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ABSTRACT

Transitional Markov Chain Monte Carlo (TMCMC) is a variant of a class of Markov Chain
Monte Carlo algorithms known as tempering-based methods. In this report, the implementation of
TMCMC in the Uncertainty Quantification Toolkit is investigated through the sampling of
high-dimensional distributions, multi-modal distributions, and nonlinear manifolds. Furthermore,
the Bayesian model evidence estimates obtained from TMCMC are tested on problems with
known analytical solutions and shown to provide consistent results.
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PREFACE



SUMMARY

This report examines several applications that employ Transitional Markov chain Monte Carlo
(TMCMC) algorithm implemented in the Uncertainty Quantification Toolkit. The performance of
this parallel sampling algorithm is assessed on several test problems, including high dimensional
and multi-modal distributions, with a good degree of success in extracting 1st and 2nd moments.
The suite of tests includes verification studies based on estimating the fractional weight of modes
in multi-modal distributions as well as sampling from complex nonlinear manifolds. TMCMC’s
model evidence estimates are examined for linear regression test cases, exhibiting increasing
accuracy with increasing number of samples. Overall, TMCMC is able to provide samples from
multi-modal and high-dimensional distributions as well as consistent Bayesian model evidence
estimates.






1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods are widely used for sampling from general
probability density functions (PDFs) in various settings. Traditional MCMC methods are
inefficient or ineffective in sampling from multi-modal or high dimensional distributions.
Transitional Markov Chain Monte Carlo (TMCMC) [4] is an effective sampling method that
transitions samples from the prior PDF to the posterior PDF through several intermediary
distributions. In the context of Bayesian inversion, TMCMC techniques can be particularly useful
when the model evaluations are expensive and there are sufficient parallel computing resources to
perform multiple runs concurrently.

In this report we examine the performance of TMCMC on several canonical problems that
simulate challenges related to high-dimensionality and clustering of samples along
low-dimensional manifolds or regions.

This report is organized as follows. Chapter 2 provides a brief summary of TMCMC as
implemented in the Uncertainty Quantification Toolkit (UQTk) [6]. Chapters 3 through 5 show
the results of tests relating to sampling of (a) multi-modal posterior PDFs, (b) moment estimation
for high-dimensional posterior PDFs, and (c) capturing probability mass of modes in multi-modal
posterior PDFs, respectively. Chapter 6 shows results related to sampling of manifolds. Chapter 7
shows the results of the TMCMC model evidence estimator on a linear regression test case.
Chapter 8 provides a summary of results and insight into the mechanism behind TMCMC and
how that manifests itself for the problems investigated in this report.
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2. TRANSITIONAL MARKOV CHAIN MONTE CARLO
ALGORITHM

TMCMC belongs to a class of tempering sampling algorithms. The algorithm starts with samples
corresponding to a "high temperature" distribution, essentially samples from a prior distribution
in a Bayesian framework. Then, as "temperature" decreases the target distribution "cools down"
to concentrated regions, or regions where the posterior distribution is concentrated by data in a
Bayesian framework. During this process samples are drawn to high-probability region through a
standard accept-reject procedure.

TMCMC combines aspects of simulated annealing optimization with MCMC, creating an
algorithm that parallelizes the model evaluation. It also provides an estimate for model evidence
in a Bayesian context [4]. The algorithm can be summarized as follows.

Algorithm 2.0.1 [TMCMC(] Start by generating N samples from the prior distribution

p(6|M), 6,50), fork=0,...,N and set initial likelihood exponent , = 0. For each iteration i
of the algorithm, repeat the following steps until 8; =1

1. Compute the likelihood of the samples, p(D\G,fi)), k=1,....N

2. Calculate the plausibility weights of each sample w(e,f")) = p(D[G,fi))Bf*ﬁffl, with B;
chosen such that coefficient of variation of those weights is equal to or less than a
set value, CoV.

3. Resample (with replacement) N samples from the current set of samples Gk(i) with
w(6,)

szzl W(e/fi) ) -

corresponding probabilities

4. Run Markov chains with standard Metropolis updates for each sample that was
chosen in the above step, with a chain length equal to the count ¢ that the sample
was selected (in resampling). The proposal PDF is a multivariate Gaussian
centered at the chosen sample, with covariance matrix constructed using samples
from the previous stage (see below) and y? a scaling parameter.



Markov chain Monte Carlo algorithms require tuning of algorithmic knobs for optimal
performance. Generally, the optimal parameter values will change depending on the state of the
samples. Since TMCMC transitions through intermediate PDFs, optimal parameter values will
change from one iteration to the next. Adaptive tuning is a necessity in improving efficiency and
reducing total number of likelihood evaluations (or forward model simulations).

The TMCMC algorithm can be adjusted through several control parameters. The 3 parameter is
the temperature parameter that generates the intermediate PDFs to transition through, and takes
values 0 = By < ... < B,, = 1, with m being the number of stages or iterations required in
TMCMC. The CoV is the ratio of the sample weight standard deviation and the sample weight
mean. It’s useful as a relative measure of dispersion, and in the TMCMC context, relates to
whether the samples have conformed to the intermediate PDFE. A lower threshold results in more
intermediate PDFs and a smoother transition to posterior, but also more computational expense.
A higher threshold creates a sharper transition to posterior, at the risk of a small effective sample
size and limited ability to search the space. The threshold value CoV is typically held constant,
and Beck and Zuev [19] show that the optimal cooling rate from prior to posterior distributions is
CoV = 1.0 under certain assumptions.

Another control parameter in TMCMC is a scaling factor that adjusts the covariance matrix of the
MVN proposal PDF. In the original paper, a parameter c2, = 0.04 is proposed as a reasonable
constant value. However, this is likely to be suboptimal depending on the problem involved,
particularly in highly correlated parameters. The general motivation for adapting the control
parameter is to produce larger proposals and encourage exploration of the space when acceptance
rate R is high, and produce smaller proposals with a higher acceptance when the rate is low.
Minson et al. [12] suggest a rescaling based on the observed acceptance rate, in the form

¢m =a+bR (2.0.1)

where a = %,b = g are selected constants. This is an improvement, but is also relatively limiting

in that the control parameter is limited in the range [a, 1]. In [3], Catanach uses control theory to
show that the control parameter is best adapted using

Incy41 =Iney+G(R—RY) (2.0.2)
cm+1 = cmexp (G(R—RY)) (2.0.3)

The current implementation of TMCMC uses this adaptive form, with an optimal value of
R* = 0.234, based on Roberts and Rosenthal [14].
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3. SAMPLING OF MULTI-MODAL POSTERIORS

Classical single-chain MCMC methods are challenged by multi-modal probability distributions,
as Markov chains will rarely propose and accept jumps between modes. This challenge is further
exacerbated when the dimensionality of the parameter space is large and typically
high-probability regions become more concentrated. All these make the selection of a good
proposal distribution difficult. Various algorithms have been developed to deal with these
situations, including mode-jumping MCMC [17], nested sampling [8], and geometric MCMC
methods [9].

TMCMC’s ability to sample from multi-modal distributions will be examined using canonical test
functions for optimization, including the Rosenbrock, Griewank, Himmelblau, and Schwefel
functions [16]. Those functions will serve as the negative log-likelihood functions. All tests
employ uniform prior PDFs. We will consider the following functions

fx)=(1-x)*+ 100(x2 —x7)> (Rosenbrock)
d xl2 X ;
f(x)= 1:21 2000 Hcos ( ) (Griewank)
£(x) = 418.9829d — Zx, sin <\ /I \) (Schwefel)
i=1
fx) = (P +y—11)2 4 (x+y*> - 7)? (Himmelblau)

The Rosenbrock function, is a common optimization test function with a global minimum at
(1,1) in 2 dimensions. The Griewank function exhibits several regularly spaced local minima and
can be extended to d dimensions. The global minimum is at (0, ...,0). The Schwefel function
exhibits multiple local minima, with a global minimum is at (420.9687, ..., 420.9687). The
Himmelblau function has four local minima, at (3.0, 2.0), (-2.805118, 3.131312), (-3.779310,
-3.283186), and (3.584428, -1.848126). The motivation for using these examples to is illustrate
the ability of TMCMC to easily sample multi-modal posterior PDFs. Each region centered on
local or global minima for these functions translates into a region of high-probability when used
as a negative log-likelihood.

We will qualitatively examine the progression of the algorithm as it transitions through the
intermediate PDFs from prior to posterior, as illustrated in Figure 3. The Rosenbrock function test
case 1s shown in 3-1(a), proceeding from the uniform distribution (prior PDF) to a thin, curved,
posterior. Note the intermediate distribution is a diffused version of the target posterior.
Eventually, the resulting samples are found to be distributed according to the target posterior PDF,

14
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Figure 3-1. TMCMC Performance on Optimization Functions

as expected. The Griewank function in Fig. 3-1(b) displays multiple local minima and the regular
spacing between the modes. Even though there is no unique global maximum for this posterior
PDF, TMCMC is able to capture all modes starting with a flat (uniform) prior. The Schwefel
function has irregularly spaced local minima, and those are clearly visible in this situation,
compared to the Griewank function. Despite the relatively diffuse prior PDF on [—500,500],
TMCMC can identify the mode at a corner of this 2-dimensional setting. The Himmelblau
function shown in Fig. 3-1(d) has four modes, all of which are clearly distinguished. In the next
section we will present a quantitative analysis of the TMCMC algorithms.
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4. SAMPLING OF HIGH-DIMENSIONAL POSTERIORS

Next, we consider the efficacy at which TMCMC samples high-dimensional multivariate normal
(MVN) PDFs towards accurate estimation of parameter mean (1st order moment) and variance
(2nd order central moment). MVN parameter likelihood PDFs in 2, 5, 10, 20, 50, and 100
dimensions are sampled by TMCMC (20 repeated experiments for each dimensionality) and the
Normalized Mean Absolute Error (NMAE) and Normalized Root Mean Squared Error (NRMSE)
are obtained for the first and second moments, as in

Y4 | |Estimated Moment(x;) —Target|

NMAE & a (4.0.1)
Target
\/):?:1 (Estimated Moment (x;) —Target)2
NRMSE 2 d (4.0.2)

Target

The MVN likelihood parameter PDFs all have means at (5,...,5), and standard deviation of
(2,...,2). The MVN priors have have means at (0,...,0), and standard deviation of (5,...,5).
The resulting posterior also follows an MVN density with mean and variances available
analytically (due to conjugacy). The experiments are repeated with three algorithmic choices: (a)
10,000 samples and CoV of 0.1, (b) 25,000 samples and CoV of 0.1, and (a) 10,000 samples and
CoV of 0.05, with results presented in Figs. 4-1-4-3. For each pair of CoV and sample number,
both errors tend to increase with increasing dimensionality, regardless of the number of samples
or CoV used. Furthermore, the error in the 2nd moment is generally greater than that in the 1st
moment, as expected. We also observe that a decrease in allowable CoV for the intermediate
TMCMC sample weights from 0.1 to 0.05 (Fig. 4-1 to Fig. 4-3) results in a reduced error in both
mean and variance estimates, having a similar effect as increasing the number of samples.
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5. CAPTURING PROBABILITY MASS OF MODES IN
MULTI-MODAL POSTERIORS

Next we test the sampling process, for a multi-modal posterior case, by accounting for the
proportion of samples that correspond to each mode. We compare the results against the true
value given by the probability mass associated with each mode. This tests the ability of TMCMC
to sample multi-modal densities beyond the simpler challenge of identifying all relevant modes.
Here, we consider a Gaussian mixture model with two modes in 2, 5, and 10 dimensions, and we
use 1000, 5000, and 25000 samples. The prior distribution is a uniform prior with support on
[0,1]¢. The modes means are located at (0.25,...,0.25) and (0.75,...,0.75), with a diagonal
covariance and standard deviation of 0.05. This results in the same probability mass for both
modes. Each test was run 50 times with different random seeds. Modal probability mass for the
first mode was estimated by counting the number of samples with all coordinates less than 0.5.
Fig. 5-1 and Table 5 summarize this set of results. With increasing sample size, the error
(standard deviation) in the estimated mass (target value of 0.5) decreases, as expected. This is
also seen with decreasing dimensionality.
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Figure 5-1. Proportions of a Mode in a Bimodal Distribution
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Number of Samples | Dimension | # Over 50% | # Under 50% | Mean SD
1000 2 28 22 0.5119 | 0.1326
1000 5 22 28 0.4942 | 0.0871
1000 10 25 25 0.4923 | 0.0578
5000 2 33 17 0.5355 | 0.0827
5000 5 22 28 0.4941 | 0.0416
5000 10 21 29 0.4953 | 0.0231
25000 2 30 20 0.5035 | 0.0404
25000 5 30 20 0.5017 | 0.0181
25000 10 24 26 0.5017 | 0.0120

Table 5-1. Statistics on Proportions of samples in a Bimodal Distribution

20




6. MANIFOLD SAMPLING

Sampling from manifolds is a difficult problem that occurs in a variety of situations, such as in
sampling constrained parameter spaces (see Diaconis et al [7] for an overview). In the case of
data-free inference [13, 11], samples are drawn from data space, generating datasets that satisfy
constraints on the resulting posterior parameter PDFs. From these datasets, we can fit the data to
multiple models, and run inferences, in the absence of the original data. The sampling of these
datasets is an ill-posed problem since the dimensionality of the data space is normally much
greater than the number of available constraints. Furthermore, these constraints compose a
manifold in this space, with asymptotically thin regions of probability mass. Traditional MCMC
methods have a negligible probability of proposing jumps along these manifolds and, even when
they do, the exploration of the manifold is difficult since it is associated with an invariant
density.

TMCMC is tested for its capability for sampling manifolds for several canonical test cases. Due
to the nature of the algorithm, samples explore the data space freely at high temperatures (low 3
values), and slowly aggregate on the manifold as the temperature decreases (8 approaching 1).
However, manifolds are asymptotically thin, requiring a further adjustment. We use a loose
constraint construction as in Berry et al. [2], where the manifold is smoothed out using Gaussian
kernels, and successive iterations using decreasing 0 values to enforce the constraints more
strictly.

m(x) = exp

(—||f(X)—f*(X)H2> 6.0.1)

52

For each value of 6, TMCMC is run on the previous iteration’s data, and utilizes the previous
posterior as the current iteration’s prior distribution. In effect, é is a meta-temperature such that
the posterior distribution converges to the manifold as 6 approaches 0. The motivation for this
construction was to reduce time spent in excessive model evaluations for samples far from the
manifold. A single run of TMCMC is insufficient as, depending on the prior, the majority of
samples will not propose jumps into the manifold at small 6 values. By using this construction,
samples are guaranteed to be sufficiently close to the manifold, such that Markov chains spawned
from these samples have a reasonable acceptance ratio. This construction is also flexible enough
to expand to multiple simultaneous constraints as well as high dimensionality.

Two test cases are proposed to illustrate this nested sampling algorithm. The first is a circle with
center at (5, 10) and radius of 10. The second is a hyperbola with the constraint x;x; = 4. In the
outer loop, the meta-temperature 6 decreases according to the power law schedule, with a rate

r < 1 and f representing the number of times TMCMC has been run. The rate for the two
examples is ¥ = 0.9. Fig. 6-1(a) is shown at r = 5,25,49. Fig. 6-1(b) is shown at = 0,2, 8.
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Figure 6-1. TMCMC Performance on manifolds in two dimensions.

As a proof of concept, Fig. 6 shows that TMCMC can sample from “narrow” distributions along
low-dimensional embeddings. The circular manifold would enforce a circular proposal, and
traditional MCMC would only be able to explore a small percentage of the circumference. The
nonlinear manifold would be intractable due to the bimodality and the strong nonlinear
correlations. TMCMC succeeds in exploring these proof-of-concept models. Further explorations
are needed to gauge the applicability of this algorithm to higher dimensional problems.
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7. MODEL EVIDENCE

Model evidence is the likelihood that a set of data was generated by a specific model and is given
by the expected likelihood, weighted by the prior PDF. This is an important component in
Bayesian inference, as model evidence is used to compare different models. In general, the
calculation of the evidence value is not available analytically and its numerical evaluation relies
on a large number of model evaluations. Further notes on model selection and model updating
can be found in [5, 15].

TMCMC, in addition to being a robust sampler, provides a theoretically asymptotically unbiased
estimator for model evidence, being the the product of the mean of the plausibility weights across
all intermediate distributions. We gauge the convergence properties of the TMCMC-based
evidence on for a polynomial model. For this test, 10 data points were generated from a cubic
polynomial (in Eq. (7.0.1)) with x values uniformly spaced in (—1.2,1.2). The y-values were then
contaminated by additive Gaussian noise € ~ N(0,0.2).

y=x>4+x*—6+¢ (7.0.1)

TMCMC was then used to sample the posterior distributions for the coefficients of polynomial
models of increasing order, from 1 to 7. For these tests, the polynomial coefficients employ
independent Gaussian priors with mean 0 and standard deviation 5. Similarly, the likelihood is
presumed to be a product of independent Gaussians, centered at each data point and a standard
deviation of 0.2 - the same as the value used to corrupt the original model evaluations. Given the
settings for prior and likelihood, the model evidence can be estimated analytically. Several
TMCMC cases were run, with different CoV values and number of samples per stage. For each
test case, a number of 10 replicas were run to gauge the spread in results due to the choice in the
random number seed.

Error bars in Fig 7-1 show 2 standard deviations above and below the mean of the 10 TMCMC
runs, and are offset for visibility. The results in this figure show increased agreement between
TMCMC results and the analytical values with smaller CoV values and with increasing number of
samples per stage. These obervations are consistent with trends displayed earlier in this report
about the effects of CoV and number of samples in the accuracy of the posterior distribution in
several canonical test cases.
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8. CONCLUSION

The Transitional Markov Chain Monte Carlo (TMCMC) algorithm has been demonstrated to be
an effective MCMC algorithm for sampling complex distributions. Due to the temperature
adaptation and the resulting intermediate densities constructed by the sampling algorithm,
multiple modes in a posterior PDF can be robustly identified. Manifold sampling with TMCMC
was exhibited with low-dimsnional yet complex (strongly nonlinear) manifolds. Tuning
parameters, specifically the threshold CoV and the resulting likelihood exponent 3, have strong
effects on the performance of TMCMC. By design, 3 is adaptive, based on the uniformity of
samples for a particular intermediate PDF. This ensures that samples are transitioning smoothly
through the intermediate PDFs, which results in desirable properties such as the capability to
sample from multi-modal distributions. The covariance scaling parameter is also adaptive, based
on the acceptance ratio. This assists in maintaining a suitably optimal acceptance ratio and
allowing efficient search of the parameter space.

Model evidence is a central quantity in Bayesian model selection and model averaging [10].
Standard methods for calculating model evidence involve numerical quadrature and specialized
methods. TMCMC produces an estimator for model evidence as a part of the algorithm. The
model evidence estimates appear to be unbiased for a polynomial fitting problem having
analytical results, while the precision increases with increasing number of samples or decreasing
CoV, as expected.

High dimensionality poses a challenge for all MCMC algorithms. Since TMCMC gradually
adapts from prior to posterior, it can be an effective algorithm for searching low-dimensional
embeddings in high dimensional spaces. Certain geometric MCMC methods, such as
Metropolis-Adjusted Langevin algorithm (MALA), and Riemannian Manifold Hamiltonian
Monte Carlo (RMHMC) use the geometry of the posterior distribution to inform the proposals,
which improve exploration the probability distribution [18, 1, 9]. In the context of TMCMC,
these methods can replace the MVN proposal to improve efficiency. This will be explored in
subsequent versions of UQTk.
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