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Abstract— Graph analysis in large integrated circuit (IC)
designs is an essential tool for verifying design logic and
timing via dynamic timing analysis (DTA). IC designs
resemble graphs with each logic gate as a vertex and the
conductive connections between gates as edges. Using
DTA digital statistical correlations, graph condensation,
and graph partitioning, it is possible to identify high-
entropy component centers and paths within an IC
design. Identification of high-entropy component centers
(HECC) enables focused DTA, effectively lowering the
computational complexity of DTA on large integrated
circuit graphs. In this paper, a devised methodology
termed IC layout subgraph component center
identification (CCI) is used to identify described. CCI
lowers DTA computationally complexity by condensing
IC graphs into reduced subgraphs in which dominant
logic functions are verified.
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I. INTRODUCTION

A. Overview

A chip's timing constraints are tested at a set clock rate using
dynamic timing analysis (DTA) [3]. In DTA a set of signals
is input to the chip and functionality of the chip's design is
verified and predicted output signals are observed. DTA's
goal is to verify that an ASIC design can operate without
errors at a specified clock rate and is generally accomplished
using the simulated manufacturing design synthesis files
[4,5]. DTA is used to test circuit logic and is especially useful
in the analysis of asynchronous designs or when designs have
clocks crossing into multiple domains.
The set of input and output signals associated with a DTA

simulation form the basis of an IC layout graph. Logic gates
within a layout equate to the vertices in the graph while the
conductive connections between the logic gates represent the
graph edges. The edges between each vertex are weighted
according to the maximum statistical cross-correlation value
observed in the signals traveling between the vertices. Cross-
correlation is defined in Equation 1 below. The cross-
correlation between feature vectors VI a and V2a is calculated.
Consider VI; and V2i which are represented as two time-
series, where a = 1,2,3...N and N equals the total number of
samples in the series. The cross-correlation C at delay d is
defined as [22].

071 a - me an (R))(' 2 (a- d)- me an (V 2))a=i
Cd =

jE11.1(71a - mean(V1))2 jEll=l(V2(a_d) - mean(V2))2

(1)

Using Equation 1, the maximum cross-correlation vector Kq
= max(Cd) is found for all vertex combinations and an
adjacency matrix is formed with the IC gates as the vertices
and Kq as the edge weight values on the edges connecting the
vertices. When analyzing IC graphs, those vertices that are
strongly connected with edge weights Kq greater than a
predetermined correlation value are of highest statistical
interest. Figure 1 below shows a sample graph. If we are
interested, for example, in graphs with all edge weights Kq >
0.9, then the subgraph consisting of the vertices s2, s5, 5'4
would be a graph of statistical interest when conducting

DTA.
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Figure 1: IC statistically significant subgraph.

The subgraph in Figure 1 represents a statistically significant
subgraph within the much larger IC graph, and is a directed
graph with time dependent edge weights of {s1, s2, s5, s4, cl
}. The output signal 5'4 depends on signals {si, s2, s6, cl1 }and
is effectively a directed path from output from vertex Tni to
source and clocking vertices {Sni , Sn2 , through logic
gates GI and GI. During a DTA simulation, the statistically
significant path logic and clocking signals {.5 1, 52, 56, 54,
are verified against design timing and logic specifications. As
Table 1 shows the adjacency matrix for those edges where Kq
> 0.9, and where vertex self-loops are

Sni Sn2 Cn1 G1 G2 Tn1

Sni 0 0 0 Prob(si) 0 0

Sn2 0 0 0 Prob(ss) 0 0

Cni 0 0 0 Prob(cli) Prob(cli) 0

Gi 0 0 0 0 Prob(s6) 0

G2 0 0 0 0 0 Prob(34)
Tn1 0 0 0 0 0 0

Table 1: Signal distribution adjacency matrix.

excluded. This process of IC layout subgraph component
centers identification (CCI) affords a means for
characterizing statistically significant logic components
within an IC design. CCI is especially useful in large System-
on-Chip (SoC) designs where the number of logic gates
exceeds 1 million, and where serially analyzing each logic
path or center would be resource intensive. The use of CCI in
large layouts provides a means for identifying high-entropy
component centers such that focused DTA of associated
functions can be achieved using far fewer computing
resources.

In this paper various graph analysis methods for
implementing CCI are described. Section II describes CCI
enabling algorithms including graph vertex importance,
condensation, cycle counting, partitioning and associated
time and class computing complexities. Section III discusses
experimental results, and Section IV provides conclusions
and discusses future work.

II. LARGE IC DESIGN GRAPH ANALYSIS

A. Condensed and Strongly Connected Graphs

The graph in Figure 1 is a simple graph with only 6 vertices;
however, when the number of vertices is large, then graph
condensing is an essential tool in identifying logic centers
within a layout.

There are two main types of graph compression schemes.
The first one discussed is based on vertex importance and the
second one is based on vertex similarity.

Importance-based compression uses vertices weight
functions based on degree and shortest paths in a graph. The
importance-based weight functions come in a couple of
varieties [40]. Global weight functions use a vertex's rank to
calculate a weight and compare that weight to the weight of
all others in a graph. Such weight functions tend to favor
strongly connected vertices in dense graphs. Local weight
functions consider a calculated vertex weight using vertex
rank as well but compares a vertex's weight to only a local
neighborhood of vertices. Compression is achieved in both
types of importance-based methods by dropping lower
weighted vertices and representing the graph using only the
higher weight vertices. Additionally, there are importance-
based compression functions which use shortest paths
between vertices as the compression guide. Compression is
achieved in shortest path schemes by representing the graph
using only those vertices and edges having the shortest path
between them.

Similarity-based compression compress merging vertices
having some minimum number of common neighbors. As
importance-based compression has proven to be an effective
and accurate method for locating component centers, we have
restricted the analysis in this paper to its use. The following
sections describe several of the principal centrality methods
used in performing importance-based graph compression.

B. Vertex Centrality

Vertex centrality methods are quite diverse depending on the
nature of the graph data. The centrality of a vertex in a graph
is its relative importance in the graph and can be used as the
basis for importance-based graph compression. The more
common methods include: neighborhood-based centrality,
path-based centrality and iterative refinement centrality [41].
Algorithm for computing centrality are broken up into two
categories: degree-based and geodesic. Degree-based
algorithms use the degree of a vertex and the degree of its
neighbors while geodesic algorithms use computation of
shortest paths. For this reason, geodesic algorithms typically
are limited by the efficiency of finding shortest paths.

C. Neighborhood-based Centrality



Neighborhood-based centrality roots from the concept that a
node's influence is highly correlated to its capacity to impact
the behaviors of its surrounding neighbors. The simplest
rank-based algorithm counts the number of immediate
neighbor connections for a degree centrality. centrality. The
ClusterRank [50] algorithm is an improvement over simple
immediate neighbor degree centrality as ClusterRank
considers the number of immediate neighbors and a
clustering coefficient [49] of a node. The clustering
coefficient considers the interactions among the connected
nodes. Nodes with a similar number of neighbors are
distinguished by the clustering coefficient. Those nodes with
smaller clustering coefficients have greater influence or
importance than those that have larger clustering coefficients.
When considering a node's neighborhood-based centrality,
the location of a node also determines its importance.

Degree centrality counts the number of connections for
each adjacent node while the ClusterRank centrality
algorithm considers the number of nearest neighbors and the
interactions between the nodes. In a directed graph with
starting vertex vi to destination vertex v., , the ClusterRank
score for a vertex vi is defined in Equation 2 below [50],

where

and

CR1 = f WEjeri(ki + 1) (2)

f (0): is a function of the clustering coefficient ci
of the node vi in the directed graph G.

ki 9: is the out-degree of vi.

T° : is the set of nearest out-neighbors of vi

Ci =
10(10 -1)
1 1

lt(j —> k)ij , k E rni
(3)

Typical forms off (ci) are aci, where a is optimally chosen
base. Using ClusterRank, the potential information spreading
centrality and influence of a node is determined by
identifying nodes that connect to multiple communities
outside of the local neighborhood. In addition, ClusterRank
is useful in locating nodes in neighborhoods exhibiting
structural holes. Those nodes near structural holes have the
greatest chance of spreading unique data due because that
node is less-likely to be deeply immersed in local
neighborhood messaging. Nodes operating on the local
neighborhood edge, act as bridges to other communities and
linking non-redundant information from those communities.

Those nodes that are highly central within the graph, its
importance is increased [45]. A process called k-core
decomposition [46,47] finds the residual degree of the graph
nodes using an iterative decomposition process. Node
coreness measures how centrally located it is relative to the
other nodes. In an undirected simple graph G, the coreness of
each node designated c, is the simple degree of the node. In
k-core decomposition, iteratively each node is removed from

the graph in ascending order. Firstly, all nodes with degree
equal 0 are removed. Subsequently, all nodes with degree
equal 1 are removed which changes the degree of all higher
order nodes that were connected to those nodes. Those
remaining higher order nodes now have a residual degree of
k > 1, and all such nodes belong to the 1-shell. Next, all
residual nodes with k < 2 are removed resulting in a residual
set of nodes with degree k> 2 that belong to the 2-shell, and
so forth. It should be noted that coreness is not a useful metric
in tree-like or scale-free [48] graphs where the coreness of
nodes are very similar due to the hierarchical or
homogenously connected nature of the graphs respectively.
Additionally, the coreness as stated thus far, considers only
the residual node degree (kr) and connectivity to nodes in the
same k-shell or higher order k-shell nodes, and disregards the
connections to exhausted node degree (kr) that have been
removed. Equation 4 below considers both the residual and
exhausted node degree when calculating coreness [51]
resulting in a more accurate centrality assignment,

krx = kr + akr (4)

where a is a tunable parameter.
Unlike the highly iterative k-core decomposition method

which depends on entire graph processing in determining
coreness. The Hirsh index [52] or H-index is a local centrality
method only requiring each node to know a limited amount
of information such as the degree of its local neighbors. The
operator H is defined as a finite number of real variable set S
= {x1, x2, . . . , xm} which yields a max(h) integer value U
where among the set S where there are at least h elements
greater than or equal to h. The H-index of a node in a graph
is expressed in Equation 5 as:

h, = H(19i,19, ) (5)

where 191,19, , is the sequence of degree values of the

neighbors of v,. As an example, if a node k has local
neighboring nodes with degrees (highest to lowest degree)
H(20, 17, 15, 6, 5, 3), then the H-index for h,= 5 and is low
complexity means for measuring node importance.

D. Path-based Centrality

Path-based centrality algorithms which are termed geodesic,
calculate the shortest paths between all vertices in a graph.
Those nodes exhibiting shortest distance d„, paths between
nodes v, and vi in a graph are considered more centric and of
higher importance. Two of the least computationally complex
path-based centrality algorithms are closeness centrality and
betweenness centrality. Each of these algorithms are
described below.

E. Closeness Centrality

The closeness centrality of node 1,, is the inverse of the
harmonic mean geodesic distances from v, to all the other



nodes within the graph and is expressed in Equation 6 below
with n equaling the number of nodes in the graph [53].

1
CC• = 

1
—

(n-1) J*1 du
(6)

Larger cc, values indicate the relative closeness of the node to
the other nodes, and the average information transfer
efficiency of a graph is expressed in Equation 7.

eff = (,1_1) Et=1Ej=1,j*i dij

F. Betweeness Centrality

(7)

In most cases there is more than one shortest path between
source node vs and destination node vt that traverses node
The composite shortest-path flow of information through v, is
computed by counting the number of shortest paths flowing
through v, . The normalized betweenness centrality (BC) of
node v, is given by Equation 8,

BC 
2 usit1 =  

(n-1)(n-2)
Et*s
'
t*t
'
s*t 

ust
(8)

Where ust is the number of shortest paths between vs and vt
and ust t equals the number of shortest paths which traverse vt
between vs and Vt

Communicability BC [54] (CBC) is especially useful in the
identification of component centers. CBC uses scaling to
more heavily weight shorter paths versus longer paths
between a source node vs and a destination node vt. For the
subgraph Gst with adjacency matrix A,

and

Gst = (eA)st (9)

CBC1= 
2 Gisr

(n-1)(n-2)Et*s,t*t,s*t cst

G. Iterative Refinement Centralities

(10)

In previously discussed centrality methods, the topology,
connectivity and the paths between nodes were the key
factors in determining a node's influence. Iterative
refinement centralities concern the mutual enhancement
effect [55] or influence of a nodes upon one another. The
more useful and computationally efficient iterative
refinement centrality methods for identifying component
centers includes eigenvector centrality [56] and PageRank
[57]. Each of these methods will be described below.

H. Eigenvector Centrality

In eigenvector centrality the centrality of a node is
proportional to the sum of the connecting node centralities. In
Equation 11 below the importance of node v, is

xi = c E a..xjj=1. 

Equation 12 is the matrix form of Equation 11 with c = 1/X,
where X is the is the largest eigenvalue of A. Eigenvector
centrality is generally computed by power iteration method
in which the relative score of each node is shared with
connected neighbor nodes as the scores update on each
iteration. A steady state is eventually reached where the
values of the nodes become fixed.

X = cAX (12)

For directed graphs, Equation 13 includes the terms a and e
which are the relative importance parameter endogenous
versus exogenous factors and the exogenous sources status
respectively.

X= aAx + g (13)

I. PageRank

PageRank was originally developed to rank the importance of
web pages according to the quantity and quality of the pages
linked to it and has since been utilized in multiple domains
In PageRank, each node in a graph is given a page rank value
and using an iterative process each node distributes its page
rank value to its neighbor nodes. The page rank value of a
node vz is equal to PR, at the iterative step m, and expressed
mathematically as,

PR .(m-1)
PRi (m) = a  j=i u kg (14)

where n is the number of nodes in the graph, and kr equals
the out degree of node v.,. Once a steady state is reached
within the graph, the iterative process will stop.
Nodes present in a graph that have a zero out degree will

prevent a steady state convergence to occur since its PR value
cannot be distributed. Equation 15 below contains a random
jumping factor of e that represents the probability of a visit to
node v., and a probability of (1- e) of leaving the same node.

PRi (m) = 1=1 
a 

1 j „
PR1071-1) (1_€)

lef 
(15)

J. Algorithm Complexity

In Sections II.B-I a discussion of centrality methods used as
the basis for importance-based graph compression. Primarily
the computational complexity of the centrality method used
in importance-based graph compression is a limiting factor
when large IC graphs are analyzed. To gauge which centrality
algorithms, give accurate centrality results while minimizing



the computation time and resources, neighborhood-based,
path-based and iterative-refinement centrality methods are
compared in the experimental results Section III. As a
reference, the computational time complexity of those chosen
centrality methods analyzed is listed in Table 2 below and
includes: degree, PageRank, eigenvector, closeness and
betweenness centrality with IVI and IEI being the sizes of the
graph vertex and edge sets

Centrality
Algorithm

Centrality
Type

Time Complexity

Degree neighborhood-based 0 ( I V I )
PageRank iterative-refinement 0 ( I V I + I E I )
Eigenvector iterative-refinement 0 ( IVI+IE I )
Closeness Path-based 0(1V1*(IV1+1E1))
Betweeness Path-based 0(071 3)

Table 2: Centrality method computational time
complexities.

From Table 2, it is evident that neighborhood-based and
iterative-refinement centrality algorithms expressed in big O
notation run in linear time while path-based algorithms run in
quadratic and cubic time. It would stand to reason that in large
graphs degree or iterative-refinement centrality algorithms
should be used whenever possible to save computing time
and resources. Depending on the graph structure, there are
instances where path-based centrality algorithms will yield a
more accurate node importance measurement as compared to
neighborhood-based and iterative-refinement algorithms.
Correlation of path-based, iterative-refinement and
neighborhood-based graph vectors IVI is recommended
during prototyping. In those instances where a high positive
correlation exists between a path-based and either an iterative
refinement or neighborhood-based algorithm for a graph, it is
recommended that lower complexity iterative refinement or
neighborhood-based algorithm be used for graphs of similar
structure.

K. Component Center Anomalies

As illustrated in Figure 1, using Equation 1, high-entropy
subgraphs are extracted based on the max cross-correlation
values max(Cd) observed between vertex signals transiting
edges {si, s2, 56, s4, cli }. Analyzing the relative entropy of
such signals over time is used to identify anomalous
behaviors within the subgraph. In Equation 15 below,
individual signal distribution K-L Divergence values are
calculated for baseline (no anomalies) and test (possible
anomalies) event windows. In Equation 15, K-L Divergence
measures the relative entropy change between sq and
s'q distributions. Where Sq is a baseline signal probability

distribution within a baseline event window and Sq' is a
target or test probability distribution within the test event
window.

'1 n Pr::4s s. c 1)) (15)
1)1(1,50'01SO = Esq s' q Pro b (s ' q)

If DKLS exceeds a heuristically derived threshold (Dios > T),
the feature s' q is deemed anomalous. In the results Section
III.B, an anomaly detection example of component center
signal anomalies is illustrated.

L. Idenqication of High-entropy Component Centers

Figure 2 below, outlines the processes involved in the
identification of high-entropy component centers correlation
(HELC) followed by the identification of anomalies within
component centers.

L IC Design DTA

Data

Identify Highly Correlated

Logic Components

(Equation 1)

IC Design

Adjacency Matrix

,, (Example: Table 1)

1

Identify IC Component

Centers

(Section Il.A-l)

_v 
Identify IC Component

Center Design Anomalies

(Section ILK) 

Figure 2: Identification of IC design anomalies.

Step 1 of the HELC process begins with the ingestion of
DTA session data from a VLSI design. The DTA data itself
is a set of time-series binary pulses transmitted between gates
within the VLSI design. These pulses are sampled at 20 times
above the maximum signal frequency exhibited within the
DTA data. Using Equation 1, the sampled data is formed into
an adjacency matrix like that shown in Table 1. The IC
component centers are then identified using the methods
discussed in Section II.A-I. The final step includes
identifying the component center anomalies which
themselves may indicate the presence of unintended design
deviations. Section III which follows discusses the results of
analysis on an experimental DTA dataset.

III. EXPERIMENTAL RESULTS

A. Experimental Data

To illustrate the utility of the methodology described in
Section II, two IC designs were generated. A baseline (g1) IC
design (no design flaws) and a modified version of the
baseline IC design (g2) which contains design deviations were
generated. Two DTA session were run on both gi and 22
designs for 1000 clock cycles such that a 270x1000 sample



window of data was extracted and subsequently converted via
HELC to a 50x50 adjacency matrix with 270 edges.

B. Identification of Component Centers

Graphs representing 21 and 22 designs are shown in Figure 3
below.

Figure 3: Design 21 and 22 graphs.

As explained in Section II, vertex centrality is a useful
metric for gauging the importance of a vertex within a graph.
After comparing the path-based, degree-based, and iterative
refinement centralities of designs gl and 22, it was determined
using the correlation method in Section II.J that the
eigenvector centrality method had the lowest computational
complexity while positively correlating with path-based
centrality algorithms Figure 4 below shows the results of
finding eigenvector centrality for designs 21 and 22. In Figure
4 the highlighted node in the center of the plot have the
highest centrality and importance.
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Figure 4: Eigenvector centrality of 92 design.

Figure 5 based on eigenvector centrality shows groups of
strongly connected node groups. Node groups or graph
components in Figure 5 are similarly colored neighbor nodes
and represent the distinct component centers in the 21 and 22
designs. Graph compression is achieved by considering each
graph component or component center as a single node in the
graph.

Figure 5: Design 91 and 22 strongly connected graphs.

C. Component Center Deviations

Looking at Figures 3-5, from a purely visual standpoint, there
is no obvious connectivity differences between design 21 and
22 nodes. This is because the primary difference between the
two designs lies in the logic signal transition distributions
associated with the graph edges in each design. To
quantitatively analyze the component centers identified in
Figure 5 above, it is necessary to find the differences between
the logic transition distributions associated with equivalent
edges within equivalent component centers of each design
using Equation 15.

KLD between Baseline and Test Signals

Figure 6: KLD values for 21 and 22 component center edge
distributions.

Component center deviation detection is quantified using a
threshold level y which is set according to statistical
population analysis. The threshold y is set by finding the
mean (m) KLD level for the signals in Figure 6. The detection
sensitivity is set using a sensitivity factor C in equation 16
below. A high sensitivity level corresponds to a lower y value
as calculated by Equation 16:

y = m + e(std) (16)



where C is the sensitivity factor and std is one standard
deviation away from m. A low sensitivity factor translates to
a larger y while a high sensitivity factor produces a smaller
y. A larger y (low sensitivity) with a threshold line appearing
higher vertically in Figure 6, results in lower false positive
and higher false negative detection rates. A smaller y (high
sensitivity) results in lower detection false negative and
higher false positive rates.

Iv. CONCLUSIONS AND FUTURE WORK

In this paper is was shown that graph analysis in IC designs
is possible using efficient graph analysis techniques with
DTA datasets. Using cross-correlation with DTA data,
statistically significant IC logic gate connections are
identified from which graph vertices and edges are derived.
Using the least computationally complex graph centrality
algorithm, graph components consisting of strongly
connected node neighborhoods are identified. Such strongly
connected node neighborhoods represent IC component
centers in which relative entropy measurements are used to
efficiently verify component center design integrity.

Although the DTA dataset analyzed in this paper was not
on the scale of a VLSI million gate plus design, it is fully
expected that the methodology and algorithms discussed can
efficiently be scaled to such designs using conventional
parallel processing and more advanced computational
platforms. Future research will include algorithms research,
design and performance analysis of VLSI design verification
techniques. When considering complex graphs, the use of
classical parallel computing platforms such as GPU clusters
typically provide computational time complexity speedups of
between 10-30X over typical CPU systems. Greater
performance gains are theoretically possible using hybrid
quantum-classical multilevel combinatorial optimization
frameworks [59], and as applied to VLSI design verification
will be an area of future research.
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