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Abstract

As a fascinating topological phase of matter, Weyl semimetals host chiral fermions with distinct
chiralities and spin textures. Optical excitations involving those chiral fermions can induce exotic
carrier responses, and in turn lead to novel optical phenomena. Here, we discover strong coherent
chiral terahertz emission from the Weyl semimetal TaAs and demonstrate unprecedented manip-
ulation over its polarization on a femtosecond timescale. Such polarization control is achieved
via the colossal ultrafast photocurrents in TaAs arising from the circular or linear photogalvanic
effect. We unravel that the chiral ultrafast photocurrents are attributed to the large band velocity
changes when the Weyl fermions are excited from the Weyl bands to the high-lying bands. The
photocurrent generation is maximized at near-IR frequency range close to 1.5 eV. Our findings
provide an entirely new design concept for creating chiral photon sources using quantum materials

and open up new opportunities for developing ultrafast opto-electronics using Weyl physics.
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I. INTRODUCTION

The generation and control of photoinduced charge current and the resultant electro-
magnetic wave emission are of crucial importance for coherent operation in opto-electronic
quantum devices [1]. The merit is two-fold. First, the photocurrents induced by optical tran-
sitions obeying the selection rules and/or chirality of the materials naturally permit ultrafast
manipulation. This is especially true when the non-thermal excitation of both charge and
spin degrees of freedom can be utilized [2, 3]. Second, the emission of electromagnetic wave
induced by ultrafast currents is essential in the terahertz (THz) frequency regime, where
control of the ellipticity and chirality over a broad spectral range is known to be notori-
ously difficult [4-9]. Specifically, previous polarization control schemes mainly rely on the
sophisticated pulse shaping or two-pulse manipulation of the incident light, where the asso-
ciated THz emitter itself permits no intrinsic optical chiralites. For example, conventional
nonlinear crystals such as ZnTe and LiNbOj3 only allow linearly polarized THz emission,
irrespective of the polarization of the incident light. On the other hand, a promising way
to achieve the polarization control in a wide spectral regime is to exploit the novel topology
of band structures where electrons demonstrate unique spin-momentum locking or chiral
properties [10-12]. The novel light-matter interactions in quantum materials with topologi-
cal structures may hold the key to many technical innovations, including ultrafast quantum
communication, coherent information processing and controllable data storage [13, 14].

Weyl semimetals (WSMs), with their unique topological electronic structure, retain chi-
ral electrons near the Weyl nodes [15-21] and, hence, are highly promising for the above-
mentioned applications. For example, previous work has proposed that the emergence of
various fascinating electronic responses to light is intimately associated with the Berry phase
of the topological bands, e.g., spin-polarized photovoltaic currents [22-24], photoinduced
anomalous Hall effect [25], and quantized photocurrents [26]. Therefore the investigation
of photocurrents in WSMs raises enormous interest both theoretically and experimentally
[22-29]. For mid-infrared light, Refs. [22, 23, 27] show the existence of a dominant helicity-
dependent DC photocurrent due to the circular photogalvanic effect (CPGE) in the WSM
TaAs. In contrast, with linearly polarized light, only a giant linear photogalvanic effect
(LPGE) (or shift current) was observed in Ref. [29]. For near-infrared light, one work re-
ported the photocurrent measurements [28], which suggest the existence of the CPGE in
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FIG. 1: a. Schematic of the THz emission spectroscopy. Excitation of a fs laser pulse with
an incident angle © onto a TaAs single crystal initiates a photocurrent burst and, consequently,
emission of a THz pulse E(t)[= E,(t)$ + E,.(t)p]. Measurement of the components E,(t) and
E,.(t) by the EO sampling provides access to the sheet current density J| (t) flowing inside the
sample. b-d. Typical THz EO signal components S;(t) and S, (t) along the § and p directions
were measured at various settings for pump polarization via rotating the A/4 or \/2 waveplate,
characterized by the angle 8 or ¢. Here, +» (6=0°), O (0=45°), and O (#=135°) represent the p,
right-handed, and left-handed circularly polarized light, respectively. The angle ¢ stands for the

linear polarization state with respect to the p polarized light (¢=0°).

TaAs. However, up to now there is very little information about the ultrafast photocurrent
in WSMs, except that its time-averaged direction can be derived by considering the crys-
tal symmetry [27, 30]. Particularly, properties of the ultrafast photocurrent induced THz
emission and its associated Weyl electron dynamics are still unclear.

In this paper, we reveal a new route to realize the generation and control of broadband



elliptically polarized THz waves in the Weyl semimetal TaAs. We quantitatively elucidate
the colossal ultrafast photocurrents in TaAs for the first time. We find that the polarization
of the elliptically polarized THz wave can be easily manipulated on a fs timescale, which is
unprecedented. Such control arises from the colossal chiral ultrafast photocurrents whose
direction and magnitude can be manipulated in an ultrafast manner using the circularly
and /or linearly polarized fs optical pulses. The excitation pulse can have a broad spectral
range from visible to mid-infrared light, and generate maximum photocurrent around 1.5 eV.
We unravel that the Weyl fermions play the key role in generating the giant chiral ultrafast
photocurrents.

A schematic of the experiment is shown in Fig. 1la. Femtosecond laser pulses are used to
induce ultrafast photocurrents. According to the Maxwell equations, a change in the current
density j(z,t) on the picosecond (ps) timescale will result in electromagnetic radiation in the
THz spectral range (1 THz = 1 ps) [31]. The transient electric field £(t) is generated with
a polarization parallel to the direction of the current. Therefore, one can use the time-domain
spectra E (t) of the THz radiation as a probe for the ultrafast sheet current density given
by J| )= /[ dzj(z,t). The orthogonal components .J, and Jy. via the generalized Ohm’s
law determine the THz near-field E(t) on top of the sample surface, i.e., the s-polarized
E, along & and the p-polarized E,. in the yz plane. Experimentally, the THz far-field
electro-optic (EO) signal S(t) was collected, and the THz near-field E(t) was derived via
inversion procedures based on a linear relationship between these two quantities [31] (see
Appendix). Therefore, S (t) is a qualitative indicator of the ultrafast photocurrent, whose

-

genuine properties shall be quantitatively obtained by analyzing J(t).

II. RESULTS AND DISCUSSIONS

THz emission from TaAs. In the present experiments, unless noted in the text,
we mainly focus on the results obtained for the TaAs(112) single crystal with an incident
angle © ~ 3° using the excitation light with a wavelength of 800 nm. Z is along the [110]
direction. The results for (011) and (001) faces, another angle of incidence (© ~ 45°), and
other excitation wavelengths are reported in the Supplemental Material. Figs. 1b-d show
strong time-domain THz far-field EO signals S(¢) detected from the sample. Within our
pump power range, the THz peak field strength can reach up to ~1 kV/cm and the dynamic



FIG. 2: a and b are the far-field EO signals S(t) [= S,(t)3 + Sy-(t)p] for circularly and linearly
polarized pump light, respectively. The coloured arrows indicate different optical chiralities: left-

handed (blue) and right-handed (red).

range of S(t) can be ~60 dB (see Supplemental Material). Clearly, both the magnitude and
temporal shape of the THz waveform S, (t) depend strongly on the light polarization. The
key observation is that signals S,(¢) taken with right- (O) and left-handed (O) circularly
polarized light are completely out of phase (Fig. 1b). A similar observation was found for
the 45° and 135° linearly polarized light (Fig. 1c). In terms of the peak values, S, induced by
the linearly polarized light is approximately three times smaller than that due to excitation
by circularly polarized light. By contrast, S,.(¢) is almost polarization-independent and
differs substantially from S, (¢) (see Fig. 1d). Such distinct S, and S,, components lead to a
elliptically polarized transient THz field S(¢) (or E(t)), which exhibits opposite chirality for
different circularly or linearly polarized pump light (see Figs. 2a and b), as we will discuss
in detail below.

In the frequency domain of the THz near-field E(t) (see Fig. 3a-b), the dominant spectra
for both E, and E,, sit below ~3 THz. At approximately 1.7 and 3.1 THz (~57 and
104 cm™1); there exist two obvious dips. The former might be due to the infrared active
phonon mode in TaAs. The latter can be attributed to the absorption of the Raman active
E(1) mode [32]. The high-frequency tails extend almost to 12 THz, consistent with a time
resolution of ~80 fs. Strikingly, for 0.2< Q <3 THz, we discovered that the phase difference,
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FIG. 3: a and b are Fourier transform spectra for the THz near-field E(t) from (112) and (011)
faces for circularly polarized pump light, respectively. The insets show the phase difference (Ayp)
between E,(€2) and E,,(2) for each circularly polarized pump light. The dashed lines represent

the average value of Ap.

Ay, between E, and E,, is nearly constant. This phase difference is independent of the
incident angle © for a given pump polarization. However, its value differs between different
faces (insets of Figs. 3a and b), i.e. for (112), Aps ~ 7/3 and Ap,, ~ 4x/3; for (011),
Aps ~7/2 and Ap,, ~ 31/2. The origin of Ay will be discussed later. Nevertheless, such
extraordinary findings suggest that E (t) can be well regarded as a broadband elliptically
polarized THz pulse with its detailed characteristics depending on the pump polarization
and the sample faces and, hence, has a defined chirality. According to the polarization
trajectory (Sy.(t),S:(t)) in Fig. 2a and b, chirality of the THz pulse can be instantaneously
switched by varying the circular or linear polarization of pump light.

Polarization dependence of the THz signals. To understand the peculiar THz wave
emission from TaAs, it is necessary to elucidate the mechanism(s) generating the underlying
time-resolved photocurrents. We measured the dependence of S, (t) and S,.(t) on the degree
of circular polarization of the incident light, which can be controlled by rotating the quarter-
wave plate by an angle 6 (Fig. 1a). The experimental results were found to be well fitted

by the following equation [29, 33, 35]

Sa(t,0) = Cx\(t)sin20 + Ly (t)sind + Loy (t)cos46
+D>\(t)> (1)
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FIG. 4: a and b. Time-dependent fitting parameters Cy, L1y, Loy and Dy (A = z,yz) in Eq. (1).
c shows the polarization trajectory (Sy.(t),S;(t)) under elliptically polarized pump light with

different #. The solid and dashed curves represent opposite chiralities.

where A=z or yz. C), represents the contribution from helicity-dependent photocurrents. Ly
depends on the linear polarization and is phenomenologically associated with a quadratic
nonlinear optical effect. Loy and D, arise from a thermal effect related to the light absorp-
tion. All four terms on the right side of Eq. (1) depend monotonically on the optical pump
power, which agrees with our experimental observation (see Supplemental Material).

Figs. 4a and b display the time-dependent parameters C'y, L1y, Loy and D), which were
obtained by fitting the experimental S(¢,6) using the Eq. 1. Fitting examples of S, (¢) and
Sy-(t) as a function of  can be found in the Supplemental Material. Based on our results,
S, is unambiguously dominated by C,, and has a non-negligible contribution from L.
Both the amplitude and phase of S,(t) change with €, while Ly, and D, can be omitted.
On the other hand, S,.(¢) is dominated by a polarization-independent D,.(t). C,. plays
a very small role, while L;,, and Ly,. can be neglected. These results suggest that the
ultrafast photocurrents leading to the THz signal E, (or S,) is polarization-dependent (or
0-dependent), in contrast to the polarization-independent thermally related photocurrent
inducing E,, (or Sy,). Therefore, as demonstrated in Fig. 5c, one can control the ellipticity
and chirality of the elliptically polarized THz pulse by changing the quarter-wave plate angle
0 (the elliptical polarization of the pump light). Realization of the broadband circularly
polarized THz pulses also becomes possible, e.g., THz emission from the (011) face with
Ay ~ /2 (see Supplemental Material).

Photocurrents arising from the linearly polarized light can be uncovered by measuring the



S (10%)

0 100 200 300 €8 —00 200 300

() ()

FIG. 5: a and b display the EO signals for S, (t = 0.03 ps) and S,.(t = —0.02 ps) (near the peak
values) as a function of the linear-polarization angle, ¢. The red solid lines show the fitted results.
c shows the polarization trajectory (Sy.(t),S;(t)) for different linearly polarized pump light with

several typical ¢. The solid and dashed curves represent opposite chiralities.

dependence of S, and §,. on the linear polarization angle ¢, using a half-wave plate. The
angle dependence of S, (t, ¢) near the peak values are shown in Figs. 5a and b. We found that
Sz (¢) can be well described by a second-order nonlinear optical process after considering the
crystal symmetry, as demonstrated by the fitted curves in Figs. 5a and b (see Appendix and
Supplemental Material for detail fitting equations). On the other hand, S,, is only slightly
modulated by the linear-polarization dependent signal and is dominated by a polarization-
independent background. Similarly, we can manipulate the elliptically polarized THz pulse
by changing the linear polarization state of the pump light, as illustrated in Fig. 5c.
Ultrafast photocurrents in TaAs. Observations of chiral broadband THz pulses
indicate that the amplitude and phase of the ultrafast photocurrents can be fully controlled
by polarized fs optical pulses. Omne can use the measured THz signals to quantitatively
extract the ultrafast photocurrents (see Appendix), which are displayed in Figs. 6a and
b. The data unambiguously demonstrates that switching of the current direction of J,(t)
occurs instantaneously on a fs timescale using circularly or linearly polarized light, while

-

Jy»(t) is nearly unchanged for different polarized light. Along the time axis, J(t) shows spiral
behavior. As a result, J (t) has chirality, which can be manipulated by the polarized pump
light. Such results are rarely seen in conventional materials and, hence, lead to peculiar
elliptically polarized ultrafast THz pulses. With regard to the dynamics of J,(¢) and J,, (%),

after an initial onset, J,(t) generally proceeds much faster than J,.(t). The former notably
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FIG. 6: a and b. Extracted sheet photocurrent densities J,(t) and J,.(t) for different circular or

linear pump polarization. Curves are offset for clarity.

shows a strong oscillatory behaviour, which might be attributed to plasma oscillation (or
plasmon) of the charge carriers. In fact, both previous FTIR [36] and our ultrafast optical
transient reflectivity studies (see Supplemental Material) show that the Drude scattering
time in TaAs has a timescale of ~400 fs, which is consistent with the current relaxation
time observed in Figs. 6a and b.

To determine the origin of J, and J,., we need to consider the mechanisms for the
photocurrent generation. Microscopically, the ultrafast photocurrents can be generated dur-
ing processes such as optical transitions, phonon- or impurity-scatterings, and electron-
hole recombinations [37]. Photocurrents induced by the optical transitions, occurring
within the pulse duration, can in principle be controlled non-thermally in an ultrafast way
22, 27, 33, 35]. Of particular interest are the photocurrents due to the CPGE and LPGE
29, 33], which are often respectively referred to as injection and shift currents [38, 39]. The
former depends on the helicity of the pump light, while the latter is dependent on the crystal
symmetry or the linear polarization state of the light. Based on the obtained sheet current
densities, the injection currents due to CPGE play the main role in J,(t). We thus put the

main focus on the injection currents.
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CPGE - Injection currents. The scenario for CPGE is displayed in Fig. 7a [35], where
circularly polarized light introduces asymmetric population (depopulation) of the excited
(initial) states complying with the angular momentum selection rules (Amj; = 4+1). Due to
band velocity differences among these states, an instantaneous charge current emerges, which
is proportional to the average band velocity (Aw,). This scenario together with the cone
tilting was employed to explain the helicity-dependent DC photocurrent in TaAs [22, 27].
However, in contrast to those studies, where direct optical transitions only occurred within
the Weyl cones due to usage of the long-wavelength infrared light with a photon energy
of ~120 meV, our experiments directly access the interband transitions between the Weyl
cones and high-lying excited states above Ly using excitation energies greater than ~470
meV [19, 40].

We thus carried out detailed theoretical calculations to clarify our observations. Note
that the electromagnetic radiation is driven by the acceleration of the charge and is therefore
proportional to the difference between the initial and final velocities of the charge resulting
from its interaction with an external field. In our case, when the quasiparticle is excited
by the laser light from a linear Weyl band with a large momentum-independent velocity
v = 0F(q)/0q to a band with a much smaller velocity, the velocity difference is very large
— this makes Weyl semimetals ideal sources of induced radiation. The current then relaxes
in the material over a typical time scale of ~ 1 ps, with this rapid deceleration of electric
charges accompanied by electromagnetic radiation in the THz frequency range.

We assume the Hamiltonian in which a single Weyl cone makes a contribution is described
by

H = hv, o, gi + hvg o9 q; = Hy + fft, (2)

where o, are the Pauli matrices, oy the identity matrix, a is the pseudospin index and ¢ is the
spatial index. The first term Hy contains information about the chirality and the velocity
of the Weyl fermion, and the second term H, describes the tilt in the direction determined
by the constant vector ;; ¢; is the quasiparticle’s momentum measured from the position
of the Weyl node; v;, is the velocity matrix. The interaction with the electromagnetic field
A is obtained from (2) through the Peierls substitution ¢ — ¢ — %ff, this leads to the

electromagnetic interaction Hamiltonian Hg,,

Hpn = —€viq 04 A — e vy 00 A = Hwea + Hipr (3)

11



Here, the second term (which we denote by f[tEM) is diagonal in spin space and does not
contribute if one considers transitions between the Weyl bands; however, it will in general
contribute once other nonlinear bands are excited.

Using the Hamiltonian (3), the induced electric current density can now be readily com-
puted basing on two physical assumptions: i) we can neglect the band velocity of an excited
band compared to the velocity on the Weyl band [19, 40], so the energy of the excited band
can be assumed to be approximately independent of momentum; and ii) once the photons
enter the material, they will induce an excitation with unit probability. Assumption ii) may
not be realistic due to other excitations induced by the photons, e.g., the shift photocurrents
discussed in later sections. Based on these assumptions and using Fermi’s golden rule, we
can write the current density integrated over the penetration depth (the DC sheet current

density) as

J(w, ky, &) = /j'(w,/%p,g)dz

_ el Yyma [ L4 5(Ei-(q) — Ew) (0 - 6-(q)) z;i|<sli|[:[EM|Ql—>|2
hw Suaf % §(Ei-(q) — Ew) > 1(sul Hearlq-)|?

where the summation over [ is the summation over the 24 Weyl cones of TaAs. w, Ep, £ and

(4

I are the frequency, momentum, polarization and intensity of the pump light entering the
material. v_(q) is the band velocity; FE_ is the energy on the valence Weyl band; Ej is the
energy of the excited band minus Aw; |s;) is the spin state of the excited band, and 7; is the
current relaxation time. The relaxation time appears in Eq.(4) because Fermi’s golden rule
yields the number of transitions per unit time and we have to integrate it over the lifetime
of the current. The prefactor of % is the flux of photons entering the material. The factor
a; is the spatial overlap between the wave functions of the Weyl band and the excited band.
We assume that the difference between E_(q) and the Fermi energy is much greater than
the temperature. We neglect the momentum transfer from light to the quasiparticle due to
the small incident angle ©.
After performing the integrals, Eq.(4) will be of the form

- —el > XNy L
Ty(w, o, &) = e l - (l)J* :

(5)

where N, (iz) i and Dé{) are tensors that depend on the dispersion relations of the cones, and are

independent of the frequency of light as long as the Weyl bands are linear; x; = +1 is the

12



chirality of each Weyl cone (the + and — signs correspond to right- and left-handed cones,
respectively); L[ = i€ x & is the angular momentum per photon. For circularly polarized
light, L = k.

TaAs has tetragonal symmetry, i.e. 4-fold rotational symmetry about an axis and reflec-
tion symmetry about 4 planes containing that axis. It also has time reversal symmetry. This
means the 24 Weyl points exist as a set of 8 (W;) and a set of 16 (W3), with the cones in
each set related by the crystal symmetries. Chirality is invariant under rotations and time
reversal, and flips sign under reflections. This means each set has an equal number of left
and right handed cones. If we take the sum over a set of cones, the symmetric components
— N7, . Therefore, the

(OF
chiral photocurrent in Eq.(4) is J j:l%p X ¢, where + and — signs refer to the right- and

of N (il) ; cancel and the only non-canceling contribution is from N 0y
left-handed polarizations of light.

The chiral photocurrent is perpendicular to both the [001] crystallographic axis and the
momentum of light Ep, and it reverses sign for different circular polarization or opposite
direction of ¢-axis (see also the Supplemental Material). The chiral nature of Weyl cones
cannot contribute to the LPGE and hence produce a current along the [001] axis. We
consider the light incident approximately normal to the (112) face of the crystal. In this
case, the chiral photocurrent is along the [110] direction.

For excitation light with a wavelength of 800 nm, the numerical evaluation of Eq.(4)
(see Supplemental Material for more details) yields a value of J; = +940 nA/m for the
contribution of the 8 Weyl cones W; to the sheet current density. For the classification of
the Weyl cones with different chiralities in TaAs, we follow the supplementary materials
of Ref. [27] and use an optical penetration depth of 25 nm (see Supplemental Material).
For the 16 Weyl cones W, the sheet current density Jo = —1340 nA/m. Due to the lack
of detailed information about the probabilities of excitation for the two sets of cones W;
and Ws, we are only able to reliably obtain the range of the sheet current density from
—1340 nA/m to 940 nA/m. If we assume that 8 Weyl cones W, and 16 Weyl cones W, are
excited with equal probabilities, we obtain -580 nA/m (for right circular polarization) or
+580 nA/m (for left circular polarization). Experimentally, the peak value of the helicity-
dependent J,(t) reaches almost 350 A/m. Considering the photocurrent flows over a time
< 1 >~400 fs at a repetition rate of f,.,=1 KHz, we evaluated an equivalent DC sheet

current density via J, ~max(.J,) frep < T >, which gives J, ~140 nA/m. This value is

13



consistent with the our theoretical result, although there exists some discrepancy between
their numbers, which could partly be due to i) our rough estimation of the experimental .J,
and ii) our assumption that the Weyl bands absorb all of the photons and contribute solely
to the helicity-dependent photocurrents. In fact, observation of the shift photocurrents
indicates that this approximation is not very accurate. Extraordinarily, we found that the
sheet current density is inversely proportional to the frequency w of the incident light. This
dependence holds for frequencies above the threshold (~360 THz) for excitation of the high
lying non-Weyl bands and below the energy (~400 THz) at which non-linearity of the Weyl
bands sets in, as indicated by the Regions I and II in Fig. 7a.

According to the above description, the peak power of THz radiation for incident light
with the photon energy hw, defined by P,, o |FE,qz|?, is also proportional to the square of

DC current density J (w, /Zp, £) and inversely proportional to the duration of the current:
P o = |J]? oc = (6)
T

Because the sheet current density is inversely proportional to the frequency w of the incident
light, the radiation power is proportional to 1/w? within the frequency range described
above. As shown in the Region I of Fig. 7b, our experimental data consistent well with
the calculations. We note, however, that the CPGE-induced THz signal or photocurrent
in experiments does not suddenly drop to zero in the frequency range, where our theory
predicts that the optical transitions are prohibited at zero temperature (the shaded region),
and instead is manifested by gradual decrease. Such behavior may arise from the band
tailing effect due to the non-zero temperature and defects in the sample [41, 42].

Therefore, we demonstrate both experimentally and theoretically that for excitation light
with high photon energies Weyl physics is the key determinant for the observed giant helicity-
dependent photocurrents and the resultant coherent THz emission. This is because the
excitation from the Weyl band to the high-lying band is accompanied by a large and rapid
change in the effective velocity of the charged quasiparticles. The microscopic mechanism is
quite different from previous findings in the WSMs upon light excitations with small photon
energies [22, 23, 27], where the Weyl band tilting plays the pivotal role.

One would argue that helicity-dependent photocurrents may arise from other mechanisms,
such as the circular photon drag effect (CPDE) [43] or the spin-galvanic effect (SGE) [33].

The CPDE current requires additional transfer of the light momentum along the charge

14



current direction. This effect will be irrelevant for the case here with a small incidence angle.
For the SGE current, its decay is determined by the spin relaxation time, 7, [33]. Based
on our time-resolved Kerr rotation measurement, the observed J,(t) cannot be explained by
SGE since 75 ~60 fs is too small (see Supplemental Material).

LPGE - Shift currents. LPGE, on the other hand, depends on the crystal symmetry
or the linear polarization of light. Its induced charge current is also called the shift current
29, 33, 38|, which occurs when the electron density distribution of the excited state is
spatially shifted with respect to the initial states during the optical transitions (see Fig. 7c).
LPGE is absent for systems with inversion symmetry under a quadratic nonlinear optical
process [33] and is thus also referred to as the bulk photogalvanic effect[29]. Our experimental
data are well explained by the phenomenological Eq. (11) derived from this effect. Here,
because the Weyl cones dominated by the Ta 5d orbitals and the high-lying bands include
both Ta 5d and As 4p orbitals [19], the associated ultrafast electron transfer should occur
along both Ta-(As)-Ta and Ta-As bonds (see Fig. 7b). Clearly, the crystal symmetry is
embedded in the anisotropy of these bonds. By contrast, for low photon energies, e.g., ~120
meV, the electron transfer directly between Ta and Ta along the Ta-(As)-Ta bond dominates
the shift currents. The colossal shift photocurrents found in Ref. [29] should belong to this
case. Based on our results, the related sheet current density has a peak value of ~68 A/m,
which corresponds to an equivalent DC sheet current density of ~28 nA/m. Considering
the power density of pump light, this value is consistent with the findings in Ref. [29],
where a distinct photon energy of ~120 meV was used. The observed large shift current
response might indicate giant non-linear third-rank tensors &), present in Eq. (11), similar
to previous second harmonic generation studies in this material [44]. Our experiments thus
demonstrate that the ultrafast shift current response is also significant, and provides an
additional control degree of freedom for ultrafast THz pulses using linearly polarized light
on the fs timescale.

Photo-thermal currents. J,, is largely independent of any pump polarization. There-
fore, discussing its mechanism can basically exclude the CPGE and LPGE since they only
show a little contribution to the signal. Based on Eq. (1), the dominance of D, in the S,
(or E,.) signal indicates .J,, has a thermal origin. Its relatively slow response in the time
domain further suggests that scattering processes following the initial optical transitions are

involved during the generation of .J,,. Possible candidates are the photo-Dember effect [45]
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FIG. 7: a. Schematic of CPGE. The asymmetric population of high-lying bands and depopulation
of the Weyl cones leading to an average band velocity of A%, results in a nonzero charge current
using circularly polarized light. During the optical transitions, the total angular momentum should
be conserved, and its quantum number m ; satisfies the relation: Am =1 or -1, depending on the
helicity of the pump pulse. The top is for the Weyl bands in the linear region (Region I). The
bottom is for the Weyl bands in the nonlinear region (Region II), where the pump light has much
higher photon energies. b. Theoretical and experimental results for the sheet current density and
THz emission. The top displays our calculated sheet current density as a function of pump-light
frequency (the red solid line). The calculated photocurrent is proportional to 1/w (Region I). The
bottom represents the measured THz peak power as a function of pump-light frequency (open
dots). The red solid line in Region I is a fit using 1/w? derived from our theory. The red dashed
lines in Region II inside both figures are only for guideline. c. Schematic of the shift photocurrents
(LPGE) is shown on the bottom. Due to the initial states being dominated by Ta 5d orbitals and
the final states contributed by both Ta 5d and As 4p orbitals [19], the shift current is attributed

to the ultrafast transfer of electron density along both the Ta-(As)-Ta and Ta-As bonds.
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and carrier drift, both of which depend strongly on the phonon or impurity scatterings. An
estimation of J,(t) and J,(¢) can be obtained using the data by varying the incident angle
© (see Supplemental Material). Their magnitudes are close to that of the shift current.
Therefore, the distinct polarization dependent J,(¢) and .J,.(t) arise from different phys-
ical mechanisms, non-thermal and thermal, respectively. A phase difference between these
two components is expected. As a result, the chiral ultrafast photocurrent J (t) emerges, as
evidenced by our experiment. Such phase difference directly determines the observed Ay
between F,(t) and E,.(t). An estimation of Ay can be roughly made by Ap ~ Q < 7., >,
where (0 and 7, are the angular THz frequency and the electron-phonon scattering time,
respectively. Using the frequency (~1.8 THz) at the peak magnitude of the Fourier trans-
form and the average < 7., > value of ~400 fs, we obtain Ay ~ 1.47, which is close to the
values measured values, i.e. 47/3 for (112) and 37/2 for (011). Potential anisotropy of the

detail electron-phonon scatterings corresponding to different faces may cause such various

phases.

III. CONCLUSIONS

The demonstrated ultrafast generation and control of chiral charge currents in TaAs
offer unique opportunities for novel THz emission and THz spintronics. The mechanism of
generating controllable elliptically/circularly polarized broadband THz pulses using WSMs
is fundamentally different from previous methods. The intrinsic optical chiralities, i.e. the
optical/chirality selection rules in WSM, which do not apply for previous THz emitters,
such as ZnTe and LiNbOj3. The simplicity of polarization control is extremely powerful and
useful for a wide range of applications. Other advantages include the low cost in sample
preparation and the high THz emission efficiency. We further believe that our observation
will benefit the study of other novel phenomena led by the Weyl physics, such as the
quantized CPGE [26], and the Weyl-orbit effect[46].
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IV. METHODS
A. Sample details

Large-size high-quality TaAs crystals with regular shapes and shiny facets were grown
by the chemical vapor transport (CVT) method. High-purity elemental tantalum, arsenic,
and iodine with a molar ratio of 1:1:0.05 were filled into a silica ampule under argon. The
ampule was evacuated to a pressure below 1 Pa, sealed quickly by flame to avoid the loss
of iodine and arsenic, and then heated gradually from room temperature to 1000 °C to get
TaAs polycrystalline. Afterwards the ampule was put to a temperature gradient from 1020
°C to 980 °C where the CVT proceeded for 2 weeks and single crystals were obtained. More
details can be seen elsewhere [47]. The crystal structure and orientations were determined by
x-ray diffraction method and the average stoichiometry was confirmed by energy-dispersive
x-ray spectroscopy. TaAs crystallizes in a body-centered tetragonal unit cell where Ta and As

atoms are six coordinated to each other. The corresponding lattice constants are a = b =3.43

18



A and ¢=11.64 A, and the space group is 141md (No. 109).

B. Experimental setup

In our experiments, the sample was excited by the laser pulses from a Ti:sapphire amplifier
(repetition rate 1 KHz, duration ~80 fs, and centre wavelength 800 nm) under ~ 3° or 45°
angle of incidence. Other wavelengths of the excitation light come from an optical parametric
amplifier, which produces similar pulse duration (7843 fs). The beam diameter is ~1.5 mm
(full-width at half intensity maximum). A typical pump power of 25 mW was used. The
THz electric field was detected by electro-optic sampling, with probe pulses from the same
laser co-propagating with the terahertz field through an electro-optic crystal, which is the
ZnTe(110) with a thickness of 0.4 mm. Measurements were performed at room temperature
in a dry-air environment with relative humidity< 5%. All data were collected in the linear
regime, i.e. amplitude of THz field increases linearly with the pump power (see Supplemental
Material).

A quarter-wave (A/4) or half-wave (A/2) plate mounted in a computer-controlled rotation
stage is employed to tune the polarization state of the optical pulses just before they reach
to the sample. A THz wire-grid polarizer (field extinction ratio of 1072) allows us to measure
the s and p components £, and £, of the THz electric field separately, thereby disentangling

current components J, and J,,. The latter is a linear combination of J, and J, [48].

C. Extraction of the THz electric fields

To extract the emitted THz electric field E(t) directly above the sample surface from
the measured electro-optic THz signal S (t), there is a linear relationship between these two
quantities [31]. For instance, in the frequency domain, the THz field component E, and
the corresponding signal S, are connected by the total transfer function A(2) through the
simple multiplication[31]

5:(2) = M) E.(2), (7)

where R(€) = hget () hyprop(£2) includes the detector response hge(€2) and the transfer func-
tion hyep(€2) of the THz wave from the sample to the detection crystal. The same relation-

ship is valid for F,, and S,,. Details of the transfer functions are shown in the Supplemental
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Material.

D. Extraction of the ultrafast photocurrents

In order to obtain the source current .J(t) from the THz electric field E(t) measured

directly above the sample surface, we make use of the following generalized Ohms law [37, 48]:

Zo

E.(Q) =— J. (2 8

() c0sO + v/n? — sin?O (@) ®)
Zpsin®

E,.(Q)=— g (Q2). 9

() n2cosO + v/n? — sin20© () )

Here, Q) is the THz frequency, Zy(~377 Ohm) is the vacuum impedance, n is the refractive
index of TaAs at THz frequency (see Supplemental Material), © is the angle of incidence,
and

n? — sin20

Sy = J2(Q) = Jy(©) (10)

51O
is a weighted sum of the currents flowing along the y and 2 directions. The inverse Fourier

transformation of the resulting current spectra yields the currents in the time domain.

E. Photocurrents due to the LPGE (shift currents)

Phenomenologically, the non-local transient photocurrent j(F, Q) at THz frequency €2 due

to the LPGE can be described by a quadratic nonlinear optical process [31, 33, 34, 37, 49]
MED =2 [ detuliio+ QIR (1)
v w>0

where A, 1 and v stand for the Cartesian coordinates &, § and 2. §,,, is the third-rank
pseudo-tensor. F and f are the complex-valued pump-field Fourier amplitudes at frequencies
w+$ and w originating from the fs optical pump pulse. Due to w >> Q, |F(w+Q)| ~ | f(w)].

For TaAs with inversion symmetry broken, there are three independent nonvanishing
elements of &y, [44]: Eane , Eonw = Eayy A0 Epow = Eyay = Euwe = &y They are defined in
the coordinates for (001) face, where &, ¢ and Z are parallel to the unit cell axises a, 13, and
¢, respectively. For the coordinates of other faces, i.e. (011) and (112), they will follow the
transformation of the rotation matrix. Therefore, 7, (7, 2) due to the LPGE will be different
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at different faces (see Supplemental Material).
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