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Bayesian optimization (BO) is an effective surrogate-based
method that has been widely used to optimize simulation-
based applications. While the traditional Bayesian optimiza-
tion approach only applies to single-fidelity models, many
realistic applications provide multiple levels of fidelity with
various computational complexity and predictive capability.
In this work, we propose a multi-fidelity Bayesian optimiza-
tion method for design applications with both known and un-
known constraints. The proposed framework, called sMF-
BO-2CoGP, is built on a multi-level CoKriging method to
predict the objective function. An external binary classifier,
which we approximate using a separate CoKriging model, is
used to distinguish between feasible and infeasible regions.
The sSMF-BO-2CoGP method is demonstrated using a series
of analytical examples and a flip-chip application for design
optimization to minimize the deformation due to warping un-
der thermal loading conditions.

1 Introduction

High-fidelity engineering models are frequently utilized
to predict quantities of interests, such as properties or perfor-
mances, with respect to a specific design. These predictions
are then fed back into the design process to find a better de-
sign that outperform the previous ones by changing the de-
sign parameters. This process, often called design optimiza-
tion, is ubiquitous in industrial settings. Simulation-based
optimization is challenging due to the tremendous computa-
tional cost associated with high-fidelity models. However,
for many practical applications, multiple models of various
fidelity can be developed and a multi-fidelity optimization
framework, such as Bayesian optimization (BO), can be then
applied to optimize the objective function at the highest level
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of fidelity, but at a reduced computational cost by leveraging
lower-fidelity data.

Multi-fidelity methods provide an effective framework
to reduce the computational cost in optimization and un-
certainty quantification by leveraging the correlations with
lower-fidelity models to reduce the computational burden on
high-fidelity models. Multi-fidelity frameworks are particu-
larly practical for engineering simulation-based applications,
such as computational fluid dynamics and solid mechanics
problems, because most of these involve discretizations (spa-
tial and/or temporal), where a finer discretization typically
corresponds to a higher level of fidelity and the coarser dis-
cretization corresponds to a lower level of fidelity.

Incorporating physical and practical constraints into the
optimization formulation is also a critical task. Digabel and
Wild [1]] proposed the QRAK taxonomy to classify con-
strained optimization problems. In engineering settings, con-
straints arise from multiple sources and many problems re-
quire both known and unknown constraints to be incorpo-
rated into the formulation. Constraints are known if the fea-
sibility of the input can be determined directly from the in-
put sampling location, i.e., without actually evaluating the
model. Such known constraints are often formulated as a set
of inequalities. On the other hand, constraints are unknown
if the feasibility of the input must be evaluated indirectly by
evaluating the model. Common examples of unknown con-
straints are ill-conditioning induced by the parameters, sin-
gularity in the design, and mesh generation problems. These
constraints are implicitly imposed and feasibility cannot be
determined without evaluating the computational model.

Gaussian process (GP) methods provide an efficient
framework to model a response surface that approximates
the objective function for single-fidelity formulations. In the
traditional BO approach, an acquisition function a(x) is con-
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structed based on a utility function, which rewards the BO
method if the new sampling location outperforms the rest.
The acquisition function is typically constructed based on
the posterior mean and posterior variance of the GP. Because
of its flexibility, many extensions based on the traditional
BO framework have been proposed to solve other optimiza-
tion problems, including both constrained and multi-fidelity
problems. Incorporating constraints is a well-studied subject
in the context of BO methods, and typically involves adopt-
ing a penalty scheme to penalize the infeasible sampling lo-
cations that do not satisfy all of the constraints. Multi-fidelity
BO problems are more complicated to deal with. To gener-
alize to multiple levels of fidelity, one needs to consider the
correlation between levels of fidelity from the objective func-
tion and fuse the predictions across all levels of fidelity. For
example, Kennedy and O’Hagan [2] proposed an autoregres-
sive approach to form a link between lower-fidelity to the
next higher-fidelity by a linear regression between two levels
of fidelity. The terms CoGP and CoKriging are used inter-
changeably in this work to describe the recursive autoregres-
sive GP model. Because the constrained problems have been
relatively well studied, we will focus the literature review in
Section 2] on multi-fidelity GP.

In this work, we develop a sequential constrained multi-
fidelity method sMF-BO-2CoGP, as an extension of sBF-
BO-2CoGP [3], using a CoKriging approach to approximate
the objective function at the highest level of fidelity. The
known constraints are implemented by penalizing the acqui-
sition function directly for infeasible input sampling loca-
tions. The unknown constraints are adaptively learned us-
ing another CoKriging model, which acts as a probabilis-
tic binary classifier. The unknown constrained acquisition
function is conditioned on this predicted probability mass
function, in addition to the penalty scheme for known con-
straints. The optimal location for the next sample is deter-
mined by maximizing the constrained acquisition function.
Next, an uncertainty reduction scheme, where uncertainty is
measured by the integrated mean-square error, is proposed to
determine the appropriate level of fidelity to evaluate. Com-
pared to the maximum mean square error criteria, the inte-
grated mean square error is demonstrated to be more robust
and efficient.

The content of this paper is invited following the con-
ference paper presented at the ASME IDTEC CIE 2019 (Au-
gust 18-21, 2019) at Anaheim, CA [3]]. The main difference
is that this paper generalizes our previous work [3] from bi-
fidelity to multi-fidelity problems. The remainder of this pa-
per is organized as follows. Section [ provides a brief in-
troduction to the BO method. Section 3l describes the multi-
fidelity sMF-BO-2CoGP method proposed in this paper, in-
cluding the constrained acquisition function, the fidelity se-
lection criteria. Section 4 demonstrates the application of the
proposed sMF-BO-2CoGP methodology using several ana-
lytical examples and an engineering application in designing
flip-chip package based on finite element model. Section [
discusses and Section [f concludes the paper.

2 Related works

Let f denote a function of x, where x € X is a d-
dimensional input, and y is the observation. The optimization
considered in this paper is formulated as

argmax f(x), (D

xeX

subjected to a set of inequality constraints

gj(x)SO7 J:177J7 (2)

where J is the number of inequality constraints.

We briefly review the classical BO method, CoKriging
method, the most common acquisition functions in BO, in
Sections 2.1], 2.2, and 2.3}, respectively. Readers are referred
to other comprehensive reviews and tutorials [4, 5, 6,7] for
rigorous literature reviews on GP and BO methods and its
variants.

2.1 Gaussian process

In this section, we followed the notation of Shahriari et
al. [5] in the GP formulation. Let D = (x;,y;)7_; denote the
dataset, where n is the number of observations and x € X is
the d-dimensional input. A GP regression approach assumes
that f = f}., is jointly Gaussian, and the observation y is
normally distributed given f,

fIX ~ N (m,K), (3)

where m; := u(x;) and K; j := k(x;,x;).

The choice of the kernel K depends on the covariance
between inputs. At an unknown sampling location x, the
predicted response is described by a posterior Gaussian dis-
tribution, where the posterior mean is

(%) = o (x) + k(x)" (K +0* )~ (y—m), ()
and the posterior variance is
= k(x,x) — k(x)" (K +cI) " "k(x), ()

where uo(x) : x € X — R is the prior mean function and
k: X x X — R is the covariance function between the query
point x and xi.,. The classical GP formulation assumes a
stationary covariance matrix, which only depends on the dis-
tance r = ||x—x'|| where ||-|| is usually the classical L>-norm,
but other choices, e.g., the L' -norm and weighted variants,
have also been explored. Common kernels for GP include [5]
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The log-likelihood function can be written as

1
log p(y|x1:0,0) = —ﬁlog (2m) — Elog|Ke +o°I|

—E(y—me)T(Ke+<521)71(y—me)-
)
Optimizing the log-likelihood function yields the optimal
hyper-parameter 6 at the computational cost of O(n3 ) due
to the inversion of the covariance matrix.

2.2 Multi-fidelity CoKriging

One of the advantages of CoKriging is that it can ex-
ploit the correlation between low- and high-fidelity and im-
prove the prediction at high-fidelity level by adding more
low-fidelity training data points. If the computational costs
of evaluation between the high- and low-fidelity differ sig-
nificantly, this advantage offers a reduction in the number
of training data points, thus increase the efficiency of the
optimization problem. Kennedy and O’Hagan [2] proposed
an auto-regressive model that couples all levels of fidelity
together. Le Gratiet and Garnier [8] proposed a nested
scheme D) C D, C --- C D to decouple s levels of fi-
delity into s standard levels of GP regression, where the
GP is used to model the discrepancy between two consec-
utive levels of fidelity. Karniadakis et al. [9, 10, 11] em-
ployed the same method to approximate the highest level of
fidelity and extended for noisy evaluations using the same
method. Perdikaris et al. [12] proposed a generalized frame-
work that can model nonlinear and space-dependent cross-
correlations between models of variable fidelity. The multi-
fidelity Bayesian optimization approach is sometimes known
as multi-information source optimization [13] or multi-task
Bayesian optimization [14]; they are all closely related with
each other. For example, Ghoreishi and Allaire have pro-
posed several approaches to solve the multi-information
source optimization problem in the context of constraints
[15], knowledge-gradient acquisition function [16], Monte
Carlo-based approach [17], and applications to computa-
tional micromechanics [18]. In this paper, we follow the
formulation of Xiao et al. [19] in developing a multi-fidelity
CoKriging framework due to its simplicity and the relaxation
of the nested requirement, compared to Le Gratiet and Gar-
nier [8] and Perdikaris et al. [12] .

Assuming that the prediction at highest level of fidelity,
i.e., level s, can be written as an auto-regressive model [19],

s—1
fx) =Y pefi(x)+8(x), ®)
=1

where s is the high-fidelity level, the remaining (s — 1) levels

correspond to the low-fidelity levels, and p,’s are the scal-
ing factors. Two important assumptions are typically made.
First, 8(x) is assumed to be independent of f;(x), i.e.,

Cov[fi(x), 8(x)] =0, r=1,...,s—1. )

Second, we assume that (s — 1) low-fidelity levels are uncor-
related, i.e.,

Cov[fi(x), fi(x)]=0, 1<i#j<s—1. (10)

Then, the covariance matrix for s levels of fidelity is given
by

6%K|(X1AX|) 0

pioiKi(X1.X.)
0 03Ky (X2, X5) -+

p263K> (X2, X,)
K= : ; '
p16:K (X0, X 1) p263K2(X,,X2) ip,zc,zK/(Xe,Xg)+G§KH(X(,,X¢,)
=1 an
where ©; is the intrinsic variance of noisy observations at
the 7-th level of fidelity. The hyper-parameters {6,};_, are

obtained by optimizing the maximum likelihood function,

log p(3 ¥12,,8,) =~ log (27) — 1 log [K¥ +0%1,
12)
where as the hyper-parameters 0 that corresponds to the dis-
crepancy are obtained by maximizing the likelihood function

n 1
log p(ysx1:,.05) = — log (2m) — 5 log |K3 (X, X) 671

— %(a—mQS)T(K% +0°1) 7 (8 —mgy). (13)

The coefficients, {p; f;ll, are obtained by maximizing

1
5 10g (2m) — 5log KL(X,,X,)+021  (14)

2

If the number of fidelity levels are two (s = 2), then
the conventional bi-fidelity CoKriging framework is conve-
niently recovered from the multi-fidelity CoKriging. The
dataset D is divided into D, and D,, corresponding to cheap
and expensive datasets, respectively. The bi-fidelity formu-
lation is closely related with Couckuyt et al [20,21,22] and
Forrester et al [23]. Following the autoregressive scheme de-
scribed above, the first GP models the low-fidelity response
{x¢,y.}, whereas the second GP models the discrepancy be-
tween the high- and low-fidelity model 3(x).

The correlation vector k(x) and the covariance matrix
K (x) are then updated [21,19] as

k(x)=(p-0; ke(x) p-0°-ke(x,X)), (15)
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The hyper-parameters for the low-fidelity level, 8., are ob-
tained by maximizing the likelihood function at the lower
fidelity level,

1
log p(y.|%n,,0:) = —glog (2m) — Elog\Kg“ +c21|. (17)

The hyper-parameters for the high-fidelity level, 6., are ob-
tained along with p, again by maximizing the likelihood
function,

n 1
log p(y,|xn,,0.) = ) log (2m) — 5 log |KS +0§1|

1
— 5 —mo) (K¢ +0 1)~ (y—mq,). (18)

The predicted distribution of CoKriging is also character-
ized by a Gaussian distribution, where the posterior mean
and posterior variance are given by (5)) and (6), respectively.

2.3 Acquisition function
In the traditional BO method, the next sampling location
is determined by maximizing an acquisition function, i.e.,

x* = argmax a(x), (19)

xeX

where a(x) denotes the acquisition function and x™ is the next
sampling location. The acquisition function is deeply con-
nected to the utility function, which corresponds to the re-
warding scheme for BO methods, if the next sampling point
outperforms the other sampling locations.

There are three acquisition functions that are widely
used: the probability of improvement (PI), the expected
improvement (EI), and the upper-confident bounds (UCB),
but other forms also exist, for example, entropy-based ap-
proaches, GP-PES [24, 25, 26], GP-ES [27], GP-EST [28],
GP-EPS [29].

The PI acquisition function [30] is defined as

apr(x;{x:,yi}i1,0) = P(Y(x)), (20)

where

Cu(x{x,yit,0) — f(Xbest)
) = e 8

21

indicates the deviation away from the best sample. The PI
acquisition function is constructed based on the idea of bi-
nary utility function, where a unit reward is received if a new
best-so-far sample is found and zero otherwise.

The EI acquisition function [31],32,33,34] is defined as

agr (x; {xi,yi}i-1,0) =

o(x; {xi,yi}i1,0) - (Y(x)P(v(x)) + 0(v(x)). (22)

The EI acquisition is constructed based on an improvement
utility function, where the reward is the relative difference if
a new best-so-far sample is found and zero otherwise.

The UCB acquisition function [35,36,37] is defined as

aycs (x; {xi,yi}i=1,0) =

u(x; {x;,yiti1,0) +xo(x; {xi,i}i=1,0), (23)

where ¥ is a hyper-parameter describing the acquisition
exploitation-exploration balance. We adopt the k¥ computa-
tion from Daniel et al. [37], which is based on Srinivas et
al. [35,36], instead of fixing K as a constant.

3 Methodology
In this section, we describe the SMF-BO-2CoGP method
solving the multi-fidelity optimization problem in Section 2.

3.1 Constraints

We adopt the method from our previous work [38,39,40]
to handle the known and unknown constraints. For known
constraints, where the sampling location is known to be in-
feasible without running any functional evaluation, the ac-
quisition function is penalized by setting it to zero. The
penalization scheme is equivalent with multiplying the ac-
quisition function a(x) with another indicator function I(x),
where

1, V(1< j<J):g(x) <0,

— (24)
it 3j(1<j<J):g;(x)>0

The indicator function can be easily implemented by iterat-
ing through the known constraints.

To handle the unknown-constrained problem, an exter-
nal binary probabilistic classifier is employed to predict the
probability of feasibility. Practically speaking, the approach
employed to approximate the binary classifier for feasibility
is up to users. Some examples are k-NN [41], AdaBoost [42],
RandomForest [43], support vector machine [44] (SVM),
least squares support vector machine (LSSVM) [45], GP
[46], and convolutional neural network [47]. One notable
choice for the binary classifier is the GP classifier, which per-
forms relatively well compared to other binary classifiers. In
sMF-BO-2CoGP, another CoGP is adopted as a binary clas-
sifier to predict the probability of feasibility of the sampling
location considered.

At an unknown sampling location x, the coupled binary
classifier predicts a probability of feasibility based on the



trained dataset, where the probability of being feasible is
Pr(clf(x) = 1), whereas the probability of being infeasible
is Pr(clf(x) = 0) = 1 — Pr(clf(x) = 1). Again, we condi-
tion the sampling point on this predicted probability mass
function by assigning zero value to the probability of being
infeasible. Taking the expectation of the acquisition func-
tion conditioned on this probability mass function results in
a new acquisition function, which can be rewritten in a prod-
uct form as

a*(x) =a(x)- I(x)-Pr(clf(x) =1). (25)

Maximizing the new acquisition function a*(x) yields the
next sampling location of sMF-BO-2CoGP:

x* = argmax a”(x)
xeX
= argmax a(x)- I(x) - Pr(clf(x) = 1).
xeX

(26)

In practice, we adopt the covariance matrix adaptation evolu-
tion strategy (CMA-ES) from Hansen et al. [48,49] to maxi-
mize the new acquisition function a*(x).

3.2 Fidelity selection criteria

In this section, we propose the fidelity selection criteria
for the multi-fidelity frameworks. The computational cost,
as well as the reduction of uncertainty are used as the two
factors to determine the fidelity level at which the evaluation
will be performed.

To determine the level of fidelity in evaluating the
new sampling location, a fidelity selection criteria balanc-
ing the computational cost and integrated mean squared error
(IMSE) reduction is utilized based on a one-step hallucina-
tion. The process of hallucination is adopted from our previ-
ous work [38]. For the sake of completeness, the process is
summarized here.

The CoKriging is hallucinated at a point x* if the obser-
vation, i.e., training data, is assumed to be exactly the same
with the GP posterior mean prediction temporarily. The
CoKTriging posterior distribution is then updated accordingly
based on the assumption. The posterior variance 6°(x*) at
x* is 6 for the posterior prediction (in particular, o> (x*)
at x* is O for deterministic functional evaluation). Then, if
the sampling point x* is feasible, the GP is updated with the
true observation, instead of the posterior GP prediction. If
the sampling point x* is infeasible with respect to unknown
constraints, then the hallucination process will take place for
every iteration at x*.

Ift=1,...,s are the s levels of fidelity, then the opti-
mal fidelity level ¢* to perform the functional evaluation is
determined by

t* = argmin (IMSEL hallucinated * CI)
t

27
= argmin (/ Gz(x)dx«C,) ; @7
t X

where IMSE is the integrated mean-square error, and the
computational cost at level ¢ is denoted as C;. The term
(IMSEL hallucinzted ~C,) quantifies the performance of query-
ing at level ¢ of fidelity, which is measured as a product be-
tween the estimated IMSE and the computational cost. The
integrated mean-square error, IMSE, is calculated as

IMSE = / o%(x)dx, (28)
X

where the posterior variance field Gz(x) is hallucinated at
the sampling location x*, i.e. assuming that y(x*) = u(x).
The optimal level t*, corresponding with the optimal product
(IMSEL haltucinated -C,) as a measure of cost and effectiveness,
is selected to query the model.

Additionally, to promote the functional evaluation at
highest fidelity level, i.e., level ¢ = s, we choose the high-
est fidelity data (instead of ¢ = ¢*) if the ratio of number of
training data points is larger than the computational cost ra-
tio since the goal is to optimize at the highest level of fidelity
t = 5. In particular, let t* be the optimal level of fidelity to
query for the next sampling point, and |Q)(’ >| be the cardinal-
ity of the training dataset at level ¢ of fidelity (i.e., the number
of training data points at level ¢) and C; be the computational

cost at level . We compare two quantities, (C,* . \Q)(’*) |) and
(Cs D |) If - | D) > Cy - |DY)], which means some

of the computational cost building D) could be traded for
building DY) (which is consistent with the policy of promot-
ing evaluation at highest fidelity level s), then level s, i.e., the
highest level of fidelity is chosen instead of #*.

For the case of bi-fidelity, the criteria selection is ob-
tained by restricting the multi-fidelity in (27)) to the bi-fidelity
settings. We compare the measure of the high-fidelity level

IMSE} hallucinated - Ci), and that of the low-fidelity level

IMSE; hallucinated * Cl). For the sake of convenience, we de-
fine agdelity ratio of measure at the high-fidelity level to that
of low-fidelity as

IMSEh, hatlucinated  Ch

—tt 29)
IMSE], hallucinated CI (

Afidelity -=

where C;, and C; are the computational costs at the high- and
low-fidelity levels, respectively. If aggeliy < 1, then the func-
tion evaluator is called at the high-fidelity level, whereas if
afigelity > 1, then the function is evaluated at the low-fidelity
level. The proposed fidelity selection criteria defined in (29)
determines the trade-off between running at low-fidelity and
high-fidelity levels. If the high-fidelity return is higher than
the low-fidelity, then the high-fidelity level is chosen, and
vice versa.

In practice, to promote the high-fidelity evaluations, a
hard condition is proposed to prevent the imbalance between
low- and high-fidelity data sets based on the comparison be-
tween the number of data points available and the relative
computational cost between high- and low-fidelity data. If



the ratio of low-to-high fidelity data points is higher the rel-
ative computational cost, then the high-fidelity level will be
chosen to evaluate the sampling locations. The IMSE is com-
puted by Monte Carlo sampling in high-dimensional space.
It is noted that if the relative computational cost between
the high- and low-fidelity is 1, then fidelity criteria selec-
tion always promotes evaluating the sampling data point at
the high-fidelity level.

4 Applications

In this section, we demonstrate the proposed SsMF-BO-
2CoGP through several analytical functions in Section @.T],
including 1d Forrester function [23] and a subset of bench-
mark functions from Kandasamy et al. [50] and Xiong et
al. [51], including 2d Currin exponential function (two lev-
els of fidelity), 8d borehole function (two and three levels
of fidelity), welded beam design problem (four levels of fi-
delity), and an 11d real-world engineering application (two
levels of fidelity) in designing flip-chip package (Section
4.6). Some implementations are adopted from Surjanovic
and Bingham [52]. In all the benchmark of different acquisi-
tion functions, the computational cost between the high- and
low-fidelity model is fixed at 2.50.

4.1 Forrester function (1d) with two fidelity levels
In this section, we consider the Forrester function [23],
where x € [0, 1], the low-fidelity function is

fu(x) =0.5(6x— 2)?sin(12x —4) 4+ 10(x —0.5) =5, (30)
and the high-fidelity function is

fr(x) = (6x —2)sin(12x — 4). (31)

First, consider a baseline set of 4 low-fidelity and 2 high-
fidelity data points. We compare the effects of adding low-
and high-fidelity observations on the prediction of CoKrig-
ing. Figure 2 shows the comparison between the posterior
mean u(x) and posterior variance 6*(x) between adding 4
more low-fidelity and 2 more high-fidelity data points. The
common low-fidelity data points are denoted as blue squares,
the common high-fidelity data points are denoted as black di-
amonds, and the added data points are denoted as red circles
(low-fidelity for Figures [1a and 2d; high-fidelity for Figures
[Ib and 2b).

For the low-fidelity level, Figures [1a and 2a show the
updated posterior mean u(x) and posterior variance o (x)
after 4 more low-fidelity data points are added, respectively.
The posterior mean u(x) prediction slightly improves near
the end of the domain x = 1, but does not improve signifi-
cantly near the other end of the domain x = 0 (Figure [1d).
The posterior variance 6° (x) slightly reduces at the location
where the low-fidelity data points are added.

For the high-fidelity level, Figure [Ibland Figure 2b/ show
the updated posterior mean u(x) and posterior variance 6°(x)

after 2 more high-fidelity data points are added, respectively.
The posterior mean u(x) improves as expected, as shown in
Figure . The posterior variance 6 (x) reduces to zero for
noiseless evaluations at the two added sampling locations.

Next, we test the numerical implementation of the sMF-
BO-2CoGP method by considering the minimization prob-
lem argmin fy (x) with no constraint and various computa-
tional relative cost ratio between the high- and low-fidelity
levels. Figure B4 and Figure 3b show the convergence plot
with respect to iterations and total computation cost, respec-
tively. The case where the relative cost ratio is 1.0 serves as
a benchmark for traditional sequential BO using only high-
fidelity. We verified that when the relative cost ratio is 1.0,
all the evaluations are evaluated only at high-fidelity level.
When the relative cost ratio is higher than 1.0, the sMF-
BO-2CoGP selects the fidelity criteria on-the-fly, using the
fidelity criteria selection described above. It is worth not-
ing that Figure 3d only shows the convergence plot at high-
fidelity level. That means, the convergence plot only updates
when a better high-fidelity result is available. The numer-
ical performance at high-fidelity level of the multi-fidelity
SMF-BO-2CoGP framework degrades when the computa-
tional cost ratio increases, because more low-fidelity points
are selected at high computational cost ratio, according to
Equation 29,

As shown in Figure Ba, when the computational cost
ratio is 1.0, the sMF-BO-2CoGP converges to a sequential
BO with high-fidelity, and is the fastest with respect to the
number of iterations. Figure Bb shows comparable perfor-
mances between the cases of ratio 1.0 and 2.5, where the
performance degrades when the computational cost ratio in-
creases. However, they all converge after approximately 7
iterations.

In this example, we consider an initial sampling data set
comprised of 4 low-fidelity and 2 high-fidelity data points.
The numerical performances are expected to change with dif-
ferent initial samples, as well as the behavior of high- and
low-fidelity models.

Figure @ shows the convergence plot of 1d Forrester
function. Five trial runs are performed with different initial
samples. Bands are covered by the lower and upper bounds
at a fixed iteration with respect to different trial runs. Solid
lines denotes the mean objective function at a fixed iteration.
The EI acquisition function is denoted with blue circles and
blue band. The UCB acquisition function is denoted with
red crosses and red band. The PI acquisition function is de-
noted with green squares and green band. Readers are re-
ferred to color version online. The UCB acquisition function
converges slowly at the beginning, but outperforms the EI ac-
quisition function later on. The PI acquisition function does
not perform very well. In a case of UCB, 5 high-fidelity and
3 low-fidelity evaluations are performed to achieve conver-
gence.
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4.2 Currin exponential function (2d) with two fidelity
levels
We adopted the multi-fidelity Currin functions, where
the high- and low-fidelity functions are written as, respec-
tively,

futs) =1 -exp (=5 )|

23007 + 1900x7 +2092x; + 60
100x3 4 50027 + 4x1 +20

(32)
1
fulx) = 5 [fH (x1 +0.05, x> +0.05)
+ fur (1 +0.05, max(0,xs — 0.05))} .
1 I
o [ fir(x1 = 0.05,x,+0.05)
+ fu(x; —0.05, max(0,x; — 0.05))}
where the domain is X = [0, 1] x [0, 1].
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Fig. 5: Convergence plot of 2d Currin function, two levels
of fidelity, with different acquisition functions. Bands are
encapsulated by the lower and upper bounds of objectives at
a particular iteration.

Figure 5] shows the convergence plot of 2d Currin func-
tion. The explanation of the plots is similar to the case of
1d Forrester function. In this example, the UCB acquisition
function outperforms both the EI and PI acquisition func-
tions. The PI acquisition function performs poorly. In a case
of El, 16 high-fidelity and 14 low-fidelity evaluations are per-
formed to achieve convergence.

4.3 Welded beam design problem (4d) with four fidelity
levels

In this example, we adopted the welded beam design

problem from one of our previous work [39], illustrated in
Figure 6. The objective function f is calculated as

F(wym,h,1,t,b) = (1+Cy)(wt + )R> +Catb(L+1)  (34)

subject to five known inequality constraints,

shear stress(7) : g =0.5776; —t(x) >0, (35)
bending stress in the beam(c) : g» = 64— 6(x) > 0, (36)
buckling load on the bar(P,) : g3 =b—h >0, (37)
deflection of the beam : g4 = P.(x) — F >0, (38)
side constraints : g5 = dmax — 0(x) >0, (39)
where
6FL
= 4
o(x) 25 (40)
4FL3
3(x) = 5D (41)
4.013tb*VEG t |E
1= /(¢)2 4 (¢)? + 20" cos, @3)
, F
== 44
T rE (44)
. F(L+050)R o
J
A=+/2hl
2 2
J=/3hi [(h:t) +f—2}
w=0: ’ (46)
R=—\/2+ (h+1)?
l
0=—
cos o
A=V2h(t+1)
(h41)? 12 (40> ¢?
=+v2n |4 ) =
J =2hl AT +V2ht Tt
vl R = max l\/12+ (h+1)? l\/r2+ (h+1)?
B 2 2
l
cosB = 2R

(47)



Table 1: Material-dependent parameters and constants in the welded beam design problem.

Constants  Description

steel cast iron aluminum brass

C, cost per volume of the welded material ($/in3) 0.1047 0.0489 0.5235 0.5584
G cost per volume of the bar stock ($/in®) 0.0481 0.0224 0.2405 0.2566
Gy design normal stress of the bar material (psi) 30-10° 8-10° 5.10° 8-10°
E Young’s modulus of bar stock (psi) 30-10°  14-10° 10-10° 16-10°
G shear modulus of bar stock (psi) 12-10°  6-10° 4.10° 6-10°

Ci(m), Cy(m), 64(m), E(m), G(m) are parameters that de-
pend on the bulk materials m, as listed in Table [I. The lower
and upper bounds of the problem are 0.0625 </ <2,0.1 <
1<10,2.0<7<20.0,and 0.0625 < b <2.0. me {1,2,3,4}
encodes the bulk materials as steel, cast iron, aluminum, and
brass, respectively.

Fig. 6: Welded beam design problem [53].

The goal is to minimize the objective function
f(w,m,h,1,t,b), which is the estimated cost. The physical
meaning of the input parameters is as follows. # is the thick-
ness of the weld; [ is the length of the welded join, 7 is the
width of the beam; b is the thickness of the beam. m is a
discrete variable enumerating the bulk material of the beam,
which can be steel, cast iron, aluminum, or brass. w is a
binary variable to model the type of weld: w = 0 for two-
sided welding, and w = 1 for four-sided welding. Different
bulk materials are associated with different materials prop-
erty, as described in Table [Il. The fixed design parameters of
the beam are L = 14 inch, 8,,,x = 0.25 inch, and F = 6,000
1b.

Compared to the example [39], here, we fix w = 0, and
consider four levels of fidelity. The high-fidelity function and
three low-fidelity functions are

fu(x)=f(w=0,m=1,h,1,,b), (48)
fo,(x)=fw=0,m=2,h,l,t,b), (49)
fi,(x) = f(w=0,m=3,h,1,1,b), (50)
fi;(x) = f(w=0,m=4,h,1,1,b). (51)

We wish to minimize the cost of using steel as the bulk mate-
rial at the high-fidelity level, where the low-fidelity functions
fr,(x), fr,(x), and fz,(x) are used to estimate the cost of us-
ing cast iron, aluminum, and brass, respectively. The com-
putational cost of the high-fidelity level are 2.5 times higher
than that of low-fidelity levels.
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Fig. 7: Convergence plot of 4d welded beam design function,
four levels of fidelity, with different acquisition functions.
Bands are encapsulated by the lower and upper bounds of
objectives at a particular iteration.

Figure[7 shows the convergence plot of the welded beam
design problem with four levels of fidelity. In this example,
the UCB and EI acquisition functions perform on par with
each other and outperform the PI acquisition functions. In a
case of EI, 6 high-fidelity and 14 low-fidelity evaluations are
performed to achieve convergence.

4.4 Borehole function (8d) with two fidelity levels

In this example, we adopted the multi-fidelity borehole
function from Xiong et al. [51]], where two fidelity levels are
considered. The high- and low-fidelity functions are, respec-
tively,

27UC3 ()C4 — xﬁ)

fu(x) = 62
tog(xa/xt) (1+ Tog(az/x1 )3 2)
Sx3(x4 — X,
fL(x) - 3( : 26x)7x3 X3 ' (53)
log(xz/x1) (1'5 + log(xp /x1 )x3xg x_'?)

The domain of the 8d borehole function is x; € [0.05,0.15],
xz € [100,50000], x3 € [63070,115600], x4 € [990,1110],
x5 € [63.1,116], x¢ € [700,820], x7 € [1120,1680], x5 €
[9855,12045].

Figure [§ shows the convergence plot of 8d borehole
function. The explanation of the plots is similar to the case
of 1d Forrester function. In this example, the EI acquisition
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Fig. 8: Convergence plot of 8d borehole function, two levels
of fidelity, with different acquisition functions. Bands are
encapsulated by the lower and upper bounds of objectives at
a particular iteration.

function outperforms both the UCB and PI acquisition func-
tions, where the PI and UCB acquisition functions perform
on-par with each other. In the case of EI, 22 high-fidelity and
53 low-fidelity evaluations are performed to achieve conver-
gence.

4.5 Borehole function (8d) with three fidelity levels

We further modify and extend the previous 8d borehole
function in the previous example with three levels of fidelity.
The high-fidelity and low-fidelity functions are described as,

271:)63 ()C4 — x6)

fir(®) = (W)
log(xa/x1) (1 T Togn /a1 1B _s)
S5x3(xq4 — x,
fiy () = 2 j) — (9
log(xz/x1) (1'5 W log(xz/xl;)x%xs %)
7 _
foy (%) = xa{xy— %) (56)

2x7x3 X3
log(xy/xi)xixg ' s

log(x2/x1) (0.5 n

It is obvious to see that f7, (x) < fu(x) < f,(x); thus,
the high-fidelity function is bounded between two low-
fidelity functions. Figure 9 shows the convergence plot of
the 8d borehole function with three levels of fidelity. In this
example, all the acquisition functions, including EI, UCB,
and PI, perform on par with each other, almost throughout
the optimization process. In the case of PI, 28 high-fidelity
and 82 low-fidelity evaluations are performed to achieve con-
vergence.
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Fig. 9: Convergence plot of 8d borehole function, three lev-
els of fidelity, with different acquisition functions. Bands are
encapsulated by the lower and upper bounds of objectives at
a particular iteration.

4.6 Flip-chip package design (11d) with two fidelity lev-
els

In this section, we demonstrate the design application
of a flip-chip package using the proposed sMF-BO-2CoGP,
where the details of development and implementation are
fully described in our previous work [54]. A lidless flip-chip
package with a monolithic silicon die (FCBGA) mounted on
a printed circuit board (PCB) with a stiffener ring is con-
sidered in this example. The computational model is con-
structed based on a 2.5D, half symmetry to reduce the com-
putational time.

Figure [10 shows the geometric model of the thermome-
chanical finite element model (FEM), where the mesh den-
sity varies for different levels of fidelity. Two design vari-
ables are associated with the die, three are associated with
the substrate, three more are associated with the stiffener
ring, two are with the underfill, and the last one is with the
PCB board. Only two levels of fidelity are considered in this
example. Table 2 show the design variables, the physical
meaning of the design variables, as well as their lower and
upper bounds in this case study.

Table 2: Design variables for the FCBGA design optimiza-
tion.

Variable | Design part Lower bound | Upper bound | Optimal value
X die 20000 30000 20702

X2 die 300 750 320

X3 substrate 30000 40000 35539

X4 substrate 100 1800 1614

xs substrate 10-107¢ 17-10°¢ 17-107°
x5 stiffener ring | 2000 6000 4126

X7 stiffener ring 100 2500 1646

X3 stiffener ring | 8-107° 25.107° 8.94.107°
X9 underfill 1.0 3.0 1.52

X10 underfill 0.5 1.0 0.804

X PCB board 12.0-10°¢ 16.7-107° 16.7-107¢




@0 0 0 0 0 6 6 6 6 8 & 6 6 & & 6 &

Solder Joints

Fig. 10: Finite element model geometry.
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Fig. 11: Convergence plot of flip-chip package design evalu-
ation to minimize the flip-chip warpage.

After the numerical solution is obtained, the component
warpage at 20°C, 200°C, and the strain energy density of the
furthest solder joint are calculated. The strain energy density
is one of accurate predictors to estimate the fatigue life of the
solder joints during thermal cycling [55].

A vectorized 11-dimensional input is used to parameter-
ize the design. 9 low-fidelity and 3 high-fidelity data points
are used as initial samples. It is noted that not all of the initial
samples are feasible. There are some unknown constraints,
but no known constraint is imposed in this example. We con-
sider that the sampling locations where the FEM solutions
diverge are infeasible. This condition can be regarded as an
unknown constraint, because no prior knowledge regarding
divergence is known beforehand but only after the simulation
is finished. ANSYS Parametric Design Language (APDL)
software is used to evaluate the model in the batch mode with
no graphical user interface. The sSsMF-BO-2CoGP is imple-
mented in MATLAB, where an interface using Python is de-
vised to communicate with the APDL FEM model. The av-
erage computational time for one iteration is approximately
0.4 CPU hour.

Figure [11] presents the convergence plot of the FCBGA
design optimization, where the feasible sampling points
are plotted as blue circles, whereas the infeasible sampling
points are plotted as red squares. The EI acquisition function
is used in this example to locate the next sampling point. It

is observed that the predicted warpage is converging steadily.
The numerical solver fails to converge on many cases. It has
also demonstrated that the proposed sMF-BO-2CoGP is ro-
bust against diverging simulations, by its convergent objec-
tive despite numerous failed cases.

The optimization results are relatively close to designs
commonly used in the microelectronics packing industry. It
is observed that thin and small die, as well as thick substrate,
are suggested in order to minimize the component warpage.

5 Discussion

The main contribution of this work is the proposal of the
fidelity selection criteria. The criteria is inspired by the work
of Huang et al. [56], where the original criteria is proposed
based on the EI acquisition function as

El(x,l) = El(x) (57
X Corr(ff'(x),fh(x))  (58)
x L (59)
s7(x) + Gé ;
Cn
X < (60)

where m is an arbitrary level of fidelity, and [ is the highest
level of fidelity. In this scheme, after each point is nomi-
nated at a level of fidelity, a unique sampling point is cho-
sen by looping over all the levels. The uncertainty reduc-
tion is measured in the second term of the above equation,

G¢. 1
\ /slz(x) + Gél

IMSEI, hal.lucir‘late_d . |
tage of the proposed criteria is that it truly estimates the re-

duction of uncertainty at a particular level. While the uncer-
tainty could be measured by the maximum c° (x) forx e X
for the uncertainty reduction, the maximal location is often
found on the border of the bounded domain. Another advan-
tage of the proposed criteria is that it removes the restriction

1- In our scheme, the uncertainty is

measured by in Equation 29. One advan-



of using EI acquisition, and generalizes to any arbitrary ac-
quisition function. The choice of the acquisition function
is left to users as a choice. Previous work by Gauthier et
al. [57,58] and Silvestrini et al. [59] have shown that the
performance of IMSE supersedes the performance of max-
imal MSE. The scheme proposed by Huang et al. [56] in
Equation 57| can be further generalized to some other com-
monly used acquisition functions, such as PI and UCB. Fur-
thermore, multiple acquisition functions can be considered
simultaneously based on their performance, as in GP-Hedge
scheme [60].

In the implementation, the CMA-ES framework is
adopted to maximize the acquisition function a*(x). For
computationally expensive high-fidelity simulations, the
CMA-ES parameters must be tuned to search carefully with
multiple restarts to avoid local minima. In practice, optimiz-
ing the acquisition function takes some amount of time, thus
it also reduces the efficiency of the method. However, it has
been rarely discussed in the literature, and there has not been
much work dedicated to benchmarking and quantifying the
computational cost of this process. For batch-sequential par-
allel BO approaches, the computational cost is much more
severe, particularly with simulations that are associated with
large infeasible space.

The use of the probabilistic binary classifier to learn and
distinguish feasible and infeasible region also depends many
factors of the problems. Essentially, the classifier needs to
accurately predict the feasibility before the optimal point is
obtained. This depends largely on the dimensionality of the
problem considered. However, once the feasibility is accu-
rately predicted through Equation 25, the convergence to the
global optimal point is guaranteed through the classical BO
framework. The analytical convergence rate can be found in
the seminal work of Rasmussen [46].

BO is indeed a flexible framework that allows for nu-
merous possible extensions in engineering domains [61]].
One of those are multi-fidelity, which is studied in this pa-
per. Other extensions include batch-sequential parallel sam-
pling [38]], asynchronously parallel sampling [40], mixed-
integer optimization with a small number of discrete/cate-
gorical variables [39], latent variable model [62]. More so-
phisticated GP models, including local GP, [63, 64], sparse
GP [65]], heteroscedastic [66], and even deep learning [67],
have been developed to widen the range of multi-disciplinary
applications. This area remains active for further research.

While the proposed sequential multi-fidelity sMF-BO-
2CoGP aims at improving the efficiency compared to the se-
quential high-fidelity BO, the efficiency can be further im-
proved by performing parallel optimization. That is to sam-
ple multiple locations concurrently (i.e. at the same time)
and asynchronously (i.e. sampling points do not have to wait
for others to complete). The proposed multi-fidelity frame-
work serves as a foundation work to tackle the constrained
multi-fidelity problem in an asynchronously parallel manner.
The research question remains open and poses as a potential
future work.

6 Conclusion

In this paper, a sequential multi-fidelity BO optimiza-
tion, called sMF-BO-2CoGP, is proposed to solve the con-
strained simulation-based optimization problem. A fidelity
selection criteria is proposed to determine the level of fidelity
for evaluating the objective function value. Another CoKrig-
ing model is coupled into the method to classify the next
sampling point and distinguish between feasible and infeasi-
ble regions.

The proposed sMF-BO-2CoGP method is demonstrated
using a simple analytic 1D example, as well as an engi-
neering thermomechanical FEM for flip-chip package de-
sign optimization. The preliminary results provided in this
study demonstrates the applicability of the proposed sMF-
BO-2CoGP method.
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