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Executive Summary 
 
 
In 2014 a multi-institution team led by Vaisala, Inc. was selected by the Department of Energy (DOE) to 
partner with multiple DOE and National Oceanic and Atmospheric Administration (NOAA) laboratories 
on a project designed to improve the quality of wind power forecasts in areas of complex terrain. This 
was the second Wind Forecast Improvement Project (hereafter WFIP2) funded by DOE and it extended 
from late 2014 through the middle of 2018. It encompassed an 18-month observational field campaign, 
numerical weather prediction (NWP) model development, extensive analysis of data and NWP output, 
and the creation of decision support tool algorithms to convey forecast information to end users in the 
wind industry. 
WFIP2 focused on improvements to the representation of near-surface and boundary-layer physics in 
NOAA’s High-Resolution Rapid Refresh (HRRR) model. Improvements to HRRR, which is run 
operationally over the continental United States, benefit the wind industry in multiple ways. Forecasts 
from the operational HRRR are used directly by wind power forecast vendors and the operators of wind 
plants. In addition, because HRRR is built using the widely-used Weather Research and Forecasting 
(WRF) model, improvements to its parameterizations become available to commercial and research 
institutions using WRF for a myriad of purposes. 
The geographic area studied by WFIP2 was a region of the Columbia River basin located to the east of 
the Cascade Mountains between Oregon and Washington. Home to over 6 GW of installed capacity for 
wind energy production, this area also hosts a variety of atmospheric phenomena either unique to or 
augmented by complex topography. This makes it an attractive test-bed for the analysis of wind 
forecast in complex terrain, though results found are should be applicable in any area of topographic 
complexity. 
WFIP2 succeeded as a collaborative effort, and while this report focuses on the activities of the team 
led by Vaisala, the work described here is part of a larger whole. The Vaisala team accomplished a 
number of specific tasks as described in this report, while also contributing to this larger effort.  
The primary accomplishments of the Vaisala team under WFIP2 were: 

• Creation of an experimental design for the overall project. 

• Logistical arrangements for field study locations. 

• Deployment/maintenance/removal of instruments for the field study. 

• Analysis of field study data. 

• Development of a 3D PBL parameterization for WRF. 

• Creation of a data catalog to enhance the value of the field study observations. 

• Creation and analysis of historical NWP forecast simulations. 

• Generation and validation of wind power forecasts based on NWP model output. 

• Creation of decision support algorithms and development of a prototype display. 
WFIP2 was conducted in an open and collaborative manner, with data and model improvements shared 
publicly wherever possible.  
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1 Introduction 
 
With wind energy now producing more than 6% of electrical generation in the United States, the need for 
accurate forecasts of wind generation is greater than ever. Operation of the country’s electrical 
infrastructure, as well as efficiency in our energy markets, critically depends on the quality of wind 
forecasts, and this dependency is expected to grow with increased penetration of wind generation into 
the mainstream energy industry (Marquis et al. 2011). Forecasts are required on a variety of time 
horizons, and this project focuses on the time range of 0-15 hours.  
Hours-ahead to days-ahead wind power forecasts are typically generated via a combination of data 
analysis, numerical modeling of the atmosphere, and engineering models to convert simulated weather 
into anticipated generation. The first two of these are meteorological in nature and highlight two 
significant challenges to the production of accurate forecasts: estimation of the current state of the 
atmosphere, and the evolution in time of that state using parameterized equations within a numerical 
weather prediction (NWP) model.  
The gradual buildout of wind energy projects across the United States has increasingly led to 
development of utility-scale wind installations in areas of complex terrain, and this impacts both of these 
forecasting challenges. In regions of complex orography, observations are representative of smaller 
regions of the atmosphere than in flat orography, and also the necessary representation of physics within 
NWP models becomes more complex as assumptions valid in flat orography no longer hold true. Many 
atmospheric phenomena such as gravity waves, cold pools, topographic wakes, and gap flows are either 
unique to or enhanced by complex terrain. 
Skillful weather forecasting in complex terrain requires the accurate prediction of phenomena at a range 
of spatio-temporal scales as well as the ability to correctly diagnose interactions between scales. When 
represented in NWP models at sufficient resolution, complex terrain provides a forcing that can make the 
general weather pattern easier to predict; for example, high pressure west of an east-west mountain gap 
will yield wind that is generally west to east and modified by the terrain. However, complex topography 
also amplifies errors in the synoptic scale forecast and produces phenomena that are poorly represented 
in NWP models either due to limited resolution or shortcomings in model physics. Phenomena poorly 
represented in models include frontal passages with stable mix-out, gap flows, mountain waves, 
mesoscale topographic wakes, convective outflows, marine pushes, land-sea breezes, slope and 
drainage flows, and low-level jets. All of these features have two things in common: 1) they are created 
or enhanced by topography, and 2) their evolution depends on the interaction between the boundary 
layer and the large-scale flow, a well-known weakness in NWP models, especially during stable 
conditions. 
What would be a relatively simple transition associated with a frontal passage in the Plains States takes 
on very complex attributes as it interacts with terrain. Surface and upper air features often become 
decoupled and existing low-level features such as inversions and gap flows may produce results that are 
counter to those that would occur in less complex terrain. In addition, higher spatial and temporal 
resolution observations are needed to correctly diagnose phenomena because the area and time over 
which an observation is representative is reduced, yet often the density of observations in complex 
terrain is low due to the logistical problems of instrumenting remote locations. 
Thus, forecasting wind power generation in a complex terrain environment is very challenging. Small 
errors in wind speed forecasts are magnified by the cubic relationship between wind speed and power. In 
simpler terrain, transitions from low to high output and vice versa usually occur smoothly, but in complex 
terrain these transitions can be punctuated by embedded up and down ramps that are not easily 
simulated by NWP models. To compensate for this, statistical models are commonly used, especially at 



WFIP2: Complex Terrain - Page 6 

DE-EE0006898 

 

 

0-6 hour forecast horizons when nearby observations can provide predictive value. Available 
observations are often too sparse to properly initialize or validate the models. Complex terrain also 
makes it far more difficult to use statistical methods to correct for model error and thus much more 
important to correctly diagnose features, especially when one considers North American wind farms are 
often 200 MW or larger and extend across hundreds of square kilometers. In areas of complex terrain 
some turbines may be 500 m higher in elevation than others in the same project. Thus, within one 
project, several key phenomena may influence different parts of the wind farm at the same time and may 
also interact with each other. For instance, a wake from a large mountain may reduce the output of the 
southern part of a plant, while channel flow may be enhancing the flow in the northern part, and gravity 
waves from a nearby ridge might be influencing the flow throughout. All these effects also have non-
linear feedbacks upon each other. 
Considerable field work and associated analysis and modeling studies have been carried out in the last 
15 years to help us understand these various processes and interactions. In the late 1990s, projects 
such as SABLES-98 (Cuxart et al., 2000) and CASES-99 (Poulos et al., 2002) helped us understand the 
behavior of the stable and transitioning boundary layer independent of complications of terrain 
complexity, with heavily instrumented measurement campaigns over relatively flat areas of North 
America and Europe. These studies provided insights into the structure and evolution of the stable 
nocturnal boundary layer, including the development of nocturnal inversions, and mechanisms for 
formation and maintenance of low-level jets. Low-level jets are of particular importance in wind energy, 
because they are characterized by a vertically localized maximum in wind speed that is typically near the 
hub height of modern utility-scale wind turbines. Small errors in predicting the height or intensity of low 
level jets can have profound impacts on the accuracy of wind power forecasts. 
Since 2000, several field studies have investigated the rich palette of flow structures created by complex 
topography, either through thermal forcing (katabatic flows, mountain/valley circulations, etc.) or the 
dynamical response of air flow to topography (vertically propagating mountain waves, lee waves, gap 
flows, topographic wakes, etc.) The Vertical Transport and Mixing Experiment (VTMX; Doran et al., 
2002) examined topographically influenced flows and boundary layer processes in the Salt Lake Valley in 
2000. This study elucidated the structure and evolution of shallow katabatic flows on sloped terrain, and 
the existence of a mesoscale low-level jet driven by diurnal thermal forcing across multiple basins. Other 
VTMX studies looked at model performance with different vertical coordinates and boundary layer 
closures, idealized simulations and theoretical descriptions of katabatic flows, and valley flows. More 
recent follow-up studies in the same area include an investigation of the Weber Canyon valley flow, 
examining how valley flows evolve into exit jets at the opening of the valley, and the recent Mountain 
Terrain Atmospheric Modeling and Observations (MATERHORN; Fernando and Pardyjak 2013) study, 
which used a variety of instruments in the Dugway Proving Grounds to document complicated microscale 
topographic flows, and interactions between flows generated by neighboring mountain features. 
MATERHORN has illustrated microscale features and flow interactions that cannot be explicitly 
represented in current models with parameterized boundary layers, punctuating the challenge of 
improving such models. 
Closer to the WFIP2 area, the Columbia Basin Wind Energy Study (CBWES; Berg et al., 2012) was 
carried out from 2010-2012, on Vansycle Ridge, a wind energy producing region approximately 30 km 
southeast of the confluence of the Snake and Columbia Rivers. This study measured the vertical profile 
of wind across the boundary layer over the course of several months, and analyzed the occurrence of 
hub-height wind ramps and their predictability with the WRF mesoscale model. The study found that in 
stable conditions, up-ramps were associated with rapid accelerations of nocturnal low-level jets as the 
boundary layer decoupled from the surface. These wind ramps generally formed under weak synoptic-
scale forcing, but may have been influenced by terrain-induced pressure gradients. In unstable 
conditions, up-ramps were categorized as those influenced by a strong upper-level trough, those with a 
low-level jet driven by synoptic forcing, those associated with frontal passages, and those influenced by 
small-scale variations that are probably thermally or terrain induced. 
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Some studies have examined the role of dynamically driven topographic flows such as mountain/lee 
waves, gap flows, and topographic wakes on near-surface winds within complex terrain, especially in 
terms of interactions with stable and transitioning boundary layers. The Terrain-Induced Rotor 
Experiment (T-REX; Grubišić et al., 2008) examined mountain wave dynamics, but focused on more 
extreme downslope windstorms and rotors in the lee of the Sierra Nevada mountain range barrier. 
Observational and modeling studies of the gap-flow dynamics within the Columbia River Gorge (Sharp 
and Mass 2002, 2004), overlapping the proposed study area, have elucidated the relationship between 
the within-gap flow and the acceleration at the gap exit region. 
As discussed in Shaw et al. (2019), the DOE has been actively supporting the advancement of wind 
power forecasting for a number of years. As far back as the 1970’s, DOE’s Atmospheric Studies in 
Complex Terrain (ASCOT) program funded a series of field studies that analyzed boundary layer flow 
over complex topography (Orgill and Schreck 1985, Clements et al. 1989, Coulter and Martin 1996). 
More recently, a DOE wind industry workshop held in 2008 (Schreck et al., 2008) identified the need for 
NWP forecast improvement, and was followed by the first Wind Forecast Improvement Project (hereafter 
WFIP 1) in 2011-12 (Wilczak et al., 2015). WFIP 1 addressed the forecast initialization problem by 
examining the effects of assimilating improved observations on forecast accuracy. A second DOE 
workshop in 2012 focused on complex atmospheric flows and identified four broad scales of processes 
that influence wind generation. These were described as volumes of the atmosphere containing turbine 
scale, wind power plant scale, mesoscale and global processes. Mesoscale processes, influenced by the 
global and plant scales, drive the variability of wind generation on the hours-ahead to days-ahead time 
horizon. 
The importance of mesoscale processes combined with the increase of wind plants located in complex 
terrain led the DOE in 2014 to initiate a second Wind Forecast Improvement Project (hereafter WFIP2), 
this time focused on observing and improving the modeling of flow in complex terrain by better 
representing boundary layer physics and related processes in a mesoscale model. WFIP2 was 
conducted as public-private partnership under the DOE’s Atmosphere to Electron (A2e) Initiative. Direct 
involvement of the wind industry both facilitated access to observational data from wind plants and 
helped guide the project toward solutions relevant to wind plant operations. 
WFIP2 extended through four calendar years and included three distinct but closely related components: 
an 18-month multi-scale field study, model development work, and the development of support tools to 
support the industry in wind power forecasting. Four associated journal papers describe the activities of 
the broad WFIP2 team: Shaw et al. 2019 introduces the project, Wilczak et al. 2019 presents an 
overview of the observational campaign, Olson et al. 2019 presents the model development effort, and 
Grimit et al. 2019 presents the development of decision support tools.  These papers provide valuable 
context for the work conducted by the Vaisala team that is described in this report. 
 
1.1 Role of the Vaisala Team within WFIP2 
The complete WFIP2 project team included DOE and NOAA labs as well as a team led by Vaisala that 
further included multiple universities, wind industry participants, and the National Center for Atmospheric 
Research (NCAR). We refer to the Vaisala-led component of the overall team as the ‘Vaisala Team’ 
throughout this report and aim to highlight the activities and contributions of this team within the context 
of the overall WFIP2 effort. The institutional members of the Vaisala Team, along with primary contacts, 
are listed in Table 1. 
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Table 1. Members of the Vaisala WFIP2 Team 

Vaisala Team Members Primary Contacts 

Lockheed Martin, Inc. Keith Barr, keith.barr@lmco.com 
National Center for Atmospheric Research 
(NCAR) Branko Kosovic, branko@ucar.edu 

Sharply Focused, LLC Justin Sharp, justin@sharply-focused.com 

Texas Technical University (TTU) Brian Ancell, brian.ancell@ttu.edu 

University of Colorado (CU) Julie Lundquist, julie.lundquist@colorado.edu 

University of Notre Dame (UND) Joe Fernando, hfernand@nd.edu 

Vaisala, Inc. Jim McCaa, jim.mccaa@vaisala.com 

 

The Vaisala Team had a unique role within the overall project, having proposed the study area in its 
application for a funding opportunity award, and representing the only industry participants in the project. 
Our rationale for proposing the Columbia Basin was twofold: it is both meteorologically interesting and 
important to the wind industry. The region separates Washington and Oregon and is an exceptional 
natural observatory for studying meteorological phenomena associated with complex terrain. It is most 
well-known for the near sea-level gap that takes the Columbia River through the Cascade Range, a 
barrier that averages about 5000 to 6000 feet high. However, the terrain complexity goes well beyond the 
steep walls surrounding the Columbia River. The Cascade Range itself contains several elevated gaps, 
and the volcanoes of Mount Hood (3,429 m; 11,250 ft) and Mount Adams (3,743 m; 12280 ft) tower 
above the near sea-level valleys to the east and west. The canyon carved by the Columbia River 
continues eastward for over a hundred km east of the Cascade Crest, and numerous feeder channels 
are formed by its tributaries. The vast Columbia Basin to the east is formed by mountains on all four 
sides. The properties of the two air-sheds are often radically different, yielding large gradients in 
temperature and pressure in the lower atmosphere. Air may be guided downslope and channeled, piled 
up in natural reservoirs, or forced up over more stable air below depending on atmospheric conditions. 
The results are cold pools, gap flows, mountain waves, mountain wakes, downslope flows, mountain-
valley circulations and every manner of other terrain driven circulation at every scale and varying 
depending on the atmospheric conditions. 
At the same time as having more than its fair share of important atmospheric phenomena, the region is 
also home to over 6 GW of wind energy capacity. Not only does the region experience exceptional wind 
resource, but also benefits from substantial federally-funded electric transmission infrastructure built to 
support the Columbia River’s significant hydroelectric resource. Numerous wind plant operators (listed in 
Table 2) chose to join the WFIP2 effort by providing valuable data to the project. 
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Table 2. WFIP2 Data Partners 

Wind Industry Partners 

Avangrid 

Eurus Energy 

NextEra Energy 

Portland General Electric 

Siemens Heavy Industries 

Southern California Edison Company 

White Creek Wind 

While credit for the successes of WFIP2 must be distributed among all of its members, the Vaisala Team 
played a key role in maintaining an industry focus for the larger team’s activities. 
 
1.2 Objectives and Goals of the Project 
The overall mission and first goal of the WFIP2 project was to quantitatively improve forecast skill 
through better understanding and representation of the physics in the foundational models comprising an 
NWP-based forecasting system. Working in complex terrain meant that the project first needed to 
characterize physical phenomena, processes, and the atmospheric properties that occur in regions of 
complex topography. Particular focus was to be spent on phenomena likely to impact wind speeds and 
direction at the hub heights of wind turbine generators. 
A second goal of the project was to develop new or improved mesoscale model schemes or atmospheric 
modeling to better represent the identified physical processes. Increasing the accuracy of time-averaged 
wind and wind variability in the 0 to 15 hour forecasts should have positive implications for day-ahead 
forecasts made with these foundational weather models.  
A third goal was to develop prototype decision support tools that could convey probabilistic forecast 
information, uncertainty quantification and forecast reliability for system operations.  
As members of the larger WFIP2 effort, the Vaisala Team had specific objectives within the overall 
project. These included: 

1. Design and implementation of an observational field campaign in the Columbia Gorge area to 
detect and analyze phenomena that cause wind variability in complex terrain. 

2. Identification of the diverse physical phenomena, processes, and atmospheric physics in the 
study area. 

3. Improvement of surface layer and planetary boundary layer (PBL) parameterizations within 
the Weather Research and Forecasting (WRF) model. 

4. Development of decision support tools to provide enhanced short term forecast context and 
uncertainty quantification, in direct collaboration with wind facility and electric system 
operators. 

5. Dissemination of verified decision support algorithms, contribution of open source code to the 
WRF-ARW model, and distribution of project data. 

These objectives were of course pursued in close collaboration with the full WFIP2 team, but are focal 
points for our analysis of our contributions to the project. 
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1.3 Project Management 
The overall WFIP2 team had over a dozen participating institutions and over one hundred active 
participants and required a large enough project management effort that we mention here four effective 
tools that helped keep things on track.   

1.3.1 Steering Committee 

The WFIP2 steering committee was the main decision-making body for the project, and was comprised 
of five members: one each representing the DOE laboratories, the NOAA laboratories, and the Vaisala 
Team, and in addition a representative from the DOE contract office and from DOE headquarters. 
Steering committee meetings were held bi-weekly through the project, with activities that ranged from 
decisions on spending and technical matters to cross-institution presentations of scientific and technical 
research developments.  

1.3.2 Teams Structure 

Under the steering committee, the WFIP2 activities were undertaken by a variety of topical teams with 
multi-institutional representation on each. These included teams for each of the following: 

• Experimental Design  

• Instrument Deployment, Maintenance, and Monitoring 

• Data  

• Verification and Validation (V&V) 

• Uncertainty Quantification (UQ)  

• Model Development 

• Decision Support Tools (DST) 
Each team had a formal charter with defined responsibilities and reported to the steering committee.  

1.3.3 Communications 

The project made extensive use of Google Drive and Google Groups to facilitate sharing of information, 
data, and presentation materials. We sought to provide a way from people across multiple organizations 
to collaborate effectively and securely, with the following goals: 

• Ensure emails reach the right people by emailing teams rather than individuals. 

• Provide filtering and digest options to manage email volume. 

• Promote online collaboration in the drafting of docs, spreadsheets and slides with concurrent 
access and updates, tracking of changes, and version control. 

• Create an online repository for project documents accessible by anyone on the team from 
anywhere with an internet connection. 

• Use groups to enable dynamic team membership that is easily updated. 
Most people and organizations attached to the project were able to adopt without significant effort, 
though some experienced limited access, and group communication was a paradigm shift for some. 
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 DOE’s Data Acquisition and Portal (DAP) 

The entire WFIP2 project shared data effectively between each other and the public via the Data Archive 
and Portal, a facility that is part of DOE’s Atmosphere to Electrons (A2E) initiative. At the end of the 
project, WFIP2 had 280 unique datasets on the DAP, making up over 200 TB of data. See 
https://a2e.energy.gov/about/dap for more information. 
 

2 Project Overview 
 
 
The WFIP2 team approached the improvement of forecasting in complex terrain through an integrated 
observational and modeling approach. This was driven by the desire to deliver applicable results that 
could be rapidly deployed to operational weather forecasting while being informed by a data-driven 
research campaign. With this in mind, two main scientific goals were identified: 

1. Improvement of the physical understanding of atmospheric processes that directly impact 
wind power forecasts in areas of complex terrain. 

2. Incorporation of the new understanding into a foundational weather forecasting model in order 
to improve wind power forecasts. 

These goals served to guide the project’s field campaign and model development effort. The 
observational campaign needed to be multi-scale to be able to capture the wide variety of scales 
associated with the physical processes the control wind speeds across wind plants. Based on the 
resulting observations, representation of physical processes in model parameterizations were modified. 
The results of the implemented changes were evaluated through assessment of the improvements in 
forecast skill, and decision support algorithms were developed to facilitate the operational use of 
improved forecasts. 
In order to capture the large and small scale features that determine the horizontal and vertical profiles of 
wind speed and turbulence, the domain for the WFIP2 observational campaign stretched from the Pacific 
Ocean to eastern Washington. As described below, a series of observational ‘nests’ measured finer 
scales all the way down to that of a single mesoscale model grid cell. Suites of instruments contributed 
by DOE and NOAA laboratories as well as the Vaisala Team were deployed to provide complementary 
data streams, and these were used throughout the project.  A project web site set up by NOAA was 
integral to facilitate real-time comparison of observations and model output. 
An early decision was to target model improvements for NOAA’s High Resolution Rapid Refresh (HRRR) 
model, which led to a variety of opportunities and constraints. NCEP’s operational HRRR output is widely 
used for wind power forecasting, both as a direct source of hub height wind fields, and as an input to 
custom NWP simulations run by industry forecast providers. In addition, HRRR is an implementation of 
the widely used Weather Research and Forecasting model Advanced Research WRF (WRF-ARW). As 
such, improvements to HRRR are available to the broad WRF research community.  
WFIP2 concentrated on forecasts with lead times of 0-15 hours, with the expectation that physics-based 
improvements in this time frame should carry over to day ahead forecasts. The operational HRRR is run 
hourly over the continental United States at a horizontal resolution of 3km. In addition, during the period 
of WFIP2 NOAA’s ESRL laboratory ran a special 750 m nest over the WFIP2 study area. 
Targeting a model used for many additional purposes beyond wind power forecasting meant that 
improvements for the sake of wind power forecasts could ‘do no harm’ to other model fields and were 
broadly applicable in all weather conditions. This influenced the requirement that the observational 
campaign collect data through a full annual cycle. 
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Observational data were used throughout the WFIP2 project to both inform model development and 
validate model output. Near the end of the project, a full year of control and experimental historical 
forecasts were created to facilitate a formal comparison. 
As a partner to the DOE and NOAA laboratories, the Vaisala Team assumed responsibility for a specific 
set of tasks, which are summarized in Table 3. Almost all of these tasks were completed in close 
coordination with DOE and NOAA, making it a challenge in some areas to separate out Vaisala Team 
accomplishments from those of the larger project. We consider this a positive outcome. 
The following sections of this report describe in more detail the results of the Vaisala Team effort in the 
field campaign, model development, model analysis, and decision support tool efforts. 
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Table 3. Vaisala Team Tasks 

Task Summary Notes 

1 Plan for instrumentation 
layout and deployment 
schedule for the field 
study 

Planning for the field study occupied the early months of the project and 
resulted in an experimental design document and a deployment plan. Both of 
these are available on the DAP. 

2 Logistical arrangements 
for field study sites 

Responsibilities for the logistical arrangements for field study sites were 
shared with the broader WFIP2 team. Each site with multiple instruments had 
a coordinator to facilitate organized communication between the various 
institutions deploying instruments. Vaisala was responsible for the Physics 
Site.  

3 Deployment of 
instruments 

The Vaisala team was responsible for the deployment of its instruments. 
Vaisala Team instruments are discussed in Section 3.1.2. 

4 Management of field 
study 

Members of the Vaisala Team played an active role throughout the field 
study in monitoring the flow of data from the field, analyzing current weather, 
and coordinating maintenance of equipment. See Section 3.1.3 for a 
discussion of the Event Log. 

5 Model development NCAR was the primary participant from the Vaisala Team in model 
development. Section 3.2.1 discusses their development of a 3D PBL 
parameterization. 

6 Model validation and 
improvement 

Activities under this task included CU’s analysis of a wind plant wake model 
(Section 3.2.2) and TTU’s work on uncertainty quantification (Section 3.3.3). 

7 Catalog of phenomena 
observed during field 
study 

An annotated list of important meteorological events observed during the field 
campaign and a set of common case study dates were created. See Section 
3.1.4 

8 Selection of improved 
model physics suite 

This was an effort led by NOAA with participation from the entire WFIP2 
team. Results are discussed in Olson et al. (2019). 

9 Evaluation of model 
improvements within 
HRRR 

In support of this activity, Vaisala worked with NOAA and the Argonne 
Leadership Computing Facility (ALCF) to complete a full year of retrospective 
control and experimental forecast simulations on the full 3km HRRR domain 
as well as the 750m WFIP2 nest. All model output was delivered to the DAP.  

10 Wind power forecast 
generation 

Vaisala processed the output from the retrospective simulations into wind 
power forecasts, as discussed in Section 3.3.4. 

11 Forecast validation Validation of the wind power forecasts is discussed in Section 3.3.4.2. 

12 Decision support tool 
development 

The Vaisala Team worked with WFIP2 and industry partners to develop 
prototype decision support tools to present actionable information from power 
forecasts, as discussed in Section 3.4. 

13 Final Vaisala team 
project report 

Vaisala was responsible for the creation of this report. 
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3 Project Results 
 
3.1 Field Campaign 
The overarching goal of the observational campaign was to provide insights into the relevant 
meteorological phenomena in order to improve wind power forecasting. Because the targeted 
phenomena involve the interaction of the large-scale flow with the boundary layer and the surface itself, it 
was necessary to capture salient features ranging in size from the meso-beta (20-200 km scales) 
through the meso-gamma (2-20 km) to the microscale (< 1 km). Also, since some of the targeted 
phenomena are strongly seasonal, a full annual cycle was measured to capture both typical and unusual 
phenomena that affect wind forecasts throughout the year.  
The campaign was tightly integrated across the full WFIP2 team, with a single shared experimental 
design, and many observational sites featured colocated instruments from multiple institutions. 
Instruments were in the field for 18 months, from Oct 2015 through March 2017. The field campaign is 
discussed in detail in Wilczak et al. (2019) and here we will focus on the contributions of the Vaisala 
team to the larger effort.  

3.1.1 Experimental Design 

The field study design strategy is best understood by zooming in from the broadest scale to the smallest. 
At the regional scale, a concentration of wind farms exists in the eastern exit region of the Columbia 
Gorge, but much of what drives winds east of the Cascades originates to the west, so it was important to 
identify and quantify approaching frontal systems and upper-level troughs; collect upstream tropospheric 
vertical profiles of wind and stability that affect the gravity wave response to flow across the Cascade 
barrier; determine marine air mass conditions prior to and during onshore push events; and monitor 
convective systems that developed over or west of the Cascade crest and then propagated eastward.  
Within the large energy-producing area to the east of the Cascades, the large-scale flow encounters an 
area of considerable terrain complexity, highlighted by the broad east-west valley of the Columbia River 
itself and a series of north-south canyons and valleys through which flow tributaries of various sizes. The 
wind energy plants are generally located on the elevated terrain between these valleys (see Figure 1), in 
a semi-arid agricultural zone. In this area, a higher concentration of instruments were deployed in a 
‘supersite’ in order to observe the interaction of the large-scale flow with the boundary layer and surface.  
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Figure 1. Typical terrain of wind energy plants in the WFIP2 region. Photo courtesy Justin Sharp. 

 
The general layout of the instrument deployment is shown in Figure 2. Because the observing strategy 
needed to capture features across such a broad range of atmospheric scales, a set of cascading nests of 
instruments were deployed: 

1. One set of instruments was be placed at meso-alpha scale (200-2000 km) distances from the 
areas of concentrated wind energy production. These provided insight into large-scale 
features and helped determine whether they were accurately represented in the HRRR model 
output.  

2. An intermediate-scale set of instruments captured meteorological processes affecting 
boundary-layer winds over a variety of terrain types, including locations both east and west of 
the Cascade Mountains. 

3. A fine-scale set of instruments was focused on a high concentration of wind energy plants in 
the central part of the domain. 

4. Finally, a ‘physics site’ (see Figure 3 below) deployed a variety of near-surface instruments in 
an effort to characterize interactions of the large-scale flow with terrain at scales normally 
within in single grid cell of an NWP simulation. 

Visible in Figure 2 are the north-south feature of the Cascade Mountains through which the Columbia 
flows, along with the locations of WFIP2 instrument clusters. 
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Figure 2. Locations of WFIP2 instruments. Yellow polygons depict the cascade of nesting scales. 
White crosses indicate instruments, and magenta crosses indicate multi-instrument locations.  

 

 

Figure 3. Layout of the physics site. Yellow lines represent distinct land ownership. 
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3.1.2 Instrument deployment 

Vaisala Team equipment was deployed for WFIP2 as part of the overall experimental strategy, and as a 
result was widely distributed across the region, as shown in Figure 4. 

 

Figure 4. Locations of Vaisala Team SODARs (lavender icons), LIDARs (green icons), and 
radiometer (mailbox icon). 

The full set of Vaisala Team equipment deployed to the field is listed in Table 4, which shows the type of 
instruments, locations, and dates of deployment and removal from the program. It should be noted that a 
total of eight Tritons were deployed – after repeated vandalism, one of the eight was relocated to a ninth 
site. Another had to be replaced after being consumed in a wildfire. 
The Vaisala Team played a large role in the logistics for instrument deployment for the larger WFIP2 
team, and in particular was responsible for the arrangement of land leases for the Physics Site, as seen 
in Figure 3. 
All data collected during the WFIP2 campaign was transferred to the DOE’s Data Archive and Portal 
(DAP) for use by WFIP2 and other researchers. See https://a2e.energy.gov/projects/wfip2 for more 
information. 

3.1.3 Event Log  

A critical task in establishing the usefulness of the WFIP2 observational dataset was documenting the 
meteorological events captured within it. Both a daily log of events, as well as curated collection of 
‘important’ events were assembled and delivered to DOE as part of the project.  
Each week for the duration of the field program, WFIP2 scientists along with other industry participants 
engaged in a conference call to review the previous 7 days of weather in the region. In addition to the 
field campaign observations, model forecasts from the real-time 13-km RAP, 3-km HRRR and 750-m 
WFIP2 HRRR-nest models were discussed. Comparisons were made to time series of aggregate wind 
power generation within the regional grid operator’s (Bonneville Power Administration - BPA) balancing 
area to establish phenomena that were leading to various levels of forecast skill. Additional data products 
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that proved useful were global model forecasts, the University of Washington regional forecast model, 
satellite imagery, local NWS soundings, and ASOS/AWOS surface observations.  
For each day of the 18-month field campaign, a brief synopsis of the weather was written, assessing the 
significance of the key phenomena that impacted wind power generation, along with success of the 
forecast for that day. Active phenomena including cross-barrier westerly flow, cold pools, mountain 
waves, topographic wakes, convective outflows, and easterly flow were identified. The cross-barrier flow 
type was further subdivided into cases forced by low-level mesoscale effects, and those forced by 
synoptic features, with the latter further subdivided into evolving, mature, and decaying. Cold pools were 
characterized as deepening, steady state or decaying due to warm advection and mixdown from aloft, 
cold advection aloft or insolation eroding them from below.  
The event log provides a comprehensive list of weather events that occurred during the field campaign 
along with an assessment of whether those events were important for wind power forecasting. After the 
completion of the event log, and second, more selective listing of events of particular interest to the 
projects was compiled as a catalog to assist future researchers. These documents are available on 
DOE’s Data Archive and Portal (DAP). 

3.1.4 Event Catalog and Common Case Study Set 

At the end of the field study, the Vaisala Team organized the analysis of meteorological events that were 
recorded in the Event Log through the full observational period to identify key atmospheric structures and 
processes of interest to the project and likely to expose atmospheric physics improvements in the model 
PBL schemes, from both a phenomenological and statistical perspective. Each season of the year was 
evaluated, and both canonical and marginal events were identified. The goal was to form a set of 
annotated dates and events that could be used to improve understanding of phenomena, increase the 
ability to predict them, and improve the ability to model those events through improved modeling or PBL 
schemes. The dates and times identified became the Common Case Study Set which was used to 
highlight representative forecast skill during important times, and the annotated list of them is the Event 
Catalog, which was delivered to the DAP and will hopefully be of assistance to future researches in 
effectively utilization WFIP2 data.  
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Table 4. Instruments deployed by the Vaisala Team 

Instrument 
Class 

Location Instrument Owner Install Date End Date 

LIDAR Gordons 
Ridge, OR 

Leosphere v2 profiling lidar CU 11/16/2015 3/13/2017 

LIDAR Troutdale, OR Leosphere v1 profiling lidar CU 11/18/2015 1/27/2017 
LIDAR Wasco, OR Leosphere v1 profiling lidar CU 2/23/2016 1/27/2017 
Microwave 
Radiometers 

Condon, OR Radiometrics MWR-3000A  CU 11/17/2015 1/2/2017 

LIDAR Gordons 
Ridge, OR 

WindTracer scanning lidar LMCO 11/19/2015 3/12/2017 

Ceilometer Wasco, OR Vaisala CL31 UND 12/2/2015 1/25/2017 
LIDAR Boardman Halo Photonics Stream Line 

Scanning Doppler LiDAR 
UND 12/4/2015 1/25/2017 

Microwave 
Radiometers 

Rufus, OR Radiometrics MWR-3000A  UND 11/19/2015 1/25/2017 

SODAR Rufus, OR scintec mfas UND 12/1/2015 1/27/2017 
Sonics 10m 
tower 

PS-01 Sonic 10m tower (sonic, T,RH 
@3m,10m, Licor @3m) 

UND 2/15/2016 8/1/2017 

Sonics 10m 
tower 

PS-11 Sonic 10m tower (sonic, T,RH 
@3m,10m) 

UND 2/15/2016 8/1/2017 

Sonics 20m 
tower 

PS-02 Sonic 20m tower (sonic 
@3m,10,17m; T,RH @3m,17m) 

UND 2/15/2016 1/25/2017 

Sonics 20m 
tower 

PS-06 Sonic 20m tower (sonic 
@3m,10,21m; T,RH @3m,21m) 

UND 2/15/2016 1/25/2017 

SODAR 15 Mile Road Triton-AON7 Vaisala 10/1/2015 7/31/2017 
SODAR Gilhouley 

Road 
Triton-AON8 Vaisala 12/7/2015 4/9/2016 

SODAR Gordon Ridge Triton-AON6 Vaisala 10/1/2015 7/31/2017 
SODAR Old Tree Road Triton-AON2 Vaisala 10/1/2015 7/31/2017 
SODAR Plymouth Triton-AON3 Vaisala 10/1/2015 7/31/2017 
SODAR PS01/Scott 

Canyon Rd 
Triton-AON4 Vaisala 12/5/2015 7/31/2017 

SODAR Sand Hollow 
Road 

Triton-AON1 Vaisala 10/1/2015 7/31/2017 

SODAR Shell Rock 
Road 

Triton-AON9 Vaisala 11/19/2016 7/31/2017 

SODAR Van Gilder 
Road 

Triton-AON5 Vaisala 10/1/2015 7/31/2017 
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3.2 Model Development 
Atmospheric flows in complex terrain include many phenomena in which the assumption of horizontal 
homogeneity implicit in many model parameterizations is not valid. These include slope flows, gravity 
waves, topographic wakes, thermally-driven valley circulations, gap flows, and cold pools. Even 
synoptically-forced flows are influenced by local terrain and variations in land cover which lead to 
heterogeneous surface fluxes of heat and moisture. Modeling such non-stationary flows requires 
consideration of the turbulent mixing of state variables through the horizontal components of turbulence, 
which can be as large as the vertical in some cases. In addition, conventional assumptions of horizontal 
surface homogeneity, stationarity and a constant flux layer near the surface are no longer valid. Even if 
model resolution is increased to better represent the surface variability, the numerics of mesoscale 
models can become less accurate as model resolutions approach the dominant turbulence length scales 
(the “terra incognita” of Wyngaard 2004). The accuracy of prediction of hub height wind speed is 
significantly affected by the accuracy in representing the effect of boundary layer turbulence on the mean 
velocity field. 

3.2.1 3D PBL parameterization 

As a key contribution to WFIP2, NCAR developed and implemented a new PBL parameterization in the 
WRF-ARW that does not rely on assumptions that limit its accuracy in simulations of flows in complex 
terrain. 
The WRF model is a community-developed, public-domain, mesoscale NWP system designed to serve 
both operational forecasting and atmospheric research needs for multiple applications (Skamarock 2004; 
Skamarock et al. 2005; Skamarock and Klemp 2008). The High- Resolution Rapid Refresh (HRRR) NWP 
framework under development by National Atmospheric and Oceanic Administration (NOAA) uses WRF-
ARW to produce hourly forecasts over the Continental United States (CONUS) at three-kilometer 
resolution (Benjamin et al. 2015). The HRRR is an important component of any short-term wind power 
forecasting system. NCAR is among the main contributors to the development of WRF-ARW. WRF-ARW 
includes multiple options for parameterization of physical processes in the atmosphere including 
parameterization of the effects of unresolved complex terrain. 
Improving NWP models in complex terrain requires improved understanding of flows and processes in 
complex terrain. High-resolution, high-quality flow observations are essential in to achieve better 
understanding of flows in complex terrain. However, in various terrain induced flow phenomena 
represent a challenge not only for wind forecasting, but also for observations and analysis. These 
phenomena include: mountain waves, topographic wakes, gap flows, clod pools, drainage flows, etc. 
Until recently there were only a few filed studies that comprehensively addressed complex terrain flow 
phenomena. The WFIP2 project was designed with a goal to provide information needed to improve wind 
forecasting. To that end Vaisala, Inc. team, together with collaborators, designed a year-long 
observational field study in the Columbia River Gorge. The Columbia River Gorge was selected for the 
filed study because it hosts one of the world’s largest concentrations of wind turbines, nestled in an area 
of extremely complex terrain. A year-long observational field study provided a wealth of data for better 
characterization of the phenomena that undermine wind forecasts. 
To tackle challenges presented by developing better understanding of flows in complex terrain that will 
lead to better prediction needed are: 

• approaches, methods, and technologies for observing flows in complex terrain, 

• analysis tools for characterizing complex flows, 

• metrics for quantitative characterization of complex flows, 

• parameterizations of physical processes in NWP models, 

• ways of assessing model performance, and 
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• standards for acceptable error and uncertainty levels. 
Addressing each of these challenges requires a careful consideration and an extensive study. Previous 
studies that addressed these challenges include Vertical Transport and Mixing (VTMX, Doran et al. 
2002), MAP (Rotach and Zardi 2007), T-REX (Grubišić et al. 2008), METCRAX (Whiteman et al. 2008), 
and MATERHORN (Fernando et al. 2015). The WFIP2 project was designed to address most of them. In 
this project NCAR team primarily focused on development of a new turbulence parameterization for high-
resolution, sub-kilometer grid cell size, mesoscale simulations. The WFIP2 filed study data were used to 
assess the performance of the new parameterization. 
Wind forecast in an atmospheric boundary layer and therefore at a hub-height of a utility scale wind 
turbine is significantly affected by shear and critically depends on the accuracy of the parameterization of 
turbulent stresses and fluxes. In NWP models evolution of a flow filed including: velocity, potential 
temperature, moisture and other constituents is represented using Reynolds Averaged Navier-Stokes 
(RANS) equations (see Appendix). The RANS equations are usually truncated at some higher moments 
of field variables and therefore do not represent a closed system of equations. In order to close the 
system of equations it is necessary to provide parameterizations of higher order moments. In NWP 
models usually second moments, i.e. turbulent stresses and fluxes, must be parameterized. Until 
recently NWP models utilized computational grids with grid cell sizes of ten or more kilometers. Recently, 
continuous development of high-performance computing (HPC) platforms enabled increased resolution 
of NWP models and grid cell sizes of one kilometer or less. For wind energy applications high resolution 
mesoscale simulations are essential to capture details of the flow within the first hundred meters above 
the surface where wind turbines operate. High-resolution simulations are of particular importance in 
complex terrain where the topography and terrain heterogeneity affect flow evolution and determine flow 
features at smallest resolved scales. However, in order to improve NWP models for forecasts in complex 
terrain there are a number of challenges that need to be addressed. 
Turbulence parameterizations in mesoscale models are based on volume averaged RANS equations. As 
the grid cell volume decreases below characteristic atmospheric boundary layer length (ABL) scale, e.g. 
boundary layer height, the assumptions commonly used to develop these parameterizations are violated. 
The range of scales of motion between the characteristic ABL scale (approximately one kilometer) and 
the inertial range of turbulence (less than 100 m in ABLs), where large eddy scale (LES) 
parameterizations can be used, is often labeled a “grey zone,” or according to Wyngaard (2004) “terra 
incognita.” Recently a number of modifications to existing parameterizations were proposed in order to 
develop a “scale aware” parameterization that could seamlessly be used across a range of scales, down 
into the “terra incognita.” While Wyngaard (2004) proposed to replace a scalar eddy diffusivity with a 
diffusivity tensor, others focused on modifying length scales used in one-dimensional planetary boundary 
layer (1D PBL) parameterizations (Efstathiou and Beare 2015; Efstathiou et al. 2016; Shin and Dudhia 
2016). 
Beare (2014) as well as Honnert and Masson (2014), on the other hand, attempted to estimate the length 
scale below which a 3D parameterization would need to be used. Honnert and Masson (2014) 
determined that the exact value varies significantly depending on whether convection is free or forced. 
Boutle et al. (2014) adopted a blending approach to the grey zone parameterization by combining a 1D 
PBL parameterization with a subgrid model commonly used in LES. 
While a flow over a flat, uniform terrain can be considered horizontally homogeneous, a flow over 
complex terrain induces circulations resulting in horizontal inhomogeneities. However, at present, most 
NWP models use 1D PBL parameterizations based on the assumption of horizontal homogeneity. Such 
models do not account for a range of processes that control production, redistribution, transport, and 
dissipation of turbulent kinetic energy (TKE) and that in addition to vertical shear and potential 
temperature gradients also depend on horizontal shear and horizontal potential temperature gradients. In 
addition, such parameterizations commonly assume that turbulence is in a local equilibrium, i.e. that local 
production and dissipation of turbulence are in balance. The effects of horizontal gradients of wind and 
potential temperature are more pronounced at smaller scales and therefore, as the resolution increases, 
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neglecting these effects result in an inaccurate representation of turbulent stresses and fluxes and 
consequently errors in a prediction of mean fields. As the NWP model simulation resolution increases it 
is therefore essential to account for the effects of horizontal shear and temperature gradients on the 
production and evolution of turbulence including turbulent stresses and turbulent fluxes. We have 
therefore developed a 3D PBL parameterization that accounts for these effects. 
 

 Algorithm Development 

i. Model Formulation 
Although heterogeneity effects represented through horizontal gradients on a mesoscale grid are likely 
significantly smaller than vertical gradients, long term effects on the accuracy of wind forecast could be 
appreciable. We therefore explored implications of eliminating the homogeneity assumption in the 
development of an improved PBL parameterization. The homogeneity assumption significantly simplifies 
RANS equations resulting in equations for horizontal components of velocity of the following form 

 
Here, angle brackets denote grid-cell-volume averaging and capital letters denote grid-cell- volume-
averaged quantities, 𝑉j denotes velocity components and, Θ potential temperature. Lower case letters 
denote fluctuating quantities: 𝑢j are fluctuating velocity components, and 𝜃 is a fluctuating potential 
temperature. Repeated indices indicate summation. Under the homogeneity assumption horizontal 
gradients of turbulent stresses and fluxes are identically zero. This means that only two components of 
turbulent stress, 〈u1u3	〉 and 〈u2u3	〉, and one component of turbulent flux, 〈u3	𝜃	〉, and their vertical 
gradients affect the evolution of mean fields. Therefore, 1D PBL parameterizations include only these 
three terms. By eliminating the homogeneity assumption, the prognostic equations for the mean 
momentum and potential temperature are: 

 
Now all six components of the symmetric turbulent stress tensor need to be parameterized and a full 
divergence of the stress tensor computed. Similarly, all three components of the turbulent flux must be 
parameterized and a full divergence of the flux vector computed. 
Three-dimensional parameterizations of turbulent stresses and fluxes are commonly used in engineering 
RANS equations-based model. However, due to large grid cell aspect ratios previously used in NWP 
models, horizontal gradients in a boundary layer were many orders of magnitude smaller than vertical 
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gradients. Therefore, the effect of horizontal gradients on boundary layer turbulence development and 
evolution was neglected. Nevertheless, following development of limited area models in early 1970’s 
(Warner 2010) Mellor and Yamada (1974) outlined a hierarchy of turbulence parameterizations for 
atmospheric flow simulations that included a fully 3D PBL parameterization. They classified turbulence 
parameterizations in four levels based on the assumptions made deriving them, with level four 
representing the full three- dimensional parameterization including prognostic equations for all the 
second order turbulence moments. In this work we follow the developments of Mellor and Yamada 
(1982) variant of which were also implemented in the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL 
parameterization (Nakanishi 2001; Nakanishi and Niino 2004, 2009; Ito et al. 2015). We implemented 
Mellor- Yamada (Mellor and Yamada 1982) level 2 parameterization that neglects material derivatives of 
second order moments including the TKE and instead diagnostic equations are provided. First, the TKE 
is computed using a diagnostic equation 

 
Here, q is twice the TKE, Λ1 is the length scale (sometimes labeled the “dissipation length scale), 𝛽 is the 
coefficient of thermal expansion, and g is gravitational acceleration. Once the TKE is diagnosed, second 
order moments are computed by inverting the following system of linear algebraic equations at each grid 
cell 

 
Here, ℓ1,	Λ1,	ℓ2, and Λ2 are length scales that are proportional to each other, so they can be expressed in 
terms of a master length scale ℓ: 

 
The constants, A1,	B1,	A2,	B2, and C1 are determined from experimental data. The original values used by 
Mellor and Yamada (1982) are 

 
As an intermediate step to implementing a full 3D PBL parameterization we have developed a hybrid 
approach where all the six components of turbulent stress tensor and three components of the sensible 
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heat gradient vector are diagnosed and the full divergence of both stress tensor and flux vector 
computed, but a 1D PBL approximation (i.e. neglecting horizontal derivatives) is used to develop 
diagnostic equations. This approach leads to the following simplified set of linear algebraic equations 

 
ii. Model Implementation 
We implemented the new 3D PBL parameterization in the WRF-ARW NWP model. Unlike 1D PBL 
parameterizations implemented in WRF-ARW that are grouped together with other vertical column-based 
parameterizations of physical processes in subdirectory /phys the 3D PBL parameterization we included 
in the /dyn_em subdirectory. All the subroutines directly related to the 3D PBL parameterization are 
collected in the Fortran module module_turb_mixing_3d.F. Additional changes include introduction of 
state variables and namelist configuration parameters associated with the 3D PBL parameterization in 
the registry file Registry.EM_COMMON. The WRF-ARW source code with the 3D PBL parameterization 
has been stored in a github repository at: https://github.com/NCAR/WFIP2-WRF-
3DPBL/blob/master/wrf3.8.1.  
iii. Mesoscale Simulations over Idealized Heterogeneous Terrain 
The new PBL scheme is able to account for horizontal heterogeneity of boundary-layer flows not only 
due to complex topography and heterogenous land use, but also due to large convective eddies, 
convective cells and rolls. Convective rolls and cells generally scale with the boundary layer height and 
therefore, as the grid cell size approaches boundary-layer height, these structures are being captured by 
NWP models, however, they are under-resolved (Ching et al. 2014). Since the structures are under-
resolve their characteristic length scales are not realistic. It is therefore important to account for the 
effects of velocity and potential temperature gradients induced by convective structures that result in 
enhanced turbulence diffusion. Other convectively induced secondary circulations caused by, for 
example, heterogeneous surface characteristics are often not resolved properly using NWP models with 
1D PBL parameterizations and grid cell size in “terra incognita” (i.e. gray zone) range. 
Before proceeding with simulations over heterogeneous terrain, model parameters were tuned using 
simulations of a convective boundary layer over homogeneous terrain. We found that when using 
parameters determined by Bougeault and Lacarrere (1989) the 3D PBL parameterization produces the 
correct mixed layer ABL structure while the original set of parameters presented by Mellor and Yamada 
(1982) result in a diabatic profile of potential temperature (Martilli, personal communication). Therefore, 
the parameters that we used in all the simulations presented here are: 

 
Not accounting for the effects of horizontal gradients on turbulence production, transport, and dissipation 
results in inaccurate levels of turbulence and therefore inaccurate turbulent diffusion. We demonstrated 
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this by carrying out idealized mesoscale simulations of an ABL over heterogeneous surface. The results 
of these simulations are verified by comparing them to the results of an ensemble of LES. The idealized 
mesoscale simulation setup includes periodic lateral boundary conditions with a weak, 2 ms-1, southerly 
wind and surface heat flux of 160 Wm-2 on the west half of the domain and 320 Wm-2 on the east half of 
the domain. The horizontal grid cell size in both directions was 200 m. Two mesoscale simulations were 
carried out, one using the MYNN 1D PBL parameterization and the other using the new 3D PBL 
parameterization. 
Additionally, an ensemble of 20 LES was carried out over the lateral boundary conditions and the same 
domain but with grid cell size of 50 m. The ensemble was created by adding a uniformly distributed 
random perturbation to the surface heat flux. All the simulations were run for two hours of physical time. 
The results of these simulations are shown in Figure 5 and Figure 6. In these figures shown are contour 
plots of meridional and vertical velocity components at 250 m above the surface, respectively. In the left 
panel of Figure 5 presented are mesoscale simulation results obtained using the 1D PBL 
parameterization while on the right are results from the simulation with the 3D PBL parameterization. In 
Figure 6, the left and middle panel show mesoscale simulation results with the 1D and 3D PBL 
parameterizations, respectively, while the right panel shows the ensemble average vertical velocity from 
the LES. 

 

Figure 5. Meridional velocity from mesoscale simulations with the 1D PBL parameterization (left) 
and 3d PBL parameterization (right). 

 

 

Figure 6. Vertical velocity contours from mesoscale simulations with the 1D PBL parameterization 
(left), the 3D PBL parameterization (middle), and the ensemble average LES (right). 
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It is clear from Figure 5 that using the 1D PBL parameterization to simulate a heterogeneous convective 
ABL at 200 m results in a significant unphysical meridional (i.e. streamwise) variability in the meridional 
velocity component. Less pronounced, but still clearly evident, is an unphysical variability in the vertical 
velocity shown in Figure 6. The 3D PBL parameterization, on the other hand, results in the vertical 
velocity filed that is homogeneous in the meridional direction and similar to the ensemble mean of the 
LES. We can conclude that favorable comparison of the 3D PBL simulation results to the LES ensemble 
results verifies that the 3D PBL parameterization better represents the effects of the horizontal turbulent 
diffusion due to horizontal gradients of velocity and potential temperature. 
iv. Large-Eddy Simulations over Complex Terrain 
The data collected during the filed study enabled our team to attempt to improve the understanding of 
the fundamental physical processes and their representation in forecast models, thereby improving 
forecast capabilities. While the WFIP2 field study data represent an invaluable resource for studying 
flows in complex terrain, majority of the observations were in situ observations relatively sparsely 
distributed over a very large field study area. A few scanning lidars provided spatial information, 
however, their limited range could not fully capture the complexity of the flow West of the Columbia River 
Gorge. In the attempt to supplement observations and provide more information about spatial structures 
of the flow, including mountain waves, topographic wakes, and gap flows, we have carried out high-
resolution simulations, using an LES approach, of a selected observational period when all these 
phenomena were observed. With the LES approach we were able to resolved the details of the flow. The 
validated LES results can then be used in conjunction with observations to more completely validate the 
mesoscale simulations with the new 3D PBL parameterization. 
We used nesting capability in the WRF-ARW to nest LES within a mesoscale domain. The outer, parent 
domain and the inner, nested domain are shown in Figure 7 and Figure 8. The parent domain spans 
1800 km in west to east direction and 900 km in South to North direction. The inner, LES domain spans 
180 km in west to east direction and 90 km south to north direction. Both domains are resolved with 6000 
grid cells in west to east direction and 3000 grid cells in south to north directions. While the parent 
domain grid cell size is 300 m while the inner domain grid cell size is 30 m. As can be seen from Figure 
7, the outer domain spans from the Pacific Ocean on the west to high plains of Montana and Wyoming 
and encompasses northern Oregon and southern Washington states. The inner domain is centered on 
the area south of the Columbia River where there is a large concentration of deployed wind power 
capacity. It includes Cascades and Mountain Hood, as well as Columbia River Gorge to the east. The 
grey scale indicates elevation with darker colors representing higher elevation. The dark spot in the lower 
left area of the plot represents Mountain Hood. Since the prevalent winds are from the west, complex 
terrain features affect the flow patterns and wind resource to the west where wind plants are located. 
 



WFIP2: Complex Terrain - Page 27 

DE-EE0006898 

 

 

 

Figure 7. Outer, parent mesoscale domain for nested simulations over the WFIP2 filed study area. 

 

Figure 8. Inner, nested LES domain for nested simulations over the WFIP2 filed study area. 

To study the complex terrain effects on the flow patterns we have selected to simulate weather 
conditions observed on March 7 and 8. Our simulations spanned 12 hours, from 15 UTC on March 7 to 3 
UTC on March 8. The weather conditions on March 7 and 8 were characterized with steady westerly 
flows resulting in an accelerated gap flow through the Columbia River Gorge that spilled east of the 
Gorge. The orography including the Cascades Range and Mountain Hood generated mountain waves.  
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Mountain Hood, shown in Figure 9, is a volcanic mountain rising to 3500 m above sea level (ASL), or 
close to 3 km above the surrounding area. It is about 10 km in diameter and therefore it represents a 
distinct, isolated obstacle to the westerly flow, causing in a well-defined topographic wake. 

 

Figure 9. Mount Hood 

In Figure 10 is shown the evolution of vertical profile of potential temperature observed using a 
radiometer located at the Wasco airport. A capping inversion can be identified at about 1900 m due to a 
steep potential temperature gradient. From 15 UTC on March 7 to 1 UTC on March 8 an adiabatic layer 
can be observed below 500 m with a well-mixed layer above it signifying a daytime convective boundary 
layer. These observations indicate that the capping inversion is significantly below the Mountain Hood 
peek. Under such conditions we can expect that the dividing streamline for the westerly flow is also 
below the Mountain Hood peak, causing the flow to split around the mountain, creating a orographic 
wake downstream with potential formation and shedding of von Karman vortices. 

 

Figure 10. Profiles of potential temperature observed with the University of Colorado radiometer at 
the Wasco airport on March 7 and 8. 
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Our nested LES capture both the orographic wake (Figure 11) and von Karman vortices shedding off of 
Mountain Hood. Both of these flow features can be clearly observed in the animations of LES simulations 
that can be found at: https:// https://www.seedme.org/node/169835, 
https://www.seedme.org/node/169348, https://www.seedme.org/node/170118, and 
https://www.seedme.org/node/170607. 

 

Figure 11. A contour plot of horizontal wind speed from an LES of March 7 and 8 at the Columbia 
River Gorge. 

However, von Karman vortices do not take the form of a regular vortex streets observed in laboratory 
experiments or in the cloud patterns in wakes of islands. Due to the presence of a ridge to the east of 
Mountain Hood the regular vortex shedding is disrupted. The LES also captures standing and travelling 
waves created by the Cascades, Mountain Hood and the ridge to the east of Mountain Hood, as can be 
seen from Figure 12 and the following animations: https://www.seedme.org/node/170851 and 
https://www.seedme.org/node/171095.    

 

Figure 12. A contour plot of vertical wind speed from an LES of March 7 and 8 at the Columbia 
River Gorge. 
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Qualitative analysis of flow patterns revealed by LES animations confirm expectations and casual 
observations. However, to validate LES a quantitative analysis must be carried out. For that purpose, we 
use continuous observations of wind speed at BPA towers located in the Columbia River Gorge region 
as well as observations by Vaisala sodars. The mesoscale results are provided by the parent domain, 
while LES results are obtained from several simulations carried out to demonstrate the effect of a 
boundary perturbation as well as a hybrid advection scheme. The baseline LES simulation uses the 
Smagorinsky subgrid turbulence parameterization, a fifth-order, upwind advection scheme in horizontal 
direction and a third-order, upwind scheme in vertical direction. The second LES uses the boundary 
perturbation of potential temperature to speed up turbulence development, while the third LES, in 
addition, uses the hybrid advection scheme. When LES is nested into a mesoscale domain the inflow to 
LES domain is smooth and it does not include any resolved three-dimensional turbulent eddies. Due to 
the smooth inflow conditions a long fetch is needed for turbulence to develop under neutrally stratified 
conditions over a flat terrain. Turbulence develops significantly faster under convective conditions that 
characterize most of the LES performed here. In addition, complex terrain contributes to turbulence 
development. 
Nevertheless, we introduced the boundary perturbation of potential temperature following Muñoz-
Esparza et al. (2014, 2015) to enhance turbulence initiation. To further improve turbulence development 
and resolution we have also used the hybrid advection scheme that combines odd order and even order 
advection schemes. An odd order upwind advection scheme is dissipative resulting in an effective 
resolution of approximately 7 ∆x (Skamarock 2004). This can be compared to a common implementation 
of a pseudo spectral scheme which has an effective resolution of 3 ∆x. By combining odd and even 
schemes an effective resolution between 4 and 5 ∆x can be achieved. 
Comparisons were made between LES and and observations taken by BPA towers and Vaisala sodars. 
Locations of the observations are shown in Figure 13. Examples of comparisons are given in Figure 14 
and Figure 15. In these figures are compared the simulation mean absolute errors (MEA) of mesoscale 
and large-eddy simulations computed based on the wind speed observations at the BPA towers and the 
Vaisala sodars, respectively. It can be observed that the LES most of the time follow closely mesoscale 
simulation, however, there are periods when they diverge from the mesoscale wind speed predictions. 
For example, between UTC 0 and 2 wind speeds from LES at both the Hood River tower and the Vaisala 
sodar, AON5, are deviating from the mesoscale simulation wind speeds. However, they are in better 
agreement with observations than mesoscale simulations. This can be observed at other locations where 
observations are made. In general, LES result in lower MAE and RMSE as can be seen from Table 5 
through Table 8. More significant exception is the Roosevelt tower location on the north bank of the 
Columbia River. 
Since both MAE and RMSE are relatively low at most observation locations and since LES provides an 
improvement in comparison to the mesoscale simulation results, we can conclude that LES can be used 
as an additional source of information about the flow in complex terrain. In particular, LES can be used to 
characterize the horizontal heterogeneity of the flow in the WFIP2 field study area. The LES results can 
be used in the future to guide further development of the 3D PBL parameterization including calibration 
of different model parameters. 
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Figure 13. Location of BPA towers (red arrows), Vaisala sodars (yellow squares) and turbines 
(yellow and green dots) in the Columbia River Gorge field study area. 

 

Figure 14. Observed and simulated wind speed at the Hood River BPA tower: observed wind 
speeds - solid black line, mesoscale simulations – solid black line, LES – solid red line, LES with 
perturbations – dashed green line. 
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Figure 15. Observed and simulated wind speed at the AON5 sodar location: observations – red 
dots, mesoscale simulation – dashed black line, LES – solid green line, LES with perturbations – 
solid purple line, LES with perturbations and a hybrid advection scheme –blue line. 

Table 5. MAE of mesoscale and large-eddy simulations based on BPA tower observations. 

Mean Absolute Error [m/s] 

 Mesoscale LES LES with cell 
perturbation 

Augspurger 4.73 3.99 3.91 

Biddle Butte 2.71 2.39 2.43 

Goodnoe Hills 1.53 1.16 1.18 

Hood River 1.59 1.39 1.30 

Roosevelt 1.81 2.02 2.03 

Seven Mile Hill 1.74 1.82 1.79 

Wasco 2.53 2.44 2.52 
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Table 6. RMSE of mesoscale and large-eddy simulations based on BPA tower observations. 

Root Mean Square Error [m/s] 

 Mesoscale LES LES with cell perturbation 

Augspurger 5.11 4.42 4.35 

Biddle Butte 3.48 3.12 3.09 

Goodnoe Hills 1.94 1.46 1.51 

Hood River 2.04 1.76 1.68 

Roosevelt 2.13 2.36 2.40 

Seven Mile Hill 2.14 2.21 2.18 

Wasco 3.25 3.18 3.22 

 

Table 7. MAE of mesoscale and large-eddy simulations based on Vaisala sodar observations. 

Mean Absolute Error [m/s] 

 Mesoscale LES LES with cell 
perturbation 

LES with cell 
perturbation and hybrid 
advection 

AON2 2.56 2.26 2.31 2.36 

AON4 1.63 1.14 1.18 1.15 

AON5 0.89 0.75 0.84 0.79 

AON6 2.45 2.47 2.60 2.45 

AON7 2.14 2.20 2.16 2.24 

AON8 2.70 2.73 2.63 2.63 
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Table 8. RMSE of mesoscale and large-eddy simulations based on Vaisala sodar observations. 

Root Mean Square Error [m/s] 

 Mesoscale LES LES with cell 
perturbation 

LES with cell 
perturbation and hybrid 
advection 

AON2 3.21 2.76 2.83 2.90 

AON4 2.02 1.40 1.49 1.45 

AON5 1.15 0.96 1.04 1.02 

AON6 3.26 3.26 3.37 3.32 

AON7 2.71 2.80 2.76 2.91 

AON8 3.47 3.52 3.44 3.42 

 
 
v. Mesoscale Simulations over Complex Terrain 
 
We validated WRF-ARW with a new 3D PBL parameterization using field experiment data from the 
Columbia River Gorge. For this purpose, we focused on validation of the parameterization for all the 
components of turbulent stress and sensible heat flux and their full divergence, but with the use of a 
boundary-layer approximation (see Appendix). This approach was assessed first rather than the full 3D 
parameterization due to numerical stability issues related to the use of diagnostic equation for the TKE 
that can result in ill conditioning of the system of linear algebraic equations. 
The validation of 3D PBL parameterization is based on one of the selected “ten-day” WFIP2 
retrospective study periods, the period between August 13 and 24, 2016. We carried out three 
mesoscale simulations. We used the MYNN 1D PBL parameterization for the baseline mesoscale 
simulation. In the other two mesoscale simulations, we used the new 3D PBL with and without an 
additional two-dimensional (2D) Smagorinsky type diffusion parameterization commonly used in 
operational NWP models. Here, it should be pointed out that the role of the 2D Smagorinsky diffusion 
parameterization is not to represent unresolved physical processes and resulting diffusion (Skamarock 
2004; Smagorinsky 1990), but instead to provide numerical stability through diffusion of numerical 
oscillations controlled by a strain-rate-dependent diffusivity. The initial and boundary conditions were 
derived from HRRR simulations with horizontal grid cell size of 3 km. The HRRR output was obtained 
from the University of Utah data archive (http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/hrrr.html) 
maintained by Brian Blaylock. Simulations were carried out for 30 hours. The first 6 hours represented 
simulation spin up time and the last six hours overlapped with the next day’s simulation. All the 
simulations started at 00 UTC and ended the next day at 06 UTC. The simulations were carried out using 
two domains. The parent domain was resolved using 750 m horizontal grid cell sizes, while the inner, 
nested domain was resolved with 250 m horizontal grid cell sizes (Figure 16).  



WFIP2: Complex Terrain - Page 35 

DE-EE0006898 

 

 

The inner domain was centered on the so-called Physics Site near just east of the Biglow Canyon wind 
plant. The outer domain resolution corresponded to the resolution of a special instance of HRRR that 
was run by the NOAA team over the WFIP2 study area during the duration of the field study. 
 

Figure 16. Left panel - WFIP2 field study area with symbols indicating instrument locations; Right 
panel – WRF domains, D01 – 750 m grid cell size, D02 – 250 m grid cell size. In DO2 plus sign 
denotes Wasco tower and x denotes Physics site (by Masih Eghdami). 

The observations used to assess the model performance are from observational platforms located within 
the inner domain including: two-meter tower at Wasco – wind only, three-meter tower at the Physics site: 
wind data, relative humidity, temperature, and irradiance, and a 17- meter Physics site tower with sonic 
measurements at three levels: 3 m, 10 m, and 17 m. Sonics provide high-frequency measurements 
needed to compute turbulent fluxes. 
Shown in Figure 17 are comparisons of output from the three mesoscale simulations with observations at 
the two-meter tower at Wasco. In this figure shown are example comparisons based on observations 
from two simulated days. From Figure 17 we can see that all the mesoscale simulations capture quite 
well the diurnal temperature evolution. During nighttime between hours 12 and 19 UTC temperature is 
first only slightly underpredicted and then during the second day slightly overpredicted. 
The kinematic sensible heat flux is shown in the top right panel of Figure 17. In this case the sensible 
heat flux from simulation with the MYNN parameterization was not included in the output and therefore it 
is zero. For the other two simulations the agreement between observations and model results is relatively 
good, however, during both days daytime sensible heat flux is underpredicted. Finally, the wind speed is 
predicted well except during the first few hours on the first day. 

D01 

D02 
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Figure 17. Comparison of the output from domain 2 of three mesoscale simulations with 
observations at two-meter tower at Wasco: 2 m temperature – top left panel, wind speed at 10 m – 
top right panel, surface kinematic sensible heat flux – bottom left panel, surface friction velocity – 
bottom right panel. In all the panels different lines represent: simulation with the 3D PBL 
parameterization – blue line, simulation with the 3D PBL but with the 2D Smagorinsky 
parameterization turned off – orange line, simulation with MYNN PBL parameterization – yellow 
line, and observations – purple line (by Masih Eghdami). 

One of the reasons to replace a 1D PBL parameterization with a 3D PBL parameterization is the ability of 
the former to represent normal turbulent stresses as well as their effects on the momentum evolution. In 
Figure 18 shown is comparison of the normal turbulent stress components from mesoscale simulations 
to the observed normal stress components. The horizontal normal stress components are underpredicted 
by the 3D PBL parameterization while the vertical component is overpredicted. The observations indicate 
that at the scale of interest normal stresses are significant. Their temporal variability, and therefore likely 
spatial variability is also significant. 
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Figure 18. Comparison of simulated and observed normal turbulent stresses: normal turbulent 
stress component in zonal direction – top left panel; normal turbulent stress component in 
meridional direction – top right panel; normal turbulent stress component in vertical direction -- 
bottom right panel. In all the panels different lines represent: simulation with the 3D PBL 
parameterization – blue line, simulation with the 3D PBL but with the 2D Smagorinsky 
parameterization turned off – orange line, simulation with MYNN PBL parameterization – yellow 
line, and observations – purple line (by Masih Eghdami). 

These observations point to a need to represent a full turbulent stress tensor and its divergence in high-
resolution mesoscale simulations in complex terrain. While 1D PBL parameterizations represent two 
components of the turbulent shear stress, 〈𝑢′𝑤′〉 and 〈𝑣′𝑤′〉, they do not represent the third turbulent 
shear stress component,	〈𝑢′𝑣′〉. Again, turbulent shear stresses from mesoscale simulation with MYNN 
model were not output and therefore in Figure 19 they are all zero. In Figure 19 we observe that both 
mesoscale simulations including the 3D PBL parameterization predict the magnitude and variation of the 
two turbulent shear stress components, 〈𝑢′𝑤′〉	and 〈𝑣′𝑤′〉, quite well. However, the third turbulent shear 
stress component, 〈𝑢′𝑣′〉 is underpredicted.  
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Figure 19. Comparison of simulated and observed turbulent shear stresses: turbulent shear stress 
component 〈𝑢′𝑣′〉	– top left panel; turbulent shear stress component 〈𝑢′w′〉	– top right panel; 
turbulent shear stress component 〈𝑣′w′〉– bottom right panel. In all the panels different lines 
represent: simulation with the 3D PBL parameterization – blue line, simulation with the 3D PBL but 
with the 2D Smagorinsky numerical diffusion turned off – orange line, simulation with MYNN PBL 
parameterization – yellow line, and observations – purple line (by Masih Eghdami). 

A graphical summary of the mesoscale simulation results is given in Figure 20 in the form of a Taylor 
diagram. A Taylor diagram combines three statistical measures quantifying the degree of 
correspondence between observations and model output: the Pearson correlation coefficient, the RMES, 
and the standard deviation. Review of the Taylor diagram shown in Figure 20 reveals that the use of the 
3D PBL parameterization slightly improves correlation with observations compared to simulations with 
the 1D PBL parameterization. Using the 3D PBL parameterization significantly improves prediction of 
variability as indicated by the standard deviation being closer to observed than when the 1D PBL 
parameterization is used. In general simulations with the 3D PBL parameterizations perform similarly 
regardless of whether the 2D Smagorinsky numerical diffusion is turned on or not. 
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Figure 20. Taylor diagram summary of mesoscale simulation results corresponding to the “ten-
day” retrospective period from August 13-24, 2016. Three mesoscale simulations use: 1D PBL 
MYNN parameterization – x symbol, 3D PBL parameterization – cross, and 3D PBL ameterization 
with 2D Smagorinsky numerical diffusion turned off (by Masih Eghdami). 

 Summary and Future Work 

At Present most NWP models include parameterizations of turbulent stresses and fluxes based on the 
assumption of horizontal homogeneity over a grid cell and therefore reduced to 1D PBL 
parameterizations. As the horizontal grid cell sizes decrease the assumption of horizontal homogeneity is 
violated and the effects of neglected terms must be accounted for. Under convective atmospheric 
conditions the homogeneity assumption is violated even in flows over flat, homogeneous surface due to 
the presence of large convectively induced secondary circulations (Ching et al. 2014). We have therefore 
developed a 3D PBL parameterization following the work of Mellor and Yamada (1974, 1982) and 
implemented it in the WRF model. The new 3D PBL parameterization was first assessed by carrying out 
idealized mesoscale simulations over heterogeneous terrain characterized by sharp differences in 
surface heat fluxes. These simulations demonstrated the deficiency of a 1D PBL parameterization when 
grid cell size is in the so called “terra incognita” range, between 100 m and 1 km. We used the MYNN 1D 
PBL parameterization in this study and it resulted in unphysical secondary circulations. In contrast, the 
simulation with the 3D PBL parameterization correctly maintained homogeneity in one horizontally-
homogeneous direction while capturing the dynamical effects of the heterogeneity in the other horizontal 
direction. We have demonstrated that the results obtained using the 3D PBL parameterization are 
consistent with the averages from an ensemble LES. 
We have carried out high-resolution LES of a flow over the WFIP2 filed study area and compared the 
results with observations at the BPA towers and by the Vaisala sodars. In general, the LES resulted in 
lower MAE and RMSE when compared to the mesoscale simulation results. This is consistent with the 
expectation that a high-resolution LES better captures complex terrain effects on the flow. 
Finally, we have assessed the performance of an intermediate form of the 3D PBL parameterization 
which utilizes the boundary-layer approximation in order to directly solve a system of linear algebraic 
equations for all the turbulent stresses and fluxes. For that purpose, we have used observations during 
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the “ten-day” retrospective period from August 13 to August 24, 2016. Horizontal normal turbulent stress 
components are underpredicted by the 3D PBL as well as one of the shear stress components, 〈𝑢′v′〉, 
while the two turbulent shear stress components 〈𝑢′𝑤′〉 and 〈v′𝑤′〉 are accurately predicted. Overall, the 
3D PBL parameterization results in slightly better correlation with the observation, essentially the same 
RMSE, and significantly improved variance. 
At present the 3D PBL parameterization implemented in WRF is Level 2 according to Mellor and Yamada 
(1982) classification. This means that the TKE is estimated using a diagnostic equation. However, 
according to the Level 2 parameterization all the turbulent stresses and fluxes depend directly on the 
TKE. Solvability of the linear algebraic equations critically depends on the exact level of TKE potentially 
resulting in numerical instabilities. It can be expected that introducing a prognostic equation for the TKE, 
or in other word Level 2 ½ parameterization, would alleviate some of the numerical instability issues 
encountered when the full 3D PBL parameterization is used. Following implementation of the prognostic 
equation for TKE (or more precisely double TKE) LES results will be used to guide further development 
of the 3D PBL parameterization including calibration of different model parameters. Finally, the “ten-day” 
retrospective period mesoscale simulations should be carried out to assess the performance of the full 
3D PBL parameterization. Based on the results of the assessment additional parameter tuning may be 
necessary to obtain optimal performance. Further improvements of the 3D PBL parameterization may 
include better treatment of the boundary top entrainment. 
 

3.2.2 Analysis of Wind Farm Wake Parameterization 

Wakes from individual wind turbines reduce the power available to turbines located downwind. Similarly, 
wakes from aggregations of wind turbines have been observed to persist many kilometers downwind, 
reducing the wind energy available to wind plants located downwind and aggravating the challenges of 
forecasting winds in regions of extensive wind development. Wakes are particularly long-lived in stable 
nighttime conditions. 
Since 2011, WRF has included an open-source wind farm parameterization (WRF-WFP) that represents 
the aggregate effect of wind turbines on the flow via an elevated source of turbulent kinetic energy and 
an elevated momentum sink or drag (Fitch et al., 2012; Fitch et al., 2013; Lee and Lundquist, 2017). This 
parameterization has been loosely validated in comparison to large-eddy simulations, wind tunnel 
experiments, and with respect to near-surface temperature observations, and its performance was 
examined for the offshore Horns Rev wind plant (Jiménez et al. 2014).  
In WFIP2, the team at CU analyzed the performance of WRF-WFP using data from the field study and 
explored the sensitivity of the model the implementation of a rotor-equivalent wind speed. See Redferen 
(2019) for a detailed discussion. The current version of the WFP applies the hub-height wind speed to all 
layers instead of allowing each vertical layer to have its own wind speed. However, Wagner et al. (2011) 
proposed the use of a rotor-equivalent wind speed (REWS) instead of hub-height wind speed for power 
curve evaluation, and Choukulkar et al. (2015) modified the formulation of REWS to include wind 
direction and turbulent kinetic energy (TKE). An implementation of REWS was introduced in WRF-WFP 
to replace use of layer-unique wind speeds, and the effect on performance was tested. 
Generally, the inclusion of REWS or REWS modified by wind direction and TKE introduces very subtle 
effects compared to the standard WRF-WFP. In majority of cases tested, wind speed deficit plots were 
indistinguishable, and the only scenario where a significant difference emerged was during cold-pool 
mix-out, when with highly non-linear wind shear across the rotor plane, REWS was more accurate.  
We focus here on the behavior of WRF-WFP in two easterly flow cases involving the Biglow Canyon 
wind plant near Wasco. The model terrain used in both is shown in Figure 21. The first is a summertime 
event from August 16-18, 2016, when a cold frontal surge reached the study area as a surface cyclone 
built across Montana. The Physics Site experienced easterly/northeasterly winds, and an interesting set 
of waves developed in the simulation, as shown in Figure 22, which shows the difference in wind speeds 
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across the model domain between simulations that are identical except for the presence of the WFP. The 
wave activity is consistent with gravity waves propagating from the wind plant, as proposed by Smith 
(2009). Strikingly, the magnitude of the wave pattern exceeds that of any more static wake in the lee of 
the wind plant. 

 

Figure 21. Model terrain elevation for Wasco simulations. 

 

Figure 22. Difference in 80m wind speed at 2016-08-18 20Z between two WRF simulations that are 
identical except for the presences of the wind farm wake parameterization. Small dots show the 
presences of wind turbines.  

The second case, from Nov 23-25, 2015 features more northerly flow, but again displays considerable 
wave activity, as shown in Figure 23. In this case, the wakes appear stronger (consistent with the flow 
aligned with the rows of turbines), but the wakes aren’t much stronger than manifestation of wave 
activity. 
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Figure 23. Difference in 80m wind speed at 2015-11-25 04Z between two WRF simulations that are 
identical except for the presences of the wind farm wake parameterization. Small dots show the 
presences of wind turbines.  

These simulations are not conclusive, but suggest that low-level gravity wave propagation in the vicinity 
of a wind plant could play a significant role in the variability of generation.  
 
3.3 Observations and Analysis 

3.3.1 Observational Processing and Quality Control 

The University of Notre Dame group developed quality control (QC) procedures to filter the data and 
generate secondary products from UND instrumentation. These products are included in the b0 dataset 
of the DAP. They include:  

a) Vertical profiles of horizontal wind speed and wind direction for the Scanning Lidar at 
Boardman 

b) Turbulent momentum and heat fluxes for the PS01, PS02, PS06 and PS11 towers at the 
Physics Site 

c) QC’d data for the ceilometer at Wasco, and the Sodar-RASS and microwave radiometer at 
Rufus.  

For detailed information regarding the QC procedures applied to the UND instrumentation, their range of 
operation, and metadata please refer to the A2E portal. 

3.3.2 Analysis of Physics Site Data 

During WFIP2, the Physics Site (hereafter PS) was heavily instrumented to capture complex flow 
patterns that regularly arise over complex terrain. The topography and location of meteorological towers 
deployed at PS are shown in the map of Figure 24. The map was generated from the National Elevation 
Dataset (NED) (https://nationalmap.gov) with a horizontal resolution of 1/3 arc second (≈10 meters).  
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The site is characterized by a gentle hill, with elevation variability of about 80 m over 4 km in the East-
West direction. The slopes vary between 0 and 20 degrees. The horizontal black line on the map 

denotes the East-West transect along the main slope, where four UND sites (PS01, PS02, PS06 and 
PS11) were located at different distances from the hill crest, with PS01 being the furthest away (about 3 

km) followed by PS02 (≈2.3 km), PS06 (≈0.75 km) and PS11 (≈0.3 km). Exact locations, type of 
instrumentation, and measurement heights for the sites are listed in Table 9 and  

Table 10.  
The height of the hill with respect to the terrain elevation at PS01 is about H=70 m. The terrain slope 
between PS01 and PS02 is only ≈ 3.7o. However, the terrain immediately south of the ridge where PS01 
and PS02 were ilocated is quite steep, with slopes up to 20 degrees and a change in elevation of 
approximately 40 meters over about 0.75 Km in the North-South direction. PS06 and PS11 are located 
uphill, with PS06 being situated 20 m below the hill top and aligned with the West-East transect. PS11 is 
12 m below the hill top and located 30 degrees West of North.  

Table 9. UND tower locations 

Tower Latitude (deg) Longitude (deg) 
Tower Height 
(m) 

Elevation ASL 
(m) 

PS01 45.6374 -120.6799 10 428 

PS02 45.6383 -120.6716 17 445 

PS06 45.6379 -120.6508 21 474 

PS11 45.6393 -120.6460 10 484 

 

Table 10. Instruments and measurement heights for UND Towers. 

Tower 

3D Sonic 
Anemometer 
heights (m) 

T/RH sensors 
heights (m) 

Gas Analyzer (LiCOR) 
height (m) 

PS-01 3,10 3,10 3 

PS-02 3,10,17 3,17 - 

PS-06 3,10,21 3,10,21 - 

PS-11 3,10 3,10 - 
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Multiple remote sensing instruments were deployed at the Rufus, Wasco and Boardman sites. The 
instruments complemented the other suite of instruments deployed at each of these locations by the 
WFIP2 team.  
 

(a) 

 
 

(b) 

 

(c) 

 

Figure 24. (a) The topography of the Physics Site and the location of towers and wind turbines (b) 
UND tower PS06 and (c) UND tower PS01 and co-located instrumentation of collaborators (Sodar 
and solar/soil measurements). 
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 Terrain Complexity  

In general, landforms are referred to as “complex terrain” based on different combinations of slope and 
elevation (Stipersky and Rotach 2016), but no widely accepted measure of “terrain complexity” exists, 
making its definition somehow subjective or indeterminate (Petersen et al. 1998). An objective measure 
of steepness or ruggedness of the terrain can be classified using the Ruggedness Index (RIX). RIX is 
defined as the percentage fraction of the terrain that is stepper than a critical slope, usually 0.3 (Wood 
1995; Petersen et al. 1998). The index was proposed as a coarse measure of the extent of flow 
separation, and thereby the extent to which the terrain violates the requirements of linearized flow 
models, such as WASP (Bowen and Mortensen 1996). 
Landscapes may be characterized by the following RIX values: flat and hilly 0%, more complex about 
10% or less, and mountainous from about 10 to 50% or more (Petersen et al. 1998; Bowen and 
Mortensen 1996). The validity of the RIX builds upon the work of Wood (1995), who estimated a critical 
slope 𝜃;< associated with the onset of mean flow separation as a turbulent boundary layer passes over a 
hill under neutral stratification conditions. 
To calculate the RIX for WFIP2, we used the NED in combination with ArcGIS v10.4. Slopes and RIX 
calculations were performed for the Inner-Domain of WFIP2, shown in Figure 25, and Physics Site (PS) 
shown in Figure 26. The physics site is approximately the size of a single high-resolution grid cell for an 
operational NWP model. The PS was meant to identify physical processes that are enhanced by the 
terrain and accounts for turbulent fluxes variability at the sub-grid scale of NWP models. 
For the Inner-Domain of WFIP2, the slopes have an average of 9o, a standard deviation of 10o and a 
range that fluctuates between 0 and 80o, as indicated in Figure 25 (a). The major topographic features 
that are likely to modify the flow on the Inner-Domain of WFIP2 are the Macks Canyon, located south of 
the Columbia River and about 20 Km west of the PS, characterized by steep walls surrounding the 
Deschutes River all the way up to its confluence with the Columbia River and Gordon’s Ridge, about 20 
Km South-West of the PS. Both of these topographic features may modify the flow on a smaller scale at 
the PS for strong westerly winds, Other possible features that modify the flow are the Cottonwood 
Canyon, located south of the Columbia River and about 10 Km East of the PS, and whose steep walls 
encompasses the John Day River, that might be important in the presence of strong easterly winds and 
the steep walls of the Columbia River in the presence of strong northerly winds. These landscapes are 
stepper than 0.3 (~ 17 o), and thus te flow separation is expected to occur therein, as indicated by the 
bright green-colored areas in Figure 25 (b). The RIX or the percentage of the area steeper than 0.3 for 
the Inner-Domain of WFIP2 is of 17%, and thus the terrain can be classified as Mountainous.  
The results on a smaller scale at the PS are shown in Figure 26 (a) and Figure 26 (b). The terrain 
complexity of the PS is smaller than for the overall Inner-Domain. The RIX for the PS is 2% and since 
flow separation may still occur, the terrain is classified as Complex. The topographic features that 
account for most of the PS complexity are a) canyon with a longitudinal axis oriented in the NW-SE 
direction that extends over the upper half of the PS domain (in the presence of north-easterly winds and 
b) series of smaller canyons with their longitudinal axis oriented in the NE-SW direction that may be 
important to consider when the winds are northwesterly. 
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Figure 25. a) Top panel: Map of slopes for WFIP2 Inner Domain, the location of the PS is indicated 
by the white star. In addition, the main locations where instrumentation was deployed are indicated 
by the black dots. b) Bottom panel: Same as 1), but with the areas of slopes greater than 17 
degrees overlaid to it and indicated by the bright green color. These areas represent possible 
zones of flow separation that might have an effect on the flow at the Physics Site. The RIX for the 
entire WFIP2 Inner-Domain region is of 17%, thus the terrain is Mountainous.  
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Figure 26. a) Top panel: Map of slopes for the Physics Site area, the tower locations are indicated 
by the square symbols and the location of wind turbines are indicated by the black-colored stars. A 
sodar was installed at PS01 to measure wind velocity profiles of the incoming flow into PS, and it is 
indicated by the gray-colored triangle. b) Bottom panel: Same as 1), but with the areas of slopes 
greater than 17 degrees overlaid and indicated by bright green. These areas are possible flow 
separation zones that might affect flow at the Physics Site. The RIX for the Physics Site Domain is 
of 2%, thus the terrain at the PS is More Complex. 

Even though a terrain classification based on a RIX indicates some important features of the terrain, RIX 
will only be of limited value when analyzing the variability of turbulent fluxes at the subgrid scales of NWP 
models. Note that RIX depicts the terrain “complexity” only in the perspective of the onset of mean flow 
separation regardless of any other topographically influenced processes that may modify the flow. 
Therefore, for complete characterization of complex terrain, a composite index that considers an array of 
processes should be considered, which ought to include, in addition to flow separation, processes such 
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as turbulence generation mechanisms, buoyancy production, local flow inhomogeneities and non-
stationarities. 

 Second order moment analysis at Physics Site 

The structure of turbulence over flat homogeneous terrain and under various atmospheric boundary layer 
(ABL) conditions has been studied extensively (e.g. Kaimal et al. 1972, 1976; Piper and Lundquist 2004), 
partly motivated by the development of Monin-Obhukov Similarity Theory (MOST), which states that the 
correct dimensionless wind and temperature gradient in the surface layer, (𝜅𝑧/𝑢∗)𝜕𝑈/𝜕𝑧	 and 
(𝑧/𝑇∗)𝜕𝑇/𝜕𝑧, respectively, are dependent exclusively on the parameters 𝑔/𝑇G∗	, 𝑢∗, 𝑞/(𝜌𝐶K)and the height 
𝑧. Therefore, only one dimensionless coefficient M

N	
	can be formed, with	𝐿	being the Obukhov length,	𝜅 the 

von Karman constant, 𝑔 the gravity, 𝑇G∗	the temperature scale,	𝑞 the kinematic heat flux,	𝐶K	the specific 
heat and	𝜌 the air density. 
The structure of turbulence in complex terrain, however, remains relatively unexplored, in spite of its 
paramount importance for a wide range of applications, i.e. urban air pollution, dispersion in cities, wind 
energy harvesting, aviation, firefighting and NWP (Wood, 1999; Vecenaj et al., 2010; Fernando et al., 
2015). Current spatial and temporal resolutions of NWP models can be as high as 1 km and 10 s, 
respectively, thus allowing to represent intricate topographical features and to simulate canonical flows 
that are frequently observed in complex terrain (Skamarock et al., 2005; Papanastasiou, 2010). 
Nonetheless, the Kolmogorov scales in the atmosphere are of ~1mm and ~1s, respectively (Fernando, 
2013), and there is a whole host of scales that remain unresolved by the NWPs. This is usually 
accomplished using standard surface-layer MOST, regardless the characteristics of underlying terrain 
(Garratt, 1992).  
To study the performance of MOST in complex terrain surrounding PS, June-July-August (JJA) 2016 was 
selected as a case study. The 15 min averaged turbulent fluxes calculated from the UND and PNNL 
towers were used for analysis. The spatially averaged non-dimensional root mean square velocities 
normalized by the friction velocity; 𝜎Q/𝑢∗, 	𝜎R/𝑢∗, 𝜎S/𝑢∗	were plotted as a function of the non-dimensional 
height 𝑧/𝐿 for data taken at heights 3 m and 10 m, and the results are shown in Figure 27 and Figure 28, 
respectively. Positive values of 𝑧/𝐿 corresponds to the stable stratification whereas negative values 
correspond to unstable stratification. The spatially averaged non-dimensional RMS velocity components 
for the PS are indicated by the red dots in the figures. The solid black line in the figures shows canonical 
similarity functions derived for flat and homogeneous terrain (FHT); see Table 11. The blue line in the 
figures correspond to the best fit for the measured data, parameterized as: 

𝜎T/𝑢∗ = 𝛼T(1	 + 𝛽T	|𝜉|)Z/[ 
The previous parameterization was adopted from de Franceschi et al. (2009), whihch was proven to be 
successful in parameterizing the non-dimensional root mean square velocities over an Alpine Valley (de 
Franceschi et al. 2009). Moreover, it is in general agreement with MOST parameterizations such as the 
ones developed by Panofsky and Dutton (1984). The values of the constant 𝛼Tand  𝛽T	 obtained for the 
PS data during the period JJA are given in Table 12 for measurements at 3m and in Table 13 for 
measurements at 10m.  
During the summer, the wind climatology is predominantly from the West. In this analysis, the data was 
filtered to include wind directions between 221 to 316 degrees. This wind direction sector is undisturbed 
by the wake effects of wind turbine locate near the PS. From Figure 27 and Figure 28 it can be observed 
that 𝜎Q/𝑢∗ and 	𝜎R/𝑢∗ are significantly higher than that predicted for Flat and Homogeneous Terrain 
(FHT) during unstable conditions. This trend is observed at 3m and 10m. At both heights the data is quite 
scattered and a relationship between 𝜎Q/𝑢∗ and 	𝜎R/𝑢∗ exclusively based on the stability parameter 
𝑧/𝐿	doesn’t seem to hold for the PS area. Interestingly, 𝜎Q/𝑢∗ and 	𝜎R/𝑢∗ are generally overpredicted 
during stable conditions at both 3m and 10m, and thus the buoyancy effects that reduce the TKE is not 
captured very accurately by MOST over Complex Terrain. Finally, the values of 𝜎S/𝑢∗measured at the 
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Physics Site are smaller than FHT predictions during unstable conditions, but somewhat larger during 
stable conditions. Nonetheless, the deviations from MOST for 𝜎S/𝑢∗were smaller compared to 𝜎Q/𝑢∗ and 
	𝜎R/𝑢∗. 
 

 

Figure 27. Physics Site - spatially averaged standard deviations for the wind velocity components 
normalized by the friction velocity, σ_u/u^*,σ_v/u^*,σ_w/u^*, plotted against the non-dimensional 
similarity variable z/L^ for the period June, July, August 2016 at 3m. 
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Figure 28. Physics Site - spatially averaged standard deviations for the wind velocity components 
normalized by the friction velocity, σ_u/u^*,σ_v/u^*,σ_w/u^*, plotted against the non-dimensional 
similarity variable z/L^ for the period June, July, August 2016 at 10m. 

Table 11. Similarity Functions for Flat and Homogeneous Terrain (FHT). 

Variable 
Stability Parameter, 

	𝜉 = 𝑧/𝐿	 
Expression Reference 

𝜎Q/𝑢∗ 
							𝜉 > 0 1.8(1 + 1.6𝜉)Z/[ Zhang et al 2001 

							𝜉 < 0 2.3 + 4.3𝜉Z/b Pahlow et al 2001 

𝜎R/𝑢∗ 
							𝜉 > 0 1.8(1 + 1.6𝜉)Z/[ Zhang et al 2001 

							𝜉 < 0 2.4𝜉G.c Pahlow et al 2001 

𝜎S/𝑢∗ 
							𝜉 > 0 1.25(1 + 0.2𝜉) Kaimal and Finnigan 1994 

							𝜉 < 0 1.25(1 + 3𝜉)Z/[ Kaimal and Finnigan 1994 
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Table 12. Values of 𝜶𝒊 and 𝜷𝒊obtained for the period JJA 2016 for the PS towers at 3m. 

Variable 
Stability Parameter, 

	𝜉 = 𝑧/𝐿 
𝛼T 𝛽T 

𝜎Q/𝑢∗ 
𝜉 > 0 2.57 2.49 

𝜉 < 0 2.49 5.74 

𝜎R/𝑢∗ 
𝜉 > 0 1.85 8.10 

𝜉 < 0 2.20 12.86 

𝜎S/𝑢∗ 
𝜉 > 0 1.21 0.71 

𝜉 < 0 1.09 2.16 

 

Table 13. Values of 𝜶𝒊 and 𝜷𝒊obtained for the period JJA 2016 for the PS towers at 10m. 

Variable 
Stability Parameter, 

𝜉 = 𝑧/𝐿 
𝛼T 𝛽T 

𝜎Q/𝑢∗ 
𝜉 > 0 2.62 0.32 

𝜉 < 0 2.57 0.80 

𝜎R/𝑢∗ 
𝜉 > 0 1.91 8.24 

𝜉 < 0 2.41 1.77 

𝜎S/𝑢∗ 
𝜉 > 0 1.30 0.02 

𝜉 < 0 1.18 1.61 
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 Turbulence Retrievals 

i. Eddy Dissipation Rate (EDR) 
 
Turbulence dissipation rate is a crucial quantity to improve sub-grid scale parameterizations in the MYNN 
boundary layer scheme (Yang et al. 2017). Doppler lidars provide information about wind field spatial 
statistics, while providing estimates of turbulence Eddy Dissipation Rate (EDR, ε); see the reviews by 
Banakh and Smalikho (1997), Frehlich et al. (1998, 2006) and Krishnamurthy et al. (2011). These 
estimates can be made using temporal data (using temporal spectra), spatial data (using spatial spectra) 
or a combination thereof (using the estimates of structure function). All EDR estimation algorithms rely on 
spectral representations of turbulence. Two forms of spectra are equated, as shown in Figure 29; von 
Karman spectrum at low frequencies and Kolmogorov inertial subrange spectrum at higher frequencies. 
There are no set values for upper and lower thresholds of the inertial subrange, as they vary with the 
nature of atmospheric turbulence under different conditions (e.g., stable, unstable and neutral 
stratification, altitude etc.). 

 

Figure 29. Power spectral representation of turbulence in a log-log plot [Monin & Yaglom (1975)]  

The velocity spectrum is the Fourier transform of two-point velocity correlation function, which, in the 
inertial subrange takes the classical form [Frehlich et al., 2006]  

𝐸(𝑘) = 𝐶	
b
[𝑘j

k
[	, 

where C is the Kolmogorov Constant. There is a direct relationship between the energy spectrum E(k) 
and the second order velocity	(𝑣) structure function Dv, 

𝐷R(𝑠) =
1
𝐻
o 	
p

qrZ

(𝑣(𝑟) − 𝑣(𝑟 + 𝑠))b, 
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where H is the number of samples used for averaging and r is the spatial separation. The structure 
function can be estimated either along the Lidar axis (longitudinal structure function DLL) or along a 
transverse direction (transverse structure function DRR). They become, 

𝐷NN(𝑟) = 𝐶b(𝜀	𝑟)b/[, 
and 

𝐷vv(𝑟) = 𝐶b′(𝜀	𝑟)b/[, 
𝐶bw  = 4/3 𝐶b and 𝐶b	= 2, where the latter is based on previous experimental work (Doviak & Zrinc 1993; 
also see Chan and Shao 2007). The EDR is then obtained by fitting either the -5/3 slope to the spectrum 
or the 2/3 slope for the structure function. The units of ε are m2s-3

. 
 
In the analysis below, the transverse structure function is used to estimate EDR, as it deems more 
reliable based on previous work [Frehlich et al. 2006; Krishnamurthy et al., 2011]. Figure 30 shows the 
azimuth structure function and Figure 31 shows the vertical profiles of various retrieved turbulence 
parameters for 21 January, 2017 at 10 hrs. UTC. 
 

 

Figure 30. One-hour averaged azimuthal structure function for the Lidar data of January 21, 2017 at 
10 hrs. UTC. 
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Figure 31. One-hour averaged vertical Profiles of turbulence parameters for January 21, 2017 at 
1000 hrs. UTC. a) Horizontal wind speed in m/s, b) wind direction in degrees, c) integral length 
scale (m), d) velocity variance (m2/s2), and e) eddy dissipation rate (m2s-3). 

 
On this day, a frontal passage approaching from the west developed a high turbulence layer in the 
bottom 100 m of the atmosphere. Figure 32 shows the radial velocity plots from the scanning Doppler 
Lidar at different time periods. The wind direction shifts from east to west from 1000 hrs. UTC to 1900 
hrs. UTC. Figure 33 shows one hour averaged time series of horizontal wind speed and EDR from 1000 
hrs. to 2300 hrs. UTC. During the transition period, a significant increase (up to 10 times) in EDR was 
observed from 1200 hrs. to 1500 hrs. The winds increased from 2 m/s to 4 m/s, which is the cut-in wind 
speed for modern day wind turbines. The effect of high wind veer and turbulence during such time 
periods would result in higher loads on turbine blades as well as variable wake conditions. 
 
 

(a) (b) (c) (d) (e) 
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b)

 

c) 

 

d) 

 

Figure 32. Lidar Radial velocity snapshots at a) 1000 hrs. UTC, b) 1300 hrs. UTC, c) 1800 hrs UTC 
and d) 2100 hrs. UTC on January 21, 2017, showing the wind veering event. The contour dotted 
lines show the height above ground level. The radial velocity color convention is yellow wind 
towards the Lidar and blue wind going away from the Lidar. 



WFIP2 Complex Terrain - Page 56 

DE-EE0006898 

 

 

 

Figure 33. Time series of one-hour averaged horizontal wind speed and eddy dissipation rate at 
40m (blue line with open squares), 60m (red line with diamond square) and 100 m AGL (black line 
with x).  

An inter-comparison study of estimating eddy dissipation rate from various remote sensing devices was 
performed between NOAA, CU Boulder and University of Notre Dame. A profiling lidar, scanning lidar, 
and wind profiling radar at Wasco, OR were used to measure this quantity, and roughly compared to a 
nearby (5 km away and 40 m lower in elevation) sonic anemometer on an 80-m tower. More details on 
the different algorithms shown in Figure 34 can be found in Krishnamurthy et al. (2011), McCaffrey et al. 
(2017), Bodini et al. (2018), and Wilzack et al. (2019). 
The scanning Doppler lidar at Wasco operating in two scan modes were used for turbulence dissipation 
rates estimates using an a) azimuth structure function method on the 6-degree elevation angle planned 
position indicator (PPI) scans and b) a vertical velocity spectral slope method on the 3-min vertical 
stares. The azimuth structure function method estimates of dissipation rate are calculated every 20 m 
from 30 to 380 m AGL, with decreasing reliability above 250 m AGL, due to limited accuracy of scanning 
Lidar radial velocity estimates at distant range-gates (since, SNR ∝ 1/Range). The spectral slope 
estimates of dissipation rates are estimated every 100 m from 200 to 10,100 m AGL, with decreasing 
measurement availability above 1000 m AGL. 
Figure 34 shows time series of dissipation rates from the 4 methods and the sonic anemometer, at three 
heights of interest: a) 80 m AGL where the sonic (roughly) shows the diurnal cycle well-matched by the 
structure function method of the scanning lidar, b) at 200m AGL where all 4 profiling methods overlap, 
the structure function method compares well with profiling lidar during daytime convective conditions, and 
the WPR during nighttime stable periods, showing agreement between multiple instruments at differing 
parts of the day, and c) at 300 m AGL, where the WPR and spectral slope method of the scanning Lidar 
match well, as the structure function method of the scanning Lidar is less reliable due to the limitation of 
accurate scanning Lidar radial velocity estimate at further range-gates (i.e., SNR ∝ 1/Range). 
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Figure 34. Turbulence dissipation rates at Wasco, OR from the wind profiling radar (blue), profiling 
Lidar (red) and scanning Lidar using the structure function (green) and spectral slope (purple) 
methods at 3 heights: a) 80 m AGL, compared to the nearby sonic anemometer (black); b) 200 m 
AGL, where all four instruments observe; and c) 300 m AGL. 

ii. Accuracy of Lidar Retrieval Algorithms 
 
It is important to assess the accuracy of velocity and turbulence retrieval algorithms from scanning 
Doppler Lidar to reduce the uncertainty and inform the potential users of limitations in using data. As a 
first step, two velocity retrieval methods based on least-squares were assessed using data from the 
scanning Lidar located at Wasco airport. Both algorithms use least-squares approach over the 360-
degree planned position indicator (PPI) sector to estimate the wind speed and direction. The NOAA 
algorithm is based on averaging the radial velocity measurements over a 15-minute interval from all 
scans over the time period and binning them as function of height. The current UND method estimates 
the wind speed and direction for every scan and then average as a function of height (Krishnamurthy et 
al. 2013). The two algorithms provide similar estimates, but with a mean wind speed difference averaged 
over one month of approximately 0.35 – 0.45 m/s, with an averaged wind direction difference of 10 to 12 
degrees. The results are shown in Figure 35 and Figure 36. 
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Figure 35. Vertical profiles of the average (black) and standard deviation of horizontal wind speed 
difference between NOAA and UND algorithms. 

 

Figure 36. Vertical profiles of the average (black) and standard deviation of horizontal wind 
direction difference between NOAA and UND algorithms. 

Further investigations are in progress by assessing the effect of volume averaging and turbulence on 
Lidar retrieved products. 
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 Case-Studies 

 
The preliminary studies presented here encompass several flows scenarios and are mainly based on the 
dataset provided by the four UND towers and the scanning Doppler Lidar data collected at Wasco & 
Boardman sites. 
 
i. Case Study I — Frontal Passage on March 22-April 2, 2016 
 
During the second half of March 2016, the Columbia Gorge area was under the influence of a westerly 
cold frontal passage. Tower measurement at PS detected the arrival of the front around sunset on March 
22 (Julian Day, JD, 82), which was associated with a significant wind power up-ramping. Figure 37 
shows 12- day time series (March 21 – April 02) of wind direction, wind speed, air temperature (Tair) and 
relative humidity (RH) measured at 3m, 10m and 17m at PS02. Raw data from sonic anemometers were 
processed to remove spikes and tilting effects by applying a maximum velocity filter and the traditional 
three rotation method (McMillen, 1988) was used to obtain the mean flow in the streamwise direction. 
Time averages over 15 min were used to calculate turbulence and mean properties of the flow. The 
figure clearly illustrates the arrival of and penetration down to the surface of the front, as indicated by a 
swift shift of wind direction from easterly to 260 degrees and the rapid rise of wind speed to ~17 m/s. 
This westerly high wind regime persisted for about five consecutive days (period A in Figure 37), and 
after weakening on JD 87, a second event followed that lasted for about 3 days (period B in Figure 37). 
This regime was finally dissolved on March 30 (JD 90) with the establishment of remarkably calm, light 
winds and warmer and drier conditions (period C in Figure 37) associated with weak synoptic forcing 
over the area. 
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Figure 37. Time series of 15 min averaged wind direction (wdir), wind speed (wsp), air temperature 
(Tair) and relative humidity (RH) measured at 3m,10m and 17m at PS02 tower. 

The analysis of normalized turbulent velocities (Figure 38) for Periods A and C indicate the presence of 
two disparate turbulence regimes. During Period A, turbulent velocities are low and approximately 
constant for 5 consecutive days, with both streamwise and spanwise components σ(u) ≈ σ(v) ≈ 0.15U 
and a vertical component σ(w) ≈ 0.05U (U is the mean speed). On the other hand, turbulent velocities in 
Period C follow the diurnal cycle, reaching values up to ≈ 0.8U and 0.4U, for horizontal and vertical 
components, respectively, during the convection. Nighttime turbulence values during period C are 
comparable to A, although a less stationary trend can be noticed with some remarkable turbulent bursts, 
which will be subject of further investigations. 
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Figure 38. 15-min averaged RMS values of three velocity components (streamwise sig(u), spanwise 
sig(v) and vertical sig(v)) at PS02 at 3m, 10m and 21m, normalized by the mean speed U at the 
same height. Normalized RMS values of sonic temperature sig(T)/Tsm are also provided in the 

bottom panels. The left and right panels refer to Period A and Period C respectively. 
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Figure 39. Comparison of normalized RMS vertical velocity at 4 different locations along the East-
West transects (PS01, PS02, PS06 and PS11) at heights (a) 3m, (b) 10m, and (c) 20m for a 
representative 24-hr. segment in Period A. Panel (d) compares three measurement heights of PS06. 

Similar analyses were carried out for other UND tower locations along the East-West transect. Results 
indicate similar trends in terms of both mean and turbulent variables. However, comparison of 
normalized turbulence velocities at different locations (Figure 39 above) highlights the larger values of 
normalized vertical turbulent velocities found at PS06 (20 m below the hill’s crest) in comparison to other 
PS locations. In terms of dimensional values, the variation is significant at the lowest measurement level 
where σ(w) at PS06 is 30% larger than the value measured upstream (PS01). Similarly, σ(u) and σ(v) 
are 15% larger than the corresponding upstream values. Table 14 and Figure 40 summarize these 
results based on Period A and also highlight similar trends for PS11. 

Table 14. Calculated variation of RMS values of three velocity components (u, v, w) at 3m height for 
Period A, where 0 denotes the value measured upstream 

Variable PS02 PS06 PS11 
[𝜎(𝑢) − 𝜎(𝑢G)]

𝜎(𝑢G)
 0% 13% 13% 

[𝜎(𝑣) − 𝜎(𝑣G)]
𝜎(𝑣G)

 0% 15% 16% 

[𝜎(𝑤) − 𝜎(𝑤G)]
𝜎(𝑤G)

 1% 29% 22% 
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Figure 40. Horizontal cross-section showing calculated fractional σ(w) changes at 3m height for 
Period A. PS towers positions and terrain shape are also illustrated.  

The extension of the analysis to a 3 months-period (February 16, 2016 - April 10, 2016) suggests that the 
larger values σ(w)/U found at PS06 are always associated to sustained westerly winds, as illustrated in 
Figure 41. These findings are consistent with the observations of Bradley (1980) and Zeman and 
Jenssen (1987) as well as in accordance with the rapid distortion theory that predicts an increase in the 
vertical component of turbulence as the flow approaches the hill crest. On the other hand, consideration 
of atmospheric stability and Froude number (Fr) for the same dataset indicate that westerly winds would 
almost always correspond to Fr >1, implying that the flow at the topographic height at PS06 would 
always flow over the hilltop. Our future work will further investigate these aspects, especially by including 
data collected at the top of the hill (not available for the first part of WFIP2 field campaign) and 
considering flow scenarios expected for different atmospheric stability and flow configurations. 

 

(a)  (b) 

Figure 41. Normalized RMS vertical velocity at 3m for (a) high and (b) low wind speeds as a 
function of the wind direction. Dataset from February 16, 2016 to April 10, 2016.   
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ii. Case Study II—Convergent Flows on September 29, 2016 
 
Convergent flows were observed by Scanning Doppler Lidar measurements at the WASCO site 
(proximity to the Physics site, southeast) on September 29, 2016 at 0500 hrs. Figure 42 shows 15-
minute averaged wind and direction profiles from the scanning Doppler Lidar. Winds from northwest (pink 
color) and from southeast (green) show interesting counter-flowing sheared flow behaviors during the 
local night time until about noon. It appears that the shear layer is lofted and destroyed with the initiation 
of strong convection, which allows enhanced momentum diffusion upward. During the counter flow 
period, we expect strong turbulence at about 1000 MSL, given the shear layer therein with a small mean 
velocity. We are continuing with studies on the evolution of turbulence in the shear layer as well as the 
growth of shear layer. Some of the parameters of interest are the turbulent kinetic energy dissipation 
rate, integral length scale of turbulence as well the RMS velocities. We are applying in-house built 
algorithms to extract these quantities. Also comparisons are attempted with other instrumentation that is 
located close to Wasco Lidar. 

 

 

Figure 42. Horizontal wind speed in m/s (top) and wind direction (bottom) from scanning Doppler 
Lidar measurements at the WASCO site. The measurements are averaged over 15 minutes. Time in 
UTC. 
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iii. Case Study III — Dividing Streamlines on January 21st 2017 
 
During stable wind conditions, the relationship between the Froude number Fr and the structure of flow 
encountering an obstacle is interesting. When Fr < 1, Sheppard (1956) argued that the flow would go 
around an obstacle. Hunt et al. (1997) and others extended Sheppard’s work for prediction of stable flow 
structure in complex terrain. PS02 and PS06 tower measurements were used in the following analysis. 
 

 

Figure 43. Rough illustration of dividing stream-lines observed at the Physics Site. The critical 
height (Hc) calculated based on Shepard et al., 1956 was approximately 40 m. 

The Froude number was calculated from the two tower measurements according to  
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where,	𝜌 is the density of air, 𝑔 the gravitational acceleration, ��
�M

 is the appropriate density gradient,	𝑈 is 
the free stream velocity at the top of the mountain and ∆𝐻 is the height to the top of the terrain. The 
classical critical dividing streamline height (𝐻;), at which height the potential energy is small compared to 
the kinetic energy of the flow, and whence the flow can go over the hill, was calculated using the 
Shepard et al., (1956) equation, 
 

𝐻; 	= 𝐻	(1 − 𝐹𝑟). 
 
An illustration of the dividing streamline concept for the Physics Site is shown in Figure 43. The Froude 
number calculation was performed for several days, and an interesting case study is shown below. 
On January 21, 2017, the winds were predominantly observed to be from the West. At 12:00 UTC [0400 
Local time] a wind-direction shift was observed at 478 m above MSL at the PS06 tower location. Prior to 
the shift, the mean upwind wind direction was from the west ~ 270° . During the shift, the Froude number 
dropped below 1 (as seen in Figure 44 A). During low wind speeds, fluid parcels have less kinetic energy 
to go up the hill, and thus would flow around the hill (Hunt et al. 1997). The height from the flat terrain 
upwind of the hill to the hill top (H = 496 m) was 69 m, hence the critical height would be less than 69 m 
when Froude number is less than 1. Since there was no visual proof (such as smoke release) that the 
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flow went around hill, the wind direction at towers PS02 and PS06 were analyzed to investigate possible 
lateral flow distortion as the flow arrives at the hill. Figure 45 shows that similar wind directions prevail at 
the two upwind sensors on PS02, up to a height of 467 m above the MSL. When Fr dropped below 1, up 
to 50o shift in the wind direction was observed at PS06 (3m), which indicates possible wind deflection 
near the ground to flow around the hill. The wind direction at the top of the hill (i.e., level 21m sensor at 
PS06) approximately matched the upwind wind direction up to 1500 hrs. UTC (0700 hrs. LT), and 
thereafter the wind directions at the top of the hill deviated from the upwind wind direction as well. The 
critical height was calculated to be approximately 30 - 40 m above the upwind flat terrain height (Figure 
44 C). Further investigation is needed to confirm above inferences. 
 

 

Figure 44. A) Froude number calculated from tower measurements on January 21, 2017 from PS02, 
B) time series of wind directions observed at various height above mean sea level and C) critical 
height (Hc) calculated as per Shepard et al., 1956, based on Froude number and height difference 
from the flat terrain upwind of the hill. 
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Figure 45. Wind Directions vs UTC time observed at various height above a terrain following 
surface from tower measurements. The legend also shows the height above mean-sea-level in 
squared brackets. 

Further in-depth analysis of similar cases needs to be performed to study the effect of low Froude 
number effect on wind turbine loading, performance and forecasting. 

3.3.3 Uncertainty Quantification 

As part of the larger uncertainty quantification (UQ) effort, the Texas Tech team investigated the 
parametric sensitivity of wind speed forecasts in the context of an ensemble Kalman filter (EnKF) 
ensemble during high impact wind ramp events. This study built on the UQ work done by the team at 
Pacific Northwest National Laboratory (PNNL) described in Yang et al. (2017) and uses a similar UQ 
methodology. Based on the results of Yang et al. (2017), this study investigated a reduced set of 9 PBL 
and surface scheme parameters, shown in Table 15, during from two ramp events; a stable mix-out false 
alarm from January 18, 2017 and a marine push event from July 22, 2016. The primary goals of this work 
were to examine whether boundary layer scheme parametric sensitivity varies across different equally-
likely ensemble members, different ramp-producing forecast situations, different horizontal grid spacings, 
and different forecast times.  
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Table 15. List of MYNN parameters to be modified in the parametric sensitivity study. The default 
values in the 2.5 level scheme in WRF 3.6 are listed as well as the range used in the sensitivity 

study. 

Parameter Symbol Default Value Range 

Constant in TKE 
dissipation 

B1 24 12-36 

Prandtl number Pr 0.34 1.5-4.5 

Constant in LT 
calculation 

a1 0.23 0.115-0.345 

Constant in Ls 
calculation 

a4 20 20-100 

Constant in Ls 
calculation 

a5 2.1 1.35-4.05 

Exponent in Ls 
calculation 

b 0.2 0.1-0.3 

Surface roughness 
scaling factor 

zf 1 1-2 

Van Karman constant k 0.4 0.35-0.40 

Closure constant g1   

Time-height plots showing SODAR, profiling radar and microwave radiometer observations for the 
January 18 case are shown in Figure 46. The mixing of warm, high momentum air towards the surface 
can be seen in the radar and radiometer measurements. Although the high momentum air did not mix 
down to the turbine rotor layer, the event log team identified this as an important case since over mixing 
by the model produced errors in forecasted wind speed.  

 

Figure 46. Time height plots of wind speed and temperature at the Wasco Airport for January 18, 
2017 event. Vertical axis for all plots is in meters above ground level. 
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Figure 47 shows the average 80-meter above ground level (AGL) wind speed at Wasco for each member 
of the EnKF ensemble. The dashed lines show SODAR and radar observations from the Wasco airport 
valid at 80 and 81 meters AGL, respectively. Since each member of the EnKF ensemble is run with the 
standard 2.5-order MYNN scheme, all variation in this ensemble is a result of differences in the initial 
conditions (ICs) and lateral boundary conditions (LBCs). Three members of the EnKF ensemble were 
selected to provide ICs and LBCs for physics ensembles. The three members are shown in Figure 47 by 
the bolded green (high wind speed member), yellow (moderate wind speed member) and red (low wind 
speed member) lines. The members were chosen to represent different portions of the ensemble 
distribution. 

 

Figure 47. Time series of 80-meter wind speed at the Wasco airport for all members of the EnKF 
ensemble. The fast (green), medium (yellow) and slow (red) wind speed members that will be used 
for UQ experiments are bolded as is the ensemble mean (dark blue). The dashed lines show 80 and 
81 meter AGL wind speed observations from a SODAR and profiling radar, respectively, deployed 
at the Wasco airport. 

Each physics ensemble consists of 81 members, with all members using identical ICs and LBCs but a 
unique combination of MYNN parameters. Figure 48 shows the forecasted wind speed at Wasco for the 
three physics ensembles. Members of the physics ensemble forced by the low wind speed ICs, top 
panel, are quite similar to each other, suggesting the varied parameters have little influence on the 
modeled wind speed. Figure 49 shows the variance in wind speed for all three physics ensembles as 
well as the wind speed variance from the EnKF ensemble. The larger variance in the EnKF ensemble, 
when compared to the physics ensembles, suggests that forecast uncertainty for this case is dominated 
by IC error rather than errors in the MYNN scheme 
  Following the method used in Yang et al. (2017), the wind speed variance for each physics 
ensemble was decomposed using a generalized linear model (GLM) into the portions contributed by 
each parameter. Figure 50 shows the percentage of total variance than can be attributed to each 
parameter every hour. For all three ensembles, B1, g1 and the Prandtl number are the dominant sources 



WFIP2 Complex Terrain - Page 70 

DE-EE0006898 

 

 

of forecast uncertainty, however, there are key differences between the ensembles. In the low wind 
speed ensemble B1 is responsible for the majority of the forecast variance during two periods between 
13-14 UTC and 17-19 UTC on January 18. Between these periods, g1 accounts for more variance than 
any other parameter, while Pr accounts for the most variance early in the forecast and between 22-23 
UTC on January 18. During the final 6 hours of the forecast, no parameter is responsible for more than 
20% of the total variance. The medium wind speed ensemble sees B1, g1 and Pr alternate as the most 
influential parameter for the first 18 hours of the forecast though no parameter accounts for the majority. 
During the final six hours of the forecast B1 is responsible for the majority of the variance in forecast wind 
speed. In the high wind speed ensemble, as in the medium wind speed ensemble, B1 is the single most 
important parameter during the final six hours of the forecast.  However, in the high wind speed 
ensemble B1 is also the most important parameter between 11 and 18 UTC on January 18. 

 

Figure 48. Time series of 80-meter wind speed at the Wasco airport for the three physics 
ensembles for the January 18 case. The bolded lines are the EnKF members from Figure 2, which 
provide the ICs and LBCs for their respective ensembles and are included here for reference. 
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Figure 49. Variance in wind speed for the EnKF (black line) and physics ensembles (colored lines) 
for the January 18 case. 

 

Figure 50. UQ results the January 18 case on Domain 2 (left) and Domain 3 (right) for the slow wind 
speed (top row), middle wind speed (middle row) and high wind speed (bottom row) runs. The lines 
represent the percentage of wind speed variance that can be attributed to each parameter. The 
vertical axis units are percentage of variance. The horizontal black line indicates 10% of the total 
variance. 

The difference in UQ results between these ensembles highlights the importance of addressing IC 
uncertainty when conducting sensitivity experiments and especially when tuning model parameters. Each 
of these members is an equally likely draw from a distribution of possible states. Studies done using a 
deterministic forecast are essentially selecting one of these possibilities and are unable to assess the 
other, equally likely, initial states. Tuning the model parameters based on a single set of ICs ignores a 
significant source of model error and can potentially introduce more error by modifying model physics 
that may not be at fault. 
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The left column of Figure 50 shows UQ results from Domain 2. The UQ results between Domain 2 and 
Domain 3 are quite similar, which suggests that the 4 km grid spacing is sufficient for future UQ work. 
Figure 51 shows the average 80-meter wind speeds at Wasco for the EnKF ensemble for the July 21, 
2016 marine push event. For this case, 5 members were selected to drive physics ensembles. Three 
members that captured the event and produced large (green), medium (yellow) and small (red) wind 
ramps were selected along with a member that failed to capture the event (brown). A final member (blue) 
was selected as it has an odd surface pressure signature (not shown). The wind speed time series for 
each of the physics members is shown in Figure 52. The varied physics parameters have very little 
impact on the low wind ramp and bust ensembles and produce moderate variation in the large ramp 
case. In contrast, the PBL scheme is responsible for large variations in wind speed in the moderate ramp 
ensemble and for variations in the timing of the ramp event in the odd pressure ensemble. The variance 
for each ensemble is shown in Figure 53. Unlike the January 18 case, two of the physics ensembles 
produce comparable forecast variance to the EnKF ensemble. However three of the physics ensembles 
produce very little variance. 

 

Figure 51. As in Figure 47 but for the July 22, 2016 case. 
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Figure 52. As in Figure 48 but for the July 22, 2016 case. 

 

Figure 53. As in Figure 49 but for the July 22, 2016 case. 
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Figure 54 shows the UQ results for the July 22 case. The sensitivity to individual parameters varies 
widely between the different ensembles, but the results from domain 2 and domain 3 are fairly similar. As 
with the January 18 case, the difference in parametric sensitivity between the ensembles highlights the 
fact that variations in ICs can influence the physics parameterizations as well as the difficulty in isolating 
physics error when dealing with real world forecasts. Furthermore, the fact that the variance from the 
EnKF ensemble exceeds the variance of all the physics ensembles for the January case and most of the 
physics ensembles from the July case suggests that forecast uncertainty in these events is largely due to 
IC error and not errors in the PBL parameterization. 
 

 

Figure 54. As in Figure 50 but for the July 22, 2016 case. 

 

3.3.4 Wind Power Forecasts 

A part of the Vaisala team project objectives within WFIP2 was to generate and validate wind power 
forecasts based on the control (baseline) and experimental (enhanced) HRRR reforecast simulations 
produced by NOAA. The original project plan aimed to produce retrospective forecasts for every major 
wind project connected to the BPA transmission system for a minimum of one calendar year period, 
spanning all four seasons during the WFIP2 field campaign. Due to data restrictions, not all of the 
facilities could be individually modeled. The Vaisala team, with the cooperation of its data partners, 
contributed data for 20 individual projects out of the total of 31 wind facilities within the BPA control area. 
As a compromise and as a way to measure performance for the entire installed wind capacity of the 
area, the total regional power generation was utilized, since it is freely available and published in near 
real-time on the BPA website1. Although the WFIP2 reforecast simulations were eventually created for 
one full year of the WFIP2 study period, at the time of this analysis, only four 1-month periods were 
available for download. These months were April, July, and October of 2016 and January of 2017, 

 
1 https://transmission.bpa.gov/Business/Operations/Wind/twndbspt.aspx 
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calendar months which are centered during each of the four seasons. This was considered to be the 
minimum necessary to proceed with a seasonal analysis of the potential benefits of the WFIP2 modeling 
improvements to wind power forecasting, but the study is still considered to be preliminary because of 
the limited sample size. Regardless, we anticipated seeing more subtle improvements to the wind power 
forecasts than to the atmospheric model outputs because of the statistical post-processing involved. As 
illustrated in Figure 55, statistical post-processing acts to reduce the systematic error of raw model 
output and is typically more effective at larger starting error levels. 

 

Figure 55. A general schematic of the potential reduction of average forecast error by a statistical 
post-processing method starting from a higher-error NWP model versus an improved experimental 
NWP model. There is less inherent forecast error in the experimental NWP model and therefore the 
statistical correction removes less overall error than it does from the control model. The relative 
delta in forecast error between the control and experimental NWP model output is larger than the 
difference between the post-processed outputs of each.  

 

 Methodology 

Vaisala used the provisional WFIP2 HRRR reforecasts produced by NOAA as foundational weather 
model inputs to drive statistically corrected forecasts of wind power at 1-hourly intervals out to 24-hour 
horizons. Separate wind power forecasts were generated for the control and experimental model 
configurations so that we could inter-compare their performance overall and during specific cases of 
interest. Actual power generation data served as the target variable for the forecasts and as the source 
of validation data. Performance metrics were kept to a very basic set within this evaluation and we leave 
it to future studies to assess the potential economic impacts of the improved HRRR model from WFIP2.  
i. Data 
Substation level generation and project available capacity data was provided by Vaisala team data 
partners for 20 participating individual wind projects. Although some contributed data at the wind turbine 
unit level, this more detailed information was not directly used in the forecast generation process. 
Turbine level data was used in some cases to determine the project-wide available power capacity. The 
actual power divided by the available power capacity, or relative power, served as the primary predictand 
for our wind power forecast modeling work. In the case of the regional forecast for the BPA fleet 
aggregate, we used the actual wind power reported by BPA and normalized by the installed wind 
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capacity of the region (4783 MW) to obtain a pseudo relative power. All relative power data was 
converted to 1-hour period-ending averages to correspond with hourly wind power forecast intervals as 
set out in the aim of the study. We did not attempt to analyze sub-hourly forecast accuracy or variance. 
As described above, for NWP data we used the provisional WFIP2 HRRR reforecasts available from the 
Data Archive and Portal (https://a2e.energy.gove/about/dap). These simulations are “cold-start” 
configurations with initial conditions taken from the RAP and run twice per day (every 12 hours) through 
forecast hour 24. Otherwise, the WFIP2 HRRR (∆x = 3 km) utilizes the same domain setup and physics 
suite as its operational counterpart. A very high-resolution nested domain, nicknamed HRRRNEST, is 
run at ∆x = 750 m inside the WFIP2 HRRR with a delayed start of 3 hours. We examined only the 
HRRRNEST runs in this study due in part to initial delays in accessing this large volume of archives from 
the WFIP2 Data Archive and Portal. The HRRRNEST runs target the terra incognita scales (200 m < ∆x 
< 1000 m), where PBL parameterizations are known to struggle, but better resolve important terrain 
features of the region including the Columbia River Gorge. At the time of analysis, the HRRRNEST 
reforecast data for April, July, and October of 2016 and January of 2017 was available to us. A more 
complete analysis of both WFIP2 HRRR and HRRRNEST simulations for the full year of available 
reforecast data is now possible. 
To obtain NWP-based predictors at each location, the HRRRNEST model output was bi-linearly 
interpolated to each wind project centroid from the corresponding four surrounding grid points. No time 
interpolation was necessary as we used only hourly model output to match up with our hourly resolution 
power data. We sliced out forecast hours 4 through 15 from each model run cycle, each being 12 hours 
apart, in order to stitch together a single complete training data set for all available valid times within the 
four one-month reforecast periods. A large variety of standard model output variables from the 
HRRRNEST runs are available in the WFIP2 Data Archive and Portal. We utilized all of the 2-D fields as 
well as the wind 3-D fields on pressure surfaces. Additionally, we derived the wind speed from its vector 
components, but included all three wind related variables in the combined training data set to have both 
magnitude and zonal/meridional components available as candidate predictors. 
ii. Modeling Approach 
Statistical wind power models were developed on the BPA fleet aggregate and on the individual site 
level. Statistical models were also created for each hourly forecast horizon independently. No attempt 
was made to forecast wind speed (either hub-height or rotor-equivalent) and then translate to power 
output with a power conversion model. Our approach is to forecast the relative power directly. Vaisala 
used its in-house wind power forecast engine to train the statistical models, which is part of its standard 
operational software. 
The Vaisala power forecast engine is built around the foundation of open source machine learning 
software, so that any widely used statistical model type can be deployed for a particular target variable 
and forecast time horizon. The system automatically selects the most appropriate components from the 
full collection of input data, while controlling for redundant information from similar variables using a 
sophisticated feature ranking and selection technique. An efficient grid search is used to tune the 
statistical model hyper-parameters and a k-fold cross-validation strategy is employed to avoid over-fitting 
to the training data. Commonly chosen algorithms include support vector regression (SVR), gradient 
boosted regression (GBR) trees, and ridge regression (RR), though a wealth of other statistical models 
are available should they prove to generalize better for a particular location or time period. For 0-6 hour 
forecast horizons, recent observations from the wind facility have great importance and are weighted 
heavily by the chosen predictor variables. Nearby weather observations, taken from off-site locations, 
can lead to further improvements. Even though a rich network of off-site observations were available 
during WFIP2, we did not include them as candidate predictors in this study choosing instead to focus on 
the NWP model improvements. Beyond about the 6-hour forecast horizon, recent observations tend to 
provide little or no tangible benefit to power forecast accuracy, so at these intervals, the predictors 
coming from the NWP models dominate. Because of the similarity in relative importance of model 
predictors beyond forecast hour 6, we chose to pool forecast hours 7-15 and 16-24 into groups and 
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thereby lessen the total number of models we had to build. This reduced the number of horizon-specific 
models from 24 down to 8 for each location and model type. 
Due to limited sample size of the data period in the reforecast study, with only a one-month sample from 
each season available, we could not afford to split the available periods into fixed training and testing 
sets. Instead we employed a k-fold cross-validation approach to assess how the results of our models 
would generalize to independent data. We divided the data set into eight folds, each one of 
approximately a half-month in length, leaving out one half-month partition as testing data and using the 
remaining 3.5 months as training data. We rotated through the folds, using each half-month period as a 
validation set, as pictured in Figure 56. Days 1-15 were separated from days 16-end of the month. This 
had the benefit of including half a month of in-season data within the training data set when predicting 
the other half-month from the same season. With calendar month splits only using 4 folds, it would not 
have been possible to include in-season training data for the target periods with the available data set.  

 

Figure 56. Illustration of the k-fold cross-validation wind power forecast training strategy with 
successive half-month periods withheld as test data (blue), leaving the remaining dates available 
as training data (orange). The panels show a) the first fold using. 

The total number of statistical forecast models built for each site was 128, taking 8 x 8 = 64 models each 
for the control and experimental HRRRNEST runs across each horizon and training fold. For 20 
individual wind projects and the single BPA aggregate, that meant we trained a grand total of 21 x 128 = 
2,688 statistical models. Each model was saved and the wind power forecast output from each half-
month test period was organized. A script was written to merge the output from each training fold into a 
single time series file, organized by forecast horizon. All wind power reforecast files were delivered to the 
WFIP2 Data Archive and Portal. 

 Forecasting Validation Results 

The normalized MAE for HRRRNEST-based wind power forecasts on the BPA fleet aggregate are 
shown in Figure 57, organized by forecast horizon. Forecast hours 1-6 are scored individually, while 
forecast hours 7-15 and 16-24 are scored as pooled groups. Each month is scored separately, so that 
we can compare the performance by season, starting from winter (January 2017) in the upper left, and 
rotating through spring (April 2016), summer (July 2016), and finally fall (October 2016) in the lower right 
panel. Experimental model results are denoted in blue, while control is represented as red. Overall, the 
forecast accuracy difference is small between the control and experimental models, except in the winter 

a) b) 

 
c)      d) 
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month. Normalized MAE ranges from about 3-5% at 1-hour forecast horizon up to 6-12% for the 18-24 
hour forecast period. In Figure 58, we report the normalized MAE for BPA only on days within the WFIP2 
Common Case Study Set. This represents about one third of the days in the overall reforecast period. 
The horizon-averaged MAE skill score, which represents the relative improvement by the experimental 
reforecasts over the control reforecasts at a summary level, are presented in Table 16 for both the 
Common Case Study Set days and the overall reforecast periods. 

 

Figure 57. Normalized MAE for HRRRNEST-based wind power forecasts on the BPA fleet aggregate 
organized by forecast horizon and reforecast month. Control models are the red curves and 
experimental models are blue. 

 

 

Figure 58. As in Figure 57, except for just days within the Common Case Study Set. 
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Table 16. Horizon-averaged MAE skill score for the BPA fleet aggregate, showing the improvement 
of the experimental HRRRNEST-based wind power forecasts relative to the control for the entire 

reforecast period and the Common Case Study Set. 

Season All Reforecast Cases Common Case Study Set 
Winter (2017-01) 11% 14% 
Spring (2016-04) -4% -2% 

Summer (2016-07) -3% -2% 
Fall (2016-10) 1% -3% 

 
In terms of normalized bias, Figure 59 and Figure 60 show the results for BPA with the same 
organization by forecast horizon and season. We observe negative forecast biases in winter and spring, 
with an indication of small bias reductions by the experimental runs. For the Common Case Study Set 
days during the winter month of January 2017, the sign of the bias actually switches to positive. The 
experimental runs reduce this positive bias toward zero for 6 of the 8 forecast horizons. The overall 
negative biases are larger in the spring month and even reach below the -5% level during April 2016 
days within the Common Case Study Set. The springtime reduction in negative bias by the experimental 
forecast averages 0.2% for all days and 0.6% for Common Case Study Set days. In summer, the 
forecast biases are positive and are not reduced by the experimental model, although they appear to be 
smaller on average for the Common Case Study Set days. The fall biases are negative, but relatively 
small, with absolute values below 2% overall. However, October 2016 days within the Common Case 
Study Set exhibit larger negative biases and no apparent improvements from the experimental model. 

 

Figure 59. Normalized mean bias error for HRRRNEST-based wind power forecasts on the BPA 
fleet aggregate organized by forecast horizon and reforecast month. Control models are the red 
curves and experimental models are blue. 



WFIP2 Complex Terrain - Page 80 

DE-EE0006898 

 

 

 

Figure 60. As in Figure 59, except for just days within the Common Case Study Set. 

The same statistics are measured for wind power forecasts at the individual site level. In Figure 61 we 
show results for an indicative project located in the western part of the Columbia River Basin study area 
near the river gorge. Normalized MAE ranges from about 6-10% at 1-hour forecast horizon up to 12-16% 
for the 18-24 hour forecast period. We show the same performance measures in Figure 62 for a 
representative wind project in the Arlington, Oregon area where the forecast errors are generally lower 
and have greater seasonal variability. A summary of overall seasonal performance is included in Table 
17 given by horizon-averaged MAE skill score and segregated by site. 
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Figure 61. Normalized MAE for forecasts at White Creek Wind in Klickitat County, WA. 

 

Figure 62. As in Figure 61, except for forecasts at North Hurlburt, near Arlington, OR. 



WFIP2 Complex Terrain - Page 82 

DE-EE0006898 

 

 

 
 

 Forecasting Validation Summary 

Improvements in wind power forecasting provided by the experimental HRRRNEST model are mostly 
negligible in all months except winter. The overall improvement in normalized MAE for the BPA regional 
forecast in wintertime averages out to 11% for all horizons. For the subset of cases during January 2017 
deemed particularly interesting to the project team and of potential importance for the wind industry, we 
achieve a slightly larger average improvement of 14%. However, all other seasons show no major 
benefits. Although a strong negative forecast bias seems to be reduced a little during the springtime, it 
does not translate to a noticeable reduction in the normalized MAE. On average, the results in the other 
three seasons even suggest some possible degradation. At individual wind sites, the wintertime forecast 
improvements are generally smaller than at the aggregated regional level, ranging from 0-5% in terms of 
normalized MAE. This is a typical result since the aggregated regional forecasts have a greater 
dependency on the meteorological patterns represented in a mesoscale model, while some of errors 
associated with microscale variations are averaged out in the regional forecasts. 
In comparison to the raw model 80-m wind speed validation results presented by Olson et al. (2019), 
there are many similarities. For the HRRRNEST simulations over all four reforecast periods, the 
experimental runs reduced wind speed forecast errors by an average of about 2-7% over the 19 sodar 
locations distributed throughout the Columbia River Basin during WFIP2. The spring and summer 
periods showed the least impact. Whereas, improvements were the most robust in fall and winter, when 
the implemented physics changes that mostly benefited stable PBL regimes were more influential. While 
we did not realize any benefits during the fall period, the wintertime improvements approach the 15-20% 
level seen for the rotor-layer wind speeds. Our results for wind power are a little more pessimistic 
because they measure the improvements after statistical post-processing is applied, which acts to 

 

Wind Project Name Winter 
(January 

2017) 

Spring 
(April 2016) 

Summer 
(July 2016) 

Fall 
(October 

2016) 
Combine Hills II -7.0 3.2 -3.4 4.4 
Harvest Wind 3.0 -5.0 -0.6 2.9 

Big Horn -1.4 0.0 -1.0 -2.3 
Big Horn II -1.9 1.4 -1.6 0.1 

Hay Canyon -1.0 0.4 -3.9 -1.9 
Juniper Canyon -19.8 N/A -1.6 -1.0 

Klondike 3.2 2.8 -2.0 -1.1 
Klondike II -1.7 -0.5 -2.4 -0.5 
Klondike III 4.0 1.5 -2.0 -1.7 

Klondike IIIA -2.0 3.0 -8.2 -0.3 
Pebble Springs -7.5 -3.1 -2.6 2.4 

Star Point -1.7 1.2 -1.3 0.8 
Biglow I N/A 7.7 -2.7 6.6 
Biglow II N/A 1.4 -1.2 4.4 
Biglow III N/A 3.4 1.6 3.9 

Tucannon River N/A 2.5 -0.1 -0.7 
Horseshoe Bend -1.5 -1.8 -4.0 1.5 

North Hurlburt 2.0 -0.1 -2.9 2.8 
South Hurlburt 3.2 -2.3 -4.0 0.0 

White Creek Wind 3.9 -0.8 -3.3 3.6 
 

Table 17. Normalized MAE skill score organized by individual wind project and by 
season. 
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reduce the differential between the experimental and control runs. Another factor contributing to our 
lower estimates of forecast improvement is the smaller sample size (four versus six week reforecast 
periods) and the need for longer training data periods overall to create more skillful statistical model 
corrections. Finally, the realized improvements should be larger at the operational HRRR resolution of 3-
km, because some of the biggest physics improvements in WFIP2 came from parameterization schemes 
that were active only at those scales and not appropriate for the sub-km scales of the HRRRNEST 
domain. 

 Future Work and Recommendations 

Now that a complete 1-year period of reforecast data is available in the WFIP2 Data Archive and Portal, 
other possibilities exist for train-test splits that may offer more robust results with larger in-season sample 
sizes available for the algorithm training periods. For example, the eight additional months could be set 
aside for training, while keeping the four existing months as out-of-sample test periods. Even better, a 
12-fold cross-validation strategy could be used, rotating through the full data set one month at a time, 
yielding 11-month sample sizes for algorithm training periods. If longer training periods of about a year 
can be gathered, it should result in more skillful statistical models. In turn, this would yield a more 
accurate estimate of the potential industry benefits as a result of WFIP2 modeling improvements. 
Since many of the envisioned modeling improvements in WFIP2 slated for the terra incognita scales did 
not get completed, it was not a surprise that the relative improvements available from the HRRRNEST 
simulations were not as substantial. Most of the modeling improvements implemented by NOAA stand to 
benefit the HRRR at operational resolutions above 1-km grid spacing. For the time being, because the 
primary benefits of WFIP2 will be realized through the operational HRRR model, it makes sense to more 
thoroughly examine the differences between the control and experimental WFIP2 HRRR at the 3-km 
operational resolution. In future years, after more gray zone modeling improvements are implemented 
into WRF, the impact on wind power forecasts at sub-km scales can be revisited. 
 
3.4 Decision Support Tools 
As lead of the WFIP2 Decision Support Tools (DST) team, Vaisala organized work to develop decision 
support algorithms for complex terrain phenomena observed in the field study. The motivation behind the 
DST team’s work was to connect the WFIP2 project with the wind energy industry and to ascertain its 
relevance. The work was driven by two primary questions: 

• How can we convey the possible impacts of complex terrain phenomena? 

• Can we create actionable alerts that will improve situational awareness and reduce decision-
making time? 

To answer these questions, Vaisala organized and carried out a set of sub-tasks to design algorithms, 
build a prototype, and collect industry feedback. The unifying objective was to design a light-weight 
alerting prototype for complex terrain phenomena that drive wind power volatility, which was fully 
probabilistic and could be used to facilitate an interactive discussion with industry partners on the 
features and potential utility of the tool. 
Coordination amongst representatives from WFIP2 project participants from NOAA, NREL, and PNNL at 
DST team meetings facilitated a robust exchange of ideas. After some iteration, the team reached 
consensus on the phenomena of primary interest and on the initial algorithm design. Cross 
communication with the Uncertainty Quantification (UQ) team established linkages to parallel efforts 
underway at PNNL, NREL, and TTU (a Vaisala team member) and yielded future plans to incorporate 
uncertainty information into the algorithm itself. Due to a shortened timeline for data analysis compared 
to the original WFIP project plan, Vaisala implemented the DST algorithm for only a single example 
complex terrain phenomenon. Team discussions laid the groundwork for design of additional 
phenomena, should future funding become available. For the single example type, a history of 
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probabilistic alerts was generated over the multi-season retrospective forecast period for WFIP2. These 
comprised four month-long periods (one calendar month from each season) during the field study. 
Creation of the alert history enabled for computation of overall validation statistics and an initial 
assessment of its performance. Vaisala modified its commercial interface to build a prototype tool for 
display of the alert information as a vehicle to collect industry feedback on its presentation format and 
potential usefulness. 

3.4.1 Methodology 

The process we followed began with identification of the complex terrain phenomena observed during 
the WFIP2 field study. This part of the effort drew on work from the larger WFIP2 team, including 
contributions from the Event Logging and Verification and Validation (V&V) teams. We relied heavily on 
the WFIP2 Event Log, a daily recording of the dominant observed weather conditions in the Columbia 
River Basin during the 18-month field campaign. The Event Log contains a subjectively applied weather 
taxonomy, identifying which of five major categories of meteorological phenomena were active during 
each day, the performance level of the operational HRRR model forecasts, and the relative importance of 
the event for the wind energy industry. From the Event Log, we were able to identify the most important 
event types that occurred frequently during the field campaign and were suspected as having the largest 
impacts on wind operators. These periods are also identified in the Common Case Study Set, where the 
selected sub-set of interesting case days are annotated with labels for significant power ramps (up or 
down) or periods of power volatility. 
We also utilized the WFIP2 Phenomenon Identification and Ranking Table (PIRT), which was a tracking 
tool developed by the V&V team to collect the priorities and reasons behind the many proposed team-
wide validation studies and to connect them with the available field instruments that would be needed to 
carry out the work. From the PIRT, we were able to identify the specific instruments likely to be the most 
helpful for identifying each type of event occurrence during the field campaign. The goal of the team was 
to automatically label event occurrence (as a binary class) using the field campaign data. 
A principal objective from the WFIP2 science plan was that the DST algorithm should produce 
probabilistic guidance, and if possible, incorporate the work of the UQ team. Because of the sequencing 
of work during the WFIP2 project, the UQ team was only able to produce ensemble simulations for a 
limited set of case studies late in Budget Period 3. UQ simulations were completed for 16 cases before 
the project concluded, but this was an insufficient sample size to fully develop and test the candidate 
methods for integration with the DST algorithm. Instead, we stopped at a conceptual approach to the 
design and will leave it for future studies to carry forward and test the efficacy of these plans. 
Nevertheless, we did succeed in implementing a method that achieves the basic WFIP2 science goal of 
having a probabilistic alert. This was achieved through the use of modern machine learning methods, 
many of which enable the straightforward development of classifier models, which can produce either 
probabilistic or deterministic predictions of binary (or multi-category) events. Amongst many candidate 
techniques, ultimately we chose to implement random forest classifier models, as these achieved the 
best performance within our experimental period. It should be noted that the classifier models we 
implemented were only based on candidate features from the control and experimental HRRRNEST (∆x 
= 750 m) model runs and therefore don’t incorporate initial condition or model parameter uncertainties. A 
future advance to the method would incorporate ensemble simulations, possibly produced via a formal 
UQ methodology, in order to better sample the flow-dependent uncertainties in the model simulations of 
relevant meteorological parameters. The candidate features from HRRRNEST simulations are used as 
inputs for training random forecast classifiers, which then produce probabilistic event-based forecasts on 
an independent test set. 

 General Procedure 

The general procedure we developed for the DST algorithm follows below, accompanied by some notes 
explaining further details on each step: 
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i. Label times when complex terrain events of interest occurred. 
Ideally this step is automatable, in that some rule set can be applied to observed data, and the result is a 
binary class label (0/1) for each time period. Otherwise, a brute force approach may be necessary 
requiring human effort and subjectivity to annotate each time point. This approach can naturally be 
extended to accommodate multi-class event types or real-valued indices over the [0,1] interval to add the 
notion of event severity or likelihood. 
ii. Label times when power ramp events or significant power volatility occurred. 
This step is also best, if automated. For identifying power ramp events automatically, we relied on the 
Ramp Tool & Metric (RT&M) developed during WFIP1 (Bianco et al., 2016) rather than inventing new 
techniques. Annotation of power volatility events would require new methods for automatic identification, 
and we did not end up pursuing these further in this study. 
iii. Find the overlap times of these events from steps i and ii, creating merged labels for times with 
specific ramp-causing phenomena. 
This step is straightforward if a logical operator on the two labeled time series can be used, like 
intersection. However, it could also be important to account for time lags or intermittency which could 
complicate this step and introduce additional configuration parameters. The merged labels become our 
target data time series, which we use for training predictive models for alerting on these joint conditions. 
iv. Extract/engineer features from candidate predictor data sets. 
This step involves pre-processing and data set manipulation. For NWP model output data, extraction 
includes some important details, such as the choice of spatial interpolation method (bi-linear from the 
four nearest grid points), time interpolation method, and whether additional derived variables not part of 
the standard model output (e.g., lapse rate) are calculated. Other input data types could also prove 
valuable depending on the target phenomenon and forecast horizon, such as recent observations from 
satellite, radar, nearby profilers, or regional surface observations. 
v. Combine with uncertainty quantification information. 
This step is optional, since ensemble NWP simulations would significantly multiply the available number 
of candidate features to be used in the DST algorithm making the following step difficult without a very 
long historical training data set. If feasible, we encourage the use of a combined initial condition and 
physics ensemble, since important uncertainties arise from both sources for complex terrain phenomena 
depending on the type and time of day Smith (2018). To reduce the multiplicative impact on the number 
of available NWP fields and contain the dimension of training data set, we envision limiting the feature 
set to only summary information from the ensemble using statistics like mean, median, minimum, 
maximum, standard deviation, or percentiles (as in Roulston et al. 2003). Another possible option is to 
use the Smith (2018) approach to down-select a sub-set of ensemble members which exhibit important 
characteristics that well span the range of uncertainties of interest (e.g., fast, medium, and slow 
members for a ramp event). 
vi. Train classifier model. 
This step involves training a statistical model, using merged event labels from step 3 as the target data 
and engineered NWP-based features from steps iv and v as the training data. A generalized linear model 
can be used, like for probability of precipitation forecasts using traditional Model Output Statistics 
approaches. Alternatively, there are many types of supervised learning techniques now widely available 
for classification problems like this one. Here, we want to choose methods that can produce probability 
forecasts of the class labels. 
vii. Apply classifier model on test data, obtaining probabilistic class predictions. 
This step involves out-of-sample execution of the trained model from step vi to produce probability 
forecasts for the class labels and to measure the model performance on previously unseen data. 
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viii. Apply a post-processing method to calibrate the forecast probabilities. 
This final step is optional, depending on the raw model performance and the availability of sufficiently 
large training data sets. If the raw model produces un-reliable forecast probabilities, then a calibration 
step may be necessary to achieve good reliability, while attempting to retain the skill (resolution and 
sharpness) in the original model output. 

 Data 

Actual power generation data recorded at the wind project substation level are the basis for the DST 
algorithm work. Vaisala team partners contributed this data directly to the project for 20 individual wind 
projects within the BPA control area. Some project partners contributed data at the wind turbine unit 
level, but this more detailed power and wind data was not used in the DST analysis. Additionally, the 
BPA fleet aggregate power generation was utilized, since it is freely available and published in near real-
time on the BPA website (https://transmission.bpa.gov/Business/Operations/Wind/twndbspt.aspx). The 
DST algorithms were developed on the BPA fleet aggregate and on the individual site level, with a single 
wind project in the center of the WFIP2 study area near Wasco, Oregon called Klondike III. The objective 
was to have at least one example for each level of aggregate wind power forecasting to evaluate the 
method. All observed power data was converted to 1-hourly averages in this study. We did not attempt to 
analyze sub-hourly forecast skill. 
The model forecast data for the DST work comes from the provisional WFIP2 HRRR reforecasts 
available from the Data Archive and Portal (https://a2e.energy.gove/about/dap). These simulations are 
“cold-start” configurations with initial conditions taken from the RAP and run twice per day (every 12 
hours) through forecast hour 24. Otherwise, the WFIP2 HRRR (∆x = 3 km) utilizes the same domain 
setup and physics suite as its operational counterpart. A very high-resolution nested domain, nicknamed 
HRRRNEST, is run at ∆x = 750 m inside the WFIP2 HRRR with a delayed start of 3 hours. Although the 
WFIP2 HRRR and HRRRNEST reforecast simulations were eventually created for one full year of the 
WFIP2 study period, at the time of this analysis, only four 1-month periods were available for download. 
These months were April, July, and October of 2016 and January of 2017, calendar months which are 
centered during each of the four seasons. We examined only the control and experimental HRRRNEST 
runs in this study due to time-limited resources in the data analysis phase of the project. The 
HRRRNEST runs target the terra incognita scales (200 m < ∆x < 1000 m), where PBL parameterizations 
are known to struggle, but better resolve important terrain features of the region including the Columbia 
River Gorge. A more complete analysis of both WFIP2 HRRR and HRRRNEST simulations for the full 
year of available reforecast data is now possible, but was not ready by December 31, 2017 to be in time 
for this initial DST work. 

 Algorithm Example: Cold-Pool Mix-Out Up-Ramps 

The WFIP2 research team placed particular importance on better understanding of meteorological 
processes influenced by complex terrain that lead to rapid changes in wind speed. One event type that 
remained in focus throughout the study was cold pools and their evolution. These events were 
predominantly cold season phenomena that were the second-most frequently observed event type 
during the measurement campaign (Wilczak et al. 2019). During the decay phase of these events, the 
sudden transition in the near-surface winds from light or easterly to strong westerly or south-westerly 
winds results in a strong upward ramp of wind speed through-out the Columbia River Basin. Wind power 
at the BPA fleet aggregate level is often marked by periods of low or near-zero production during these 
long-lived cold pool episodes punctuated by a rapid increase at the end (McCaffrey et al. 2019). The 
timing of the mix-out of the cold pools has been a notorious short-coming of mesoscale NWP models and 
was a point of particular emphasis for targeted physics improvements during WFIP2 (Olson et al. 2019). 
Because the WFIP2 research team spent significant effort studying this particular event type and 
modeling improvements were realized because of it, the DST team nominated this phenomenon as the 
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best candidate on which to begin analysis. We followed the general procedure outlined above and call 
out the steps specific to the analysis of cold-pool mix-out up-ramp events below: 
i. Labeling cold pool events. 
For identification of long-lived cold pool events in the Columbia River Basin during the field study, we 
relied on the technique described in McCaffrey et al. (2019). In this approach there are criteria for 
stability, wind, and duration. The stability criterion involves the calculation of the temperature lapse rate 
in the lowest 1 km above ground level and ensuring that it must be greater than -6.8 C/km. The layer 
average wind must either be easterly or below 3 m/s if it is outside the NE to SE sectors. After meeting 
the first two criteria, to distinguish the cold pool from diurnal radiatively driven events, its duration must 
last more than 20 hours with gaps no larger than 3 hours. In the McCaffrey et al. (2019) long-lived cold 
pool study, these criteria were used at a combination of observing locations within the WFIP2 study area. 
Cold pool event times were labelled only from conditions observed at the Wasco, OR location, where we 
made the assumption that profiling observations taken there were representative of the basin wide 
conditions. The time resolution of the event labels were limited to hourly. 
ii. Labeling significant up ramp events. 
Ramp events in wind power generation are identified through automated labelling of the actual time 
series from a wind project or from regionally aggregated observed values. As discussed at length in 
Bianco et al. (2016), there is no commonly accepted definition for a ramp event. No strict definition is 
available and the parameters can vary based on the needs of the end user. For this reason, a more 
flexible tool called the Ramp Tool and Metric (RT&M) was developed as part of the scope in the original 
WFIP study. The RT&M tool is publicly available online2 and provides flexibility to choose from three 
different methods of ramp event identification. For simplicity, we chose a single method of ramp event 
identification, the min-max method, which finds the maximum power amplitude change (∆p) within a 
sliding time window of length WL. This method avoids some problems with the fixed-time interval method 
and is simpler than the explicit derivative method. It can be argued also that it results in more intuitive 
ramp definitions which start and stop at the peaks and troughs of the power time series. Although the tool 
supports any reasonable choice for ∆p and WL, to avoid running a large number of DST model 
simulations, each one with a unique version of labelled data owing to a different ramp definition, we 
chose a set of functional default values. We selected ∆p as 15% of the installed capacity, which 
amounted to minimum power change of about 720 MW for the BPA aggregate and about 33 MW for 
Klondike III. We set WL as 12 hours for BPA and 6 hours for Klondike III. After applying these settings 
and using the RT&M to label the observed power time series, we retain only the positive events that are 
associated with upward directed changes in power output. The time resolution of the labeled data was 
limited to one hourly. If the actual ramp start or end time fell within an hour, then that whole hour was 
labeled as part of the event. The native resolution of the observed data was retained to define the start 
and end times. For example, the BPA aggregate power has time resolution down to the 5-minute level. 
While the choices were based on Vaisala industry experience, but also somewhat arbitrary, the ramp 
definitions settings are modifiable and were specifically discussed during the industry feedback sessions. 
iii. Finding the times when cold-pool mix-out and up-ramp events overlap. 
We marked the end time associated with each cold pool event labeled in step i calling that the official 
mix-out time. Then, from step ii, we retrieved the start and end time of each up-ramp event. If the cold 
pool end time intersected any up-ramp by falling in between the start and end times of that event, then 
we created a new labeled time series for that up-ramp event marked as true. Because the Wasco 
profilers only measure one part of the study area and mix-out times can vary throughout the basin 
depending on the scouring processes at work, we wanted to also allow for a time offset. This step 
seemed especially appropriate in dealing with the BPA fleet aggregate power, which is a summed 
reflection of the mix-out process happening in different regions at different times. The observed up-ramps 
in the BPA aggregate time series could be composed of several smaller contributing up-ramps as the 

 
2 http://www.esrl.noaa.gov/psd/products/ramp_tool 
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cold-pool is eroded at higher elevations or western-most wind projects first. Therefore, we chose to allow 
for a 1-hour tolerance between the end time of the cold pool and the start time of the up-ramp event. This 
threshold was chosen by inspection of the time series. An example of the merged labeling procedure for 
the BPA fleet aggregate power is shown in Figure 63. 

 

Figure 63. Observed hour-averaged power generation time series from the BPA fleet aggregate 
power during October 2016 (black). Labelled up-ramp event times are shaded light blue. Connected 
blue dots signify periods labeled as long-lived cold pools at Wasco, Oregon. 

iv. Extracting and deriving important model input features. 
For NWP candidate features, we used the control and experimental HRRRNEST model output bi-linearly 
interpolated to the Wasco airport location from the four surrounding grid points. No time interpolation was 
necessary as we used only hourly model output to match up with our hourly resolution labeled event 
data. We retained only forecast hours 4 through 15 from each model run that were 12 hours apart in 
order to stitch together a single complete training data set for all available valid times within the four one-
month retrospective periods. A large variety of standard model output variables from HRRRNEST are 
available in the DAP and we utilized all of the 2-D surface fields as well as the 3-D fields at the native 
model vertical levels. To supplement the raw model output, we derived some additional variables that we 
hypothesized might be relevant for the cold-pool mix-out process. These additional model output 
variables were: 

• The potential temperature vertical gradient between the surface and 300 m above ground level 

• The potential temperature vertical gradient between the surface and 1.5 km above mean sea 
level 

• The depth of the cold pool layer, as defined by an upward search for the maximum positive 
temperature lapse rate below 4 km 

• The layer average wind speed within the cold pool layer 

• The layer vector-average wind direction within the cold pool layer 

• The wind speed at the model level immediately above the cold pool layer 

• The u-component of the wind at the model level immediately above the cold pool layer 
 
Although we restricted ourselves to focus solely on the usage of relevant NWP data here, other input 
data sets could have been used. For example, at short forecast horizons less than about 6 hours, 
observed or extrapolated data taken from observed conditions can often add significant predictive skill. 
For example, we could have added lagged observations from the wind profilers and thermodynamic 
radiometers located nearby within the study area to boost the predictive skill of the models at these 
shorter forecast horizons, but this potential improvement was not investigated here. 
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v. Incorporating UQ information (optional). 
As mentioned earlier, we elected to skip this step and did not include data from UQ simulations for this 
example implementation of the DST algorithm. UQ simulations were only available for 16 days, meaning 
that we would have needed to invent a new method to synthesize ensemble forecast data for the 
remainder of the cases in the retrospective period in order to proceed. 
vi. Training the statistical classifier models. 
To compose a training data set, we assembled a history of target data using the merged labels from step 
iii and the NWP candidate features from the WFIP2 HRRRNEST simulations, as described in step iv. 
Statistical models were trained using standard classification methods readily available through the scikit-
learn Python package, including support vector machines and random forest decision trees. Random 
forests produced the best results for the size and scale of the classification problem here, with a feature 
dimension of about 100 variables and a sample dimension of about 2500. To optimize the hyper-
parameters of the classifiers, we employed a fixed grid search using 4-fold cross-validation. 
vii. Testing and application of the model. 
Due to limited sample size of the data in the study, with only a one-month sample from each season 
available, we could not afford to split the available periods into fixed training and testing sets. Instead we 
employed a k-fold cross-validation approach to assess how the results of our models would generalize to 
independent data. We divided the data set into eight folds, each one of approximately a half-month in 
length, leaving out one half-month partition as testing data and using the remaining 3.5 months as 
training data. We rotated through the folds, using each half-month period as a validation set. Days 1-15 
were separated from days 16-end of the month. This had the benefit of including half a month of in-
season data within the training data set when predicting the other half-month from the same season. 
With calendar month splits only using 4 folds, it would not have been possible to include in-season 
training data for the target periods with the available data set. 
viii. Calibration of the forecast probabilities (optional). 
We considered options for post-processing the probability forecasts to improve their reliability, but all 
available methods would have required an additional split of the data into training and testing sets to tune 
the parameters of the methods. Because we were already constrained by sample size, we did not want 
to further subdivide the limited data set available for model training. Furthermore, we observed that 
building classifier models for generic up ramp event target labels resulted in fairly reliable forecast 
probabilities that didn’t require any post-processing. Therefore, we chose to skip this step and leave the 
cold pool mix-out up-ramp classifier forecasts in raw form. 

 Validation Strategy and Performance Metrics 

To measure performance of the DST algorithms, we focused on a few standard validation tools for 
probability forecasts. To assess the agreement between the forecast probability and the mean observed 
frequency, we used the well-known reliability diagram (Wilks 2006). Reliability of the forecasts is 
estimated by the proximity of the plotted curve to the diagonal. We present reliability diagrams together 
with a histogram of forecast probabilities to convey the sharpness in the forecast values. As an overall 
summary of the skill of the classifier model forecasts, we computed the area under the relative operating 
characteristic curve (AUC) or ROC Area (Mason and Graham 2002). Implicit in the calculation of the 
AUC is that increasing probability thresholds are chosen to convert the forecast into a binary yes/no 
prediction and score it in the traditional categorical way. For each critical threshold, we can compute a 
corresponding 2x2 contingency table, and we can derive common summary metrics of the performance 
like the probability of detection (POD), false alarm ratio (FAR), and the equitable threat score (ETS). The 
AUC summarizes the potential usefulness of the probability forecasts over all of the possible decision-
making thresholds. 
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Because our target labels are highly imbalanced, due to the infrequent nature of our example 
phenomenon, we must be cautious about using a metric like the AUC to discern between the skill of two 
different models. This is because the number of correct negatives can be very large and consequently a 
large change in the number of false alarms results in a relatively small change in the false alarm rate. 
Note that, 
 

𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚	𝑟𝑎𝑡𝑒 = 	
𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠

𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 
with the correct negatives count appearing in the denominator. Therefore, AUC is not very sensitive to 
changes in model skill when the class imbalance is high. For this reason, we also compute the area 
under the precision-recall curve, which is a metric that is more sensitive to changes in the false alarm 
count. Precision, also known as the success ratio in the meteorological literature, is defined as: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	(𝑠𝑢𝑐𝑐𝑒𝑠𝑠	𝑟𝑎𝑡𝑖𝑜) = 	
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠
 

 
and summarizes what fraction of the forecast yes events were correctly observed. It is the complement of 
the FAR. Recall is the same as POD. Both precision and recall do not include a term for the correct 
negatives, so naturally a precision-recall curve is much more sensitive to changes in the number of false 
alarms. The area under the precision-recall curve is also called the average precision score. This is 
because the area under the precision-recall curve is computed as the weighted average of the precision 
achieved at successively increasing probability thresholds. Each weight is defined as the increase in the 
probability of detection from the previous critical threshold. 
To measure the decision-making impact of the probability forecasts from an economic impact 
perspective, we utilize the value score (Richardson 2000, Wilks 2001). The value score assumes a cost-
loss decision model and is usually presented as a curve over all potential cost-loss ratios between zero 
and one. The value score conveys the percentage improvement in the expected expense associated with 
using the forecast information over time. It can be interpreted as the economic value between 
climatological (0%) and perfect (100%) information. The value score curve has a peak value at the cost-
loss ratio that matches the observed relative frequency of the target event. 

3.4.2 Results 

Performance of the decision support algorithm outlined above is assessed by the set of diagnostic tools 
and accuracy metrics described in the methodology section above. Up-ramp events caused by mix-out of 
long-duration cold-pools in the Columbia River Basin are forecast retrospectively over the multi-season 
study period separately for the HRRRNEST control and experimental model simulations. The results 
presented here compare the performance of the control and experimental decision support models for 
every hour over 121 days during April, July, and October of 2016 and January of 2017. The total sample 
size for the comparisons is 2904 hours. Out of this total period, 811 hours or 27.9% of the times, are 
identified as part of up-ramping periods according to the criteria for the BPA fleet aggregate power. Only 
70 of these up-ramping hours, or 2.4% of the total times, are tagged as being associated with cold-pool 
mix-out events. There are only 8 unique up-ramp events associated with cold-pool mix-out periods 
identified during these study. The up-ramping period for each event lasts long enough to collectively 
amount to a total duration of 70 hours. Because of the small number of identified event occurrences, this 
phenomenon can be considered rare and this makes accurate forecasting more difficult. Validation of the 
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forecasting performance for rare events is also difficult and the level of confidence associated with our 
results should be considered to be somewhat low. 

In Table 18, the overall performance of the cold-pool mix-out up-ramp probability forecasts for the BPA 
fleet aggregate power are summarized by the area under the relative operating characteristic curve 
(AUC) and the average precision score. The AUC for the HRRRNEST control decision support model is 
0.723 and for the HRRRNEST experimental model is 0.763. Average precision scores are 0.056 for the 
control model and 0.063 for the experimental one. These statistics show a very slim advantage to the 
experimental model, but the differences are quite small compared to the likely uncertainty in the scores 
due to low sample size. Therefore, we assume the differences are not statistically significant. The AUC 
level conveys that the probability forecasts have some limited skill, but that it is rather modest compared 
to the no-skill AUC of 0.5 and perfect skill level of one. The average precision scores better account for 
the event rarity than AUC does, and these scores show the very small incremental value over the 
minimum precision score of zero, compared to the perfect score of one. 
The calibration of the probabilistic event forecasts are shown with the aid of the reliability diagrams in 
Figure 64. The right hand panels are simply zoomed in views of the left hand panels in order to focus in 
on the lower left portion of the plot due to the rarity of the observed event. The left hand panels show all 
values from 0 – 1, whereas the right hand panels extend only from 0 – 0.15. Because of the limited 
sample size and also the rarity of the event during the study period, we omitted plotting values where the 
bin population was less than 30. Focus is given only to the bins with a minimum reasonable sample size, 
while bins with very low confidence statistics are avoided. The largest forecast bin exceeding the 
minimum sample size has a mean predicted value close to 30%, which is over 10 times larger than the 
observed frequency of the event. So, we can conclude that despite our limited range of plotted values, 
the reliability diagrams do span a reasonable range of forecast probabilities from well below to well 
above the normal likelihood of the event occurrence. Within the six lowest bins (forecast values ranging 
from about 0% – 10%) the experimental HRRRNEST classifier forecasts are much closer to the 1:1 line 
than the control in four of the cases. In the lowest bin, the two forecasts have nearly equal observed 
relative frequencies. In the two largest bins (forecast values ranging from about 15% – 30%), the 
observed relative frequencies for both forecasts appear to be much lower than the forecast probabilities 
for those bins leaving the calibration curves far from the 1:1 line in this part of the diagram. Overall, it 
appears that the experimental HRRRNEST classifier forecasts are have better reliability than the control, 
but only in the 0 – 10% forecast value range. Above that level, both forecast types appear to be 
unreliable and over-forecast the event occurrence. 

Table 18. Overall performance of the probability forecasts for BPA fleet aggregate power 
up-ramp events associated with cold-pool mix-outs during the four-month, multi-season 
retrospective period during WFIP2. Forecast skill is measured by area under the ROC 
curve. 

Cold-Pool Mix-Out 
Up-Ramps 

HRRRNEST control 
Random Forest Classifier 

HRRRNEST experimental 
Random Forest Classifier 

AUC 0.723 0.763 
Average Precision 0.056 0.063 
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Figure 64. Reliability diagrams (top panels) for the control and experimental HRRRNEST classifier 
model forecasts of the BPA fleet aggregated power up-ramp events associated with cold-pool mix-
outs. The corresponding histograms (bottom panels) show usage frequency. 

To optimize decisions, a risk-neutral user with a sufficiently large budget should choose a critical 
threshold that is equal to the event likelihood. For our cold-pool mix-out example, such a decision-maker 
ought to choose the 2.4% threshold for converting the up-ramp probability forecasts to categorical 
(yes/no) ones. At this critical threshold, we can compare the resulting 2x2 contingency tables that are 
populated over the 2904 hours in our historical re-forecast period using the simple binary decision 
process. In  
 
 
 
 
 
Table 19, we show the 2x2 contingency table for the control HRRRNEST classifier model at the 2.4% 
threshold along with the POD, FAR, ETS, and value score as summary metrics. In Table 20, we show 
the show the same statistics for the experimental model for comparison. At this critical decision 
threshold, the control forecasts perform a little better in all metrics. There are a larger number of event 
hits (53 to 50), a lower count of false alarms (847 to 896), and a smaller amount of missed events (17 to 
20). Both forecast models have large FARs well above 0.9, with PODs only in the 0.7 – 0.75 range. The 
result is a positive ETS for both models, but only marginally above zero, since false alarms are penalized 
equally to misses in this metric. The value score takes into account the differing economic penalties 
between these outcomes by assuming that a false alarm only costs 2.4% of the amount of a missed 
event, since that is the chosen decision threshold. By this measure of economic value, both forecast 
models score well, getting about 40% of the way from a climatological baseline level toward having 
perfect information. The control forecast has a value score of 0.458 compared to the experimental value 
score of 0.398.  
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Table 19. 2x2 contingency table for control HRRRNEST classifier model forecasts at the 2.4% 
critical threshold with four summary statistical measures of the decision-making performance. 

HRRRNEST control Random Forest 
Classifier 

Threshold = 2.4% 

OBSERVED 
YES NO 

FORECAST YES 53 847 
NO 17 1987 

POD 0.757 
FAR 0.941 
ETS 0.035 

Value Score 0.458 

 

Table 20. As in Table 19, except for experimental HRRRNEST classifier model forecasts. 

HRRRNEST experimental Random Forest 
Classifier 

Threshold = 2.4% 

OBSERVED 
YES NO 

FORECAST YES 50 896 
NO 20 1938 

POD 0.714 
FAR 0.947 
ETS 0.029 

Value Score 0.398 

 
In Figure 65, we display value score curves as the cost of a false alarm changes and the critical 
threshold goes along with it for the cold-pool mix-out event example. The value scores are plotted as a 
function of the user’s cost-loss ratio from zero to one. The value score is maximized at a cost-loss ratio 
that is equal to the relative frequency of the event, or about 2.4%, with values as seen Table 19 and 
Table 20 above. The value score curve drops off quickly to the left of the peak as the cost-loss ratio 
declines toward zero. The value score also decreases to the right, but less rapidly, as cost-loss ratios 
increase toward 10%. The experimental HRRRNEST classifier forecasts exhibit positive values scores 
over a broader range of cost-loss ratios than the control, despite the lower peak value. For cost-loss 
ratios in the range of 3% – 7%, the experimental forecasts perform better. Outside of the narrow range in 
cost-loss ratios from 0.5% – 7.5%, neither forecast shows an economic benefit to the decision maker 
since the value scores are less than or equal to zero in these zones. 
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Figure 65. Value score curves as a function of the cost-loss ratio for the control and experimental 
HRRRNEST classifier model forecasts of the BPA fleet aggregated power up-ramp events 
associated with cold-pool mix-outs. The right hand panel shows the same data as the left hand 
panel, but with a zoomed in view to the cost-loss ratio range between 0 and 0.1. 

For gaining context on these results, we also sought to understand how our example event forecasts 
perform relative to something more common. For this purpose, we compared the performance of 
classifier models trained separately for all up-ramp and down-ramp events in the BPA fleet aggregate 
power regardless of the cause. Over ten times the number of true events were available, with 811 hours 
(27.9%) identified as up-ramping periods and 952 hours (32.8%) labelled as down-ramping periods. In 
Table 21 we report the overall performance statistics for BPA up-ramps for both control and experimental 
HRRRNEST classifier models. The same results for the down-ramp follow in Table 22. There is no 
significant difference between the control and experimental model performance for either generic ramp 
event type. The skill for down-ramp events appears to be better than for up-ramps, with larger AUC and 
average precision scores across the board. For up-ramp events alone, compared to the relatively rare 
cold-pool mix-outs, the average precision scores are significantly higher, reaching above 0.5 in both 
cases. However, there is not an impact on AUC scores. 
 

Table 21. Overall performance of the probability forecasts for BPA fleet aggregate power up-ramp 
events. Forecast skill is measured by area under the ROC curve (AUC) and average precision 

scores for the control and experimental HRRRNEST classifier models. 

ALL Up-Ramps HRRRNEST control 
Random Forest Classifier 

HRRRNEST experimental 
Random Forest Classifier 

AUC 0.719 0.727 
Average Precision 0.501 0.513 
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Table 22. As in Table 21, except for BPA fleet aggregate power down-ramp events. 

ALL Down-Ramps HRRRNEST control 
Random Forest Classifier 

HRRRNEST experimental 
Random Forest Classifier 

AUC 0.804 0.804 
Average Precision 0.659 0.662 

 
In Figure 66, we show the reliability diagrams for the all up-ramp event classifier models (left) and the 
down-ramp event models (right). Overall, the forecasts show reasonable calibration and little difference 
between control and experimental versions. The up-ramp event forecasts seem to have less resolution in 
the middle forecast probability ranges between about 40% – 65% where the calibration curve deviates 
significantly from the 1:1 line. However, at low and high values, both forecast types perform well. 
Because both types of generic events are more common, forecast bins are well populated throughout the 
whole range. 

 

Figure 66. Reliability diagrams (top panels) for the control and experimental HRRRNEST classifier 
model forecasts of the BPA fleet aggregated power up-ramp events (left panels) and down-ramp 
events (right panels). The corresponding histograms (bottom panels) show usage frequency of 
each forecast value range.      

 
The value score curves shown in Figure 67, further verify that there is no appreciable difference in skill 
between the control and experimental models for generic up and down ramp event forecasting. 
Compared to the value score curves for the cold-pool mix-out events, a broader range of positive value 
scores is evident, but the peak value scores are similar. For down-ramp events, the positive value score 
curve extends over nearly the entire range of cost-loss ratios. For up-ramp events, the positive value 
score curves are interrupted in the area of low resolution between about 40% – 65% that was also 
evident in the corresponding reliability diagram above. Otherwise, the up-ramp value score curves are 
positive from about 5% – 40% and again from about 65% – 100%. The peak value scores occur at much 
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larger cost-loss ratios than for the cold-pool mix-out up-ramp forecasts, as we should expect, where they 
are equal to the event frequency of occurrence (27.9% for up-ramps and 32.8% for down-ramps). The 
peak value scores range from as low as 0.319 for experimental up-ramp event forecasts to 0.456 for 
control forecasts of down-ramp events. 

 

Figure 67. Value score curves as a function of the cost-loss ratio for the control and experimental 
HRRRNEST classifier model forecasts of the BPA fleet aggregated power up-ramp events (left 
panel) and down-ramp events (right panel). 

At the individual wind project level, we are unable to test whether the cold-pool mix-out event forecast 
performance differs from the fleet level aggregate. After implementing the labelling procedure at a 
representative Wasco area wind project, called Klondike III, only 3 hours were identified as true events. 
With only 3 positive samples in the dataset, we are unable to train a robust classifier model to make out-
of-sample forecasts. In fact, the 3 hours with positive labels are part of a single up-ramp event on 
January 19, 2017, meaning that when forecasting for the second half of January 2017 in our cross-
validation procedure, there are no observed events within the available training data set from the other 
re-forecast periods. This exceedingly low sample size is due to a few factors, including at least: (1) the 
shorter ramp event duration at the individual wind project level, (2) localized effects near the project scale 
that mask the primary up-ramp event associated with cold pool mix-out, or (3) a time offset between the 
marked end time of the cold pool and the start time of the up-ramp event that is outside the chosen 
tolerance we defined in the original procedure. The first two effects are not easily addressed, so we 
chose only to pursue item (3) above by varying the time tolerance used to define intersection of the two 
event labels. Increasing the time tolerance first to 3 hours, then to 6 hours, did not increase the number 
of intersecting labelled hours at Klondike III. Only after increasing the time tolerance to 9 hours, did we 
pick up 4 new events from October 2016, as seen from the time series plot in Figure 68. However, this 9-
hour time tolerance setting only added an additional 13 hours, yielding a sum of 16 total hours for which 
true intersecting events were identified. Upon inspection of Figure 68, and for similar time series plots 
corresponding to each of the other four month-long re-forecast periods, a 9-hour time tolerance seemed 
more than generous as the maximum amount. Increasing the time tolerance to 12 hours or more seemed 
physically unrealistic, since the cold pool labelling algorithm used the Wasco Airport profilers located 
quite close in proximity to the Klondike III wind project. We did not investigate further increases in the 
time tolerance threshold, since it seemed likely that any increase in sample size would be gained through 
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incorrect labelling of up-ramp events caused by a phenomenon other than the mix-out of the local-area 
cold pool. 

 

Figure 68. Observed hour-averaged power generation time series from Klondike III wind project 
near Wasco, Oregon during October 2016 (black) with labelled up ramp and cold pool event 
periods as in Figure 63. The intersection of the end times for cold pool events with the start times 
of up-ramp events, with a 9-hour time tolerance, are shaded a medium blue. There are four events 
flagged encompassing 13 hours during the month. 

For generic up-ramp and down-ramp events, which occur fairly often, we are able to confirm that 
performance at the individual project level is similar to the fleet aggregate. The frequency of occurrence 
of the events at Klondike III were at least as common as for the BPA fleet, despite the shorter duration of 
each individual event, with up-ramp events labelled on about 33% of the hours and down-ramp events 
identified at around 37% of the hours. Overall skill of forecasts at the Klondike III site was measured by 
AUC at around 0.7 and yielded average precision scores near 0.55 for up-ramp events and about 0.6 for 
down-ramp events. Value scores peaked around 0.34 for up-ramp events and close to 0.29 for down-
ramp events. The reliability diagrams showed that the forecasts were close to perfectly calibrated, except 
for the mid-range up-ramp probability forecasts, just as observed for the BPA fleet level. 

3.4.3 Prototype Tool 

The prototype tool development work builds upon an existing user interface already available for paying 
subscribers to Vaisala’s operational forecasting services through its Energy Dashboard. The existing 
tool, called the “Multi-Forecast Tool”, is a configurable, adjustable graphical tool embedded in the Energy 
Dashboard interface, which is capable of displaying either real-time or historical forecast data from 
multiple data sources alongside observations. For wind power forecasting customers, a typical default 
view might include the real-time power forecasts for the facility or region of interest from one or two 
sources over next 7 days with recent observations plotted for the past 1 day. The Multi-Forecast Tool 
also has a feature called “Historic Mode”, which allows the user to select any historical day and time 
during the subscription history to view old cases alongside the observed conditions that actually 
occurred. Because the available data for WFIP2 was all retrospectively generated, we relied on the 
Historic Mode in the Multi-Forecast Tool as a framework for displaying the experimental forecasts and 
facilitating conversations with our industry partners. This naturally brings the inherent advantage of 
hindsight to all parties, since the actual observations are available for viewing. Therefore, it does not 
replicate the real decision-making paradigm encountered in real-time when only forecast data would 
have been available. 
Since a key requirement of the alert design in WFIP2 is that it is fully probabilistic, Vaisala focused on 
expanding the Multi-Forecast Tool functionality to accommodate a few new features in the initial 
prototype work. The starting point was a limited alert display, initially only available for deterministic 
forecasts of high wind speed conditions. When activated, the alert display provides shading over the 
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forecast time series for affected hours that exceed the selected high wind speed threshold criteria. The 
configuration of this high wind speed threshold is available through a settings menu that is accessed via 
a drop-down function in the upper right corner of the tool. We retained that general paradigm for the new 
probabilistic alert display and settings configuration, but expanded the types and styles available to a 
user. New alert types were added for generic up ramps and down ramps. For the prototype tool, we 
elected to proceed without the special ramp event type for the cold-pool mix-out phenomenon because of 
the event rarity and the limited skill obtained from the modeling work. However, the overall concept 
wouldn’t change the presentation if we had added it as another option. Configuration options were added 
to the settings menu to allow the user to select the color of the shading for each ramp alert type, as well 
as the critical threshold in integer percentage points [0, 100]. A small icon indicating an active up-ramp 
alert (up arrow) or down-ramp alert (down arrow) represented in the same color as chosen for the 
shading was also added into the legend below the time series plot as a feature to help users quickly 
identify if attention should be paid to the forecast for that site. A screenshot of the Multi-Forecast Tool 
with these new prototype features and set to Historic Mode for an April 9, 2016 05:00AM PDT forecast of 
the BPA wind power aggregate is shown in Figure 69. 

 

Figure 69. Screenshot of the prototype DST utilizing Vaisala’s existing Multi-Forecast Tool with 
new alert types enabled. The tool is set to Historic Mode displaying the latest hourly-resolution 
forecast from April 9, 2016 at 05:00 PDT for the BPA fleet aggregate wind power (black curve) along 
with the corresponding 5-minutely power observations (blue dots). Only alerts for generic up-ramp 
events are activated and shown in the forecast time-series as blue color-shaded regions where the 
probability exceeds the 50% critical threshold. A corresponding blue up-arrow icon is shown in the 
legend for the affected project (BPA). 

In the top menu above the main time series display, called “Settings”, only the up-ramp alert type is 
checked as active, while the down-ramp and high wind-speed alerts are not checked and are therefore 
inactive in this example. Active alerts produce color-shaded areas on the forecast time series plot, but 
only for hours where the alert probability exceeds the critical threshold. The critical threshold values are 
configurable. For this example, the user has set the threshold at 50%, so only times where the up-ramp 
probability exceeds 50% are shaded blue. The color choice itself is configurable to ease cases of conflict 
with other active alert types, pre-existing time series of similar color, or color blindness of the user. 
Because the up-ramp alert is active and there are instances in the forecast that exceed the critical 
threshold, the up-arrow icon is shown in the legend for the BPA project. 
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In Figure 70, an example of the prototype DST is shown with the down-ramp alert type activated at the 
50% threshold for the same historic forecast on April 9, 2016 at 05:00 PDT. Our example user has 
chosen a red color to delineate down-ramps from the blue shading used for the up-ramp alerts. The 
active alert icons are now shown in the legend as red down-arrows. 
 

 

Figure 70. As in Figure 69, except with only generic down-ramp event alerts activated. The alerted 
hours are shown in the forecast time-series as red color-shaded regions where the probability 
exceeds the 50% critical threshold. A corresponding red down-arrow icon is shown in the legend 
for the affected project (BPA). 

3.4.4 Industry Feedback 

Our approach to collect wind energy industry feedback was to conduct interactive outreach meetings with 
WFIP2 project data partners. Two-hour sessions were set up with two project partners: Portland General 
Electric (PGE) and Avangrid Renewables. The general format of these meetings was organized to cover: 
(1) background information on the WFIP2 project, (2) the DST objectives and experimental results, (3) a 
live demonstration of the prototype DST for cases of expressed interest, and (4) discussion time using a 
pre-prepared questionnaire. The methodology and results of the DST work were shared through a set of 
presentation slides. Then, we transitioned to a web browser to display the Vaisala Energy Dashboard 
and the Multi-Forecast tool set to Historic Mode for the April 9, 2018 case, as shown in the figures above 
created from screen captures. This particular period was chosen as a good default example because it 
marked a particularly volatile week during the spring reforecast period that also figured prominently in the 
common case study set. 
Using the April 9-16, 2018 period as the default view, the new features for display of the generalized 
ramp alerts were demonstrated along with the ability to change settings, toggle the alert types, and 
switch to other dates on request. The live sessions made for a more engaging discussion than would 
otherwise have been possible with only still, screen captures of the prototype tool. Nonetheless, it did not 
achieve the full live experience a user might get in real-time at the forecast desk when using the tool on a 
potential event that is yet to happen. Instead, historic events from the WFIP2 field campaign period that 
fell within the four 1-month retrospective periods used for the DST experiments were discussed. While 
this naturally limited the cases we could inspect together, it also helped focus the discussion to particular 
events of importance that we asked PGE and Avangrid to identify in advance of the sessions. 
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The survey questions posed to our project partners were the following: 

• Do you have a troublesome past event in mind that took place during one of the 4 month 
reforecast periods we analyzed in WFIP2 (Apr, Jul, or Oct 2016; Jan 2017) that we can take a 
look at as an example to focus our conversation? (If not, use pre-chosen April 9-16, 2016 period 
as a default.) 

• We have designed prototype alerts for generic up/down ramps, and one special alert for an up-
ramp caused by cold-pool mix-out events observed during WFIP2 by the team. The guidance is 
probabilistic, so you can dynamically set a threshold to customize when the alert is active, given 
your personal (or business case) tolerance for false alarms. 

• What do you think about the ability to customize the probability threshold to tune the alert for your 
needs? 

• What do you think about the ability to change colors and toggle the alerts on/off? 

• What do you think about the special alert? Is it useful to know what type of weather phenomena 
might be causing a ramp while being alerted about it? 

• The prototype ramp alerts have assumed a minimum ramp size in their very definition (e.g., 700 
MW for BPA, around 15% of installed capacity) and do not allow you to customize the ramp size 
and therefore prevent changing the alert probability. 

• Is this a key limitation? 

• If you need to alert on ramps of different/various sizes, do you need it to be fully customizable? 
Or can you live with a small, pre-selected list of ramp sizes that are important thresholds for your 
operations? 

• Can customizable alerts help your scheduling/trading/operations decisions? Or is this heading in 
the wrong direction? 

• What did we miss that is absolutely key for impacting your decision-making process? 
 
As follow-up steps to the interactive sessions, the questionnaire was sent to our project partners in a 
document annotated with our notes from their verbal input to each item. They were invited to verify the 
existing notes and to provide any additional commentary or ideas. Screenshots of the prototype tool were 
sent alongside the document to share with colleagues in case other people in their organizations were 
interested and wanted to provide feedback. This additional input was collected and the overall findings 
were compiled and summarized in Table 23. 
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Table 23. Summary of wind industry feedback on the DST prototype organized by attribute. 

Prototype DST Attribute Industry Feedback Highlights 
 

Customized Probability 
Threshold for Tuning 

Ramp Alerts 

• Ability to change the critical threshold is vital 
• Best used by balancing authority for reducing reserve 

requirements during low risk times 
• Capability to turn alerts on/off is an important feature 

 
 

Special Ramp Alerts by 
Phenomena Type 

• Helpful for on-staff meteorologists, “pro” users 
• Probably information overload for real-time trader or 

balancing authority operator 
• Industry needs to figure out how to value this 

 
 

Ramp Size/Duration 
Definition 

• Options are needed; pre-set thresholds (aligned with 
balancing authority requirements) are preferred 

• When/where (timing and level) of the end of down ramp 
events is more important 

• Shorter ramp window is essential (focus in BPA is 
almost entirely on 1-hour ahead, not next 6 hours) 

 
 

Potential Impact on 
Decision Making 

• A useful education tool if both balancing authority and 
owner/operators have the same view 

• Could target tool usage toward improved negotiation for 
reserve capacity 

• Potentially useful tool if reserve costs could be 
dynamically input to help define actions 

 
General Display 

• Changing colors is nice to have, but not essential 
• Ability to display the event forecast probability itself as 

its own line on the time series plot would be useful 

 
The overall impressions of the DST prototype were positive and there was general enthusiasm for such 
an interface. The tool was deemed to be of particular use for managing reserve capacity requirements, 
especially if the electric system balancing authorities and wind facility owner/operators can have the 
same view. To achieve this joint state of understanding, it was suggested that it could be approached 
from an educational standpoint at first, while experience was built by both sides using the tool 
operationally. At present, both parties oftentimes get their wind forecast information from different 
providers and the component models and tool sets can vary. One vision of the future is that when the risk 
of a down ramp event was low enough and both parties agree this is the case, the balancing authority 
could relax the standard amount of required reserves during this period. 
Customization of the critical thresholds were seen as essential because that is how the ramp event risk 
and reserve sizing could be defined. There was a general recognition that different probability thresholds 
would be needed and choosing a fixed level would be too restrictive because reserve costs change. One 
suggestion was to consider making the tool even more dynamic by allowing it to accept these costs as 
an input data set. Other customization elements like color choice were considered nice-to-have features. 
Weather-regime specific information, like for special ramp event types, was likely to be considered 
information overload for the typical real-time trader, but possibly useful for any supporting meteorology 
staff or other “pro” users. 
There was considerable input about the choice of the ramp definition used for the experiments and the 
DST prototype. While the default choices were based on Vaisala industry experience, but also somewhat 
arbitrary, it was anticipated that the ramp definition settings would need to be modifiable. The consensus 
opinion from the feedback sessions was that a pre-set list of options for ramp size and duration were 
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needed, and that the preferred approach to choosing the set would be to make them conform with the 
requirements of the balancing authority. Therefore, regional customization of the lists would be required 
and they may also need to be adjusted as the installed wind capacity of each system grows. Specific 
input was given about the need in the BPA region to focus on the next 1-hour period, although it was 
recognized that wholesale electricity scheduling timelines can also vary for other electricity system 
control areas. One particular area of identified need was for increased focus on the exact magnitude and 
timing of down ramp events, rather than just the overall risk of any significant event that qualified above 
some minimum thresholds. Anticipating the end time and level of down ramp events is a critical need, 
even though for many meteorological phenomena forcing these events, the predictability of such details 
may be quite low. 

3.4.5 Summary and Discussion 

A general algorithm was designed to frame complex-terrain phenomena studied during WFIP2 in terms 
of their potential for causing wind power ramp events. This decision support algorithm was tested on a 
limited portion of the WFIP2 data set and implemented for a single event type: up-ramps caused by the 
erosion of long-lived cold pools. The initial results show that probabilistic forecasts for these special 
events have limited skill. The average precision score is only about 5-6%, while for generic up-ramp and 
down-ramp events it can reach moderate values around ten times larger (50-60%). At the optimal 
decision-making threshold, we observe low equitable threat scores near 3% because even though 
probabilities of detection are above 70%, the false alarm ratios are even larger (above 90%). Only within 
a narrow range of critical thresholds (the 0.5-7.5% interval) can the forecast be used to economic 
advantage, where value scores reach up to a level of around 0.4, but drop off quickly on either side of 
this peak. This means that for cost-loss ratios less than 0.5%, a decision maker should always choose to 
protect against the event happening, despite its rare nature. For cost-loss ratios greater than 7.5%, a 
decision maker should never choose to protect against the event happening since losses aren’t too 
expensive compared to the cost of protection. Because of the relatively infrequent nature of the DST 
example event type and the small sample size of observed events during the four-month reforecast 
period available in this study, it’s likely these results are too pessimistic and can be improved with the 
use of the full year-long historical WFIP2 reforecast data set that is now available. 
Although significant improvements were implemented and measured for raw model forecasts from HRRR 
during WFIP2, we were not able to detect any significant differences between the control and 
experimental runs as part of the DST work. One reason for this is that we only validated forecasts based 
on the higher resolution HRRRNEST, which showed smaller improvements relative to the control 
forecast than the lower resolution HRRR in atmospheric parameter evaluations (Olson et al. 2019). An 
additional reason is that after post-processing is applied, we should expect only smaller differences to 
emerge, since the statistical models act to correct inherent biases of each model. In our DST 
experiments for cold-pool mix-out up ramps, both classifier models are unreliable above the 10% 
forecast value range, substantially over-forecasting the event occurrence. The experimental classifier 
model seems to have better reliability in the 0-10% forecast value range and a larger interval of positive 
value scores. AUC and average precision scores are only slightly improved in the experimental runs. 
Conversely, the control classifier model exhibits slightly larger equitable threat scores and value scores 
at the optimal critical decision threshold. 
We conducted the DST work with fixed ramp definition settings to retain simplicity and keep the number 
of experiments to a manageable size. However, it was known in advance, and confirmed through the 
industry feedback sessions, that any such models should be built for a range of event threshold 
definitions. Our industry partners preferred that these settings be selected based on balancing authority 
requirements. It follows that a full exploration of the utility of ramp event alert skill, whether for generic or 
special complex-terrain driven event types, ought to include results over a range of pre-defined ramp 
event magnitudes and durations. 
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A prototype DST was developed as an extension of Vaisala’s commercial user interface for power 
forecast subscribers. We elected to include only generic up and down ramp alert types directly in the 
example tool, because these alerts were demonstrated to have a useful level of skill over a broad range 
of decision thresholds and occurred so frequently that it would be easier to facilitate discussion with our 
industry partners. Although we omitted the special complex terrain alerts from our worked example from 
the prototype, we discussed options for how such features could be included as part of the industry 
feedback sessions. The tool features are easily extended to include such special alerts as additional 
event types with their own individual check-boxes to be activated. Another suggested option was to have 
them appear as tool-tips or special alert messages noting the ramp event cause when triggered by their 
likelihood exceeding a critical threshold probability. Since our initial results demonstrated only low skill 
levels for these special alerts, our industry partners agreed that they were not yet compelling enough for 
operational use. If the DST methods described in this study can be further developed through more 
analysis and availability of longer training data sets to achieve higher levels of skill, it is possible that 
advanced users might see benefit, especially those with meteorological support teams. However, it was 
also clear from the feedback that the industry has no clear way to value this kind of contextual 
information, so the investment payoff is harder to justify. 

3.4.6 Future Work and Recommendations 

Industry feedback on the prototype DST was positive enough to justify continued work, while respecting 
public-private roles. The level of delivery customization and need for operational customer support is 
best suited for private sector to lead. The scope of consulting work likely includes establishing the set of 
supported ramp definitions, defined event types, and user interface features as well as maintaining 
updates to them. Public sector work focused on estimating decision-making value of the underlying 
information is essential to unblock industry adoption. Since private sector investment has such an 
uncertain payoff in these features, it is higher risk for industry to pursue them. Government and academic 
researchers could collaborate to extend this study to larger sample sizes and more ramp causing 
phenomena in order to better establish the practical predictability of different event types. For example, 
the DST team began work on a second example event type that was left incomplete: down ramps 
associated with gap flow decay. The wind industry has expressed a strong desire to improve predictive 
accuracy during down ramp events, with the goal to better anticipate their duration and ending level, so 
work in this direction could be of high value. Within these predictability studies of different event types, 
care should be taken to distinguish the skill of raw NWP model output and statistically corrected 
guidance since we know the relative improvement available is smaller in the latter. 
This research report documents a general methodology that DOE labs could utilize to complete further 
work on DST algorithm design, if consistent with operating plans. For example, DOE effort in uncertainty 
quantification is ongoing and we have left that element unimplemented in this initial study. Since complex 
terrain phenomena have such a strong dependence on initial condition uncertainty, the use of single 
deterministic NWP runs to make probabilistic forecasts of these events is likely sub-optimal and leaves a 
promising avenue of improvement available. 
Now that a complete 1-year period of reforecast data is available in the WFIP2 Data Archive and Portal, 
other possibilities exist for train-test splits that may offer more robust results with larger in-season sample 
sizes available for the algorithm training periods. For example, the eight additional months could be set 
aside for training, while keeping the four existing months as out-of-sample test periods. Even better, a 
12-fold cross-validation strategy could be used, rotating through the full data set one month at a time, 
yielding 11-month sample sizes for algorithm training periods. 
Finally, DOE could consider making available further applied research or human factors funding to 
pursue an extension of the DST time-series prototype into the spatial domain. Due to the shortened work 
time available in the final phase of the WFIP2 project, we weren’t able to create a prototype that might be 
better geared for situational awareness over a regional control area where multiple wind projects are 
simultaneously operating and might be exposed to various complex terrain phenomena at different times. 
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A thematic, spatial map of complex terrain alerts could be designed and tested with a group of interested 
industry users. 

4 Summary 
 
WFIP2 was a multi-year, multi-institution effort to improve wind power forecasts in complex terrain. It 
included an 18-month observational field study and extensive development and analysis of 
parameterizations for near-surface physics in numerical weather prediction. The primary outcomes of the 
project are a publicly available observational data set, an advancement of understanding of the weather 
phenomena that affect hub-height winds in complex terrain, improvements to NOAA’s HRRR model, and 
algorithms for decision support tools for wind power forecasts. 
The WFIP2 observational data set is a comprehensive meteorological resource for a variety of 
atmospheric phenomena in areas of complex topography that enabled both the science within this 
project and will likely have a lasting impact on future research.  In addition to the meteorological 
observations made using WFIP2 equipment, the data set includes archives from external data sources 
including our many wind industry partners.  The collocation of wind turbine observations with surrounding 
and in situ meteorological observations make the data set uniquely valuable.  We know of no other 
dataset covering such a large region of wind energy production for such a prolonged period of time. 
Analysis of our observations formed the basis for the advancement of our understanding of complex 
near-surface flows that affect turbine hub-height wind speeds, and subsequent WFIP2 model 
development efforts. The analysis and development phase of WFIP2 was guided by our observational 
event log, as every recorded event included an analysis of its importance to wind power forecasting.  
Validation of model development generally proceeded from examination of specific case studies to larger 
blocks of time and eventually to the creation of full-year retrospective forecast datasets.  As with the 
observations, all model output from the project was made publicly available via DOE’s DAP.  The 
Vaisala’s teams validation of the WFIP2 retrospective forecasts showed modest improvements in 
forecast skill, primarily during wintertime. 
To facilitate industry uptake of increasingly probabilistic wind power forecasts, particularly those 
presenting event-based probabilities, a prototype decision support tool was developed and shared with 
industry partners.   
A major strength of WFIP2 was the level of cooperation between DOE and NOAA laboratories and 
industry. Even though much of the research in the project was fundamental in nature, it was continuously 
guided by the needs of forecasting, and as a result the time between research and implementation in 
operations was greatly reduced, with several model developments already running in NOAA’s 
operational model. In addition, decision support tools were developed and presented to the wind energy 
industry. These tools combine forecasts and forecast uncertainty in an interface designed to facilitate 
action at probabilistic levels appropriate to specific risk/reward levels. 
The WFIP2 team (and the Vaisala Team within it) met many of its original goals while responding well to 
the challenges of a prolonged field campaign and the uncertainties of algorithm development.  The 
organization of the project by functional team rather than by institution, and regular steering committee 
meetings, facilitated the success of the project.  Subordination of organization affiliations to team goals 
and effort was evident throughout. 
In addition to efforts from within the team, WFIP2 benefited from external programs like the Data Archive 
and Portal and the Argonne Leadership Computing Facility, without which we would not have been able 
to process and provide publicly the volume of data that we required to make significant model 
advancements. 
Complex terrain both concentrates wind energy into highly developable areas of excellent wind resource 
and also drives numerous meteorological phenomena that make wind energy forecasting especially 
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challenging. However, the economics of the wind energy development are leading the industry to build 
more projects in complex terrain.  While this study represents an advancement in our understanding and 
modeling of the winds that drive such projects, we hope that it is seen as a step in an ongoing process to 
improve the state of forecasting in these areas. 
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List of Acronyms 
 
A2e: Atmosphere to Electrons 
ABL: Atmospheric Boundary Layer 
AGL: Above Ground Level 
ARW: Advanced research WRF 
ASCOT: Atmospheric Studies in Complex Terrain 
ASL: Above Sea Level 
ASOS: Automated Surface Observing System 
AUC: Area Under the Relative Operating Characteristic Curve 
AWOS: Automated Weather Observing System 
BAMS: Bulletin of the American Meteorological Society 
BPA: Bonneville Power Administration 
CU: University of Colorado 
DAP: Data Archive and Portal 
DOE: Department of Energy 
DST: Decision Support Tool 
ECMWF: European Centre for Medium-range Weather Forecasting 
EDR: Eddy Dissipation Rate 
EERE: Energy Efficiency and Renewable Energy 
EnKF: Ensemble Kalman Filter 
ESRL: Earth Systems Research Laboratory 
ETS: Equitable Threat Score 
FAR: False Alarm Ratio 
FHT: Flat and Homogeneous Terrain 
HQ: Headquarters 
HRRR: High Resolution Rapid Refresh model 
NCEP: National Center for Environmental Prediction  
NOAA: National Oceanic and Atmospheric Administration  
HRRRNEST: HRRR WFIP2 Nest 
IC: Initial Conditions 
JD: Julian Day 
JJA: June-July-August 
LBC: Lateral Boundary Conditions 
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LES: Large Eddy Scale 
LIDAR: Light Detection and Ranging  
LMCO: Lockheed Martin Inc. 
LT: Local Time 
MAE: Mean Absolute Error 
MAP: Mesoscale Alpine Programme 
MATERHORN: Mountain Terrain Atmospheric Modeling and Observations Program 
MOS: Model Output Statistics 
MOST: Monin-Obhukov Similarity Theory 
MSL: Mean Sea Level 
MYNN: Mellor-Yamada-Nakanishi-Niino 
NCAR: National Center for Atmospheric Research 
NCEP: National Centers for Environmental Prediction 
NED: National Elevation Dataset 
NOAA: National Oceanic and Atmospheric Administration 
NWP: Numerical Weather Prediction 
NWS: National Weather Service 
PBL: Planetary Boundary Layer 
PDT: Pacific Daylight Time 
PGE: Portland General Electric 
PIRT: Phenomena Identification and Ranking Table 
PNNL: Pacific Northwest National Laboratories 
POD: Probability of Detection 
PS: Physics Site 
RANS: Reynolds Averaged Navier-Stokes 
REWS: Rotor Equivalent Wind Speed 
T-REX: Terrain Induced Rotor Experiment 
RH: Relative Humidity 
RIX: Ruggedness Index 
RMS: Root Mean Square 
RMSE: Root Mean Square Error 
ROC: Relative Operating Characteristic 
RR: Ridge Regression 
SABLES: Stable Atmospheric Boundary-Layer Experiment 
SNR: Signal-Noise Ratio 
SODAR: Sound Detection and Ranging 
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TKE: Turbulent Kinetic Energy 
TTU: Texas Tech University 
UND: University of Notre Dame 
UQ: Uncertainty Quantification 
UTC: Coordinated Universal Time 
VTMX: Vertical Transport and Mixing Experiment 
WFIP1: Wind Forecast Improvement Project 1 
WFIP2: Wind Forecast Improvement Project 2 
WFP: Wind Farm Parameterization 
WRF: Weather Research and Forecasting model 
 


