

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-807158

Free-field Ground Motion Induced by Underground Explosions at Aqueduct Mesa with Predictions for Physical Experiment One (PE1)

S. R. Ford

March 13, 2020

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Free-field Ground Motion Induced by Underground Explosions at Aqueduct Mesa with Predictions for Physical Experiment One (PE1)

Sean R. Ford

Lawrence Livermore National Laboratory, Livermore, California 94550, sean@lbl.gov

March 13, 2020

Abstract

We fit standard power-law models for ground acceleration and particle velocity using scaled ground motion observations from underground nuclear explosions at Aqueduct Mesa on the Nevada National Security Site. The models are then validated using small-scale high-explosive (HE) test data from nearby Rainier Mesa. The comparison between model predictions and observations is good and can be made more favorable if the assumed yield for the HE tests are doubled. Further validation is made with a numerical experiment that additionally shows a transition in ground motion attenuation to elastic propagation ($1/r$). An extended model is provided to incorporate the long-range transition in attenuation, which results in increased ground motions at farther range. We then make predictions for the field experiment, Physical Experiment One (PE1), to take place in P-tunnel on Aqueduct Mesa, and suggest that the models could be used in planning various operations for PE1.

1 Introduction

The U.S. conducted underground nuclear tests at Aqueduct Mesa on the Nevada National Security Site (formerly, the Nevada Test Site) [Department of Energy, 2015]. More information on the tests conducted there can be found in Townsend et al. [2007].

Fourney et al. [1994] and Ingram and Drake [1987] provide scaled ground motion observations of the events at Aqueduct Mesa. The events considered are listed in Table 1 and the data is shown in Figure 1. We use the reported values of velocity and scaled acceleration

Table 1: Aqueduct Mesa events in the dataset

Name	Tunnel
PLATTE	K
MISSION CYBER	P
DISKO ELM	P
DISTANT ZENITH	P
MINT LEAF	T
DIAMOND SCULLS	T
HUSKY PUP	T
MIDAS MYTH / MILAGRO	T

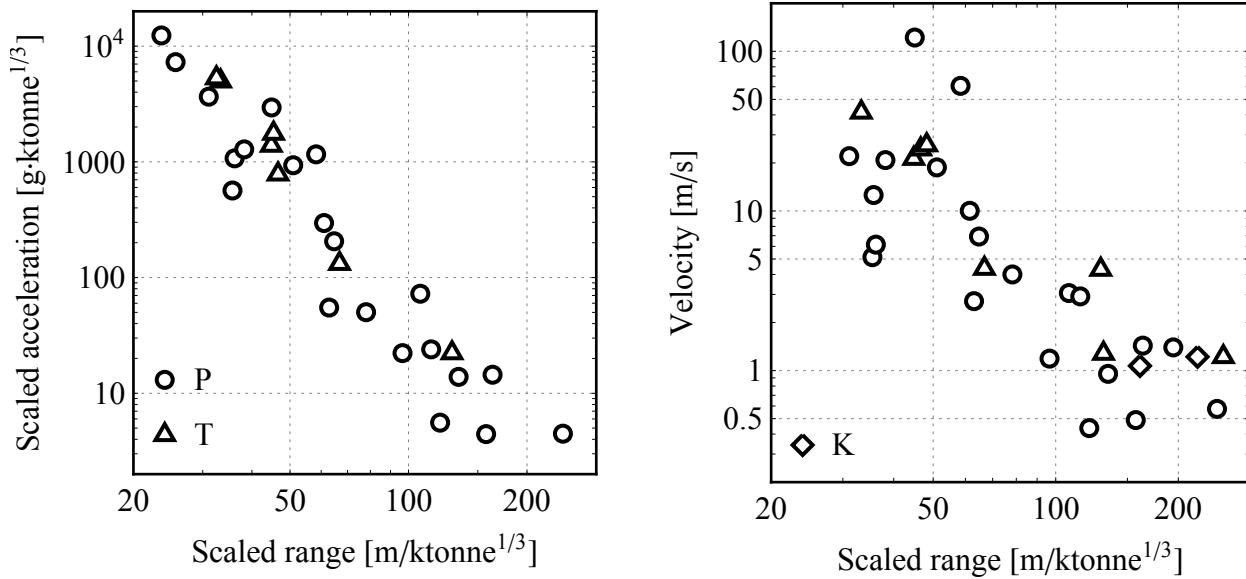


Figure 1: Dataset of a) scaled acceleration and b) velocity observations.

versus scaled range to parameterize scaled ground motion power-law models. These models can be used for ground motion prediction for a given scaled range.

There were also several (chemical) high-explosive (HE) tests at Rainier Mesa and we compare the observations of two such events, One-Ton and Puff-Too [Smith, 1980], with the ground motion predictions derived from underground nuclear tests at Aqueduct Mesa. Aqueduct Mesa is a northern extension of Rainier Mesa and is geologically very similar. The observations compare favorably with the predictions, which gives us confidence that we can make ground motion predictions for the Physical Experiment One (PE1) that is scheduled to take place at Aqueduct Mesa as part of the Low Yield Nuclear Monitoring program.

Table 2: HE tests used for validation

Name	Tunnel
Puff-Too	G
One-Ton	G

2 Inference

We will proceed to fit ground motion models of the form found in Perret and Bass [1975]. Our goal is to estimate parameters α and β in

$$d = \alpha (r/w^{1/3})^\beta, \quad (1)$$

where r is the slant range and w is the explosive yield in TNT-equivalent ktonne (where tonne is a metric ton equal to 1000 kg), or the energy released in a ktonne of trinitrotoluene (TNT), which is defined as 4.184×10^{12} J, d is the scaled observation, such that scaled acceleration is $a \cdot w^{1/3}$ in g·ktonne $^{1/3}$ and velocity yield scaling cancels and is simply u in m/s. The standard approach used in Perret and Bass [1975] is to transform the power-law relationship in Equation 1 to a log-linear one of the form

$$\log(d) = \log(\alpha) + \beta \log(r/w^{1/3}), \quad (2)$$

and use simple linear regression techniques that can estimate the parameters a and b in an equation of the form

$$\mathbf{y} = a + b\mathbf{x} + \boldsymbol{\epsilon}. \quad (3)$$

So for the case presented in Equation 2, the vector of outcomes \mathbf{y} is $\log(d_i)$ for each occurrence i and the vector of predictors \mathbf{x} is $\log(r_i/w_i^{1/3})$, which is the logarithm of the scaled range in m/ktonne $^{1/3}$. The parameters a and b are $\log(\alpha)$ and β , respectively, and $\boldsymbol{\epsilon}$ is a vector of (normal) random errors.

3 Models

We estimate the parameters using the Mathematica¹ `LinearModelFit` function. Single prediction bands are calculated as $\hat{y} \pm t_c \sqrt{X^\top C X + \sigma^2}$, where X is the design matrix (made up of a column of ones and the predictor), C is the covariance matrix of the parameters, σ^2 is the variance in the residuals (predicted outcome – observed) estimated from the fit, and

¹<http://www.wolfram.com/mathematica>

t_c is the cumulative density of the Students-T distribution for a $c\%$ confidence band.

3.1 Acceleration

The limits of the model can be derived from the data, which in scaled range are 23.5 and 246.8 m/ktonne $^{1/3}$, so lets call the limits 25 to 250 m/ktonne $^{1/3}$, such that outside this range we are *extrapolating*. Within these limits the model is

$$\hat{y}_{\text{acc}} = \log(a \cdot w^{1/3}) = 21.11 - 3.759x \quad (4)$$

where, again, the predictor x is $\log(r/w^{1/3})$. The 95% prediction bands are

$$\hat{y}_{\text{acc}} \pm 2.056\sqrt{1.578 - 0.4667x + 0.05629x^2} \quad (5)$$

The 90 and 99% maximum prediction bands are given by changing the coefficient (derived from the Students-T) from 2.056 to 1.706 and 2.779, respectively. The model and prediction bands are shown in Figure 2a. In the parlance of Perret and Bass [1975], where the variance for $\hat{\beta}$ is reported as a fractional standard deviation of the exponent and the variance for $\hat{\alpha}$ is reported as the anti-log (in other words, $\exp(x)$) of its standard error and its reciprocal, the acceleration model is

$$a \cdot w^{1/3} = 1.4719 \times 10^9 (r/w^{1/3})^{-3.76 \pm 0.24}, \quad (6)$$

where the coefficient of this equation, which represents the intercept of the fit at $r/w^{1/3}$ equal to unity, has a variance defined by the factors 2.702 and its reciprocal. The exponent has a fractional standard deviation of 6.31%.

3.2 Velocity

The limits of the model are the same as in the acceleration model, which is 25 to 250 m/ktonne $^{1/3}$, such that outside this range we are *extrapolating*. Within these limits the model is

$$\hat{y}_{\text{vel}} = \log(u) = 9.837 - 1.886x \quad (7)$$

where, again, the predictor x is $\log(r/w^{-1/3})$. The 95% prediction bands are

$$\hat{y}_{\text{vel}} \pm 2.045\sqrt{1.964 - 0.5276x + 0.06011x^2} \quad (8)$$

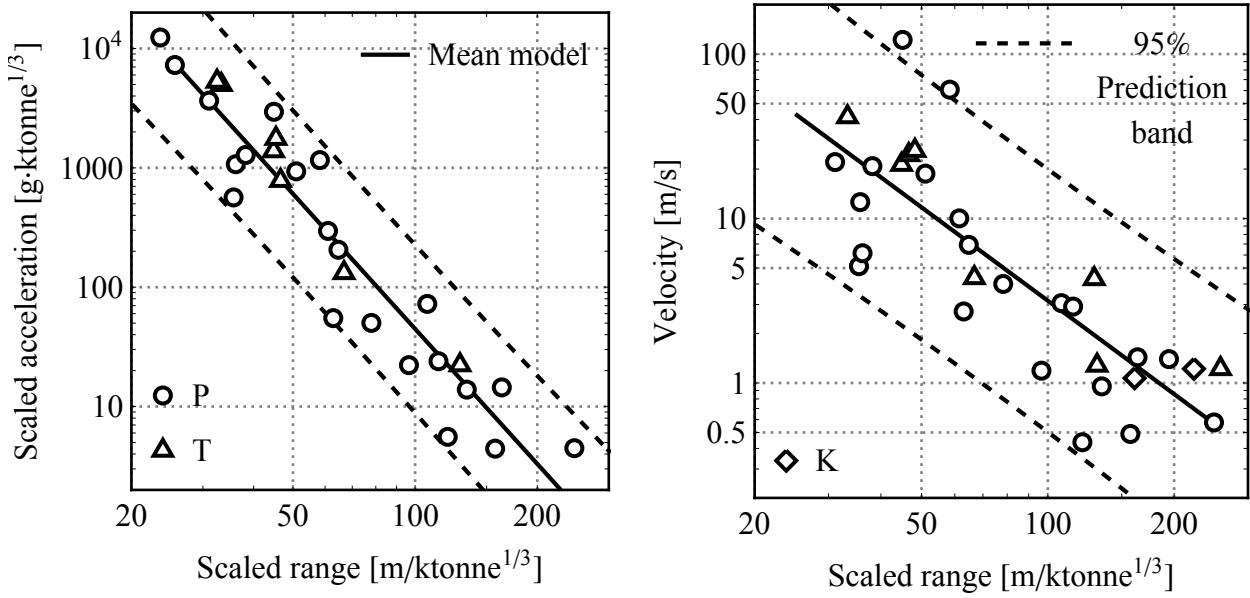


Figure 2: Observations and best-fit model (solid line) with 95% prediction band (dashed line).

The 90 and 99% maximum prediction bands are given by changing the coefficient (derived from the Students-T) from 2.045 to 1.699 and 2.756, respectively. The model and prediction bands are shown in Figure 2b. In the parlance of Perret and Bass [1975], the velocity model is

$$u = 1.8713 \times 10^4 (r/w^{1/3})^{-1.89 \pm 0.25}, \quad (9)$$

where the coefficient has a variance defined by the factors 2.967 and its reciprocal. The exponent has a fractional standard deviation of 12.99%.

4 Discussion

We can compare the Aqueduct Mesa model derived here with the Perret and Bass [1975] wet-tuff model and use both for predictions of the Physical Experiment One (PE1).

4.1 Comparison to Perret and Bass [1975]

Perret and Bass [1975] provide a “Wet Tuff” model with an applicable range of 30 to 600 m/ktonne^{1/3}. The acceleration model is

$$a \cdot w^{1/3} = 4.31 \times 10^7 (r/w^{1/3})^{-2.61 \pm 0.17}, \quad (10)$$

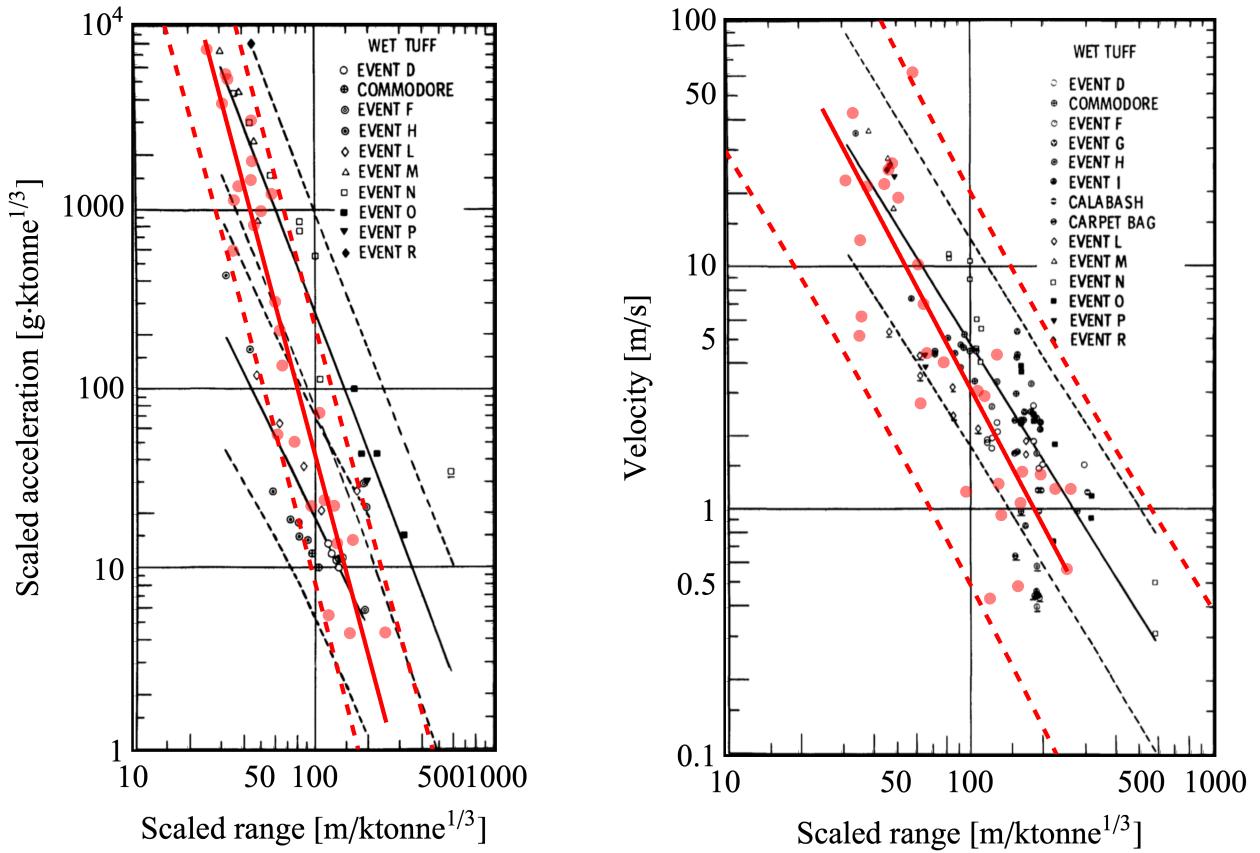


Figure 3: Ground motion models (red line) with 95% prediction bands (dashed red lines) derived from all the Aqueduct Mesa observations (red circles) for acceleration (left) and velocity (right) plotted on top of figures 3.7 (left) and 3.8 (right) from Perret and Bass [1975] showing the “Wet Tuff” ground motion models and observations.

where the coefficient has a variance defined by the factors 2.21 and its reciprocal. The exponent has a fractional standard deviation of 5.8%. The velocity model is

$$u = 6.61 \times 10^3 (r/w^{1/3})^{-1.56 \pm 0.09}, \quad (11)$$

where the coefficient has a variance defined by the factors 1.56 and its reciprocal. The exponent has a fractional standard deviation of 5.8%. Unfortunately, Perret and Bass [1975] do not provide the prediction variance used to derive error bands nor a function for them, so we cannot compare them quantitatively. However, they are plotted in their report, so we can plot our models and error bands on top of their figures for some measure of qualitative comparison. This is done in Figure 3 for the acceleration and velocity models, which also show the Aqueduct Mesa dataset (red circles).

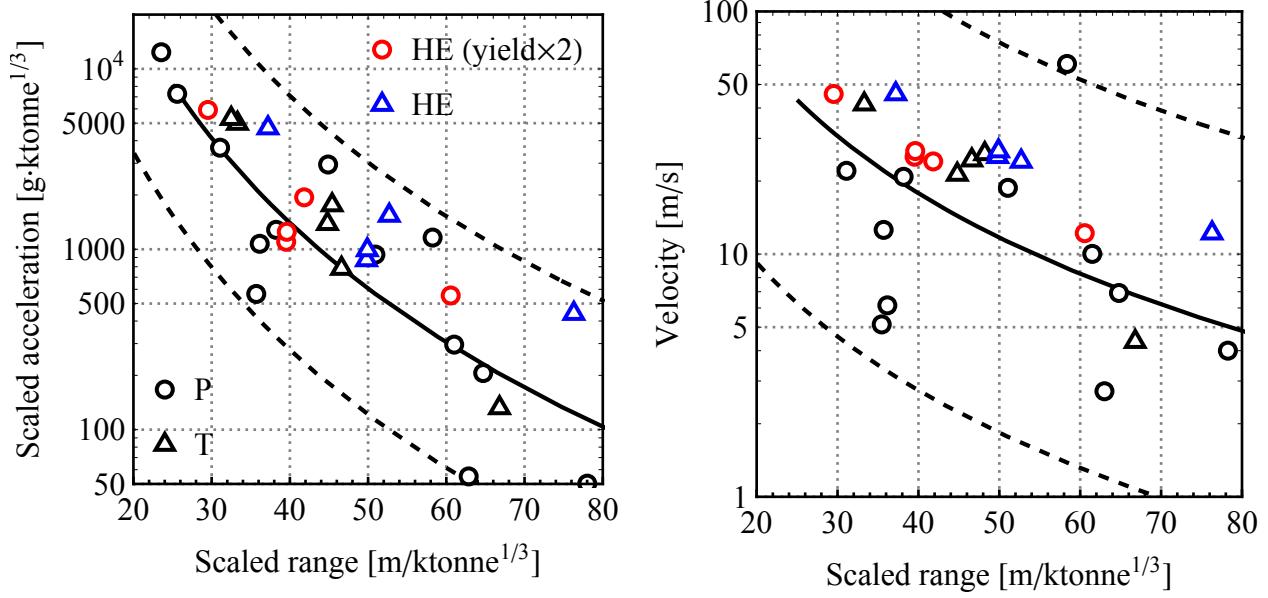


Figure 4: Observations of HE tests (blue symbols) compared with the model derived from the Aqueduct Mesa dataset (black lines with 95% predictive band in dashed lines). There is better agreement if we assume the effective yield is twice the given HE yield (red symbols).

4.2 Validation

We validate the model with datasets that were not used in training from both observations and numerical experiments. With important relevance to PE1, these datasets are from chemical explosives.

4.2.1 Small HE tests

We predict the ground motion for two small HE tests in G-tunnel on Rainier Mesa called Puff-Too and One-Ton. Although, the tests were not on Aqueduct Mesa the high saturation of the rock where these tests took place is similar to some of the Aqueduct Mesa geology so they may provide an appropriate test of the model derived from the Aqueduct Mesa datasets. Figure 4 compares the observations with the model. There is better agreement with the model if the effective yield of the HE datasets is assumed to be two times the given yield (red symbols), which is consistent with observations from the Non-Proliferation Experiment [Goldstein and Jarpe, 1994, Denny, 1994].

4.2.2 Numerical experiments

We calculate the ground motion using Geodyn with a material model for saturated tuff and an explosive model for Comp-B. More details on the experiment can be found in Vitali et al. [2020]. Figure 5 compares some initial numerical results with the model. There is better agreement with the model if the effective yield is assumed to be twice the input yield. We can also see where the regime enters small strains and propagation becomes nearly elastic. This is where the ground motion is inversely proportional to range, which looks to be around 60 m/ktonne^{1/3}. Using this insight we amend the ground motion model to change in slope near this point, which is also plotted in Figure 5. The new models take the original dependence as in Equations 4 and 7, but then at a chosen elastic transition point (in this case, scaled range of 150 m/ktonne^{1/3}) they change to extended models with $1/r_s$ dependence and the prediction interval is found by extending out the interval at the transition range.

$$\hat{y}_{\text{acc}}^{\text{ext}} = \log(a \cdot w^{1/3}) = \begin{cases} 21.11 - 3.759x & 25 \leq (r/w^{1/3}) < 150 \\ 7.287 - x & 150 \leq (r/w^{1/3}) \leq 400 \end{cases} \quad (12)$$

where, the predictor x is $\log(r/w^{1/3})$. The 95% prediction bands are

$$\hat{y}_{\text{acc}}^{\text{ext}} \pm \begin{cases} 2.056\sqrt{1.578 - 0.4667x + 0.05629x^2} & (r/w^{1/3}) < 150 \\ 1.661 & (r/w^{1/3}) \geq 150 \end{cases} \quad (13)$$

The 90 and 99% maximum prediction bands after the transition are given by changing the interval value from 1.661 to 1.378 and 2.245, respectively. The change for before the transition range are as given after Equation 5. The velocity model is

$$\hat{y}_{\text{vel}}^{\text{ext}} = \log(u) = \begin{cases} 9.837 - 1.886x & 25 \leq (r/w^{1/3}) < 150 \\ 5.398 - x & 150 \leq (r/w^{1/3}) \leq 400 \end{cases} \quad (14)$$

where, again, the predictor x is $\log(r/w^{1/3})$. The 95% prediction bands are

$$\hat{y}_{\text{vel}}^{\text{ext}} \pm \begin{cases} 2.045\sqrt{1.964 - 0.5276x + 0.06011x^2} & (r/w^{1/3}) < 150 \\ 1.863 & (r/w^{1/3}) \geq 150 \end{cases} \quad (15)$$

The 90 and 99% maximum prediction bands after the transition range are given by changing the interval value from 1.863 to 1.547 and 2.510, respectively. The change for before the transition range are as given after Equation 8.

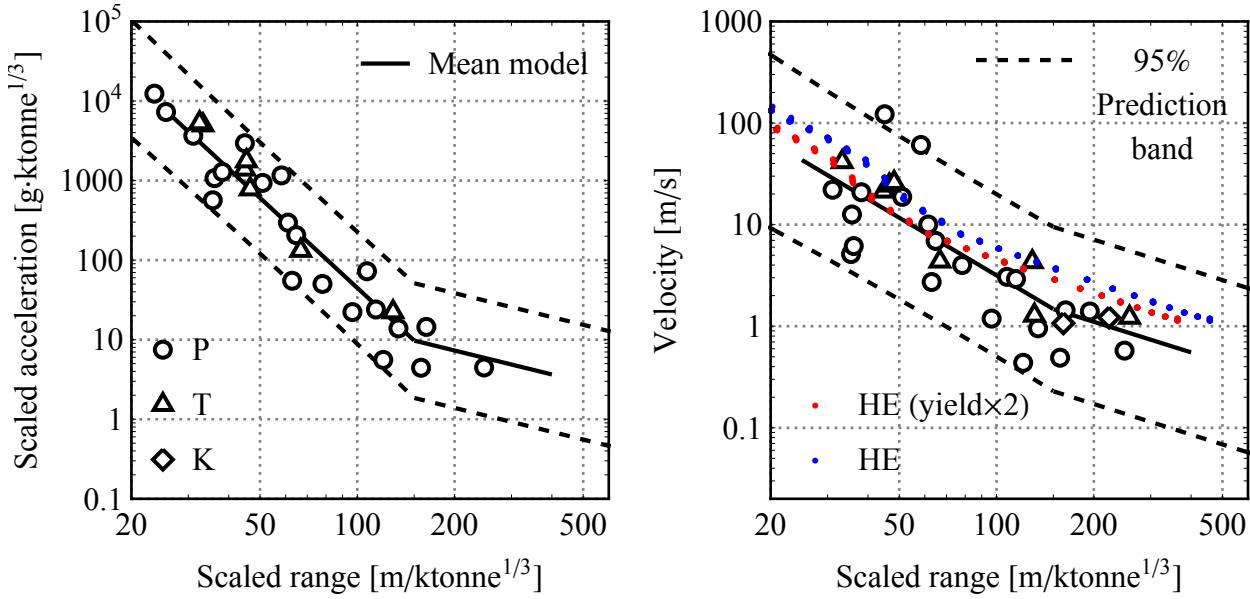


Figure 5: Ground motion prediction from Geodyn calculation. There is better agreement if we assume the effective yield is twice the given HE yield (red symbols). The amended model is also given with a transition to elastic propagation at 150 m/ktonne^{1/3}.

4.3 Application to PE1

For a given explosive yield and observation range, Equations 6 and 9 derived from the Aqueduct Mesa dataset allow us to predict ground motion with error. Based on the comparison with HE observations and numerical predictions, we recommend that ground motion for a chemical explosion be predicted using an effective yield that is two times the TNT-equivalent yield.

4.3.1 PE1-A

PE1-A is a fully coupled chemical explosion in P-tunnel. Since the comparison with the small-scale HE tests showed better agreement with the model if the assumed yield is twice the given yield, Figures 6 and 7 give the unscaled values for twice the chemical explosive yield of 18 tonnes TNT-equivalent. The 95% prediction is about 1 g in acceleration and 1 m/s in velocity at about 200 m range. We also consider a transition to elastic propagation at 150 m/ktonne^{1/3}. The 95% prediction is now approximately 30 g in acceleration and 3 m/s in velocity at about 200 m range.

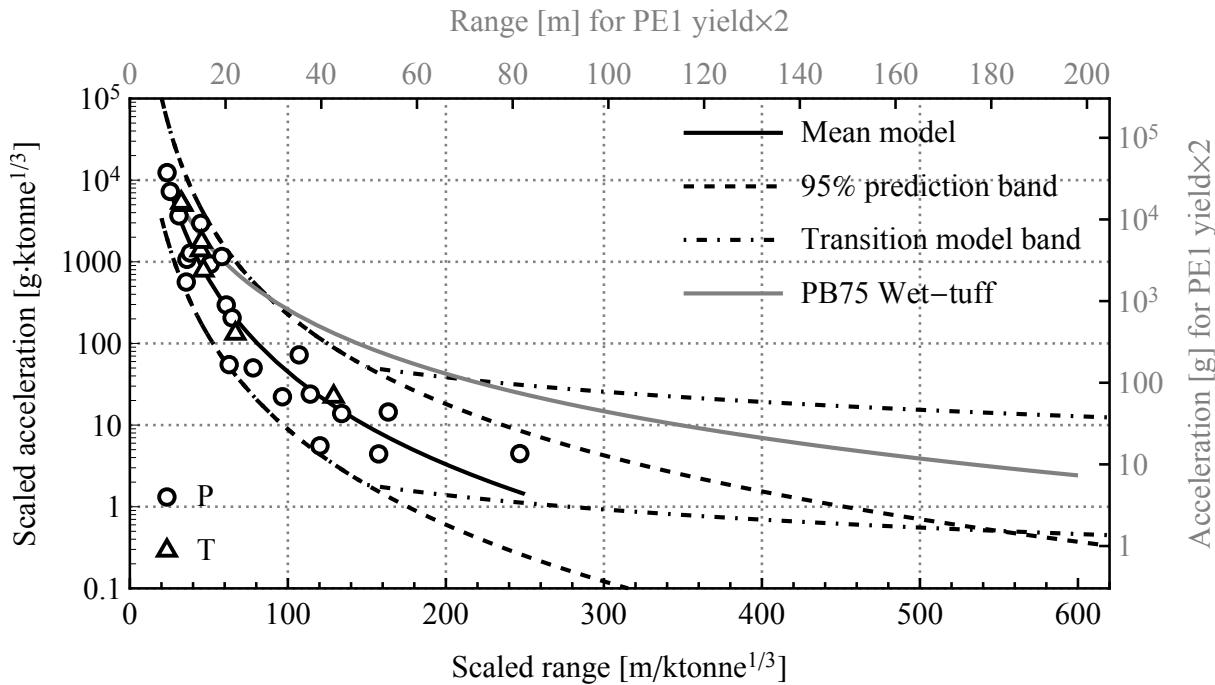


Figure 6: Similar to Figure 2 but linear range axes and with right and top axes as unscaled range and acceleration for two times the chemical explosive yield of PE1-A of 18 tonne TNT-equivalent. The model from Perret and Bass [1975] is shown for comparison (gray line). Additionally, a model that transitions to elastic propagation ($1/r$) at 150 m/ktonne^{1/3} is given (dot-dashed line).

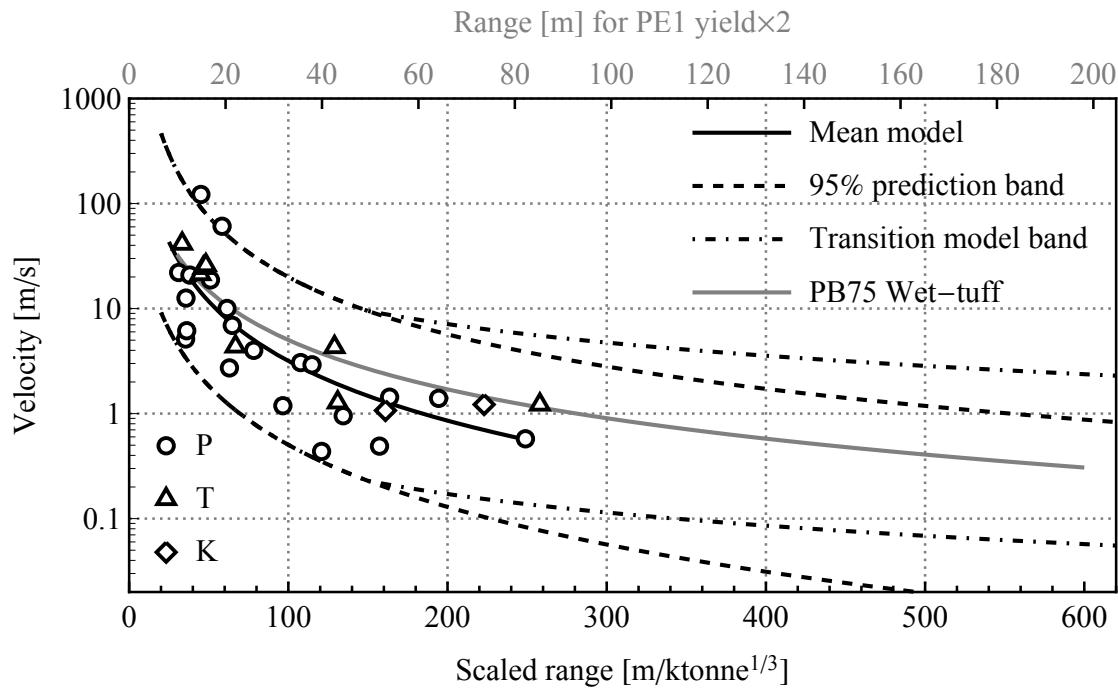


Figure 7: Similar to Figure 2 and Figure 6 but for particle velocity.

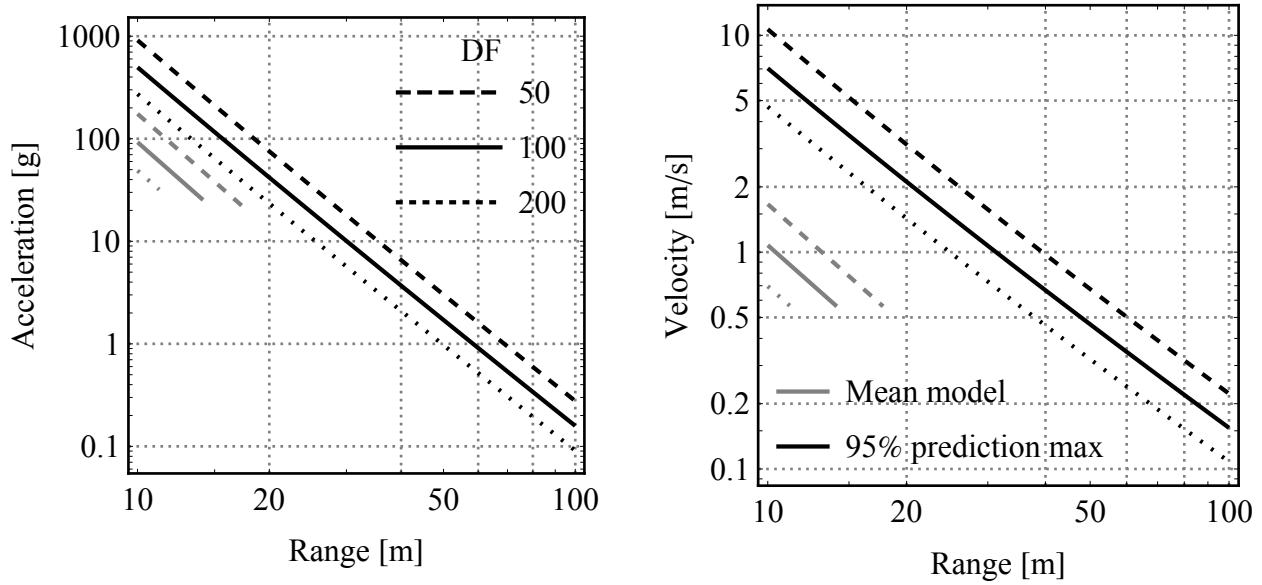


Figure 8: Predicted ground motion for PE1-B with decoupling factors (DF) of 50 (dashed), 100 (solid), and 200 (dotted). The gray lines are the mean model predictions (shown only out to the model range) and the black lines are the maximum 95% prediction interval.

4.3.2 PE1-B

PE1-B is a fully decoupled chemical explosion in a hemispherical cavity in P-tunnel. Figure 8a shows the ground acceleration prediction for both models assuming arbitrary decoupling factors of 50, 100 and 200, which is achieved by decreasing the given yield by that factor. Figure 8b does the same for ground velocity. A conservative approach to ground motion prediction would be to use the maximum and minimum for a given distance.

Acknowledgments

A computer program (in Python3) is provided to calculate ground motion prediction intervals from the Aqueduct Mesa model described herein with the option to allow for a transition to elastic attenuation range dependence ($1/r$).

References

Marvin D. Denny, editor. *Proceedings of the Symposium on the Non-Proliferation Experiment: Results and Implications for Test Ban Treaties*. Department of Energy, Rockville, Maryland, April 1994. <https://www.osti.gov/biblio/1095232-proceedings-symposium-non-proliferation-experiment-results-implications-test-ban-treaties-rockville-maryland-april>.

Department of Energy. United States Nuclear Tests, July 1945 through September 1992, September 2015. Technical Report DOE/NV-209-REV 16, National Nuclear Security Administration Nevada Field Office, Las Vegas, Nevada, September 2015.

W L Fourney, R D Dick, Steve R Taylor, and T A Weaver. An analysis of three nuclear events in P-Tunnel. Technical Report LA-UR-94-1750, Los Alamos National Laboratory, United States, May 1994.

Peter Goldstein and Stephen P. Jarpe. Comparison of Chemical and Nuclear Explosion Source-Time Functions from Close-in, Local, and Regional Seismic Data. *Arms Control and Nonproliferation Technologies*, 1994. DOE/AN/ACNT-94A.

L. F. Ingram and J. L. Drake. Ground Shock Predictions for Underground Nuclear Explosions in Rainier Mesa (U). Technical Report DNA-TR-88-14, Applied Research Associates, Inc., Albuquerque, New Mexico, October 1987. (Confidential/Formerly Restricted Data).

William R Perret and Robert C Bass. Free-field Ground Motion Induced by Underground Explosions. Technical Report SAND-74-0252, Sandia Laboratories, Albuquerque, New Mexico, February 1975.

C.W. Smith. PUFF TOO: A residual stress experiment. Technical report, Sandia National Laboratories, Albuquerque, New Mexico, April 1980.

Dean R. Townsend, Margaret Townsend, and Byron L. Ristvet. A Geotechnical Perspective on Post-Test Data for Underground Nuclear Tests Conducted in Rainier Mesa. Special Report DTRIAC-SR-07-002, Defense Threat Reduction Agency, Kirtland AFB, New Mexico, September 2007. (Distribution Statement C: USG and their contractors only).

Efrem Vitali, Oleg Y. Vorobiev, and Sean R. Ford. Simulations of Decoupled Chemical Explosions in Saturated Tuff. *Journal of Geophysical Research*, 2020. in preparation.

Listing 1: Python3 program to calculate ground motion with given prediction interval

```

1  #!/usr/bin/env python3
2  # -*- coding: utf-8 -*-
3  #
4  """
5  usage: amgm.py [-h] [-r RANGE] [-w YIELD] [-c CONFIDENCE] [-t TRANSITIONRANGE]
6
7  Calculate predicted ground motions for Aqueduct Mesa
8  using model from Ford (2020) LLNL-TR-807158.
9
10 arguments:
11     -h, --help            show this help message and exit
12     -r RANGE, --range RANGE
13             Range from working point [m] (default: 15.0)
14     -w YIELD, --yield YIELD
15             Explosive yield [ktonne TNT-equivalent (4.184e12 J)]
16             (default: 0.01)
17     -c CONFIDENCE, --confidence CONFIDENCE
18             Confidence level for prediction [%]
19             Options are 90, 95, and 99 (default: 95)
20     -t TRANSITIONRANGE, --transition TRANSITIONRANGE
21             Option to force elastic propagation at the given
22             scaled range [m/ktonne^(1/3)]. Option with no value
23             puts it at default scaled range (default: 150.0)
24
25 output: acceleration (g) and velocity (m/s) for specified parameters
26 (with % prediction band)
27
28 version: 0.5.0
29
30 author: Sean R. Ford, sean@llnl.gov
31
32 examples:
33
34 1) no transition to elastic propagation
35 % python3 amgm.py --range=15.0 --yield=0.01 --confidence=95
36 Scaled range = 69.6 m/ktonne^(1/3) in model range (25 to 250)
37 Ground motion [min to max] (95% single prediction interval)
38 Acceleration = 162.392 to 4037.31 g (Mean = 809.707 g)
39 Velocity = 0.996928 to 39.3538 m/s (Mean = 6.26361 m/s)
40
41 2) transition to elastic propagation at default scaled range (150 m/ktonne^(1/3))
42 % python3 amgm.py -r 75.0 -w 0.01 -c95 -t
43 Scaled range = 348.1 m/ktonne^(1/3) out of model range (25 to 250)
44 Option chosen to turn on elastic propagation (1/r) at 150.0 m/ktonne^(1/3)
45 Ground motion [min to max] (95% single prediction interval)
46 Acceleration = 3.70406 to 102.557 g (Mean = 19.4904 g)
47 Velocity = 0.0985351 to 4.08789 m/s (Mean = 0.634666 m/s)
48
49 3) transition to elastic propagation at user-supplied scaled range
50 % python3 amgm.py -r 75.0 -w 0.01 -c95 -t 120.0
51 Scaled range = 348.1 m/ktonne^(1/3) out of model range (25 to 250)
52 Option chosen to turn on elastic propagation (1/r) at 120.0 m/ktonne^(1/3)
53 Ground motion [min to max] (95% single prediction interval)
54 Acceleration = 7.02356 to 185.25 g (Mean = 36.071 g)
55 Velocity = 0.121942 to 4.90512 m/s (Mean = 0.773393 m/s)
56
57
58 import argparse
59 from math import exp, log, sqrt
60
61
62 def main():
63     parser = argparse.ArgumentParser(
64         description=(
65             "Calculate ground motions using model derived from \"Aqueduct Mesa dataset\""
66         ),
67         formatter_class=argparse.ArgumentDefaultsHelpFormatter,
68     )
69     parser.add_argument(
70         "-r",
71         "--range",
72         type=float,
73         default=15.0,

```

```

74     help=" Range from working point [m]" ,
75     dest="rangem",
76   )
77   parser.add_argument(
78     "--w",
79     "--yield",
80     type=float,
81     default=0.01,
82     help=" Explosive yield [ktonne TNT-equivalent (4.184e12 J)]",
83     dest="yieldkton",
84   )
85   parser.add_argument(
86     "--c",
87     "--confidence",
88     type=int,
89     choices=[90, 95, 99],
90     default=95,
91     help=" Confidence level for prediction [%%]",
92     dest="confidencepercent",
93   )
94   parser.add_argument(
95     "--t",
96     "--transition",
97     nargs="?",
98     const=150,
99     type=float,
100    help=" Option to turn on elastic propagation (1/r) at the given scaled "
101    "range [m/\N{CUBE ROOT}ktonne]. Option with no value turns on elastic "
102    "propagation at 150 m/\N{CUBE ROOT}ktonne",
103    dest="transitionscaledrange",
104  )
105  parser.add_argument("-v", "--version", action="version", version="0.5.0")
106  args = parser.parse_args()
107
108 # Calculate scaled range [m/kton ^(1/3)]
109 rs = args.rangem / args.yieldkton ** (1 / 3)
110
111 if 25 <= rs <= 250:
112   print(
113     "Scaled range = {0:.1f} m/\N{CUBE ROOT}ktonne in model range "
114     "(25 to 250)".format(rs)
115   )
116 else:
117   print(
118     "Scaled range = {0:.1f} m/\N{CUBE ROOT}ktonne out of model range "
119     "(25 to 250)".format(rs)
120   )
121
122 if args.transitionscaledrange is not None:
123   print(
124     "Option chosen to turn on elastic propagation (1/r) at {0:.1f} "
125     "m/\N{CUBE ROOT}ktonne".format(args.transitionscaledrange)
126   )
127
128 print(
129   "Ground motion [min to max] ({0:d}% single prediction interval)".format(
130     args.confidencepercent
131   )
132 )
133
134 amin = amasmin(rs, args.confidencepercent) / args.yieldkton ** (1 / 3)
135 amax = amasmax(rs, args.confidencepercent) / args.yieldkton ** (1 / 3)
136 amean = amas(rs) / args.yieldkton ** (1 / 3)
137
138 if args.transitionscaledrange is not None:
139   amin = amasminext(
140     rs, args.confidencepercent, args.transitionscaledrange
141   ) / args.yieldkton ** (1 / 3)
142   amax = amasmaxext(
143     rs, args.confidencepercent, args.transitionscaledrange
144   ) / args.yieldkton ** (1 / 3)
145   amean = amasext(rs, args.transitionscaledrange) / args.yieldkton ** (1 / 3)
146
147 print(" Acceleration = {0:g} to {1:g} g (Mean = {2:g} g)".format(amin, amax, amean))

```

```

148
149     vmin = amvmin(rs, args.confidencepercent)
150     vmax = amvmax(rs, args.confidencepercent)
151     vmean = amv(rs)
152
153     if args.transitionscaledrange is not None:
154         vmin = amvminext(rs, args.confidencepercent, args.transitionscaledrange)
155         vmax = amvmaxext(rs, args.confidencepercent, args.transitionscaledrange)
156         vmean = amvext(rs, args.transitionscaledrange)
157
158     print("Velocity = {0:g} to {1:g} m/s (Mean = {2:g} m/s)".format(vmin, vmax, vmean))
159
160
161     ## Scaled acceleration models
162
163
164     def pb75wtas(rs):
165         """
166             Perret & Bass [1975] scaled acceleration [g*kton^(1/3)] in wet-tuff
167         """
168         asmean = 4.31e7 * rs ** -2.61
169         return asmean
170
171
172     def pb75wtasmin(rs):
173         """
174             Perret & Bass [1975] scaled acceleration [g*kton^(1/3)] in wet-tuff
175             minimum from prediction interval
176         """
177         asmin = (4.31e7 * rs ** -2.61) / (1.96 * 2.21)
178         return asmin
179
180
181     def pb75wtasmax(rs):
182         """
183             Perret & Bass [1975] scaled acceleration [g*kton^(1/3)] in wet-tuff
184             maximum from prediction interval
185         """
186         asmax = (4.31e7 * rs ** -2.61) * (1.96 * 2.21)
187         return asmax
188
189
190     def amas(rs):
191         """
192             Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
193         """
194         x = log(rs)
195         las = 21.1098 - 3.75861 * x
196         # las = 20.8003 - 3.70645*x # outliers removed
197         asmean = exp(las)
198         return asmean
199
200
201     def amasmin(rs, cl):
202         """
203             Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
204             Minimum from prediction interval at cl %
205         """
206         x = log(rs)
207         b = sqrt(1.57775 - 0.466731 * x + 0.0562978 * x ** 2)
208         las = 21.1098 - 3.75861 * x
209
210         if cl == 90:
211             lasmin = las - 1.70532 * b
212         elif cl == 95:
213             lasmin = las - 2.05553 * b
214         else: # cl == 99
215             lasmin = las - 2.77871 * b
216
217         asmin = exp(lasmin)
218         return asmin
219
220
221     def amasmax(rs, cl):

```

```

222      """
223      Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
224      maximum from prediction interval at cl %
225      """
226      x = log(rs)
227      b = sqrt(1.57775 - 0.466731 * x + 0.0562978 * x ** 2)
228      las = 21.1098 - 3.75861 * x
229
230      if cl == 90:
231          lasmax = las + 1.70532 * b
232      elif cl == 95:
233          lasmax = las + 2.05553 * b
234      else: # cl == 99
235          lasmax = las + 2.77871 * b
236
237      asmax = exp(lasmax)
238      return asmax
239
240
241  def amasext(rs, trs):
242      """
243      Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
244      Extended model with elastic (1/r) propagation (start at given scaled range)
245      """
246      x = log(rs)
247      tx = log(trs)
248
249      if rs <= trs:
250          las = 21.1098 - 3.75861 * x
251      else:
252          las = 21.1098 - 3.75861 * tx + tx - x
253
254      asmean = exp(las)
255      return asmean
256
257
258  def amasminext(rs, cl, trs):
259      """
260      Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
261      Minimum from prediction interval at cl %
262      Extended model with elastic (1/r) propagation (start at given scaled range)
263      """
264      x = log(rs)
265      tx = log(trs)
266
267      if rs <= trs:
268          las = 21.1098 - 3.75861 * x
269          b = sqrt(1.57775 - 0.466731 * x + 0.0562978 * x ** 2)
270          if cl == 90:
271              lasmin = las - 1.70532 * b
272          elif cl == 95:
273              lasmin = las - 2.05553 * b
274          else: # cl == 99
275              lasmin = las - 2.77871 * b
276      else:
277          las = 21.1098 - 3.75861 * tx
278          b = sqrt(1.57775 - 0.466731 * tx + 0.0562978 * tx ** 2)
279          if cl == 90:
280              lasmin = las - 1.70532 * b + tx - x
281          elif cl == 95:
282              lasmin = las - 2.05553 * b + tx - x
283          else: # cl == 99
284              lasmin = las - 2.77871 * b + tx - x
285
286      asmin = exp(lasmin)
287      return asmin
288
289
290  def amasmamaxext(rs, cl, trs):
291      """
292      Aqueduct Mesa model (Ford, 2020) scaled acceleration [g*kton^(1/3)]
293      Maximum from prediction interval at cl %
294      Extended model with elastic (1/r) propagation (start at given scaled range)
295      """

```

```

296     x = log(rs)
297     tx = log(trs)
298
299     if rs <= trs:
300         las = 21.1098 - 3.75861 * x
301         b = sqrt(1.57775 - 0.466731 * x + 0.0562978 * x ** 2)
302         if cl == 90:
303             lasmax = las + 1.70532 * b
304         elif cl == 95:
305             lasmax = las + 2.05553 * b
306         else: # cl == 99
307             lasmax = las + 2.77871 * b
308     else:
309         las = 21.1098 - 3.75861 * tx
310         b = sqrt(1.57775 - 0.466731 * tx + 0.0562978 * tx ** 2)
311         if cl == 90:
312             lasmax = las + 1.70532 * b + tx - x
313         elif cl == 95:
314             lasmax = las + 2.05553 * b + tx - x
315         else: # cl == 99
316             lasmax = las + 2.77871 * b + tx - x
317
318     asmax = exp(lasmax)
319     return asmax
320
321
322     ## Velocity models
323
324
325     def pb75wtv(rs):
326         """
327             Perret & Bass [1975] velocity [m/s] in wet-tuff
328         """
329         vmean = 6.61e3 * rs ** -1.56
330         return vmean
331
332
333     def pb75wtvmin(rs):
334         """
335             Perret & Bass [1975] scaled acceleration [g*kton^(1/3)] in wet-tuff
336             minimum from prediction interval
337         """
338         vmin = (6.61e3 * rs ** -1.56) / (1.96 * 1.56)
339         return vmin
340
341
342     def pb75wtvmax(rs):
343         """
344             Perret & Bass [1975] scaled acceleration [g*kton^(1/3)] in wet-tuff
345             Maximum from prediction interval
346         """
347         vmax = (6.61e3 * rs ** -1.56) * (1.96 * 1.56)
348         return vmax
349
350
351     def amv(rs):
352         """
353             Fourney et al. [1994] derived scaled acceleration [g*kton^(1/3)]
354         """
355         x = log(rs)
356         lv = 9.83696 - 1.88593 * x
357         # lv = 8.99046 - 1.7263*x # outliers removed
358         vmean = exp(lv)
359         return vmean
360
361
362     def amvmin(rs, cl):
363         """
364             Aqueduct Mesa model (Ford, 2020) velocity [m/s]
365             Minimum from prediction interval at cl %
366         """
367         x = log(rs)
368         b = sqrt(1.96386 - 0.527575 * x + 0.0601074 * x ** 2)
369         lv = 9.83696 - 1.88593 * x

```

```

370
371     if cl == 90:
372         lvmin = lv - 1.69913 * b
373     elif cl == 95:
374         lvmin = lv - 2.04523 * b
375     else: # cl == 99
376         lvmin = lv - 2.75639 * b
377
378     vmin = exp(lvmin)
379     return vmin
380
381
382 def amvmax(rs, cl):
383     """
384     Aqueduct Mesa model (Ford, 2020) velocity [m/s]
385     Maximum from prediction interval at cl %
386     """
387     x = log(rs)
388     b = sqrt(1.96386 - 0.527575 * x + 0.0601074 * x ** 2)
389     lv = 9.83696 - 1.88593 * x
390
391     if cl == 90:
392         lvmax = lv + 1.69913 * b
393     elif cl == 95:
394         lvmax = lv + 2.04523 * b
395     else: # cl == 99
396         lvmax = lv + 2.75639 * b
397
398     vmax = exp(lvmax)
399     return vmax
400
401
402 def amvext(rs, trs):
403     """
404     Fourney et al. [1994] derived scaled acceleration [g*kton^(1/3)]
405     """
406     x = log(rs)
407     tx = log(trs)
408
409     if rs <= trs:
410         lv = 9.83696 - 1.88593 * x
411     else:
412         lv = 9.83696 - 1.88593 * tx + tx - x
413
414     vmean = exp(lv)
415     return vmean
416
417
418 def amvminext(rs, cl, trs):
419     """
420     Aqueduct Mesa model (Ford, 2020) velocity [m/s]
421     minimum from prediction interval at cl %
422     """
423     x = log(rs)
424     tx = log(trs)
425
426     if rs <= trs:
427         lv = 9.83696 - 1.88593 * x
428         b = sqrt(1.96386 - 0.527575 * x + 0.0601074 * x ** 2)
429         if cl == 90:
430             lvmin = lv - 1.69913 * b
431         elif cl == 95:
432             lvmin = lv - 2.04523 * b
433         else: # cl == 99
434             lvmin = lv - 2.75639 * b
435     else:
436         lv = 9.83696 - 1.88593 * tx
437         b = sqrt(1.96386 - 0.527575 * tx + 0.0601074 * tx ** 2)
438         if cl == 90:
439             lvmin = lv - 1.69913 * b + tx - x
440         elif cl == 95:
441             lvmin = lv - 2.04523 * b + tx - x
442         else: # cl == 99
443             lvmin = lv - 2.75639 * b + tx - x

```

```

444
445     vmin = exp(lvmin)
446     return vmin
447
448
449 def amvmaxext(rs, cl, trs):
450     """
451     Aqueduct Mesa model (Ford, 2020) velocity [m/s]
452     Maximum from prediction interval at cl %
453     """
454     x = log(rs)
455     tx = log(trs)
456
457     if rs <= trs:
458         lv = 9.83696 - 1.88593 * x
459         b = sqrt(1.96386 - 0.527575 * x + 0.0601074 * x ** 2)
460         if cl == 90:
461             lvmax = lv + 1.69913 * b
462         elif cl == 95:
463             lvmax = lv + 2.04523 * b
464         else: # cl == 99
465             lvmax = lv + 2.75639 * b
466     else:
467         lv = 9.83696 - 1.88593 * tx
468         b = sqrt(1.96386 - 0.527575 * tx + 0.0601074 * tx ** 2)
469         if cl == 90:
470             lvmax = lv + 1.69913 * b + tx - x
471         elif cl == 95:
472             lvmax = lv + 2.04523 * b + tx - x
473         else: # cl == 99
474             lvmax = lv + 2.75639 * b + tx - x
475
476     vmax = exp(lvmax)
477     return vmax
478
479
480 if __name__ == "__main__":
481     main()

```