are shown in Figure 5 and Figure 6. In these figures shown are contour
plots of meridional and vertical velocity components at 250 m above the surface, respectively. In the left
panel of Figure 5 presented are mesoscale simulation results obtained using the 1D PBL
parameterization while on the right are results from the simulation with the 3D PBL parameterization. In
Figure 6, the left and middle panel show mesoscale simulation results with the 1D and 3D PBL
parameterizations, respectively, while the right panel shows the ensemble average vertical velocity from
the LES.
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Figure 5. Meridional velocity from mesoscale simulations with the 1D PBL parameterization (left)
and 3d PBL parameterization (right).
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Figure 6. Vertical velocity contours from mesoscale simulations with the 1D PBL parameterization
(left), the 3D PBL parameterization (middle), and the ensemble average LES (right).
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It is clear from Figure 5 that using the 1D PBL parameterization to simulate a heterogeneous convective
ABL at 200 m results in a significant unphysical meridional (i.e. streamwise) variability in the meridional
velocity component. Less pronounced, but still clearly evident, is an unphysical variability in the vertical
velocity shown in Figure 6. The 3D PBL parameterization, on the other hand, results in the vertical
velocity filed that is homogeneous in the meridional direction and similar to the ensemble mean of the
LES. We can conclude that favorable comparison of the 3D PBL simulation results to the LES ensemble
results verifies that the 3D PBL parameterization better represents the effects of the horizontal turbulent
diffusion due to horizontal gradients of velocity and potential temperature.

iv. Large-Eddy Simulations over Complex Terrain

The data collected during the filed study enabled our team to attempt to improve the understanding of
the fundamental physical processes and their representation in forecast models, thereby improving
forecast capabilities. While the WFIP2 field study data represent an invaluable resource for studying
flows in complex terrain, majority of the observations were in situ observations relatively sparsely
distributed over a very large field study area. A few scanning lidars provided spatial information,
however, their limited range could not fully capture the complexity of the flow West of the Columbia River
Gorge. In the attempt to supplement observations and provide more information about spatial structures
of the flow, including mountain waves, topographic wakes, and gap flows, we have carried out high-
resolution simulations, using an LES approach, of a selected observational period when all these
phenomena were observed. With the LES approach we were able to resolved the details of the flow. The
validated LES results can then be used in conjunction with observations to more completely validate the
mesoscale simulations with the new 3D PBL parameterization.

We used nesting capability in the WRF-ARW to nest LES within a mesoscale domain. The outer, parent
domain and the inner, nested domain are shown in Figure 7 and Figure 8. The parent domain spans
1800 km in west to east direction and 900 km in South to North direction. The inner, LES domain spans
180 km in west to east direction and 90 km south to north direction. Both domains are resolved with 6000
grid cells in west to east direction and 3000 grid cells in south to north directions. While the parent
domain grid cell size is 300 m while the inner domain grid cell size is 30 m. As can be seen from Figure
7, the outer domain spans from the Pacific Ocean on the west to high plains of Montana and Wyoming
and encompasses northern Oregon and southern Washington states. The inner domain is centered on
the area south of the Columbia River where there is a large concentration of deployed wind power
capacity. It includes Cascades and Mountain Hood, as well as Columbia River Gorge to the east. The
grey scale indicates elevation with darker colors representing higher elevation. The dark spot in the lower
left area of the plot represents Mountain Hood. Since the prevalent winds are from the west, complex
terrain features affect the flow patterns and wind resource to the west where wind plants are located.
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Figure 7. Outer, parent mesoscale domain for nested simulations over the WFIP2 filed study area.
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Figure 8. Inner, nested LES domain for nested simulations over the WFIP2 filed study area.

To study the complex terrain effects on the flow patterns we have selected to simulate weather
conditions observed on March 7 and 8. Our simulations spanned 12 hours, from 15 UTC on March 7 to 3
UTC on March 8. The weather conditions on March 7 and 8 were characterized with steady westerly
flows resulting in an accelerated gap flow through the Columbia River Gorge that spilled east of the
Gorge. The orography including the Cascades Range and Mountain Hood generated mountain waves.
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Mountain Hood, shown in Figure 9, is a volcanic mountain rising to 3500 m above sea level (ASL), or
close to 3 km above the surrounding area. It is about 10 km in diameter and therefore it represents a
distinct, isolated obstacle to the westerly flow, causing in a well-defined topographic wake.

Figure 9. Mount Hood

In Figure 10 is shown the evolution of vertical profile of potential temperature observed using a
radiometer located at the Wasco airport. A capping inversion can be identified at about 1900 m due to a
steep potential temperature gradient. From 15 UTC on March 7 to 1 UTC on March 8 an adiabatic layer
can be observed below 500 m with a well-mixed layer above it signifying a daytime convective boundary
layer. These observations indicate that the capping inversion is significantly below the Mountain Hood
peek. Under such conditions we can expect that the dividing streamline for the westerly flow is also
below the Mountain Hood peak, causing the flow to split around the mountain, creating a orographic
wake downstream with potential formation and shedding of von Karman vortices.
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Figure 10. Profiles of potential temperature observed with the University of Colorado radiometer at
the Wasco airport on March 7 and 8.
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Our nested LES capture both the orographic wake (Figure 11) and von Karman vortices shedding off of
Mountain Hood. Both of these flow features can be clearly observed in the animations of LES simulations
that can be found at: https:// https://www.seedme.org/node/169835,
https://www.seedme.org/node/169348, https://www.seedme.org/node/170118, and
https://www.seedme.org/node/170607.

Figure 11. A contour plot of horizontal wind speed from an LES of March 7 and 8 at the Columbia
River Gorge.

However, von Karman vortices do not take the form of a regular vortex streets observed in laboratory
experiments or in the cloud patterns in wakes of islands. Due to the presence of a ridge to the east of
Mountain Hood the regular vortex shedding is disrupted. The LES also captures standing and travelling
waves created by the Cascades, Mountain Hood and the ridge to the east of Mountain Hood, as can be
seen from Figure 12 and the following animations: https://www.seedme.org/node/170851 and
https://www.seedme.org/node/171095.

Figure 12. A contour plot of vertical wind speed from an LES of March 7 and 8 at the Columbia
River Gorge.

DE-EE0006898



WFIP2: Complex Terrain - Page 30

Qualitative analysis of flow patterns revealed by LES animations confirm expectations and casual
observations. However, to validate LES a quantitative analysis must be carried out. For that purpose, we
use continuous observations of wind speed at BPA towers located in the Columbia River Gorge region
as well as observations by Vaisala sodars. The mesoscale results are provided by the parent domain,
while LES results are obtained from several simulations carried out to demonstrate the effect of a
boundary perturbation as well as a hybrid advection scheme. The baseline LES simulation uses the
Smagorinsky subgrid turbulence parameterization, a fifth-order, upwind advection scheme in horizontal
direction and a third-order, upwind scheme in vertical direction. The second LES uses the boundary
perturbation of potential temperature to speed up turbulence development, while the third LES, in
addition, uses the hybrid advection scheme. When LES is nested into a mesoscale domain the inflow to
LES domain is smooth and it does not include any resolved three-dimensional turbulent eddies. Due to
the smooth inflow conditions a long fetch is needed for turbulence to develop under neutrally stratified
conditions over a flat terrain. Turbulence develops significantly faster under convective conditions that
characterize most of the LES performed here. In addition, complex terrain contributes to turbulence
development.

Nevertheless, we introduced the boundary perturbation of potential temperature following Mufioz-
Esparza et al. (2014, 2015) to enhance turbulence initiation. To further improve turbulence development
and resolution we have also used the hybrid advection scheme that combines odd order and even order
advection schemes. An odd order upwind advection scheme is dissipative resulting in an effective
resolution of approximately 7 Ax (Skamarock 2004). This can be compared to a common implementation
of a pseudo spectral scheme which has an effective resolution of 3 Ax. By combining odd and even
schemes an effective resolution between 4 and 5 Ax can be achieved.

Comparisons were made between LES and and observations taken by BPA towers and Vaisala sodars.
Locations of the observations are shown in Figure 13. Examples of comparisons are given in Figure 14
and Figure 15. In these figures are compared the simulation mean absolute errors (MEA) of mesoscale
and large-eddy simulations computed based on the wind speed observations at the BPA towers and the
Vaisala sodars, respectively. It can be observed that the LES most of the time follow closely mesoscale
simulation, however, there are periods when they diverge from the mesoscale wind speed predictions.
For example, between UTC 0 and 2 wind speeds from LES at both the Hood River tower and the Vaisala
sodar, AONS5, are deviating from the mesoscale simulation wind speeds. However, they are in better
agreement with observations than mesoscale simulations. This can be observed at other locations where
observations are made. In general, LES result in lower MAE and RMSE as can be seen from Table 5
through Table 8. More significant exception is the Roosevelt tower location on the north bank of the
Columbia River.

Since both MAE and RMSE are relatively low at most observation locations and since LES provides an
improvement in comparison to the mesoscale simulation results, we can conclude that LES can be used
as an additional source of information about the flow in complex terrain. In particular, LES can be used to
characterize the horizontal heterogeneity of the flow in the WFIP2 field study area. The LES results can
be used in the future to guide further development of the 3D PBL parameterization including calibration
of different model parameters.
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Figure 13. Location of BPA towers (red arrows), Vaisala sodars (yellow squares) and turbines
(yellow and green dots) in the Columbia River Gorge field study area.
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Figure 14. Observed and simulated wind speed at the Hood River BPA tower: observed wind
speeds - solid black line, mesoscale simulations — solid black line, LES — solid red line, LES with
perturbations — dashed green line.
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Figure 15. Observed and simulated wind speed at the AON5 sodar location: observations — red
dots, mesoscale simulation — dashed black line, LES — solid green line, LES with perturbations —
solid purple line, LES with perturbations and a hybrid advection scheme -blue line.

Table 5. MAE of mesoscale and large-eddy simulations based on BPA tower observations.

Mean Absolute Error [m/s]

_ Mesoscale LES LES with cell

perturbation
_ 4.73 3.99 3.91
_ 2.71 2.39 243
_ 1.53 1.16 1.18
_ 1.59 1.39 1.30
_ 1.81 2.02 2.03
_ 1.74 1.82 1.79
_ 2.53 2.44 2.52
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Table 6. RMSE of mesoscale and large-eddy simulations based on BPA tower observations.

_Mesoscale LES LES with cell perturbation

Table 7. MAE of mesoscale and large-eddy simulations based on Vaisala sodar observations.

-Mesoscale LES LES with cell LES with cell
perturbation perturbation and hybrid
advection
_2.56 2.26 2.31 2.36
_1.63 1.14 1.18 1.15
_2.14 2.20 2.16 224
_2.70 2.73 2.63 2.63
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Table 8. RMSE of mesoscale and large-eddy simulations based on Vaisala sodar observations.

Mesoscale LES LES with cell LES with cell
perturbation perturbation and hybrid
advection
2.76 2.83 2.90
2.02 1.40 1.49 1.45
1.15 0.96 1.04 1.02
3.26 3.26 3.37 3.32
2.80 2.76 2.9
3.47 3.52 3.44 3.42
V. Mesoscale Simulations over Complex Terrain

We validated WRF-ARW with a new 3D PBL parameterization using field experiment data from the
Columbia River Gorge. For this purpose, we focused on validation of the parameterization for all the
components of turbulent stress and sensible heat flux and their full divergence, but with the use of a
boundary-layer approximation (see Appendix). This approach was assessed first rather than the full 3D
parameterization due to numerical stability issues related to the use of diagnostic equation for the TKE
that can result in ill conditioning of the system of linear algebraic equations.

The validation of 3D PBL parameterization is based on one of the selected “ten-day” WFIP2
retrospective study periods, the period between August 13 and 24, 2016. We carried out three
mesoscale simulations. We used the MYNN 1D PBL parameterization for the baseline mesoscale
simulation. In the other two mesoscale simulations, we used the new 3D PBL with and without an
additional two-dimensional (2D) Smagorinsky type diffusion parameterization commonly used in
operational NWP models. Here, it should be pointed out that the role of the 2D Smagorinsky diffusion
parameterization is not to represent unresolved physical processes and resulting diffusion (Skamarock
2004; Smagorinsky 1990), but instead to provide numerical stability through diffusion of numerical
oscillations controlled by a strain-rate-dependent diffusivity. The initial and boundary conditions were
derived from HRRR simulations with horizontal grid cell size of 3 km. The HRRR output was obtained
from the University of Utah data archive (http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/hrrr.html)
maintained by Brian Blaylock. Simulations were carried out for 30 hours. The first 6 hours represented
simulation spin up time and the last six hours overlapped with the next day’s simulation. All the
simulations started at 00 UTC and ended the next day at 06 UTC. The simulations were carried out using
two domains. The parent domain was resolved using 750 m horizontal grid cell sizes, while the inner,
nested domain was resolved with 250 m horizontal grid cell sizes (Figure 16).
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The inner domain was centered on the so-called Physics Site near just east of the Biglow Canyon wind
plant. The outer domain resolution corresponded to the resolution of a special instance of HRRR that
was run by the NOAA team over the WFIP2 study area during the duration of the field study.
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Figure 16. Left panel - WFIP2 field study area with symbols indicating instrument locations; Right
panel - WRF domains, D01 — 750 m grid cell size, D02 — 250 m grid cell size. In DO2 plus sign
denotes Wasco tower and x denotes Physics site (by Masih Eghdami).

The observations used to assess the model performance are from observational platforms located within
the inner domain including: two-meter tower at Wasco — wind only, three-meter tower at the Physics site:
wind data, relative humidity, temperature, and irradiance, and a 17- meter Physics site tower with sonic
measurements at three levels: 3 m, 10 m, and 17 m. Sonics provide high-frequency measurements
needed to compute turbulent fluxes.

Shown in Figure 17 are comparisons of output from the three mesoscale simulations with observations at
the two-meter tower at Wasco. In this figure shown are example comparisons based on observations
from two simulated days. From Figure 17 we can see that all the mesoscale simulations capture quite
well the diurnal temperature evolution. During nighttime between hours 12 and 19 UTC temperature is
first only slightly underpredicted and then during the second day slightly overpredicted.

The kinematic sensible heat flux is shown in the top right panel of Figure 17. In this case the sensible
heat flux from simulation with the MYNN parameterization was not included in the output and therefore it
is zero. For the other two simulations the agreement between observations and model results is relatively
good, however, during both days daytime sensible heat flux is underpredicted. Finally, the wind speed is
predicted well except during the first few hours on the first day.
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Figure 17. Comparison of the output from domain 2 of three mesoscale simulations with
observations at two-meter tower at Wasco: 2 m temperature — top left panel, wind speed at 10 m —
top right panel, surface kinematic sensible heat flux — bottom left panel, surface friction velocity —
bottom right panel. In all the panels different lines represent: simulation with the 3D PBL
parameterization — blue line, simulation with the 3D PBL but with the 2D Smagorinsky
parameterization turned off — orange line, simulation with MYNN PBL parameterization — yellow

line, and observations — purple line (by Masih Eghdami).

One of the reasons to replace a 1D PBL parameterization with a 3D PBL parameterization is the ability of
the former to represent normal turbulent stresses as well as their effects on the momentum evolution. In
Figure 18 shown is comparison of the normal turbulent stress components from mesoscale simulations
to the observed normal stress components. The horizontal normal stress components are underpredicted
by the 3D PBL parameterization while the vertical component is overpredicted. The observations indicate
that at the scale of interest normal stresses are significant. Their temporal variability, and therefore likely

spatial variability is also significant.
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Figure 18. Comparison of simulated and observed normal turbulent stresses: normal turbulent
stress component in zonal direction — top left panel; normal turbulent stress component in
meridional direction — top right panel; normal turbulent stress component in vertical direction --
bottom right panel. In all the panels different lines represent: simulation with the 3D PBL
parameterization — blue line, simulation with the 3D PBL but with the 2D Smagorinsky
parameterization turned off — orange line, simulation with MYNN PBL parameterization — yellow
line, and observations — purple line (by Masih Eghdami).

These observations point to a need to represent a full turbulent stress tensor and its divergence in high-
resolution mesoscale simulations in complex terrain. While 1D PBL parameterizations represent two
components of the turbulent shear stress, (u'w’) and (v'w'), they do not represent the third turbulent
shear stress component, (u'v'). Again, turbulent shear stresses from mesoscale simulation with MYNN
model were not output and therefore in Figure 19 they are all zero. In Figure 19 we observe that both
mesoscale simulations including the 3D PBL parameterization predict the magnitude and variation of the
two turbulent shear stress components, (u'w’) and (v'w’), quite well. However, the third turbulent shear
stress component, (u'v') is underpredicted.
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Figure 19. Comparison of simulated and observed turbulent shear stresses: turbulent shear stress
component (u'v') — top left panel; turbulent shear stress component (u'w’) — top right panel;
turbulent shear stress component (v'w')— bottom right panel. In all the panels different lines
represent: simulation with the 3D PBL parameterization — blue line, simulation with the 3D PBL but
with the 2D Smagorinsky numerical diffusion turned off — orange line, simulation with MYNN PBL
parameterization — yellow line, and observations — purple line (by Masih Eghdami).

A graphical summary of the mesoscale simulation results is given in Figure 20 in the form of a Taylor
diagram. A Taylor diagram combines three statistical measures quantifying the degree of
correspondence between observations and model output: the Pearson correlation coefficient, the RMES,
and the standard deviation. Review of the Taylor diagram shown in Figure 20 reveals that the use of the
3D PBL parameterization slightly improves correlation with observations compared to simulations with
the 1D PBL parameterization. Using the 3D PBL parameterization significantly improves prediction of
variability as indicated by the standard deviation being closer to observed than when the 1D PBL
parameterization is used. In general simulations with the 3D PBL parameterizations perform similarly
regardless of whether the 2D Smagorinsky numerical diffusion is turned on or not.
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Figure 20. Taylor diagram summary of mesoscale simulation results corresponding to the “ten-
day” retrospective period from August 13-24, 2016. Three mesoscale simulations use: 1D PBL
MYNN parameterization — x symbol, 3D PBL parameterization — cross, and 3D PBL ameterization
with 2D Smagorinsky numerical diffusion turned off (by Masih Eghdami).

3.2.1.2 Summary and Future Work

At Present most NWP models include parameterizations of turbulent stresses and fluxes based on the
assumption of horizontal homogeneity over a grid cell and therefore reduced to 1D PBL
parameterizations. As the horizontal grid cell sizes decrease the assumption of horizontal homogeneity is
violated and the effects of neglected terms must be accounted for. Under convective atmospheric
conditions the homogeneity assumption is violated even in flows over flat, homogeneous surface due to
the presence of large convectively induced secondary circulations (Ching et al. 2014). We have therefore
developed a 3D PBL parameterization following the work of Mellor and Yamada (1974, 1982) and
implemented it in the WRF model. The new 3D PBL parameterization was first assessed by carrying out
idealized mesoscale simulations over heterogeneous terrain characterized by sharp differences in
surface heat fluxes. These simulations demonstrated the deficiency of a 1D PBL parameterization when
grid cell size is in the so called “terra incognita” range, between 100 m and 1 km. We used the MYNN 1D
PBL parameterization in this study and it resulted in unphysical secondary circulations. In contrast, the
simulation with the 3D PBL parameterization correctly maintained homogeneity in one horizontally-
homogeneous direction while capturing the dynamical effects of the heterogeneity in the other horizontal
direction. We have demonstrated that the results obtained using the 3D PBL parameterization are
consistent with the averages from an ensemble LES.

We have carried out high-resolution LES of a flow over the WFIP2 filed study area and compared the
results with observations at the BPA towers and by the Vaisala sodars. In general, the LES resulted in
lower MAE and RMSE when compared to the mesoscale simulation results. This is consistent with the
expectation that a high-resolution LES better captures complex terrain effects on the flow.

Finally, we have assessed the performance of an intermediate form of the 3D PBL parameterization
which utilizes the boundary-layer approximation in order to directly solve a system of linear algebraic
equations for all the turbulent stresses and fluxes. For that purpose, we have used observations during
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the “ten-day” retrospective period from August 13 to August 24, 2016. Horizontal normal turbulent stress
components are underpredicted by the 3D PBL as well as one of the shear stress components, (u'v'),
while the two turbulent shear stress components (u'w’) and (v'w') are accurately predicted. Overall, the
3D PBL parameterization results in slightly better correlation with the observation, essentially the same
RMSE, and significantly improved variance.

At present the 3D PBL parameterization implemented in WRF is Level 2 according to Mellor and Yamada
(1982) classification. This means that the TKE is estimated using a diagnostic equation. However,
according to the Level 2 parameterization all the turbulent stresses and fluxes depend directly on the
TKE. Solvability of the linear algebraic equations critically depends on the exact level of TKE potentially
resulting in numerical instabilities. It can be expected that introducing a prognostic equation for the TKE,
or in other word Level 2 2 parameterization, would alleviate some of the numerical instability issues
encountered when the full 3D PBL parameterization is used. Following implementation of the prognostic
equation for TKE (or more precisely double TKE) LES results will be used to guide further development
of the 3D PBL parameterization including calibration of different model parameters. Finally, the “ten-day”
retrospective period mesoscale simulations should be carried out to assess the performance of the full
3D PBL parameterization. Based on the results of the assessment additional parameter tuning may be
necessary to obtain optimal performance. Further improvements of the 3D PBL parameterization may
include better treatment of the boundary top entrainment.

3.2.2 Analysis of Wind Farm Wake Parameterization

Wakes from individual wind turbines reduce the power available to turbines located downwind. Similarly,
wakes from aggregations of wind turbines have been observed to persist many kilometers downwind,
reducing the wind energy available to wind plants located downwind and aggravating the challenges of
forecasting winds in regions of extensive wind development. Wakes are particularly long-lived in stable
nighttime conditions.

Since 2011, WRF has included an open-source wind farm parameterization (WRF-WFP) that represents
the aggregate effect of wind turbines on the flow via an elevated source of turbulent kinetic energy and
an elevated momentum sink or drag (Fitch et al., 2012; Fitch et al., 2013; Lee and Lundquist, 2017). This
parameterization has been loosely validated in comparison to large-eddy simulations, wind tunnel
experiments, and with respect to near-surface temperature observations, and its performance was
examined for the offshore Horns Rev wind plant (Jiménez et al. 2014).

In WFIP2, the team at CU analyzed the performance of WRF-WFP using data from the field study and
explored the sensitivity of the model the implementation of a rotor-equivalent wind speed. See Redferen
(2019) for a detailed discussion. The current version of the WFP applies the hub-height wind speed to all
layers instead of allowing each vertical layer to have its own wind speed. However, Wagner et al. (2011)
proposed the use of a rotor-equivalent wind speed (REWS) instead of hub-height wind speed for power
curve evaluation, and Choukulkar et al. (2015) modified the formulation of REWS to include wind
direction and turbulent kinetic energy (TKE). An implementation of REWS was introduced in WRF-WFP
to replace use of layer-unique wind speeds, and the effect on performance was tested.

Generally, the inclusion of REWS or REWS modified by wind direction and TKE introduces very subtle
effects compared to the standard WRF-WFP. In majority of cases tested, wind speed deficit plots were
indistinguishable, and the only scenario where a significant difference emerged was during cold-pool
mix-out, when with highly non-linear wind shear across the rotor plane, REWS was more accurate.

We focus here on the behavior of WRF-WFP in two easterly flow cases involving the Biglow Canyon
wind plant near Wasco. The model terrain used in both is shown in Figure 21. The first is a summertime
event from August 16-18, 2016, when a cold frontal surge reached the study area as a surface cyclone
built across Montana. The Physics Site experienced easterly/northeasterly winds, and an interesting set
of waves developed in the simulation, as shown in Figure 22, which shows the difference in wind speeds
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across the model domain between simulations that are identical except for the presence of the WFP. The
wave activity is consistent with gravity waves propagating from the wind plant, as proposed by Smith
(2009). Strikingly, the magnitude of the wave pattern exceeds that of any more static wake in the lee of
the wind plant.

Model elevation (m above MSL)

Figure 21. Model terrain elevation for Wasco simulations.

80 m AGL, WFP-noWFP Wind Speed (m/s), Barbs from noWFP (kts)

> o TS

[18 Aug 2016 20:00:00 UTC| )
-4 -3 -2 -1 0 1 2 3 4

Figure 22. Difference in 80m wind speed at 2016-08-18 20Z between two WRF simulations that are
identical except for the presences of the wind farm wake parameterization. Small dots show the
presences of wind turbines.

The second case, from Nov 23-25, 2015 features more northerly flow, but again displays considerable
wave activity, as shown in Figure 23. In this case, the wakes appear stronger (consistent with the flow
aligned with the rows of turbines), but the wakes aren’t much stronger than manifestation of wave
activity.
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80 m AGL, WFP-noWFP Wind Speed (m/s), Barbs from noWFP (kts)
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Figure 23. Difference in 80m wind speed at 2015-11-25 04Z between two WRF simulations that are
identical except for the presences of the wind farm wake parameterization. Small dots show the
presences of wind turbines.

These simulations are not conclusive, but suggest that low-level gravity wave propagation in the vicinity
of a wind plant could play a significant role in the variability of generation.

3.3 Observations and Analysis
3.3.1 Observational Processing and Quality Control

The University of Notre Dame group developed quality control (QC) procedures to filter the data and
generate secondary products from UND instrumentation. These products are included in the b0 dataset
of the DAP. They include:

a) Vertical profiles of horizontal wind speed and wind direction for the Scanning Lidar at
Boardman

b) Turbulent momentum and heat fluxes for the PS01, PS02, PS06 and PS11 towers at the
Physics Site

c) QC'’d data for the ceilometer at Wasco, and the Sodar-RASS and microwave radiometer at
Rufus.

For detailed information regarding the QC procedures applied to the UND instrumentation, their range of
operation, and metadata please refer to the A2E portal.

3.3.2 Analysis of Physics Site Data

During WFIP2, the Physics Site (hereafter PS) was heavily instrumented to capture complex flow
patterns that regularly arise over complex terrain. The topography and location of meteorological towers
deployed at PS are shown in the map of Figure 24. The map was generated from the National Elevation
Dataset (NED) (https://nationalmap.gov) with a horizontal resolution of 1/3 arc second (=10 meters).

DE-EE0006898



WFIP2 Complex Terrain - Page 43

The site is characterized by a gentle hill, with elevation variability of about 80 m over 4 km in the East-
West direction. The slopes vary between 0 and 20 degrees. The horizontal black line on the map
denotes the East-West transect along the main slope, where four UND sites (PS01, PS02, PS06 and
PS11) were located at different distances from the hill crest, with PS01 being the furthest away (about 3
km) followed by PS02 (=2.3 km), PS06 (=0.75 km) and PS11 (=0.3 km). Exact locations, type of
instrumentation, and measurement heights for the sites are listed in Table 9 and

Table 10.

The height of the hill with respect to the terrain elevation at PS01 is about H=70 m. The terrain slope
between PS01 and PS02 is only = 3.7°. However, the terrain immediately south of the ridge where PS01
and PS02 were ilocated is quite steep, with slopes up to 20 degrees and a change in elevation of
approximately 40 meters over about 0.75 Km in the North-South direction. PS06 and PS11 are located
uphill, with PS06 being situated 20 m below the hill top and aligned with the West-East transect. PS11 is
12 m below the hill top and located 30 degrees West of North.

Table 9. UND tower locations

Tower Height Elevation ASL

Tower Latitude (deq) Longitude (deg) (m) (m)
PS01 45.6374 -120.6799 10 428
PS02 45.6383 -120.6716 17 445
PS06 45.6379 -120.6508 21 474
PS11 45.6393 -120.6460 10 484

Table 10. Instruments and measurement heights for UND Towers.

3D Sonic
Anemometer T/RH sensors Gas Analyzer (LICOR)
Tower heights (m) heights (m) height (m)
PS-01 3,10 3,10 3
PS-02 3,10,17 3,17 -
PS-06 3,10,21 3,10,21 -
PS-11 3,10 3,10 -
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Multiple remote sensing instruments were deployed at the Rufus, Wasco and Boardman sites. The
instruments complemented the other suite of instruments deployed at each of these locations by the

WFIP2 team.

Height (m)
495

470
450
430
- 410
390
- 370
- 350

>

Sodar
Towers

*  Turbines
Contours

Figure 24. (a) The topography of the Physics Site and the location of towers and wind turbines (b)
UND tower PS06 and (c) UND tower PS01 and co-located instrumentation of collaborators (Sodar

and solar/soil measurements).
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3.3.2.1 Terrain Complexity

In general, landforms are referred to as “complex terrain” based on different combinations of slope and
elevation (Stipersky and Rotach 2016), but no widely accepted measure of “terrain complexity” exists,
making its definition somehow subjective or indeterminate (Petersen et al. 1998). An objective measure
of steepness or ruggedness of the terrain can be classified using the Ruggedness Index (RIX). RIX is
defined as the percentage fraction of the terrain that is stepper than a critical slope, usually 0.3 (Wood
1995; Petersen et al. 1998). The index was proposed as a coarse measure of the extent of flow
separation, and thereby the extent to which the terrain violates the requirements of linearized flow
models, such as WASP (Bowen and Mortensen 1996).

Landscapes may be characterized by the following RIX values: flat and hilly 0%, more complex about
10% or less, and mountainous from about 10 to 50% or more (Petersen et al. 1998; Bowen and
Mortensen 1996). The validity of the RIX builds upon the work of Wood (1995), who estimated a critical
slope 6., associated with the onset of mean flow separation as a turbulent boundary layer passes over a
hill under neutral stratification conditions.

To calculate the RIX for WFIP2, we used the NED in combination with ArcGIS v10.4. Slopes and RIX
calculations were performed for the Inner-Domain of WFIP2, shown in Figure 25, and Physics Site (PS)
shown in Figure 26. The physics site is approximately the size of a single high-resolution grid cell for an
operational NWP model. The PS was meant to identify physical processes that are enhanced by the
terrain and accounts for turbulent fluxes variability at the sub-grid scale of NWP models.

For the Inner-Domain of WFIP2, the slopes have an average of 9°, a standard deviation of 10° and a
range that fluctuates between 0 and 80°, as indicated in Figure 25 (a). The major topographic features
that are likely to modify the flow on the Inner-Domain of WFIP2 are the Macks Canyon, located south of
the Columbia River and about 20 Km west of the PS, characterized by steep walls surrounding the
Deschutes River all the way up to its confluence with the Columbia River and Gordon’s Ridge, about 20
Km South-West of the PS. Both of these topographic features may modify the flow on a smaller scale at
the PS for strong westerly winds, Other possible features that modify the flow are the Cottonwood
Canyon, located south of the Columbia River and about 10 Km East of the PS, and whose steep walls
encompasses the John Day River, that might be important in the presence of strong easterly winds and
the steep walls of the Columbia River in the presence of strong northerly winds. These landscapes are
stepper than 0.3 (~ 17°), and thus te flow separation is expected to occur therein, as indicated by the
bright green-colored areas in Figure 25 (b). The RIX or the percentage of the area steeper than 0.3 for
the Inner-Domain of WFIP2 is of 17%, and thus the terrain can be classified as Mountainous.

The results on a smaller scale at the PS are shown in Figure 26 (a) and Figure 26 (b). The terrain
complexity of the PS is smaller than for the overall Inner-Domain. The RIX for the PS is 2% and since
flow separation may still occur, the terrain is classified as Complex. The topographic features that
account for most of the PS complexity are a) canyon with a longitudinal axis oriented in the NW-SE
direction that extends over the upper half of the PS domain (in the presence of north-easterly winds and
b) series of smaller canyons with their longitudinal axis oriented in the NE-SW direction that may be
important to consider when the winds are northwesterly.
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Figure 25. a) Top panel: Map of slopes for WFIP2 Inner Domain, the location of the PS is indicated
by the white star. In addition, the main locations where instrumentation was deployed are indicated

by the black dots. b) Bottom panel: Same as 1), but with the areas of slopes greater than 17
degrees overlaid to it and indicated by the bright green color. These areas represent possible
zones of flow separation that might have an effect on the flow at the Physics Site. The RIX for the
entire WFIP2 Inner-Domain region is of 17%, thus the terrain is Mountainous.
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Figure 26. a) Top panel: Map of slopes for the Physics Site area, the tower locations are indicated
by the square symbols and the location of wind turbines are indicated by the black-colored stars. A
sodar was installed at PS01 to measure wind velocity profiles of the incoming flow into PS, and it is
indicated by the gray-colored triangle. b) Bottom panel: Same as 1), but with the areas of slopes
greater than 17 degrees overlaid and indicated by bright green. These areas are possible flow
separation zones that might affect flow at the Physics Site. The RIX for the Physics Site Domain is
of 2%, thus the terrain at the PS is More Complex.

Even though a terrain classification based on a RIX indicates some important features of the terrain, RIX
will only be of limited value when analyzing the variability of turbulent fluxes at the subgrid scales of NWP
models. Note that RIX depicts the terrain “complexity” only in the perspective of the onset of mean flow
separation regardless of any other topographically influenced processes that may modify the flow.
Therefore, for complete characterization of complex terrain, a composite index that considers an array of
processes should be considered, which ought to include, in addition to flow separation, processes such
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as turbulence generation mechanisms, buoyancy production, local flow inhomogeneities and non-
stationarities.

3.3.2.2 Second order moment analysis at Physics Site

The structure of turbulence over flat homogeneous terrain and under various atmospheric boundary layer
(ABL) conditions has been studied extensively (e.g. Kaimal et al. 1972, 1976; Piper and Lundquist 2004),
partly motivated by the development of Monin-Obhukov Similarity Theory (MOST), which states that the
correct dimensionless wind and temperature gradient in the surface layer, (kz/u*)dU/dz and

(z/T*)0T /0z, respectively, are dependent exclusively on the parameters g/T,",u", q/(pC,)and the height

z. Therefore, only one dimensionless coefficient f can be formed, with L being the Obukhov length, k the
von Karman constant, g the gravity, T, the temperature scale, g the kinematic heat flux, C, the specific
heat and p the air density.

The structure of turbulence in complex terrain, however, remains relatively unexplored, in spite of its
paramount importance for a wide range of applications, i.e. urban air pollution, dispersion in cities, wind
energy harvesting, aviation, firefighting and NWP (Wood, 1999; Vecenaj et al., 2010; Fernando et al.,
2015). Current spatial and temporal resolutions of NWP models can be as high as 1 km and 10 s,
respectively, thus allowing to represent intricate topographical features and to simulate canonical flows
that are frequently observed in complex terrain (Skamarock et al., 2005; Papanastasiou, 2010).
Nonetheless, the Kolmogorov scales in the atmosphere are of ~1mm and ~1s, respectively (Fernando,
2013), and there is a whole host of scales that remain unresolved by the NWPs. This is usually
accomplished using standard surface-layer MOST, regardless the characteristics of underlying terrain
(Garratt, 1992).

To study the performance of MOST in complex terrain surrounding PS, June-July-August (JJA) 2016 was
selected as a case study. The 15 min averaged turbulent fluxes calculated from the UND and PNNL
towers were used for analysis. The spatially averaged non-dimensional root mean square velocities
normalized by the friction velocity; o, /u*, o,/u*, o,,/u”* were plotted as a function of the non-dimensional
height z/L for data taken at heights 3 m and 10 m, and the results are shown in Figure 27 and Figure 28,
respectively. Positive values of z/L corresponds to the stable stratification whereas negative values
correspond to unstable stratification. The spatially averaged non-dimensional RMS velocity components
for the PS are indicated by the red dots in the figures. The solid black line in the figures shows canonical
similarity functions derived for flat and homogeneous terrain (FHT); see Table 11. The blue line in the
figures correspond to the best fit for the measured data, parameterized as:

o/u* = a;(1 + B 1EN?

The previous parameterization was adopted from de Franceschi et al. (2009), whihch was proven to be
successful in parameterizing the non-dimensional root mean square velocities over an Alpine Valley (de
Franceschi et al. 2009). Moreover, it is in general agreement with MOST parameterizations such as the
ones developed by Panofsky and Dutton (1984). The values of the constant a;and g; obtained for the
PS data during the period JJA are given in Table 12 for measurements at 3m and in Table 13 for
measurements at 10m.

During the summer, the wind climatology is predominantly from the West. In this analysis, the data was
filtered to include wind directions between 221 to 316 degrees. This wind direction sector is undisturbed
by the wake effects of wind turbine locate near the PS. From Figure 27 and Figure 28 it can be observed
that o, /u* and o, /u” are significantly higher than that predicted for Flat and Homogeneous Terrain
(FHT) during unstable conditions. This trend is observed at 3m and 10m. At both heights the data is quite
scattered and a relationship between o, /u* and ¢, /u* exclusively based on the stability parameter

z/L doesn’t seem to hold for the PS area. Interestingly, ¢,,/u* and o, /u* are generally overpredicted
during stable conditions at both 3m and 10m, and thus the buoyancy effects that reduce the TKE is not
captured very accurately by MOST over Complex Terrain. Finally, the values of g, /u*measured at the
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Physics Site are smaller than FHT predictions during unstable conditions, but somewhat larger during
stable conditions. Nonetheless, the deviations from MOST for g,, /u*were smaller compared to g, /u* and
o,/u”.
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Figure 27. Physics Site - spatially averaged standard deviations for the wind velocity components
normalized by the friction velocity, o_u/u**,c_v/u**,c_w/u”*, plotted against the non-dimensional
similarity variable z/L* for the period June, July, August 2016 at 3m.
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Figure 28. Physics Site - spatially averaged standard deviations for the wind velocity components
normalized by the friction velocity, o_u/u**,c_v/u**,c_w/u”**, plotted against the non-dimensional
similarity variable z/L* for the period June, July, August 2016 at 10m.

Table 11. Similarity Functions for Flat and Homogeneous Terrain (FHT).

) Stability Parameter, _
Variable Expression Reference
E=z/L
§>0 1.8(1 + 1.6&)Y/3 | Zhang et al 2001
o, /u’
§<0 2.3 +4.381/2 Pahlow et al 2001
§>0 1.8(1 + 1.6&)Y/3 | Zhang et al 2001
o,/u”
£<0 24§06 Pahlow et al 2001
&E>0 1.25(1 + 0.2¢) Kaimal and Finnigan 1994
o /u"
§<0 1.25(1 + 3§)/3 [ Kaimal and Finnigan 1994
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Table 12. Values of a; and B;obtained for the period JJA 2016 for the PS towers at 3m.

Stability Parameter,
Variable a; Bi

E=z/L

E>0 2.57 2.49
o, /u’

&E<0 2.49 5.74

&E>0 1.85 8.10
o,/u*

&E<0 2.20 12.86

E>0 1.21 0.71
oy /u"

§<0 1.09 2.16

Table 13. Values of a; and B;obtained for the period JJA 2016 for the PS towers at 10m.

Stability Parameter,
Variable a; Bi
E=z/L

§>0 2.62 0.32
o, /u’

£<0 2.57 0.80

E>0 1.91 8.24
o, /U’

£<0 2.41 1.77

§>0 1.30 0.02
oy /u"

£<0 1.18 1.61
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3.3.2.3 Turbulence Retrievals

i. Eddy Dissipation Rate (EDR)

Turbulence dissipation rate is a crucial quantity to improve sub-grid scale parameterizations in the MYNN
boundary layer scheme (Yang et al. 2017). Doppler lidars provide information about wind field spatial
statistics, while providing estimates of turbulence Eddy Dissipation Rate (EDR, ¢); see the reviews by
Banakh and Smalikho (1997), Frehlich et al. (1998, 2006) and Krishnamurthy et al. (2011). These
estimates can be made using temporal data (using temporal spectra), spatial data (using spatial spectra)
or a combination thereof (using the estimates of structure function). All EDR estimation algorithms rely on
spectral representations of turbulence. Two forms of spectra are equated, as shown in Figure 29; von
Karman spectrum at low frequencies and Kolmogorov inertial subrange spectrum at higher frequencies.
There are no set values for upper and lower thresholds of the inertial subrange, as they vary with the
nature of atmospheric turbulence under different conditions (e.g., stable, unstable and neutral
stratification, altitude etc.).
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Figure 29. Power spectral representation of turbulence in a log-log plot [Monin & Yaglom (1975)]

The velocity spectrum is the Fourier transform of two-point velocity correlation function, which, in the
inertial subrange takes the classical form [Frehlich et al., 2006]

2 5
E(k)=C3k3,

where C is the Kolmogorov Constant. There is a direct relationship between the energy spectrum E(k)
and the second order velocity (v) structure function D,

H
1
Dy(s) =7 ). (W) = v(r + )Y,
n=1
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where H is the number of samples used for averaging and ris the spatial separation. The structure
function can be estimated either along the Lidar axis (longitudinal structure function D..) or along a
transverse direction (transverse structure function Dgrr). They become,

Dy (r) = Cy(e 7”)2/31
and
Drr(1) = G5/ (e 7")2/3;

C, =4/3 C, and C, = 2, where the latter is based on previous experimental work (Doviak & Zrinc 1993;
also see Chan and Shao 2007). The EDR is then obtained by fitting either the -5/3 slope to the spectrum
or the 2/3 slope for the structure function. The units of €are m?s™,

In the analysis below, the transverse structure function is used to estimate EDR, as it deems more
reliable based on previous work [Frehlich et al. 2006; Krishnamurthy et al., 2011]. Figure 30 shows the
azimuth structure function and Figure 31 shows the vertical profiles of various retrieved turbulence
parameters for 21 January, 2017 at 10 hrs. UTC.

l0]: : I L | - LA S L SR A | 3 LSS F AL L |
F| * Lidar data

- |——Von Karman Model Structure function
: = = Point Structure function

_____
-
-
-
-
-
-
-

-
-
-

—
c.
|

Turbulence Parameters e
L =708 m

0
oi =1.78 m%s

e=3%10" m%>

2

Structure function (mz/sz)
=
I

10.3 1 1 a3l 1 1 a3 gl 1 1 P A |
2 3

10° 10! 10? 10°

Dictance (m)

10

Figure 30. One-hour averaged azimuthal structure function for the Lidar data of January 21, 2017 at
10 hrs. UTC.
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Figure 31. One-hour averaged vertical Profiles of turbulence parameters for January 21, 2017 at
1000 hrs. UTC. a) Horizontal wind speed in m/s, b) wind direction in degrees, c) integral length
scale (m), d) velocity variance (m?/s?), and e) eddy dissipation rate (m?s-).

On this day, a frontal passage approaching from the west developed a high turbulence layer in the
bottom 100 m of the atmosphere. Figure 32 shows the radial velocity plots from the scanning Doppler
Lidar at different time periods. The wind direction shifts from east to west from 1000 hrs. UTC to 1900
hrs. UTC. Figure 33 shows one hour averaged time series of horizontal wind speed and EDR from 1000
hrs. to 2300 hrs. UTC. During the transition period, a significant increase (up to 10 times) in EDR was
observed from 1200 hrs. to 1500 hrs. The winds increased from 2 m/s to 4 m/s, which is the cut-in wind
speed for modern day wind turbines. The effect of high wind veer and turbulence during such time
periods would result in higher loads on turbine blades as well as variable wake conditions.
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a) b)
Radial Velocity plot on Jan 21,2017 at 1000 UTC Radial Velocity plot on Jan 21,2017 at 1300 UTC
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Figure 32. Lidar Radial velocity snapshots at a) 1000 hrs. UTC, b) 1300 hrs. UTC, c) 1800 hrs UTC
and d) 2100 hrs. UTC on January 21, 2017, showing the wind veering event. The contour dotted
lines show the height above ground level. The radial velocity color convention is yellow wind
towards the Lidar and blue wind going away from the Lidar.
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Figure 33. Time series of one-hour averaged horizontal wind speed and eddy dissipation rate at
40m (blue line with open squares), 60m (red line with diamond square) and 100 m AGL (black line
with x).

An inter-comparison study of estimating eddy dissipation rate from various remote sensing devices was
performed between NOAA, CU Boulder and University of Notre Dame. A profiling lidar, scanning lidar,
and wind profiling radar at Wasco, OR were used to measure this quantity, and roughly compared to a
nearby (5 km away and 40 m lower in elevation) sonic anemometer on an 80-m tower. More details on
the different algorithms shown in Figure 34 can be found in Krishnamurthy et al. (2011), McCaffrey et al.
(2017), Bodini et al. (2018), and Wilzack et al. (2019).

The scanning Doppler lidar at Wasco operating in two scan modes were used for turbulence dissipation
rates estimates using an a) azimuth structure function method on the 6-degree elevation angle planned
position indicator (PPI) scans and b) a vertical velocity spectral slope method on the 3-min vertical
stares. The azimuth structure function method estimates of dissipation rate are calculated every 20 m
from 30 to 380 m AGL, with decreasing reliability above 250 m AGL, due to limited accuracy of scanning
Lidar radial velocity estimates at distant range-gates (since, SNR « 1/Range). The spectral slope
estimates of dissipation rates are estimated every 100 m from 200 to 10,100 m AGL, with decreasing
measurement availability above 1000 m AGL.

Figure 34 shows time series of dissipation rates from the 4 methods and the sonic anemometer, at three
heights of interest: a) 80 m AGL where the sonic (roughly) shows the diurnal cycle well-matched by the
structure function method of the scanning lidar, b) at 200m AGL where all 4 profiling methods overlap,
the structure function method compares well with profiling lidar during daytime convective conditions, and
the WPR during nighttime stable periods, showing agreement between multiple instruments at differing
parts of the day, and c) at 300 m AGL, where the WPR and spectral slope method of the scanning Lidar
match well, as the structure function method of the scanning Lidar is less reliable due to the limitation of
accurate scanning Lidar radial velocity estimate at further range-gates (i.e., SNR « 1/Range).
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Figure 34. Turbulence dissipation rates at Wasco, OR from the wind profiling radar (blue), profiling
Lidar (red) and scanning Lidar using the structure function (green) and spectral slope (purple)
methods at 3 heights: a) 80 m AGL, compared to the nearby sonic anemometer (black); b) 200 m
AGL, where all four instruments observe; and c) 300 m AGL.

ii. Accuracy of Lidar Retrieval Algorithms

It is important to assess the accuracy of velocity and turbulence retrieval algorithms from scanning
Doppler Lidar to reduce the uncertainty and inform the potential users of limitations in using data. As a
first step, two velocity retrieval methods based on least-squares were assessed using data from the
scanning Lidar located at Wasco airport. Both algorithms use least-squares approach over the 360-
degree planned position indicator (PPI) sector to estimate the wind speed and direction. The NOAA
algorithm is based on averaging the radial velocity measurements over a 15-minute interval from all
scans over the time period and binning them as function of height. The current UND method estimates
the wind speed and direction for every scan and then average as a function of height (Krishnamurthy et
al. 2013). The two algorithms provide similar estimates, but with a mean wind speed difference averaged
over one month of approximately 0.35 — 0.45 m/s, with an averaged wind direction difference of 10 to 12
degrees. The results are shown in Figure 35 and Figure 36.
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Figure 35. Vertical profiles of the average (black) and standard deviation of horizontal
difference between NOAA and UND algorithms.
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Figure 36. Vertical profiles of the average (black) and standard deviation of horizontal wind

direction difference between NOAA and UND algorithms.

Further investigations are in progress by assessing the effect of volume averaging and turbulence on

Lidar retrieved products.
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3.3.2.4 Case-Studies

The preliminary studies presented here encompass several flows scenarios and are mainly based on the
dataset provided by the four UND towers and the scanning Doppler Lidar data collected at Wasco &
Boardman sites.

i. Case Study | — Frontal Passage on March 22-April 2, 2016

During the second half of March 2016, the Columbia Gorge area was under the influence of a westerly
cold frontal passage. Tower measurement at PS detected the arrival of the front around sunset on March
22 (Julian Day, JD, 82), which was associated with a significant wind power up-ramping. Figure 37
shows 12- day time series (March 21 — April 02) of wind direction, wind speed, air temperature (Tair) and
relative humidity (RH) measured at 3m, 10m and 17m at PS02. Raw data from sonic anemometers were
processed to remove spikes and tilting effects by applying a maximum velocity filter and the traditional
three rotation method (McMillen, 1988) was used to obtain the mean flow in the streamwise direction.
Time averages over 15 min were used to calculate turbulence and mean properties of the flow. The
figure clearly illustrates the arrival of and penetration down to the surface of the front, as indicated by a
swift shift of wind direction from easterly to 260 degrees and the rapid rise of wind speed to ~17 m/s.
This westerly high wind regime persisted for about five consecutive days (period A in Figure 37), and
after weakening on JD 87, a second event followed that lasted for about 3 days (period B in Figure 37).
This regime was finally dissolved on March 30 (JD 90) with the establishment of remarkably calm, light
winds and warmer and drier conditions (period C in Figure 37) associated with weak synoptic forcing
over the area.
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Figure 37. Time series of 15 min averaged wind direction (wdir), wind speed (wsp), air temperature
(Tair) and relative humidity (RH) measured at 3m,10m and 17m at PS02 tower.

The analysis of normalized turbulent velocities (Figure 38) for Periods A and C indicate the presence of
two disparate turbulence regimes. During Period A, turbulent velocities are low and approximately
constant for 5 consecutive days, with both streamwise and spanwise components o(u) = o(v) = 0.15U
and a vertical component a(w) = 0.05U (U is the mean speed). On the other hand, turbulent velocities in
Period C follow the diurnal cycle, reaching values up to = 0.8U and 0.4U, for horizontal and vertical
components, respectively, during the convection. Nighttime turbulence values during period C are
comparable to A, although a less stationary trend can be noticed with some remarkable turbulent bursts,
which will be subject of further investigations.
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Figure 38. 15-min averaged RMS values of three velocity components (streamwise sig(u), spanwise
sig(v) and vertical sig(v)) at PS02 at 3m, 10m and 21m, normalized by the mean speed U at the
same height. Normalized RMS values of sonic temperature sig(T)/Tsm are also provided in the

bottom panels. The left and right panels refer to Period A and Period C respectively.
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Figure 39. Comparison of normalized RMS vertical velocity at 4 different locations along the East-
West transects (PS01, PS02, PS06 and PS11) at heights (a) 3m, (b) 10m, and (c) 20m for a
representative 24-hr. segment in Period A. Panel (d) compares three measurement heights of PS06.

Similar analyses were carried out for other UND tower locations along the East-West transect. Results
indicate similar trends in terms of both mean and turbulent variables. However, comparison of
normalized turbulence velocities at different locations (Figure 39 above) highlights the larger values of
normalized vertical turbulent velocities found at PS06 (20 m below the hill's crest) in comparison to other
PS locations. In terms of dimensional values, the variation is significant at the lowest measurement level
where o(w) at PS06 is 30% larger than the value measured upstream (PS01). Similarly, o(u) and o(v)
are 15% larger than the corresponding upstream values. Table 14 and Figure 40 summarize these

results based on Period A and also highlight similar trends for PS11.

Table 14. Calculated variation of RMS values of three velocity components (u, v, w) at 3m height for
Period A, where 0 denotes the value measured upstream

Variable PS02 PS06 PS11
@ —oQo)l | g, 13% 13%
U(uo)
lo@) =o@)l | 50, 15% 16%
U(Vo)
[G(W) - J(WO)] 1% 29%, 22%
U(Wo)
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Figure 40. Horizontal cross-section showing calculated fractional o(w) changes at 3m height for
Period A. PS towers positions and terrain shape are also illustrated.

The extension of the analysis to a 3 months-period (February 16, 2016 - April 10, 2016) suggests that the
larger values o(w)/U found at PS06 are always associated to sustained westerly winds, as illustrated in
Figure 41. These findings are consistent with the observations of Bradley (1980) and Zeman and
Jenssen (1987) as well as in accordance with the rapid distortion theory that predicts an increase in the
vertical component of turbulence as the flow approaches the hill crest. On the other hand, consideration
of atmospheric stability and Froude number (Fr) for the same dataset indicate that westerly winds would
almost always correspond to Fr >1, implying that the flow at the topographic height at PS06 would
always flow over the hilltop. Our future work will further investigate these aspects, especially by including
data collected at the top of the hill (not available for the first part of WFIP2 field campaign) and
considering flow scenarios expected for different atmospheric stability and flow configurations.
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Figure 41. Normalized RMS vertical velocity at 3m for (a) high and (b) low wind speeds as a
function of the wind direction. Dataset from February 16, 2016 to April 10, 2016.
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i Case Study II—Convergent Flows on September 29, 2016

Convergent flows were observed by Scanning Doppler Lidar measurements at the WASCO site
(proximity to the Physics site, southeast) on September 29, 2016 at 0500 hrs. Figure 42 shows 15-
minute averaged wind and direction profiles from the scanning Doppler Lidar. Winds from northwest (pink
color) and from southeast (green) show interesting counter-flowing sheared flow behaviors during the
local night time until about noon. It appears that the shear layer is lofted and destroyed with the initiation
of strong convection, which allows enhanced momentum diffusion upward. During the counter flow
period, we expect strong turbulence at about 1000 MSL, given the shear layer therein with a small mean
velocity. We are continuing with studies on the evolution of turbulence in the shear layer as well as the
growth of shear layer. Some of the parameters of interest are the turbulent kinetic energy dissipation
rate, integral length scale of turbulence as well the RMS velocities. We are applying in-house built
algorithms to extract these quantities. Also comparisons are attempted with other instrumentation that is
located close to Wasco Lidar.
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Figure 42. Horizontal wind speed in m/s (top) and wind direction (bottom) from scanning Doppler
Lidar measurements at the WASCO site. The measurements are averaged over 15 minutes. Time in
UTC.
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iii. Case Study Il — Dividing Streamlines on January 21st 2017

During stable wind conditions, the relationship between the Froude number Fr and the structure of flow
encountering an obstacle is interesting. When Fr < 1, Sheppard (1956) argued that the flow would go
around an obstacle. Hunt et al. (1997) and others extended Sheppard’s work for prediction of stable flow
structure in complex terrain. PS02 and PS06 tower measurements were used in the following analysis.

Top Layer

0.5 km 1.0 km 1.5 km 2.0 km 2.5 km 3.0 km 3.53 km

Figure 43. Rough illustration of dividing stream-lines observed at the Physics Site. The critical
height (Hc) calculated based on Shepard et al., 1956 was approximately 40 m.

The Froude number was calculated from the two tower measurements according to
1

U2 i
T2 e
— 27 (AH)?

where, p is the density of air, g the gravitational acceleration, a—i is the appropriate density gradient, U is

the free stream velocity at the top of the mountain and AH is the height to the top of the terrain. The
classical critical dividing streamline height (H.), at which height the potential energy is small compared to
the kinetic energy of the flow, and whence the flow can go over the hill, was calculated using the
Shepard et al., (1956) equation,

H. = H(1-Fr).

An illustration of the dividing streamline concept for the Physics Site is shown in Figure 43. The Froude
number calculation was performed for several days, and an interesting case study is shown below.

On January 21, 2017, the winds were predominantly observed to be from the West. At 12:00 UTC [0400
Local time] a wind-direction shift was observed at 478 m above MSL at the PS06 tower location. Prior to
the shift, the mean upwind wind direction was from the west ~ 270° . During the shift, the Froude number
dropped below 1 (as seen in Figure 44 A). During low wind speeds, fluid parcels have less kinetic energy
to go up the hill, and thus would flow around the hill (Hunt et al. 1997). The height from the flat terrain
upwind of the hill to the hill top (H = 496 m) was 69 m, hence the critical height would be less than 69 m
when Froude number is less than 1. Since there was no visual proof (such as smoke release) that the
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flow went around hill, the wind direction at towers PS02 and PS06 were analyzed to investigate possible
lateral flow distortion as the flow arrives at the hill. Figure 45 shows that similar wind directions prevail at
the two upwind sensors on PS02, up to a height of 467 m above the MSL. When Fr dropped below 1, up
to 500 shift in the wind direction was observed at PS06 (3m), which indicates possible wind deflection
near the ground to flow around the hill. The wind direction at the top of the hill (i.e., level 21m sensor at
PS06) approximately matched the upwind wind direction up to 1500 hrs. UTC (0700 hrs. LT), and
thereafter the wind directions at the top of the hill deviated from the upwind wind direction as well. The
critical height was calculated to be approximately 30 - 40 m above the upwind flat terrain height (Figure
44 C). Further investigation is needed to confirm above inferences.

January 21,2017

A LA .................... R SRS IR S ——PS02 3 m [44

L |
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021
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Figure 44. A) Froude number calculated from tower measurements on January 21, 2017 from PS02,
B) time series of wind directions observed at various height above mean sea level and C) critical
height (Hc) calculated as per Shepard et al., 1956, based on Froude number and height difference
from the flat terrain upwind of the hill.
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Figure 45. Wind Directions vs UTC time observed at various height above a terrain following
surface from tower measurements. The legend also shows the height above mean-sea-level in
squared brackets.

Further in-depth analysis of similar cases needs to be performed to study the effect of low Froude
number effect on wind turbine loading, performance and forecasting.

3.3.3 Uncertainty Quantification

As part of the larger uncertainty quantification (UQ) effort, the Texas Tech team investigated the
parametric sensitivity of wind speed forecasts in the context of an ensemble Kalman filter (EnKF)
ensemble during high impact wind ramp events. This study built on the UQ work done by the team at
Pacific Northwest National Laboratory (PNNL) described in Yang et al. (2017) and uses a similar UQ
methodology. Based on the results of Yang et al. (2017), this study investigated a reduced set of 9 PBL
and surface scheme parameters, shown in Table 15, during from two ramp events; a stable mix-out false
alarm from January 18, 2017 and a marine push event from July 22, 2016. The primary goals of this work
were to examine whether boundary layer scheme parametric sensitivity varies across different equally-
likely ensemble members, different ramp-producing forecast situations, different horizontal grid spacings,
and different forecast times.
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Table 15. List of MYNN parameters to be modified in the parametric sensitivity study. The default
values in the 2.5 level scheme in WRF 3.6 are listed as well as the range used in the sensitivity

study.
Parameter Symbol Default Value Range
Constant in TKE B1 24 12-36
dissipation
Prandtl number Pr 0.34 1.5-4.5
Constantin LT al 0.23 0.115-0.345
calculation
Constantin Ls ad 20 20-100
calculation
Constantin Ls ab 2.1 1.35-4.05
calculation
Exponentin Ls B 0.2 0.1-0.3
calculation
Surface roughness zf 1 1-2
scaling factor
Van Karman constant | k 0.4 0.35-0.40
Closure constant 11

Time-height plots showing SODAR, profiling radar and microwave radiometer observations for the
January 18 case are shown in Figure 46. The mixing of warm, high momentum air towards the surface
can be seen in the radar and radiometer measurements. Although the high momentum air did not mix
down to the turbine rotor layer, the event log team identified this as an important case since over mixing
by the model produced errors in forecasted wind speed.
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Figure 46. Time height plots of wind speed and temperature at the Wasco Airport for January 18,
2017 event. Vertical axis for all plots is in meters above ground level.
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Figure 47 shows the average 80-meter above ground level (AGL) wind speed at Wasco for each member
of the EnKF ensemble. The dashed lines show SODAR and radar observations from the Wasco airport
valid at 80 and 81 meters AGL, respectively. Since each member of the EnKF ensemble is run with the
standard 2.5-order MYNN scheme, all variation in this ensemble is a result of differences in the initial
conditions (ICs) and lateral boundary conditions (LBCs). Three members of the EnKF ensemble were
selected to provide ICs and LBCs for physics ensembles. The three members are shown in Figure 47 by
the bolded green (high wind speed member), yellow (moderate wind speed member) and red (low wind
speed member) lines. The members were chosen to represent different portions of the ensemble
distribution.

EnKF Ensemble 80m (AGL) Wind Speed
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Figure 47. Time series of 80-meter wind speed at the Wasco airport for all members of the EnKF
ensemble. The fast (green), medium (yellow) and slow (red) wind speed members that will be used
for UQ experiments are bolded as is the ensemble mean (dark blue). The dashed lines show 80 and
81 meter AGL wind speed observations from a SODAR and profiling radar, respectively, deployed
at the Wasco airport.

Each physics ensemble consists of 81 members, with all members using identical ICs and LBCs but a
unique combination of MYNN parameters. Figure 48 shows the forecasted wind speed at Wasco for the
three physics ensembles. Members of the physics ensemble forced by the low wind speed ICs, top
panel, are quite similar to each other, suggesting the varied parameters have little influence on the
modeled wind speed. Figure 49 shows the variance in wind speed for all three physics ensembles as
well as the wind speed variance from the EnKF ensemble. The larger variance in the EnKF ensembile,
when compared to the physics ensembles, suggests that forecast uncertainty for this case is dominated
by IC error rather than errors in the MYNN scheme

Following the method used in Yang et al. (2017), the wind speed variance for each physics
ensemble was decomposed using a generalized linear model (GLM) into the portions contributed by
each parameter. Figure 50 shows the percentage of total variance than can be attributed to each
parameter every hour. For all three ensembles, B1, y1 and the Prandtl number are the dominant sources
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of forecast uncertainty, however, there are key differences between the ensembles. In the low wind
speed ensemble B1 is responsible for the majority of the forecast variance during two periods between
13-14 UTC and 17-19 UTC on January 18. Between these periods, y1 accounts for more variance than
any other parameter, while Pr accounts for the most variance early in the forecast and between 22-23
UTC on January 18. During the final 6 hours of the forecast, no parameter is responsible for more than
20% of the total variance. The medium wind speed ensemble sees B1, y1 and Pr alternate as the most
influential parameter for the first 18 hours of the forecast though no parameter accounts for the majority.
During the final six hours of the forecast B1 is responsible for the majority of the variance in forecast wind
speed. In the high wind speed ensemble, as in the medium wind speed ensemble, B1 is the single most
important parameter during the final six hours of the forecast. However, in the high wind speed
ensemble B1 is also the most important parameter between 11 and 18 UTC on January 18.
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Figure 48. Time series of 80-meter wind speed at the Wasco airport for the three physics

ensembles for the January 18 case. The bolded lines are the EnNKF members from Figure 2, which
provide the ICs and LBCs for their respective ensembles and are included here for reference.
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Figure 49. Variance in wind speed for the EnKF (black line) and physics ensembles (colored lines)
for the January 18 case.
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Figure 50. UQ results the January 18 case on Domain 2 (left) and Domain 3 (right) for the slow wind
speed (top row), middle wind speed (middle row) and high wind speed (bottom row) runs. The lines
represent the percentage of wind speed variance that can be attributed to each parameter. The
vertical axis units are percentage of variance. The horizontal black line indicates 10% of the total
variance.

The difference in UQ results between these ensembles highlights the importance of addressing IC
uncertainty when conducting sensitivity experiments and especially when tuning model parameters. Each
of these members is an equally likely draw from a distribution of possible states. Studies done using a
deterministic forecast are essentially selecting one of these possibilities and are unable to assess the
other, equally likely, initial states. Tuning the model parameters based on a single set of ICs ignores a
significant source of model error and can potentially introduce more error by modifying model physics
that may not be at fault.
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The left column of Figure 50 shows UQ results from Domain 2. The UQ results between Domain 2 and
Domain 3 are quite similar, which suggests that the 4 km grid spacing is sufficient for future UQ work.

Figure 51 shows the average 80-meter wind speeds at Wasco for the EnKF ensemble for the July 21,
2016 marine push event. For this case, 5 members were selected to drive physics ensembles. Three
members that captured the event and produced large (green), medium (yellow) and small (red) wind
ramps were selected along with a member that failed to capture the event (brown). A final member (blue)
was selected as it has an odd surface pressure signature (not shown). The wind speed time series for
each of the physics members is shown in Figure 52. The varied physics parameters have very little
impact on the low wind ramp and bust ensembles and produce moderate variation in the large ramp
case. In contrast, the PBL scheme is responsible for large variations in wind speed in the moderate ramp
ensemble and for variations in the timing of the ramp event in the odd pressure ensemble. The variance
for each ensemble is shown in Figure 53. Unlike the January 18 case, two of the physics ensembles
produce comparable forecast variance to the EnKF ensemble. However three of the physics ensembles
produce very little variance.
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Figure 51. As in Figure 47 but for the July 22, 2016 case.
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Figure 52. As in Figure 48 but for the July 22, 2016 case.
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Figure 53. As in Figure 49 but for the July 22, 2016 case.
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Figure 54 shows the UQ results for the July 22 case. The sensitivity to individual parameters varies
widely between the different ensembles, but the results from domain 2 and domain 3 are fairly similar. As
with the January 18 case, the difference in parametric sensitivity between the ensembles highlights the
fact that variations in ICs can influence the physics parameterizations as well as the difficulty in isolating
physics error when dealing with real world forecasts. Furthermore, the fact that the variance from the
EnKF ensemble exceeds the variance of all the physics ensembles for the January case and most of the
physics ensembles from the July case suggests that forecast uncertainty in these events is largely due to
IC error and not errors in the PBL parameterization.
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Figure 54. As in Figure 50 but for the July 22, 2016 case.

3.3.4 Wind Power Forecasts

A part of the Vaisala team project objectives within WFIP2 was to generate and validate wind power
forecasts based on the control (baseline) and experimental (enhanced) HRRR reforecast simulations
produced by NOAA. The original project plan aimed to produce retrospective forecasts for every major
wind project connected to the BPA transmission system for a minimum of one calendar year period,
spanning all four seasons during the WFIP2 field campaign. Due to data restrictions, not all of the
facilities could be individually modeled. The Vaisala team, with the cooperation of its data partners,
contributed data for 20 individual projects out of the total of 31 wind facilities within the BPA control area.
As a compromise and as a way to measure performance for the entire installed wind capacity of the
area, the total regional power generation was utilized, since it is freely available and published in near
real-time on the BPA website'. Although the WFIP2 reforecast simulations were eventually created for
one full year of the WFIP2 study period, at the time of this analysis, only four 1-month periods were
available for download. These months were April, July, and October of 2016 and January of 2017,

1 https://transmission.bpa.gov/Business/Operations/Wind/twndbspt.aspx
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calendar months which are centered during each of the four seasons. This was considered to be the
minimum necessary to proceed with a seasonal analysis of the potential benefits of the WFIP2 modeling
improvements to wind power forecasting, but the study is still considered to be preliminary because of
the limited sample size. Regardless, we anticipated seeing more subtle improvements to the wind power
forecasts than to the atmospheric model outputs because of the statistical post-processing involved. As
illustrated in Figure 55, statistical post-processing acts to reduce the systematic error of raw model
output and is typically more effective at larger starting error levels.

a2 N

Control N_\MD_ _________ _A

—

o .

= Experimental

L NWP
Control M
Postprocessed Experimental

Postprocessed

k Forecast source /

Figure 55. A general schematic of the potential reduction of average forecast error by a statistical
post-processing method starting from a higher-error NWP model versus an improved experimental
NWP model. There is less inherent forecast error in the experimental NWP model and therefore the
statistical correction removes less overall error than it does from the control model. The relative
delta in forecast error between the control and experimental NWP model output is larger than the
difference between the post-processed outputs of each.

3.3.4.1 Methodology

Vaisala used the provisional WFIP2 HRRR reforecasts produced by NOAA as foundational weather
model inputs to drive statistically corrected forecasts of wind power at 1-hourly intervals out to 24-hour
horizons. Separate wind power forecasts were generated for the control and experimental model
configurations so that we could inter-compare their performance overall and during specific cases of
interest. Actual power generation data served as the target variable for the forecasts and as the source
of validation data. Performance metrics were kept to a very basic set within this evaluation and we leave
it to future studies to assess the potential economic impacts of the improved HRRR model from WFIP2.

i Data

Substation level generation and project available capacity data was provided by Vaisala team data
partners for 20 participating individual wind projects. Although some contributed data at the wind turbine
unit level, this more detailed information was not directly used in the forecast generation process.
Turbine level data was used in some cases to determine the project-wide available power capacity. The
actual power divided by the available power capacity, or relative power, served as the primary predictand
for our wind power forecast modeling work. In the case of the regional forecast for the BPA fleet
aggregate, we used the actual wind power reported by BPA and normalized by the installed wind
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capacity of the region (4783 MW) to obtain a pseudo relative power. All relative power data was
converted to 1-hour period-ending averages to correspond with hourly wind power forecast intervals as
set out in the aim of the study. We did not attempt to analyze sub-hourly forecast accuracy or variance.

As described above, for NWP data we used the provisional WFIP2 HRRR reforecasts available from the
Data Archive and Portal (https://a2e.energy.gove/about/dap). These simulations are “cold-start”
configurations with initial conditions taken from the RAP and run twice per day (every 12 hours) through
forecast hour 24. Otherwise, the WFIP2 HRRR (Ax = 3 km) utilizes the same domain setup and physics
suite as its operational counterpart. A very high-resolution nested domain, nicknamed HRRRNEST, is
run at Ax = 750 m inside the WFIP2 HRRR with a delayed start of 3 hours. We examined only the
HRRRNEST runs in this study due in part to initial delays in accessing this large volume of archives from
the WFIP2 Data Archive and Portal. The HRRRNEST runs target the terra incognita scales (200 m < Ax
<1000 m), where PBL parameterizations are known to struggle, but better resolve important terrain
features of the region including the Columbia River Gorge. At the time of analysis, the HRRRNEST
reforecast data for April, July, and October of 2016 and January of 2017 was available to us. A more
complete analysis of both WFIP2 HRRR and HRRRNEST simulations for the full year of available
reforecast data is now possible.

To obtain NWP-based predictors at each location, the HRRRNEST model output was bi-linearly
interpolated to each wind project centroid from the corresponding four surrounding grid points. No time
interpolation was necessary as we used only hourly model output to match up with our hourly resolution
power data. We sliced out forecast hours 4 through 15 from each model run cycle, each being 12 hours
apart, in order to stitch together a single complete training data set for all available valid times within the
four one-month reforecast periods. A large variety of standard model output variables from the
HRRRNEST runs are available in the WFIP2 Data Archive and Portal. We utilized all of the 2-D fields as
well as the wind 3-D fields on pressure surfaces. Additionally, we derived the wind speed from its vector
components, but included all three wind related variables in the combined training data set to have both
magnitude and zonal/meridional components available as candidate predictors.

ii. Modeling Approach

Statistical wind power models were developed on the BPA fleet aggregate and on the individual site
level. Statistical models were also created for each hourly forecast horizon independently. No attempt
was made to forecast wind speed (either hub-height or rotor-equivalent) and then translate to power
output with a power conversion model. Our approach is to forecast the relative power directly. Vaisala
used its in-house wind power forecast engine to train the statistical models, which is part of its standard
operational software.

The Vaisala power forecast engine is built around the foundation of open source machine learning
software, so that any widely used statistical model type can be deployed for a particular target variable
and forecast time horizon. The system automatically selects the most appropriate components from the
full collection of input data, while controlling for redundant information from similar variables using a
sophisticated feature ranking and selection technique. An efficient grid search is used to tune the
statistical model hyper-parameters and a k-fold cross-validation strategy is employed to avoid over-fitting
to the training data. Commonly chosen algorithms include support vector regression (SVR), gradient
boosted regression (GBR) trees, and ridge regression (RR), though a wealth of other statistical models
are available should they prove to generalize better for a particular location or time period. For 0-6 hour
forecast horizons, recent observations from the wind facility have great importance and are weighted
heavily by the chosen predictor variables. Nearby weather observations, taken from off-site locations,
can lead to further improvements. Even though a rich network of off-site observations were available
during WFIP2, we did not include them as candidate predictors in this study choosing instead to focus on
the NWP model improvements. Beyond about the 6-hour forecast horizon, recent observations tend to
provide little or no tangible benefit to power forecast accuracy, so at these intervals, the predictors
coming from the NWP models dominate. Because of the similarity in relative importance of model
predictors beyond forecast hour 6, we chose to pool forecast hours 7-15 and 16-24 into groups and
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thereby lessen the total number of models we had to build. This reduced the number of horizon-specific
models from 24 down to 8 for each location and model type.

Due to limited sample size of the data period in the reforecast study, with only a one-month sample from
each season available, we could not afford to split the available periods into fixed training and testing
sets. Instead we employed a k-fold cross-validation approach to assess how the results of our models
would generalize to independent data. We divided the data set into eight folds, each one of
approximately a half-month in length, leaving out one half-month partition as testing data and using the
remaining 3.5 months as training data. We rotated through the folds, using each half-month period as a
validation set, as pictured in Figure 56. Days 1-15 were separated from days 16-end of the month. This
had the benefit of including half a month of in-season data within the training data set when predicting
the other half-month from the same season. With calendar month splits only using 4 folds, it would not
have been possible to include in-season training data for the target periods with the available data set.

a) b)
April 2016 April 2016
C T 1 ) . I acrica :

1 15 30 1 15 : 30
July 2016 July 2016

1 15 31 1 15 31
October 2016 October 2016

1 15 31 1 15 31
January 2017 January 2017

1 15 31 1 15 31
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July 2016 July 2016

1 15 31 1 15 31
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1 15 31 1 15 31
January 2017 January 2017

1 15 31 1 15 31

Figure 56. lllustration of the k-fold cross-validation wind power forecast training strategy with
successive half-month periods withheld as test data (blue), leaving the remaining dates available
as training data (orange). The panels show a) the first fold using.

The total number of statistical forecast models built for each site was 128, taking 8 x 8 = 64 models each
for the control and experimental HRRRNEST runs across each horizon and training fold. For 20
individual wind projects and the single BPA aggregate, that meant we trained a grand total of 21 x 128 =
2,688 statistical models. Each model was saved and the wind power forecast output from each half-
month test period was organized. A script was written to merge the output from each training fold into a
single time series file, organized by forecast horizon. All wind power reforecast files were delivered to the
WFIP2 Data Archive and Portal.

3.3.4.2 Forecasting Validation Results

The normalized MAE for HRRRNEST-based wind power forecasts on the BPA fleet aggregate are
shown in Figure 57, organized by forecast horizon. Forecast hours 1-6 are scored individually, while
forecast hours 7-15 and 16-24 are scored as pooled groups. Each month is scored separately, so that
we can compare the performance by season, starting from winter (January 2017) in the upper left, and
rotating through spring (April 2016), summer (July 2016), and finally fall (October 2016) in the lower right
panel. Experimental model results are denoted in blue, while control is represented as red. Overall, the
forecast accuracy difference is small between the control and experimental models, except in the winter
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month. Normalized MAE ranges from about 3-5% at 1-hour forecast horizon up to 6-12% for the 18-24
hour forecast period. In Figure 58, we report the normalized MAE for BPA only on days within the WFIP2
Common Case Study Set. This represents about one third of the days in the overall reforecast period.
The horizon-averaged MAE skill score, which represents the relative improvement by the experimental
reforecasts over the control reforecasts at a summary level, are presented in Table 16 for both the
Common Case Study Set days and the overall reforecast periods.
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Figure 57. Normalized MAE for HRRRNEST-based wind power forecasts on the BPA fleet aggregate
organized by forecast horizon and reforecast month. Control models are the red curves and
experimental models are blue.
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Figure 58. As in Figure 57, except for just days within the Common Case Study Set.
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Table 16. Horizon-averaged MAE skill score for the BPA fleet aggregate, showing the improvement
of the experimental HRRRNEST-based wind power forecasts relative to the control for the entire
reforecast period and the Common Case Study Set.

Season All Reforecast Cases Common Case Study Set
Winter (2017-01) 11% 14%
Spring (2016-04) -4% -2%
Summer (2016-07) -3% -2%
Fall (2016-10) 1% -3%

In terms of normalized bias, Figure 59 and Figure 60 show the results for BPA with the same
organization by forecast horizon and season. We observe negative forecast biases in winter and spring,
with an indication of small bias reductions by the experimental runs. For the Common Case Study Set
days during the winter month of January 2017, the sign of the bias actually switches to positive. The
experimental runs reduce this positive bias toward zero for 6 of the 8 forecast horizons. The overall
negative biases are larger in the spring month and even reach below the -5% level during April 2016
days within the Common Case Study Set. The springtime reduction in negative bias by the experimental
forecast averages 0.2% for all days and 0.6% for Common Case Study Set days. In summer, the
forecast biases are positive and are not reduced by the experimental model, although they appear to be
smaller on average for the Common Case Study Set days. The fall biases are negative, but relatively
small, with absolute values below 2% overall. However, October 2016 days within the Common Case
Study Set exhibit larger negative biases and no apparent improvements from the experimental model.
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Figure 59. Normalized mean bias error for HRRRNEST-based wind power forecasts on the BPA
fleet aggregate organized by forecast horizon and reforecast month. Control models are the red
curves and experimental models are blue.
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Figure 60. As in Figure 59, except for just days within the Common Case Study Set.

The same statistics are measured for wind power forecasts at the individual site level. In Figure 61 we
show results for an indicative project located in the western part of the Columbia River Basin study area
near the river gorge. Normalized MAE ranges from about 6-10% at 1-hour forecast horizon up to 12-16%
for the 18-24 hour forecast period. We show the same performance measures in Figure 62 for a
representative wind project in the Arlington, Oregon area where the forecast errors are generally lower
and have greater seasonal variability. A summary of overall seasonal performance is included in Table
17 given by horizon-averaged MAE skill score and segregated by site.
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Figure 61. Normalized MAE for forecasts at White Creek Wind in Klickitat County, WA.
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Figure 62. As in Figure 61, except for forecasts at North Hurlburt, near Arlington, OR.
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Table 17. Normalized MAE skill score organized by individual wind project and by

season.
Wind Project Name Winter Spring Summer Fall
(January (April 2016) (July 2016) (October
2017) 2016)
Combine Hills I -7.0 3.2 -3.4 4.4
Harvest Wind 3.0 -5.0 -0.6 29
Big Horn -1.4 0.0 -1.0 -2.3
Big Horn 11 -1.9 1.4 -1.6 0.1
Hay Canyon -1.0 0.4 -3.9 -1.9
Juniper Canyon -19.8 N/A -1.6 -1.0
Klondike 3.2 2.8 -2.0 -1.1
Klondike I -1.7 -0.5 -2.4 -0.5
Klondike Il 4.0 1.5 -2.0 -1.7
Klondike Il1A -2.0 3.0 -8.2 -0.3
Pebble Springs -7.5 -3.1 -2.6 24
Star Point -1.7 1.2 -1.3 0.8
Biglow | N/A 7.7 -2.7 6.6
Biglow I N/A 1.4 -1.2 4.4
Biglow llI N/A 3.4 1.6 3.9
Tucannon River N/A 2.5 -0.1 -0.7
Horseshoe Bend -1.5 -1.8 -4.0 1.5
North Hurlburt 2.0 -0.1 -2.9 2.8
South Hurlburt 3.2 -2.3 -4.0 0.0

3.3.4.3 Forecasting Validation Summary

Improvements in wind power forecasting provided by the experimental HRRRNEST model are mostly
negligible in all months except winter. The overall improvement in normalized MAE for the BPA regional
forecast in wintertime averages out to 11% for all horizons. For the subset of cases during January 2017
deemed particularly interesting to the project team and of potential importance for the wind industry, we
achieve a slightly larger average improvement of 14%. However, all other seasons show no major
benefits. Although a strong negative forecast bias seems to be reduced a little during the springtime, it
does not translate to a noticeable reduction in the normalized MAE. On average, the results in the other
three seasons even suggest some possible degradation. At individual wind sites, the wintertime forecast
improvements are generally smaller than at the aggregated regional level, ranging from 0-5% in terms of
normalized MAE. This is a typical result since the aggregated regional forecasts have a greater
dependency on the meteorological patterns represented in a mesoscale model, while some of errors
associated with microscale variations are averaged out in the regional forecasts.

In comparison to the raw model 80-m wind speed validation results presented by Olson et al. (2019),
there are many similarities. For the HRRRNEST simulations over all four reforecast periods, the
experimental runs reduced wind speed forecast errors by an average of about 2-7% over the 19 sodar
locations distributed throughout the Columbia River Basin during WFIP2. The spring and summer
periods showed the least impact. Whereas, improvements were the most robust in fall and winter, when
the implemented physics changes that mostly benefited stable PBL regimes were more influential. While
we did not realize any benefits during the fall period, the wintertime improvements approach the 15-20%
level seen for the rotor-layer wind speeds. Our results for wind power are a little more pessimistic
because they measure the improvements after statistical post-processing is applied, which acts to
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reduce the differential between the experimental and control runs. Another factor contributing to our
lower estimates of forecast improvement is the smaller sample size (four versus six week reforecast
periods) and the need for longer training data periods overall to create more skillful statistical model
corrections. Finally, the realized improvements should be larger at the operational HRRR resolution of 3-
km, because some of the biggest physics improvements in WFIP2 came from parameterization schemes
that were active only at those scales and not appropriate for the sub-km scales of the HRRRNEST
domain.

3.3.4.4 Future Work and Recommendations

Now that a complete 1-year period of reforecast data is available in the WFIP2 Data Archive and Portal,
other possibilities exist for train-test splits that may offer more robust results with larger in-season sample
sizes available for the algorithm training periods. For example, the eight additional months could be set
aside for training, while keeping the four existing months as out-of-sample test periods. Even better, a
12-fold cross-validation strategy could be used, rotating through the full data set one month at a time,
yielding 11-month sample sizes for algorithm training periods. If longer training periods of about a year
can be gathered, it should result in more skillful statistical models. In turn, this would yield a more
accurate estimate of the potential industry benefits as a result of WFIP2 modeling improvements.

Since many of the envisioned modeling improvements in WFIP2 slated for the terra incognita scales did
not get completed, it was not a surprise that the relative improvements available from the HRRRNEST
simulations were not as substantial. Most of the modeling improvements implemented by NOAA stand to
benefit the HRRR at operational resolutions above 1-km grid spacing. For the time being, because the
primary benefits of WFIP2 will be realized through the operational HRRR model, it makes sense to more
thoroughly examine the differences between the control and experimental WFIP2 HRRR at the 3-km
operational resolution. In future years, after more gray zone modeling improvements are implemented
into WRF, the impact on wind power forecasts at sub-km scales can be revisited.

3.4 Decision Support Tools

As lead of the WFIP2 Decision Support Tools (DST) team, Vaisala organized work to develop decision
support algorithms for complex terrain phenomena observed in the field study. The motivation behind the
DST team’s work was to connect the WFIP2 project with the wind energy industry and to ascertain its
relevance. The work was driven by two primary questions:

o How can we convey the possible impacts of complex terrain phenomena?

e Can we create actionable alerts that will improve situational awareness and reduce decision-
making time?

To answer these questions, Vaisala organized and carried out a set of sub-tasks to design algorithms,
build a prototype, and collect industry feedback. The unifying objective was to design a light-weight
alerting prototype for complex terrain phenomena that drive wind power volatility, which was fully
probabilistic and could be used to facilitate an interactive discussion with industry partners on the
features and potential utility of the tool.

Coordination amongst representatives from WFIP2 project participants from NOAA, NREL, and PNNL at
DST team meetings facilitated a robust exchange of ideas. After some iteration, the team reached
consensus on the phenomena of primary interest and on the initial algorithm design. Cross
communication with the Uncertainty Quantification (UQ) team established linkages to parallel efforts
underway at PNNL, NREL, and TTU (a Vaisala team member) and yielded future plans to incorporate
uncertainty information into the algorithm itself. Due to a shortened timeline for data analysis compared
to the original WFIP project plan, Vaisala implemented the DST algorithm for only a single example
complex terrain phenomenon. Team discussions laid the groundwork for design of additional
phenomena, should future funding become available. For the single example type, a history of
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probabilistic alerts was generated over the multi-season retrospective forecast period for WFIP2. These
comprised four month-long periods (one calendar month from each season) during the field study.
Creation of the alert history enabled for computation of overall validation statistics and an initial
assessment of its performance. Vaisala modified its commercial interface to build a prototype tool for
display of the alert information as a vehicle to collect industry feedback on its presentation format and
potential usefulness.

3.4.1 Methodology

The process we followed began with identification of the complex terrain phenomena observed during
the WFIP2 field study. This part of the effort drew on work from the larger WFIP2 team, including
contributions from the Event Logging and Verification and Validation (V&V) teams. We relied heavily on
the WFIP2 Event Log, a daily recording of the dominant observed weather conditions in the Columbia
River Basin during the 18-month field campaign. The Event Log contains a subjectively applied weather
taxonomy, identifying which of five major categories of meteorological phenomena were active during
each day, the performance level of the operational HRRR model forecasts, and the relative importance of
the event for the wind energy industry. From the Event Log, we were able to identify the most important
event types that occurred frequently during the field campaign and were suspected as having the largest
impacts on wind operators. These periods are also identified in the Common Case Study Set, where the
selected sub-set of interesting case days are annotated with labels for significant power ramps (up or
down) or periods of power volatility.

We also utilized the WFIP2 Phenomenon Identification and Ranking Table (PIRT), which was a tracking
tool developed by the V&V team to collect the priorities and reasons behind the many proposed team-
wide validation studies and to connect them with the available field instruments that would be needed to
carry out the work. From the PIRT, we were able to identify the specific instruments likely to be the most
helpful for identifying each type of event occurrence during the field campaign. The goal of the team was
to automatically label event occurrence (as a binary class) using the field campaign data.

A principal objective from the WFIP2 science plan was that the DST algorithm should produce
probabilistic guidance, and if possible, incorporate the work of the UQ team. Because of the sequencing
of work during the WFIP2 project, the UQ team was only able to produce ensemble simulations for a
limited set of case studies late in Budget Period 3. UQ simulations were completed for 16 cases before
the project concluded, but this was an insufficient sample size to fully develop and test the candidate
methods for integration with the DST algorithm. Instead, we stopped at a conceptual approach to the
design and will leave it for future studies to carry forward and test the efficacy of these plans.
Nevertheless, we did succeed in implementing a method that achieves the basic WFIP2 science goal of
having a probabilistic alert. This was achieved through the use of modern machine learning methods,
many of which enable the straightforward development of classifier models, which can produce either
probabilistic or deterministic predictions of binary (or multi-category) events. Amongst many candidate
techniques, ultimately we chose to implement random forest classifier models, as these achieved the
best performance within our experimental period. It should be noted that the classifier models we
implemented were only based on candidate features from the control and experimental HRRRNEST (Ax
= 750 m) model runs and therefore don’t incorporate initial condition or model parameter uncertainties. A
future advance to the method would incorporate ensemble simulations, possibly produced via a formal
UQ methodology, in order to better sample the flow-dependent uncertainties in the model simulations of
relevant meteorological parameters. The candidate features from HRRRNEST simulations are used as
inputs for training random forecast classifiers, which then produce probabilistic event-based forecasts on
an independent test set.

3.4.1.1 General Procedure

The general procedure we developed for the DST algorithm follows below, accompanied by some notes
explaining further details on each step:
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i. Label times when complex terrain events of interest occurred.

Ideally this step is automatable, in that some rule set can be applied to observed data, and the result is a
binary class label (0/1) for each time period. Otherwise, a brute force approach may be necessary
requiring human effort and subjectivity to annotate each time point. This approach can naturally be
extended to accommodate multi-class event types or real-valued indices over the [0,1] interval to add the
notion of event severity or likelihood.

ii. Label times when power ramp events or significant power volatility occurred.

This step is also best, if automated. For identifying power ramp events automatically, we relied on the
Ramp Tool & Metric (RT&M) developed during WFIP1 (Bianco et al., 2016) rather than inventing new
techniques. Annotation of power volatility events would require new methods for automatic identification,
and we did not end up pursuing these further in this study.

iii. Find the overlap times of these events from steps i and ii, creating merged labels for times with
specific ramp-causing phenomena.

This step is straightforward if a logical operator on the two labeled time series can be used, like
intersection. However, it could also be important to account for time lags or intermittency which could
complicate this step and introduce additional configuration parameters. The merged labels become our
target data time series, which we use for training predictive models for alerting on these joint conditions.

iv. Extract/engineer features from candidate predictor data sets.

This step involves pre-processing and data set manipulation. For NWP model output data, extraction
includes some important details, such as the choice of spatial interpolation method (bi-linear from the
four nearest grid points), time interpolation method, and whether additional derived variables not part of
the standard model output (e.g., lapse rate) are calculated. Other input data types could also prove
valuable depending on the target phenomenon and forecast horizon, such as recent observations from
satellite, radar, nearby profilers, or regional surface observations.

V. Combine with uncertainty quantification information.

This step is optional, since ensemble NWP simulations would significantly multiply the available number
of candidate features to be used in the DST algorithm making the following step difficult without a very
long historical training data set. If feasible, we encourage the use of a combined initial condition and
physics ensemble, since important uncertainties arise from both sources for complex terrain phenomena
depending on the type and time of day Smith (2018). To reduce the multiplicative impact on the number
of available NWP fields and contain the dimension of training data set, we envision limiting the feature
set to only summary information from the ensemble using statistics like mean, median, minimum,
maximum, standard deviation, or percentiles (as in Roulston et al. 2003). Another possible option is to
use the Smith (2018) approach to down-select a sub-set of ensemble members which exhibit important
characteristics that well span the range of uncertainties of interest (e.g., fast, medium, and slow
members for a ramp event).

Vi. Train classifier model.

This step involves training a statistical model, using merged event labels from step 3 as the target data
and engineered NWP-based features from steps iv and v as the training data. A generalized linear model
can be used, like for probability of precipitation forecasts using traditional Model Output Statistics
approaches. Alternatively, there are many types of supervised learning techniques now widely available
for classification problems like this one. Here, we want to choose methods that can produce probability
forecasts of the class labels.

Vii. Apply classifier model on test data, obtaining probabilistic class predictions.

This step involves out-of-sample execution of the trained model from step vi to produce probability
forecasts for the class labels and to measure the model performance on previously unseen data.
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viii. Apply a post-processing method to calibrate the forecast probabilities.

This final step is optional, depending on the raw model performance and the availability of sufficiently
large training data sets. If the raw model produces un-reliable forecast probabilities, then a calibration
step may be necessary to achieve good reliability, while attempting to retain the skill (resolution and
sharpness) in the original model output.

3.4.1.2 Data

Actual power generation data recorded at the wind project substation level are the basis for the DST
algorithm work. Vaisala team partners contributed this data directly to the project for 20 individual wind
projects within the BPA control area. Some project partners contributed data at the wind turbine unit
level, but this more detailed power and wind data was not used in the DST analysis. Additionally, the
BPA fleet aggregate power generation was utilized, since it is freely available and published in near real-
time on the BPA website (https://transmission.bpa.gov/Business/Operations/Wind/twndbspt.aspx). The
DST algorithms were developed on the BPA fleet aggregate and on the individual site level, with a single
wind project in the center of the WFIP2 study area near Wasco, Oregon called Klondike IIl. The objective
was to have at least one example for each level of aggregate wind power forecasting to evaluate the
method. All observed power data was converted to 1-hourly averages in this study. We did not attempt to
analyze sub-hourly forecast skill.

The model forecast data for the DST work comes from the provisional WFIP2 HRRR reforecasts
available from the Data Archive and Portal (https://a2e.energy.gove/about/dap). These simulations are
“cold-start” configurations with initial conditions taken from the RAP and run twice per day (every 12
hours) through forecast hour 24. Otherwise, the WFIP2 HRRR (Ax = 3 km) utilizes the same domain
setup and physics suite as its operational counterpart. A very high-resolution nested domain, nicknamed
HRRRNEST, is run at Ax = 750 m inside the WFIP2 HRRR with a delayed start of 3 hours. Although the
WFIP2 HRRR and HRRRNEST reforecast simulations were eventually created for one full year of the
WFIP2 study period, at the time of this analysis, only four 1-month periods were available for download.
These months were April, July, and October of 2016 and January of 2017, calendar months which are
centered during each of the four seasons. We examined only the control and experimental HRRRNEST
runs in this study due to time-limited resources in the data analysis phase of the project. The
HRRRNEST runs target the terra incognita scales (200 m < Ax < 1000 m), where PBL parameterizations
are known to struggle, but better resolve important terrain features of the region including the Columbia
River Gorge. A more complete analysis of both WFIP2 HRRR and HRRRNEST simulations for the full
year of available reforecast data is now possible, but was not ready by December 31, 2017 to be in time
for this initial DST work.

3.4.1.3 Algorithm Example: Cold-Pool Mix-Out Up-Ramps

The WFIP2 research team placed particular importance on better understanding of meteorological
processes influenced by complex terrain that lead to rapid changes in wind speed. One event type that
remained in focus throughout the study was cold pools and their evolution. These events were
predominantly cold season phenomena that were the second-most frequently observed event type
during the measurement campaign (Wilczak et al. 2019). During the decay phase of these events, the
sudden transition in the near-surface winds from light or easterly to strong westerly or south-westerly
winds results in a strong upward ramp of wind speed through-out the Columbia River Basin. Wind power
at the BPA fleet aggregate level is often marked by periods of low or near-zero production during these
long-lived cold pool episodes punctuated by a rapid increase at the end (McCaffrey et al. 2019). The
timing of the mix-out of the cold pools has been a notorious short-coming of mesoscale NWP models and
was a point of particular emphasis for targeted physics improvements during WFIP2 (Olson et al. 2019).
Because the WFIP2 research team spent significant effort studying this particular event type and
modeling improvements were realized because of it, the DST team nominated this phenomenon as the
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best candidate on which to begin analysis. We followed the general procedure outlined above and call
out the steps specific to the analysis of cold-pool mix-out up-ramp events below:

i. Labeling cold pool events.

For identification of long-lived cold pool events in the Columbia River Basin during the field study, we
relied on the technique described in McCaffrey et al. (2019). In this approach there are criteria for
stability, wind, and duration. The stability criterion involves the calculation of the temperature lapse rate
in the lowest 1 km above ground level and ensuring that it must be greater than -6.8 C/km. The layer
average wind must either be easterly or below 3 m/s if it is outside the NE to SE sectors. After meeting
the first two criteria, to distinguish the cold pool from diurnal radiatively driven events, its duration must
last more than 20 hours with gaps no larger than 3 hours. In the McCaffrey et al. (2019) long-lived cold
pool study, these criteria were used at a combination of observing locations within the WFIP2 study area.
Cold pool event times were labelled only from conditions observed at the Wasco, OR location, where we
made the assumption that profiling observations taken there were representative of the basin wide
conditions. The time resolution of the event labels were limited to hourly.

ii. Labeling significant up ramp events.

Ramp events in wind power generation are identified through automated labelling of the actual time
series from a wind project or from regionally aggregated observed values. As discussed at length in
Bianco et al. (2016), there is no commonly accepted definition for a ramp event. No strict definition is
available and the parameters can vary based on the needs of the end user. For this reason, a more
flexible tool called the Ramp Tool and Metric (RT&M) was developed as part of the scope in the original
WFIP study. The RT&M tool is publicly available online2 and provides flexibility to choose from three
different methods of ramp event identification. For simplicity, we chose a single method of ramp event
identification, the min-max method, which finds the maximum power amplitude change (Ap) within a
sliding time window of length WL. This method avoids some problems with the fixed-time interval method
and is simpler than the explicit derivative method. It can be argued also that it results in more intuitive
ramp definitions which start and stop at the peaks and troughs of the power time series. Although the tool
supports any reasonable choice for Ap and WL, to avoid running a large number of DST model
simulations, each one with a unique version of labelled data owing to a different ramp definition, we
chose a set of functional default values. We selected Ap as 15% of the installed capacity, which
amounted to minimum power change of about 720 MW for the BPA aggregate and about 33 MW for
Klondike Ill. We set WL as 12 hours for BPA and 6 hours for Klondike Ill. After applying these settings
and using the RT&M to label the observed power time series, we retain only the positive events that are
associated with upward directed changes in power output. The time resolution of the labeled data was
limited to one hourly. If the actual ramp start or end time fell within an hour, then that whole hour was
labeled as part of the event. The native resolution of the observed data was retained to define the start
and end times. For example, the BPA aggregate power has time resolution down to the 5-minute level.
While the choices were based on Vaisala industry experience, but also somewhat arbitrary, the ramp
definitions settings are modifiable and were specifically discussed during the industry feedback sessions.

iii. Finding the times when cold-pool mix-out and up-ramp events overlap.

We marked the end time associated with each cold pool event labeled in step i calling that the official
mix-out time. Then, from step ii, we retrieved the start and end time of each up-ramp event. If the cold
pool end time intersected any up-ramp by falling in between the start and end times of that event, then
we created a new labeled time series for that up-ramp event marked as true. Because the Wasco
profilers only measure one part of the study area and mix-out times can vary throughout the basin
depending on the scouring processes at work, we wanted to also allow for a time offset. This step
seemed especially appropriate in dealing with the BPA fleet aggregate power, which is a summed
reflection of the mix-out process happening in different regions at different times. The observed up-ramps
in the BPA aggregate time series could be composed of several smaller contributing up-ramps as the

2 http://www.esrl.noaa.gov/psd/products/ramp tool

DE-EE0006898



WFIP2 Complex Terrain - Page 88

cold-pool is eroded at higher elevations or western-most wind projects first. Therefore, we chose to allow
for a 1-hour tolerance between the end time of the cold pool and the start time of the up-ramp event. This
threshold was chosen by inspection of the time series. An example of the merged labeling procedure for

the BPA fleet aggregate power is shown in Figure 63.
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Figure 63. Observed hour-averaged power generation time series from the BPA fleet aggregate
power during October 2016 (black). Labelled up-ramp event times are shaded light blue. Connected
blue dots signify periods labeled as long-lived cold pools at Wasco, Oregon.

iv. Extracting and deriving important model input features.

For NWP candidate features, we used the control and experimental HRRRNEST model output bi-linearly
interpolated to the Wasco airport location from the four surrounding grid points. No time interpolation was
necessary as we used only hourly model output to match up with our hourly resolution labeled event
data. We retained only forecast hours 4 through 15 from each model run that were 12 hours apart in
order to stitch together a single complete training data set for all available valid times within the four one-
month retrospective periods. A large variety of standard model output variables from HRRRNEST are
available in the DAP and we utilized all of the 2-D surface fields as well as the 3-D fields at the native
model vertical levels. To supplement the raw model output, we derived some additional variables that we
hypothesized might be relevant for the cold-pool mix-out process. These additional model output
variables were:

o The potential temperature vertical gradient between the surface and 300 m above ground level

o The potential temperature vertical gradient between the surface and 1.5 km above mean sea
level

o The depth of the cold pool layer, as defined by an upward search for the maximum positive
temperature lapse rate below 4 km

e The layer average wind speed within the cold pool layer
e The layer vector-average wind direction within the cold pool layer
e The wind speed at the model level immediately above the cold pool layer

e The u-component of the wind at the model level immediately above the cold pool layer

Although we restricted ourselves to focus solely on the usage of relevant NWP data here, other input
data sets could have been used. For example, at short forecast horizons less than about 6 hours,
observed or extrapolated data taken from observed conditions can often add significant predictive skill.
For example, we could have added lagged observations from the wind profilers and thermodynamic
radiometers located nearby within the study area to boost the predictive skill of the models at these
shorter forecast horizons, but this potential improvement was not investigated here.
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V. Incorporating UQ information (optional).

As mentioned earlier, we elected to skip this step and did not include data from UQ simulations for this
example implementation of the DST algorithm. UQ simulations were only available for 16 days, meaning
that we would have needed to invent a new method to synthesize ensemble forecast data for the
remainder of the cases in the retrospective period in order to proceed.

Vi. Training the statistical classifier models.

To compose a training data set, we assembled a history of target data using the merged labels from step
iii and the NWP candidate features from the WFIP2 HRRRNEST simulations, as described in step iv.
Statistical models were trained using standard classification methods readily available through the scikit-
learn Python package, including support vector machines and random forest decision trees. Random
forests produced the best results for the size and scale of the classification problem here, with a feature
dimension of about 100 variables and a sample dimension of about 2500. To optimize the hyper-
parameters of the classifiers, we employed a fixed grid search using 4-fold cross-validation.

Vii. Testing and application of the model.

Due to limited sample size of the data in the study, with only a one-month sample from each season
available, we could not afford to split the available periods into fixed training and testing sets. Instead we
employed a k-fold cross-validation approach to assess how the results of our models would generalize to
independent data. We divided the data set into eight folds, each one of approximately a half-month in
length, leaving out one half-month partition as testing data and using the remaining 3.5 months as
training data. We rotated through the folds, using each half-month period as a validation set. Days 1-15
were separated from days 16-end of the month. This had the benefit of including half a month of in-
season data within the training data set when predicting the other half-month from the same season.
With calendar month splits only using 4 folds, it would not have been possible to include in-season
training data for the target periods with the available data set.

viii. Calibration of the forecast probabilities (optional).

We considered options for post-processing the probability forecasts to improve their reliability, but all
available methods would have required an additional split of the data into training and testing sets to tune
the parameters of the methods. Because we were already constrained by sample size, we did not want
to further subdivide the limited data set available for model training. Furthermore, we observed that
building classifier models for generic up ramp event target labels resulted in fairly reliable forecast
probabilities that didn’t require any post-processing. Therefore, we chose to skip this step and leave the
cold pool mix-out up-ramp classifier forecasts in raw form.

3.4.1.4 Validation Strategy and Performance Metrics

To measure performance of the DST algorithms, we focused on a few standard validation tools for
probability forecasts. To assess the agreement between the forecast probability and the mean observed
frequency, we used the well-known reliability diagram (Wilks 2006). Reliability of the forecasts is
estimated by the proximity of the plotted curve to the diagonal. We present reliability diagrams together
with a histogram of forecast probabilities to convey the sharpness in the forecast values. As an overall
summary of the skill of the classifier model forecasts, we computed the area under the relative operating
characteristic curve (AUC) or ROC Area (Mason and Graham 2002). Implicit in the calculation of the
AUC is that increasing probability thresholds are chosen to convert the forecast into a binary yes/no
prediction and score it in the traditional categorical way. For each critical threshold, we can compute a
corresponding 2x2 contingency table, and we can derive common summary metrics of the performance
like the probability of detection (POD), false alarm ratio (FAR), and the equitable threat score (ETS). The
AUC summarizes the potential usefulness of the probability forecasts over all of the possible decision-
making thresholds.
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Because our target labels are highly imbalanced, due to the infrequent nature of our example
phenomenon, we must be cautious about using a metric like the AUC to discern between the skill of two
different models. This is because the number of correct negatives can be very large and consequently a
large change in the number of false alarms results in a relatively small change in the false alarm rate.
Note that,

false alarms

false alarmrate = -
false alarms + correct negatives

with the correct negatives count appearing in the denominator. Therefore, AUC is not very sensitive to
changes in model skill when the class imbalance is high. For this reason, we also compute the area
under the precision-recall curve, which is a metric that is more sensitive to changes in the false alarm
count. Precision, also known as the success ratio in the meteorological literature, is defined as:

hits
hits + false alarms

precision (success ratio) =

and summarizes what fraction of the forecast yes events were correctly observed. It is the complement of
the FAR. Recall is the same as POD. Both precision and recall do not include a term for the correct
negatives, so naturally a precision-recall curve is much more sensitive to changes in the number of false
alarms. The area under the precision-recall curve is also called the average precision score. This is
because the area under the precision-recall curve is computed as the weighted average of the precision
achieved at successively increasing probability thresholds. Each weight is defined as the increase in the
probability of detection from the previous critical threshold.

To measure the decision-making impact of the probability forecasts from an economic impact
perspective, we utilize the value score (Richardson 2000, Wilks 2001). The value score assumes a cost-
loss decision model and is usually presented as a curve over all potential cost-loss ratios between zero
and one. The value score conveys the percentage improvement in the expected expense associated with
using the forecast information over time. It can be interpreted as the economic value between
climatological (0%) and perfect (100%) information. The value score curve has a peak value at the cost-
loss ratio that matches the observed relative frequency of the target event.

3.4.2 Results

Performance of the decision support algorithm outlined above is assessed by the set of diagnostic tools
and accuracy metrics described in the methodology section above. Up-ramp events caused by mix-out of
long-duration cold-pools in the Columbia River Basin are forecast retrospectively over the multi-season
study period separately for the HRRRNEST control and experimental model simulations. The results
presented here compare the performance of the control and experimental decision support models for
every hour over 121 days during April, July, and October of 2016 and January of 2017. The total sample
size for the comparisons is 2904 hours. Out of this total period, 811 hours or 27.9% of the times, are
identified as part of up-ramping periods according to the criteria for the BPA fleet aggregate power. Only
70 of these up-ramping hours, or 2.4% of the total times, are tagged as being associated with cold-pool
mix-out events. There are only 8 unique up-ramp events associated with cold-pool mix-out periods
identified during these study. The up-ramping period for each event lasts long enough to collectively
amount to a total duration of 70 hours. Because of the small number of identified event occurrences, this
phenomenon can be considered rare and this makes accurate forecasting more difficult. Validation of the
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forecasting performance for rare events is also difficult and the level of confidence associated with our
results should be considered to be somewhat low.

Table 18. Overall performance of the probability forecasts for BPA fleet aggregate power
up-ramp events associated with cold-pool mix-outs during the four-month, multi-season
retrospective period during WFIP2. Forecast skill is measured by area under the ROC
curve.

Cold-Pool Mix-Out HRRRNEST control HRRRNEST experimental

Up-Ramps Random Forest Classifier Random Forest Classifier
AUC 0.723 0.763
Average Precision 0.056 0.063

In Table 18, the overall performance of the cold-pool mix-out up-ramp probability forecasts for the BPA
fleet aggregate power are summarized by the area under the relative operating characteristic curve
(AUC) and the average precision score. The AUC for the HRRRNEST control decision support model is
0.723 and for the HRRRNEST experimental model is 0.763. Average precision scores are 0.056 for the
control model and 0.063 for the experimental one. These statistics show a very slim advantage to the
experimental model, but the differences are quite small compared to the likely uncertainty in the scores
due to low sample size. Therefore, we assume the differences are not statistically significant. The AUC
level conveys that the probability forecasts have some limited skill, but that it is rather modest compared
to the no-skill AUC of 0.5 and perfect skill level of one. The average precision scores better account for
the event rarity than AUC does, and these scores show the very small incremental value over the
minimum precision score of zero, compared to the perfect score of one.

The calibration of the probabilistic event forecasts are shown with the aid of the reliability diagrams in
Figure 64. The right hand panels are simply zoomed in views of the left hand panels in order to focus in
on the lower left portion of the plot due to the rarity of the observed event. The left hand panels show all
values from 0 — 1, whereas the right hand panels extend only from 0 — 0.15. Because of the limited
sample size and also the rarity of the event during the study period, we omitted plotting values where the
bin population was less than 30. Focus is given only to the bins with a minimum reasonable sample size,
while bins with very low confidence statistics are avoided. The largest forecast bin exceeding the
minimum sample size has a mean predicted value close to 30%, which is over 10 times larger than the
observed frequency of the event. So, we can conclude that despite our limited range of plotted values,
the reliability diagrams do span a reasonable range of forecast probabilities from well below to well
above the normal likelihood of the event occurrence. Within the six lowest bins (forecast values ranging
from about 0% — 10%) the experimental HRRRNEST classifier forecasts are much closer to the 1:1 line
than the control in four of the cases. In the lowest bin, the two forecasts have nearly equal observed
relative frequencies. In the two largest bins (forecast values ranging from about 15% — 30%), the
observed relative frequencies for both forecasts appear to be much lower than the forecast probabilities
for those bins leaving the calibration curves far from the 1:1 line in this part of the diagram. Overall, it
appears that the experimental HRRRNEST classifier forecasts are have better reliability than the control,
but only in the 0 — 10% forecast value range. Above that level, both forecast types appear to be
unreliable and over-forecast the event occurrence.
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Figure 64. Reliability diagrams (top panels) for the control and experimental HRRRNEST classifier
model forecasts of the BPA fleet aggregated power up-ramp events associated with cold-pool mix-
outs. The corresponding histograms (bottom panels) show usage frequency.

To optimize decisions, a risk-neutral user with a sufficiently large budget should choose a critical
threshold that is equal to the event likelihood. For our cold-pool mix-out example, such a decision-maker
ought to choose the 2.4% threshold for converting the up-ramp probability forecasts to categorical
(yes/no) ones. At this critical threshold, we can compare the resulting 2x2 contingency tables that are
populated over the 2904 hours in our historical re-forecast period using the simple binary decision
process. In

Table 19, we show the 2x2 contingency table for the control HRRRNEST classifier model at the 2.4%
threshold along with the POD, FAR, ETS, and value score as summary metrics. In Table 20, we show
the show the same statistics for the experimental model for comparison. At this critical decision
threshold, the control forecasts perform a little better in all metrics. There are a larger number of event
hits (53 to 50), a lower count of false alarms (847 to 896), and a smaller amount of missed events (17 to
20). Both forecast models have large FARs well above 0.9, with PODs only in the 0.7 — 0.75 range. The
result is a positive ETS for both models, but only marginally above zero, since false alarms are penalized
equally to misses in this metric. The value score takes into account the differing economic penalties
between these outcomes by assuming that a false alarm only costs 2.4% of the amount of a missed
event, since that is the chosen decision threshold. By this measure of economic value, both forecast
models score well, getting about 40% of the way from a climatological baseline level toward having
perfect information. The control forecast has a value score of 0.458 compared to the experimental value
score of 0.398.
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Table 19. 2x2 contingency table for control HRRRNEST classifier model forecasts at the 2.4%
critical threshold with four summary statistical measures of the decision-making performance.

HRRRNEST control Random Forest OBSERVED
Classifier YES NO
Threshold = 2.4%

FORECAST YES 53 847
NO 17 1987

POD 0.757

FAR 0.941

ETS 0.035

Value Score 0.458

Table 20. As in Table 19, except for experimental HRRRNEST classifier model forecasts.

HRRRNEST experimental Random Forest OBSERVED
Classifier YES NO
Threshold = 2.4%

FORECAST YES 50 896
NO 20 1938

POD 0.714

FAR 0.947

ETS 0.029

Value Score 0.398

In Figure 65, we display value score curves as the cost of a false alarm changes and the critical
threshold goes along with it for the cold-pool mix-out event example. The value scores are plotted as a
function of the user’s cost-loss ratio from zero to one. The value score is maximized at a cost-loss ratio
that is equal to the relative frequency of the event, or about 2.4%, with values as seen Table 19 and
Table 20 above. The value score curve drops off quickly to the left of the peak as the cost-loss ratio
declines toward zero. The value score also decreases to the right, but less rapidly, as cost-loss ratios
increase toward 10%. The experimental HRRRNEST classifier forecasts exhibit positive values scores
over a broader range of cost-loss ratios than the control, despite the lower peak value. For cost-loss
ratios in the range of 3% — 7%, the experimental forecasts perform better. Outside of the narrow range in
cost-loss ratios from 0.5% — 7.5%, neither forecast shows an economic benefit to the decision maker
since the value scores are less than or equal to zero in these zones.
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Figure 65. Value score curves as a function of the cost-loss ratio for the control and experimental
HRRRNEST classifier model forecasts of the BPA fleet aggregated power up-ramp events
associated with cold-pool mix-outs. The right hand panel shows the same data as the left hand
panel, but with a zoomed in view to the cost-loss ratio range between 0 and 0.1.

For gaining context on these results, we also sought to understand how our example event forecasts
perform relative to something more common. For this purpose, we compared the performance of
classifier models trained separately for all up-ramp and down-ramp events in the BPA fleet aggregate
power regardless of the cause. Over ten times the number of true events were available, with 811 hours
(27.9%) identified as up-ramping periods and 952 hours (32.8%) labelled as down-ramping periods. In
Table 21 we report the overall performance statistics for BPA up-ramps for both control and experimental
HRRRNEST classifier models. The same results for the down-ramp follow in Table 22. There is no
significant difference between the control and experimental model performance for either generic ramp
event type. The skill for down-ramp events appears to be better than for up-ramps, with larger AUC and
average precision scores across the board. For up-ramp events alone, compared to the relatively rare
cold-pool mix-outs, the average precision scores are significantly higher, reaching above 0.5 in both
cases. However, there is not an impact on AUC scores.

Table 21. Overall performance of the probability forecasts for BPA fleet aggregate power up-ramp
events. Forecast skill is measured by area under the ROC curve (AUC) and average precision
scores for the control and experimental HRRRNEST classifier models.

ALL Up-Ramps HRRRNEST control HRRRNEST experimental
Random Forest Classifier Random Forest Classifier
AUC 0.719 0.727
Average Precision 0.501 0.513
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Table 22. As in Table 21, except for BPA fleet aggregate power down-ramp events.

ALL Down-Ramps HRRRNEST control HRRRNEST experimental
Random Forest Classifier Random Forest Classifier
AUC 0.804 0.804
Average Precision 0.659 0.662

In Figure 66, we show the reliability diagrams for the all up-ramp event classifier models (left) and the
down-ramp event models (right). Overall, the forecasts show reasonable calibration and little difference
between control and experimental versions. The up-ramp event forecasts seem to have less resolution in
the middle forecast probability ranges between about 40% — 65% where the calibration curve deviates
significantly from the 1:1 line. However, at low and high values, both forecast types perform well.
Because both types of generic events are more common, forecast bins are well populated throughout the
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Figure 66. Reliability diagrams (top panels) for the control and experimental HRRRNEST classifier
model forecasts of the BPA fleet aggregated power up-ramp events (left panels) and down-ramp
events (right panels). The corresponding histograms (bottom panels) show usage frequency of

each forecast value range.

The value score curves shown in Figure 67, further verify that there is no appreciable difference in skill
between the control and experimental models for generic up and down ramp event forecasting.
Compared to the value score curves for the cold-pool mix-out events, a broader range of positive value
scores is evident, but the peak value scores are similar. For down-ramp events, the positive value score
curve extends over nearly the entire range of cost-loss ratios. For up-ramp events, the positive value
score curves are interrupted in the area of low resolution between about 40% — 65% that was also
evident in the corresponding reliability diagram above. Otherwise, the up-ramp value score curves are
positive from about 5% — 40% and again from about 65% — 100%. The peak value scores occur at much
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larger cost-loss ratios than for the cold-pool mix-out up-ramp forecasts, as we should expect, where they
are equal to the event frequency of occurrence (27.9% for up-ramps and 32.8% for down-ramps). The
peak value scores range from as low as 0.319 for experimental up-ramp event forecasts to 0.456 for
control forecasts of down-ramp events.
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Figure 67. Value score curves as a function of the cost-loss ratio for the control and experimental
HRRRNEST classifier model forecasts of the BPA fleet aggregated power up-ramp events (left
panel) and down-ramp events (right panel).

At the individual wind project level, we are unable to test whether the cold-pool mix-out event forecast
performance differs from the fleet level aggregate. After implementing the labelling procedure at a
representative Wasco area wind project, called Klondike lll, only 3 hours were identified as true events.
With only 3 positive samples in the dataset, we are unable to train a robust classifier model to make out-
of-sample forecasts. In fact, the 3 hours with positive labels are part of a single up-ramp event on
January 19, 2017, meaning that when forecasting for the second half of January 2017 in our cross-
validation procedure, there are no observed events within the available training data set from the other
re-forecast periods. This exceedingly low sample size is due to a few factors, including at least: (1) the
shorter ramp event duration at the individual wind project level, (2) localized effects near the project scale
that mask the primary up-ramp event associated with cold pool mix-out, or (3) a time offset between the
marked end time of the cold pool and the start time of the up-ramp event that is outside the chosen
tolerance we defined in the original procedure. The first two effects are not easily addressed, so we
chose only to pursue item (3) above by varying the time tolerance used to define intersection of the two
event labels. Increasing the time tolerance first to 3 hours, then to 6 hours, did not increase the number
of intersecting labelled hours at Klondike Ill. Only after increasing the time tolerance to 9 hours, did we
pick up 4 new events from October 2016, as seen from the time series plot in Figure 68. However, this 9-
hour time tolerance setting only added an additional 13 hours, yielding a sum of 16 total hours for which
true intersecting events were identified. Upon inspection of Figure 68, and for similar time series plots
corresponding to each of the other four month-long re-forecast periods, a 9-hour time tolerance seemed
more than generous as the maximum amount. Increasing the time tolerance to 12 hours or more seemed
physically unrealistic, since the cold pool labelling algorithm used the Wasco Airport profilers located
quite close in proximity to the Klondike Il wind project. We did not investigate further increases in the
time tolerance threshold, since it seemed likely that any increase in sample size would be gained through
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incorrect labelling of up-ramp events caused by a phenomenon other than the mix-out of the local-area
cold pool.
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Figure 68. Observed hour-averaged power generation time series from Klondike Ill wind project
near Wasco, Oregon during October 2016 (black) with labelled up ramp and cold pool event
periods as in Figure 63. The intersection of the end times for cold pool events with the start times
of up-ramp events, with a 9-hour time tolerance, are shaded a medium blue. There are four events
flagged encompassing 13 hours during the month.

For generic up-ramp and down-ramp events, which occur fairly often, we are able to confirm that
performance at the individual project level is similar to the fleet aggregate. The frequency of occurrence
of the events at Klondike Il were at least as common as for the BPA fleet, despite the shorter duration of
each individual event, with up-ramp events labelled on about 33% of the hours and down-ramp events
identified at around 37% of the hours. Overall skill of forecasts at the Klondike 1l site was measured by
AUC at around 0.7 and yielded average precision scores near 0.55 for up-ramp events and about 0.6 for
down-ramp events. Value scores peaked around 0.34 for up-ramp events and close to 0.29 for down-
ramp events. The reliability diagrams showed that the forecasts were close to perfectly calibrated, except
for the mid-range up-ramp probability forecasts, just as observed for the BPA fleet level.

3.4.3 Prototype Tool

The prototype tool development work builds upon an existing user interface already available for paying
subscribers to Vaisala’s operational forecasting services through its Energy Dashboard. The existing
tool, called the “Multi-Forecast Tool”, is a configurable, adjustable graphical tool embedded in the Energy
Dashboard interface, which is capable of displaying either real-time or historical forecast data from
multiple data sources alongside observations. For wind power forecasting customers, a typical default
view might include the real-time power forecasts for the facility or region of interest from one or two
sources over next 7 days with recent observations plotted for the past 1 day. The Multi-Forecast Tool
also has a feature called “Historic Mode”, which allows the user to select any historical day and time
during the subscription history to view old cases alongside the observed conditions that actually
occurred. Because the available data for WFIP2 was all retrospectively generated, we relied on the
Historic Mode in the Multi-Forecast Tool as a framework for displaying the experimental forecasts and
facilitating conversations with our industry partners. This naturally brings the inherent advantage of
hindsight to all parties, since the actual observations are available for viewing. Therefore, it does not
replicate the real decision-making paradigm encountered in real-time when only forecast data would
have been available.

Since a key requirement of the alert design in WFIP2 is that it is fully probabilistic, Vaisala focused on
expanding the Multi-Forecast Tool functionality to accommodate a few new features in the initial
prototype work. The starting point was a limited alert display, initially only available for deterministic
forecasts of high wind speed conditions. When activated, the alert display provides shading over the
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forecast time series for affected hours that exceed the selected high wind speed threshold criteria. The
configuration of this high wind speed threshold is available through a settings menu that is accessed via
a drop-down function in the upper right corner of the tool. We retained that general paradigm for the new
probabilistic alert display and settings configuration, but expanded the types and styles available to a
user. New alert types were added for generic up ramps and down ramps. For the prototype tool, we
elected to proceed without the special ramp event type for the cold-pool mix-out phenomenon because of
the event rarity and the limited skill obtained from the modeling work. However, the overall concept
wouldn’t change the presentation if we had added it as another option. Configuration options were added
to the settings menu to allow the user to select the color of the shading for each ramp alert type, as well
as the critical threshold in integer percentage points [0, 100]. A small icon indicating an active up-ramp
alert (up arrow) or down-ramp alert (down arrow) represented in the same color as chosen for the
shading was also added into the legend below the time series plot as a feature to help users quickly
identify if attention should be paid to the forecast for that site. A screenshot of the Multi-Forecast Tool
with these new prototype features and set to Historic Mode for an April 9, 2016 05:00AM PDT forecast of
the BPA wind power aggregate is shown in Figure 69.

Multiforecast  HISTORIC MODE - 04/09/2016 05:00 PDT EXIT HISTORICMODE | = ~ |
General Settings Alert Settings Close
* Required Fields High Wind Speed Alert
* Timezone 25 3| (m/s)

US/Pacific B
Power Up Ramp Alert
* Power units
3 s | 50 %
Go to Date: Power Down Ramp Alert:
04/09/2016 05:00 AM Apply | [s0 %
Cursor Time: 04/16/2016 05:00 PDT

Energy Production (MW)

4/9 4/10 4/11 4/12 4/13 414 4115 4/16

(R

Value Trace 80% Interval Components Project/Group Nameplate Capacity Type Field Source Available From
2397 HE £ A BPA 4066 MW Forecast Power 3TIER Blend Latest 8
256 | | 4 BeA 4066 MW Observation Power Observation Latest [}

Figure 69. Screenshot of the prototype DST utilizing Vaisala’s existing Multi-Forecast Tool with
new alert types enabled. The tool is set to Historic Mode displaying the latest hourly-resolution
forecast from April 9, 2016 at 05:00 PDT for the BPA fleet aggregate wind power (black curve) along
with the corresponding 5-minutely power observations (blue dots). Only alerts for generic up-ramp
events are activated and shown in the forecast time-series as blue color-shaded regions where the
probability exceeds the 50% critical threshold. A corresponding blue up-arrow icon is shown in the
legend for the affected project (BPA).

In the top menu above the main time series display, called “Settings”, only the up-ramp alert type is
checked as active, while the down-ramp and high wind-speed alerts are not checked and are therefore
inactive in this example. Active alerts produce color-shaded areas on the forecast time series plot, but
only for hours where the alert probability exceeds the critical threshold. The critical threshold values are
configurable. For this example, the user has set the threshold at 50%, so only times where the up-ramp
probability exceeds 50% are shaded blue. The color choice itself is configurable to ease cases of conflict
with other active alert types, pre-existing time series of similar color, or color blindness of the user.
Because the up-ramp alert is active and there are instances in the forecast that exceed the critical
threshold, the up-arrow icon is shown in the legend for the BPA project.
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In Figure 70, an example of the prototype DST is shown with the down-ramp alert type activated at the
50% threshold for the same historic forecast on April 9, 2016 at 05:00 PDT. Our example user has
chosen a red color to delineate down-ramps from the blue shading used for the up-ramp alerts. The
active alert icons are now shown in the legend as red down-arrows.
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Figure 70. As in Figure 69, except with only generic down-ramp event alerts activated. The alerted
hours are shown in the forecast time-series as red color-shaded regions where the probability
exceeds the 50% critical threshold. A corresponding red down-arrow icon is shown in the legend
for the affected project (BPA).

3.4.4 Industry Feedback

Our approach to collect wind energy industry feedback was to conduct interactive outreach meetings with
WFIP2 project data partners. Two-hour sessions were set up with two project partners: Portland General
Electric (PGE) and Avangrid Renewables. The general format of these meetings was organized to cover:
(1) background information on the WFIP2 project, (2) the DST objectives and experimental results, (3) a
live demonstration of the prototype DST for cases of expressed interest, and (4) discussion time using a
pre-prepared questionnaire. The methodology and results of the DST work were shared through a set of
presentation slides. Then, we transitioned to a web browser to display the Vaisala Energy Dashboard
and the Multi-Forecast tool set to Historic Mode for the April 9, 2018 case, as shown in the figures above
created from screen captures. This particular period was chosen as a good default example because it
marked a particularly volatile week during the spring reforecast period that also figured prominently in the
common case study set.

Using the April 9-16, 2018 period as the default view, the new features for display of the generalized
ramp alerts were demonstrated along with the ability to change settings, toggle the alert types, and
switch to other dates on request. The live sessions made for a more engaging discussion than would
otherwise have been possible with only still, screen captures of the prototype tool. Nonetheless, it did not
achieve the full live experience a user might get in real-time at the forecast desk when using the tool on a
potential event that is yet to happen. Instead, historic events from the WFIP2 field campaign period that
fell within the four 1-month retrospective periods used for the DST experiments were discussed. While
this naturally limited the cases we could inspect together, it also helped focus the discussion to particular
events of importance that we asked PGE and Avangrid to identify in advance of the sessions.

DE-EE0006898



WFIP2 Complex Terrain - Page 100

The survey questions posed to our project partners were the following:

Do you have a troublesome past event in mind that took place during one of the 4 month
reforecast periods we analyzed in WFIP2 (Apr, Jul, or Oct 2016; Jan 2017) that we can take a
look at as an example to focus our conversation? (If not, use pre-chosen April 9-16, 2016 period
as a default.)

We have designed prototype alerts for generic up/down ramps, and one special alert for an up-
ramp caused by cold-pool mix-out events observed during WFIP2 by the team. The guidance is
probabilistic, so you can dynamically set a threshold to customize when the alert is active, given
your personal (or business case) tolerance for false alarms.

What do you think about the ability to customize the probability threshold to tune the alert for your
needs?

What do you think about the ability to change colors and toggle the alerts on/off?

What do you think about the special alert? Is it useful to know what type of weather phenomena
might be causing a ramp while being alerted about it?

The prototype ramp alerts have assumed a minimum ramp size in their very definition (e.g., 700
MW for BPA, around 15% of installed capacity) and do not allow you to customize the ramp size
and therefore prevent changing the alert probability.

Is this a key limitation?

If you need to alert on ramps of different/various sizes, do you need it to be fully customizable?
Or can you live with a small, pre-selected list of ramp sizes that are important thresholds for your
operations?

Can customizable alerts help your scheduling/trading/operations decisions? Or is this heading in
the wrong direction?

What did we miss that is absolutely key for impacting your decision-making process?

As follow-up steps to the interactive sessions, the questionnaire was sent to our project partners in a
document annotated with our notes from their verbal input to each item. They were invited to verify the
existing notes and to provide any additional commentary or ideas. Screenshots of the prototype tool were
sent alongside the document to share with colleagues in case other people in their organizations were
interested and wanted to provide feedback. This additional input was collected and the overall findings
were compiled and summarized in Table 23.
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Table 23. Summary of wind industry feedback on the DST prototype organized by attribute.

Prototype DST Attribute

Industry Feedback Highlights

Customized Probability
Threshold for Tuning
Ramp Alerts

Ability to change the critical threshold is vital

Best used by balancing authority for reducing reserve
requirements during low risk times

Capability to turn alerts on/off is an important feature

Special Ramp Alerts by

Helpful for on-staff meteorologists, “pro” users
Probably information overload for real-time trader or

Phenomena Type balancing authority operator

e Industry needs to figure out how to value this

e Options are needed; pre-set thresholds (aligned with
balancing authority requirements) are preferred

Ramp Size/Duration e When/where (timing and level) of the end of down ramp

Definition events is more important

e Shorter ramp window is essential (focus in BPA is
almost entirely on 1-hour ahead, not next 6 hours)

e A useful education tool if both balancing authority and
owner/operators have the same view

Potential Impact on e Could target tool usage toward improved negotiation for

Decision Making reserve capacity

o Potentially useful tool if reserve costs could be
dynamically input to help define actions

o Changing colors is nice to have, but not essential

General Display e Ability to display the event forecast probability itself as

its own line on the time series plot would be useful

The overall impressions of the DST prototype were positive and there was general enthusiasm for such
an interface. The tool was deemed to be of particular use for managing reserve capacity requirements,
especially if the electric system balancing authorities and wind facility owner/operators can have the
same view. To achieve this joint state of understanding, it was suggested that it could be approached
from an educational standpoint at first, while experience was built by both sides using the tool
operationally. At present, both parties oftentimes get their wind forecast information from different
providers and the component models and tool sets can vary. One vision of the future is that when the risk
of a down ramp event was low enough and both parties agree this is the case, the balancing authority
could relax the standard amount of required reserves during this period.

Customization of the critical thresholds were seen as essential because that is how the ramp event risk
and reserve sizing could be defined. There was a general recognition that different probability thresholds
would be needed and choosing a fixed level would be too restrictive because reserve costs change. One
suggestion was to consider making the tool even more dynamic by allowing it to accept these costs as
an input data set. Other customization elements like color choice were considered nice-to-have features.
Weather-regime specific information, like for special ramp event types, was likely to be considered
information overload for the typical real-time trader, but possibly useful for any supporting meteorology
staff or other “pro” users.

There was considerable input about the choice of the ramp definition used for the experiments and the
DST prototype. While the default choices were based on Vaisala industry experience, but also somewhat
arbitrary, it was anticipated that the ramp definition settings would need to be modifiable. The consensus
opinion from the feedback sessions was that a pre-set list of options for ramp size and duration were
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needed, and that the preferred approach to choosing the set would be to make them conform with the
requirements of the balancing authority. Therefore, regional customization of the lists would be required
and they may also need to be adjusted as the installed wind capacity of each system grows. Specific
input was given about the need in the BPA region to focus on the next 1-hour period, although it was
recognized that wholesale electricity scheduling timelines can also vary for other electricity system
control areas. One particular area of identified need was for increased focus on the exact magnitude and
timing of down ramp events, rather than just the overall risk of any significant event that qualified above
some minimum thresholds. Anticipating the end time and level of down ramp events is a critical need,
even though for many meteorological phenomena forcing these events, the predictability of such details
may be quite low.

3.4.5 Summary and Discussion

A general algorithm was designed to frame complex-terrain phenomena studied during WFIP2 in terms
of their potential for causing wind power ramp events. This decision support algorithm was tested on a
limited portion of the WFIP2 data set and implemented for a single event type: up-ramps caused by the
erosion of long-lived cold pools. The initial results show that probabilistic forecasts for these special
events have limited skill. The average precision score is only about 5-6%, while for generic up-ramp and
down-ramp events it can reach moderate values around ten times larger (50-60%). At the optimal
decision-making threshold, we observe low equitable threat scores near 3% because even though
probabilities of detection are above 70%, the false alarm ratios are even larger (above 90%). Only within
a narrow range of critical thresholds (the 0.5-7.5% interval) can the forecast be used to economic
advantage, where value scores reach up to a level of around 0.4, but drop off quickly on either side of
this peak. This means that for cost-loss ratios less than 0.5%, a decision maker should always choose to
protect against the event happening, despite its rare nature. For cost-loss ratios greater than 7.5%, a
decision maker should never choose to protect against the event happening since losses aren’t too
expensive compared to the cost of protection. Because of the relatively infrequent nature of the DST
example event type and the small sample size of observed events during the four-month reforecast
period available in this study, it’s likely these results are too pessimistic and can be improved with the
use of the full year-long historical WFIP2 reforecast data set that is now available.

Although significant improvements were implemented and measured for raw model forecasts from HRRR
during WFIP2, we were not able to detect any significant differences between the control and
experimental runs as part of the DST work. One reason for this is that we only validated forecasts based
on the higher resolution HRRRNEST, which showed smaller improvements relative to the control
forecast than the lower resolution HRRR in atmospheric parameter evaluations (Olson et al. 2019). An
additional reason is that after post-processing is applied, we should expect only smaller differences to
emerge, since the statistical models act to correct inherent biases of each model. In our DST
experiments for cold-pool mix-out up ramps, both classifier models are unreliable above the 10%
forecast value range, substantially over-forecasting the event occurrence. The experimental classifier
model seems to have better reliability in the 0-10% forecast value range and a larger interval of positive
value scores. AUC and average precision scores are only slightly improved in the experimental runs.
Conversely, the control classifier model exhibits slightly larger equitable threat scores and value scores
at the optimal critical decision threshold.

We conducted the DST work with fixed ramp definition settings to retain simplicity and keep the number
of experiments to a manageable size. However, it was known in advance, and confirmed through the
industry feedback sessions, that any such models should be built for a range of event threshold
definitions. Our industry partners preferred that these settings be selected based on balancing authority
requirements. It follows that a full exploration of the utility of ramp event alert skill, whether for generic or
special complex-terrain driven event types, ought to include results over a range of pre-defined ramp
event magnitudes and durations.
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A prototype DST was developed as an extension of Vaisala’s commercial user interface for power
forecast subscribers. We elected to include only generic up and down ramp alert types directly in the
example tool, because these alerts were demonstrated to have a useful level of skill over a broad range
of decision thresholds and occurred so frequently that it would be easier to facilitate discussion with our
industry partners. Although we omitted the special complex terrain alerts from our worked example from
the prototype, we discussed options for how such features could be included as part of the industry
feedback sessions. The tool features are easily extended to include such special alerts as additional
event types with their own individual check-boxes to be activated. Another suggested option was to have
them appear as tool-tips or special alert messages noting the ramp event cause when triggered by their
likelihood exceeding a critical threshold probability. Since our initial results demonstrated only low skill
levels for these special alerts, our industry partners agreed that they were not yet compelling enough for
operational use. If the DST methods described in this study can be further developed through more
analysis and availability of longer training data sets to achieve higher levels of skill, it is possible that
advanced users might see benefit, especially those with meteorological support teams. However, it was
also clear from the feedback that the industry has no clear way to value this kind of contextual
information, so the investment payoff is harder to justify.

3.4.6 Future Work and Recommendations

Industry feedback on the prototype DST was positive enough to justify continued work, while respecting
public-private roles. The level of delivery customization and need for operational customer support is
best suited for private sector to lead. The scope of consulting work likely includes establishing the set of
supported ramp definitions, defined event types, and user interface features as well as maintaining
updates to them. Public sector work focused on estimating decision-making value of the underlying
information is essential to unblock industry adoption. Since private sector investment has such an
uncertain payoff in these features, it is higher risk for industry to pursue them. Government and academic
researchers could collaborate to extend this study to larger sample sizes and more ramp causing
phenomena in order to better establish the practical predictability of different event types. For example,
the DST team began work on a second example event type that was left incomplete: down ramps
associated with gap flow decay. The wind industry has expressed a strong desire to improve predictive
accuracy during down ramp events, with the goal to better anticipate their duration and ending level, so
work in this direction could be of high value. Within these predictability studies of different event types,
care should be taken to distinguish the skill of raw NWP model output and statistically corrected
guidance since we know the relative improvement available is smaller in the latter.

This research report documents a general methodology that DOE labs could utilize to complete further
work on DST algorithm design, if consistent with operating plans. For example, DOE effort in uncertainty
quantification is ongoing and we have left that element unimplemented in this initial study. Since complex
terrain phenomena have such a strong dependence on initial condition uncertainty, the use of single
deterministic NWP runs to make probabilistic forecasts of these events is likely sub-optimal and leaves a
promising avenue of improvement available.

Now that a complete 1-year period of reforecast data is available in the WFIP2 Data Archive and Portal,
other possibilities exist for train-test splits that may offer more robust results with larger in-season sample
sizes available for the algorithm training periods. For example, the eight additional months could be set
aside for training, while keeping the four existing months as out-of-sample test periods. Even better, a
12-fold cross-validation strategy could be used, rotating through the full data set one month at a time,
yielding 11-month sample sizes for algorithm training periods.

Finally, DOE could consider making available further applied research or human factors funding to
pursue an extension of the DST time-series prototype into the spatial domain. Due to the shortened work
time available in the final phase of the WFIP2 project, we weren'’t able to create a prototype that might be
better geared for situational awareness over a regional control area where multiple wind projects are
simultaneously operating and might be exposed to various complex terrain phenomena at different times.
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A thematic, spatial map of complex terrain alerts could be designed and tested with a group of interested
industry users.

4 Summary

WFIP2 was a multi-year, multi-institution effort to improve wind power forecasts in complex terrain. It
included an 18-month observational field study and extensive development and analysis of
parameterizations for near-surface physics in numerical weather prediction. The primary outcomes of the
project are a publicly available observational data set, an advancement of understanding of the weather
phenomena that affect hub-height winds in complex terrain, improvements to NOAA’'s HRRR model, and
algorithms for decision support tools for wind power forecasts.

The WFIP2 observational data set is a comprehensive meteorological resource for a variety of
atmospheric phenomena in areas of complex topography that enabled both the science within this
project and will likely have a lasting impact on future research. In addition to the meteorological
observations made using WFIP2 equipment, the data set includes archives from external data sources
including our many wind industry partners. The collocation of wind turbine observations with surrounding
and in situ meteorological observations make the data set uniquely valuable. We know of no other
dataset covering such a large region of wind energy production for such a prolonged period of time.

Analysis of our observations formed the basis for the advancement of our understanding of complex
near-surface flows that affect turbine hub-height wind speeds, and subsequent WFIP2 model
development efforts. The analysis and development phase of WFIP2 was guided by our observational
event log, as every recorded event included an analysis of its importance to wind power forecasting.

Validation of model development generally proceeded from examination of specific case studies to larger
blocks of time and eventually to the creation of full-year retrospective forecast datasets. As with the
observations, all model output from the project was made publicly available via DOE’s DAP. The
Vaisala’s teams validation of the WFIP2 retrospective forecasts showed modest improvements in
forecast skill, primarily during wintertime.

To facilitate industry uptake of increasingly probabilistic wind power forecasts, particularly those
presenting event-based probabilities, a prototype decision support tool was developed and shared with
industry partners.

A major strength of WFIP2 was the level of cooperation between DOE and NOAA laboratories and
industry. Even though much of the research in the project was fundamental in nature, it was continuously
guided by the needs of forecasting, and as a result the time between research and implementation in
operations was greatly reduced, with several model developments already running in NOAA’s
operational model. In addition, decision support tools were developed and presented to the wind energy
industry. These tools combine forecasts and forecast uncertainty in an interface designed to facilitate
action at probabilistic levels appropriate to specific risk/reward levels.

The WFIP2 team (and the Vaisala Team within it) met many of its original goals while responding well to
the challenges of a prolonged field campaign and the uncertainties of algorithm development. The
organization of the project by functional team rather than by institution, and regular steering committee
meetings, facilitated the success of the project. Subordination of organization affiliations to team goals
and effort was evident throughout.

In addition to efforts from within the team, WFIP2 benefited from external programs like the Data Archive
and Portal and the Argonne Leadership Computing Facility, without which we would not have been able
to process and provide publicly the volume of data that we required to make significant model
advancements.

Complex terrain both concentrates wind energy into highly developable areas of excellent wind resource
and also drives numerous meteorological phenomena that make wind energy forecasting especially
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challenging. However, the economics of the wind energy development are leading the industry to build
more projects in complex terrain. While this study represents an advancement in our understanding and
modeling of the winds that drive such projects, we hope that it is seen as a step in an ongoing process to
improve the state of forecasting in these areas.
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A2e: Atmosphere to Electrons

ABL: Atmospheric Boundary Layer

AGL: Above Ground Level

ARW: Advanced research WRF

ASCOT: Atmospheric Studies in Complex Terrain
ASL: Above Sea Level

ASOS: Automated Surface Observing System

AUC: Area Under the Relative Operating Characteristic Curve
AWOS: Automated Weather Observing System

BAMS: Bulletin of the American Meteorological Society
BPA: Bonneville Power Administration

CU: University of Colorado

DAP: Data Archive and Portal

DOE: Department of Energy

DST: Decision Support Tool

ECMWEF: European Centre for Medium-range Weather Forecasting

EDR: Eddy Dissipation Rate

EERE: Energy Efficiency and Renewable Energy
EnKF: Ensemble Kalman Filter

ESRL: Earth Systems Research Laboratory

ETS: Equitable Threat Score

FAR: False Alarm Ratio

FHT: Flat and Homogeneous Terrain

HQ: Headquarters

HRRR: High Resolution Rapid Refresh model
NCEP: National Center for Environmental Prediction
NOAA: National Oceanic and Atmospheric Administration
HRRRNEST: HRRR WFIP2 Nest

IC: Initial Conditions

JD: Julian Day

JJA: June-July-August

LBC: Lateral Boundary Conditions
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LES: Large Eddy Scale
LIDAR: Light Detection and Ranging
LMCO: Lockheed Martin Inc.
LT: Local Time
MAE: Mean Absolute Error
MAP: Mesoscale Alpine Programme
MATERHORN: Mountain Terrain Atmospheric Modeling and Observations Program
MOS: Model Output Statistics
MOST: Monin-Obhukov Similarity Theory
MSL: Mean Sea Level
MYNN: Mellor-Yamada-Nakanishi-Niino
NCAR: National Center for Atmospheric Research
NCEP: National Centers for Environmental Prediction
NED: National Elevation Dataset
NOAA: National Oceanic and Atmospheric Administration
NWP: Numerical Weather Prediction
NWS: National Weather Service
PBL: Planetary Boundary Layer
PDT: Pacific Daylight Time
PGE: Portland General Electric
PIRT: Phenomena ldentification and Ranking Table
PNNL: Pacific Northwest National Laboratories
POD: Probability of Detection
PS: Physics Site
RANS: Reynolds Averaged Navier-Stokes
REWS: Rotor Equivalent Wind Speed
T-REX: Terrain Induced Rotor Experiment
RH: Relative Humidity
RIX: Ruggedness Index
RMS: Root Mean Square
RMSE: Root Mean Square Error
ROC: Relative Operating Characteristic
RR: Ridge Regression
SABLES: Stable Atmospheric Boundary-Layer Experiment
SNR: Signal-Noise Ratio
SODAR: Sound Detection and Ranging
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TKE: Turbulent Kinetic Energy

TTU: Texas Tech University

UND: University of Notre Dame

UQ: Uncertainty Quantification

UTC: Coordinated Universal Time

VTMX: Vertical Transport and Mixing Experiment
WFIP1: Wind Forecast Improvement Project 1
WFIP2: Wind Forecast Improvement Project 2
WFP: Wind Farm Parameterization

WRF: Weather Research and Forecasting model
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