
SANDIA REPORT
SAN D2020-2879

Printed March, 2020
Gio

UQTk Version 3.1.0 User Manual

Sandia
National
Laboratories

Khachik Sargsyan, Cosmin Safta, Katherine Johnston, Mohammad Khalil,
Kenny Chowdhary, Prashant Rai, Tiernan Casey, Xiaoshu Zeng,
Bert Debusschere

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

m

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 6z
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA zz3iz

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

2

ABSTRACT
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. Version 3.1.o offers intrusive and non-intrusive methods for propagating
input uncertainties through computational models, tools for sensitivity analysis, methods for sparse
surrogate construction, and Bayesian inference tools for inferring parameters from experimental data.
This manual discusses the download and installation process for UQTk, provides pointers to the UQ
methods used in the toolkit, and describes some of the examples provided with the toolkit.

3

ACKNOWLEDGMENT

This work was supported in large part by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through the Advanced Computing
(SciDAC) program via the FASTMath Institute.

UQTk has been, and continues to be, the product of collaboration between many people. The key
authors of UQTk are (alphabetical by first name):

• Bert Debusschere

• Cosmin Safta

• Katherine Johnston

• Kenny Chowdhary

• Khachik Sargsyan

• Mohammad Khalil

• Prashant Rai

• Tiernan Casey

• Xiaoshu Zeng

Beyond the authors listed above, there is a long and continually growing list of coworkers, students and
visitors who have contributed to UQTk over the years. This list includes, but is not limited to
(alphabetical by first name):

• Habib Najm

• Helgi Adalsteinsson

• Majid Latif

• Olivier Le Maitre

• Omar Knio

• Roger Ghanem

• Sarah Castorena

• Sarah de Bord

• Xun Huan

4

Further, we are grateful to all the users of UQTk who through their questions and suggestions are
continually helping us to improve the software.

5

CONTENTS

1. Overview 9

2. Download and Installation 10
2.1. Requirements io

2.2. Download io

2.3. Directory Structure io

2.4. External Software and Libraries iz

2.4.1. Required iz

2.4.2. Optional iz

2.5. Installation 13
2.5.i. Configuration flags 13
1.5.2. Installation example 14

2.5.3. Setting up External Libraries 17

3. Theory and Conventions
3.1. Polynomial Chaos Expansions

4. Source Code Description
4.1. C++ Applications

19
19

20
zo

4.1.1. generate_quad: 2I

4.1.2. gen_mi • 2I

4.1.3. gp_regr • 22

4.1.4. lr_regr • 23

4.16. model_inf• z6

4.1.6. pce_eval: 31

4.1.7. pce_quad: 31
4.1.8. pce_resp: 34
4.1.9. pce_rv • 34
4.1.10. pce_sens: 35
4.1.11. pdf_cl: 35
4.1.12. regression• 35
4.1.13. sens • 37

4.2. Python Modules 38
4.2.1. Bayesian Evidence Estimation 38

5. Examples 42
5.1. Elementary Operations 42

7

5.z. Polynomial Fitting 45
5.3. Forward Propagation of Uncertainty so

5.4. Numerical Integration 57
5.5. Forward Propagation of Uncertainty with PyUQTk 66
5.6. Expanded Forward Propagation of Uncertainty - PyUQTk 73
5.7. Forward Propagation of Uncertainty Using Basis Adaptation 8z

5.8. Bayesian Inference of a Line 90
5.9. Sampling of Multimodal Posterior PDFs using TMCMC 93
5.io. Forward Propagation of Uncertainties, Surrogate Construction and Global Sensitivity

Analysis 96
5.11. Global Sensitivity Analysis via Sampling 103
5.iz. Karhunen-Loeve Expansion of a Stochastic Process io8

6. Support 124

References 125

8

1. OVERVIEW

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. In general, uncertainty quantification (UQ) pertains to all aspects that
affect the predictive fidelity of a numerical simulation, from the uncertainty in the experimental data
that was used to inform the parameters of a chosen model, and the propagation of uncertain parameters
and boundary conditions through that model, to the choice of the model itself.

In particular, UQTk provides implementations of many probabilistic approaches for UQ in this
general context. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input
uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate
construction, and Bayesian inference tools for inferring parameters from experimental data.

The main objective of UQTk is to make these methods available to the broader scientific community
for the purposes of algorithmic development in UQ or educational use. The most direct way to use the
libraries is to link to them directly from C++ programs. Alternatively, command line apps are provided
that allow access to the UQTk functionality from the command line. A comprehensive Python
interface is also provided.

In the examples section, many scripts for common UQ operations are provided, which can be modified
to fit the users' purposes using existing numerical simulation codes as a black-box.

The next chapter in this manual discusses the download and installation process for UQTk, followed by
some pointers to the UQ methods used in the toolkit, and a description of some of the examples
provided with the toolkit.

9

2. DOWNLOAD AND INSTALLATION

2.1. REQUIREMENTS

The core UQTk libraries are written in C++, with some dependencies on FORTRAN numerical
libraries. As such, to use UQTk, a compatible C++ and FORTRAN compiler will be needed. UQTk is
installed and built most naturally on a Unix-like platform, and has been tested on Mac OS X and Linux.
Installation and use on Windows machines has not been tested extensively.

Many of the examples rely on Python, including NumPy, SciPy, and matplotlib packages for
postprocessing and graphing. The UQTk Python utilities are compatible with both Python z.7.x and
3.7.x. However, Python version version 3.7.x with compatible NumPy, SciPy, and matplotlib is
recommended. Further the use of XML for input files requires the Expat XML parser library to be
installed on your system. Note, if you will be linking the core UQTk libraries directly to your own
codes, and do not plan on using the UQTk examples, then those additional dependencies are not
required.

2.2. DOWNLOAD

The most recent version of UQTk, currently 3.r.o, can be cloned from github at:
https://github.com/sandialabs/UQTk

2.3. DIRECTORY STRUCTURE

After cloning the git repo, you will find the following directories in the repo:

config Configuration files
cpp C++ source code

app C++ apps
ib C++ libraries

tests Tests for C++ libraries
dep External dependencies

ann Approximate Nearest Neighbors library
blas Netlib's BLAS library (linear algebra)
dsfmt dsfmt library (random number generators)

I0

f igtree Fast Improved Gauss Transform library
lapack Netlib's LAPACK library (linear algebra)
lbfgs lbfgs library (optimization)
slatec Netlib's SLATEC library (general purpose math)

doc Documentation
examples Examples with C++ libraries and apps

d_spring_series springs in series to demonstrate dimensionality reduction
through basis adaptation

df i Example of Data Free Inference (DFI)
fwd_prop forward propagation with a heat transfer example
iuq surrogate-enabled inverse UQ workflow
kle_ex1 Karhunen-Loeve expansion example
line_infer calibrate parameters of a linear model
muq interface between MUQ and UQTk
num_integ quadrature and Monte Carlo integrations
ops operations with Polynomial Chaos expansions
pce_bcs construct sparse Polynomial Chaos expansions
polynomial polynomial model fit with MCMC
sensMC Monte-Carlo based sensitivity index computation
surf _rxn surface reaction example for forward and inverse UQ
tmcmc_bimodal use TMCMC to sample from a 3-dimensional posterior

that is aproduct of a Gaussian prior and a bimodal likelihood
uqpc construct Polynomial Chaos surrogates for multiple

outputs/functions
window extended version of the fwd_prop heat transfer example

PyUQTk Python scripts and interface to C++ libraries
bcs interface to Bayesian compressive sensing library
inf erence Python Markov Chain Monte Carlo (MCMC) scripts
kle interface to Karhunen-Loeve expansion class
mcmc interface to MCMC class
pce interface to Polynomial Chaos expansion class
plotting Python plotting scripts
pytests Python unit tests
quad interface to Quad class
sens Python global sensitivity analysis scripts
tmcmc Interface to tMCMC class
tools interface to UQTk tools
uqtkarray interface to array class
ut i 1 s interface to UQTk utils

II

2.4. EXTERNAL SOFTWARE AND LIBRARIES

2.4.1. Required

The following software and libraries are required to compile UQTK

I. C++/Fortran compilers. Please note that C++ and Fortran compilers need to be compatible with
each other. Most of our development happens on either Mac OS X or Linux with the GNU
Compiler Suite. For OS X these compilers were installed either using MacPorts, or Homebrew, or
directly built from source code. We have also successfully compiled with Intel compilers on
Linux.

z. CMake. We switched to a CMake-based build/install configuration in version 3.o. The
configuration files require a CMake version z.6.x or higher.

3. Expat library. The Expat XML Parser is installed together with other XCode tools on OS X. It is
also fairly common on Linux systems, with installation scripts available for several platforms.
Alternatively this library can be downloaded from http : //expat . sourcef orge . net

4. LAPACK and BLAS. UQTk will use system installed versions of LAPACK and BLAS if possible.
If not found, UQTk will use a self contained version.

S. SUNDIALS. UQTk requires SUNDIALS version 5.o.o or higher (older versions may work also
but have not been tested.) If SUNDIALS is not yet installed on your system, the UQTk build
process will automatically download it from https : //github . com/LLNL/sundi al s,
configure it, and build it. To use a version of SUNDIALS that is already installed, specify the
path to it as indicated in the installation section below.

2.4.2. Optional

The following additional software and libraries are not required to compile UQTK, but are necessary
for the full Python interface to UQTk called PyUQTk.

I. Python, NumPy, SciPy, and Matplotlib. We have successfully compiled PyUQTk with Python
z.7.x and Python 3.7.x. Note that it is important that the Python, NumPy, SciPy, and Matplotlib
packages be compatible with each other. Sometimes, your OS may come with a default version of
Python but not SciPy or NumPy. When adding those packages afterwards, it can be hard to get
them to all be compatible with each other. To avoid issues, it is recommended to install Python,
NumPy, and SciPy all from the same package manager (e.g. get them all through MacPorts or
Homebrew on OS X).

z. SWIG. PyUQTk has been tested with SWIG 3.0.12.

12

2.5. INSTALLATION

We define the following keywords to simplify build and install descriptions in this section.

• sourcedir - directory containing UQTk source files, i.e. the top level directory mentioned in
Section 2.3.

• builddir - directory where UQTk library and its dependencies will be built. This directory should
not be the same as sourcedir.

• installdir - directory where UQTk libraries are installed and header and script files are copied

The following set of commands, on a high level, generates the build structure, compiles, tests, and
installs UQTk:

(1) > mkdir builddir ; cd builddir
(2) > cmake <flags> sourcedir
(3) > make
(4) > ctest
(5) > make install

The next sections explain some of the finer details in this process.

2.5.1. Configuration flags

A (partial) list of configuration flags that can be set at step (2) above is provided below:

• CMAKE_INSTALL_PREFIX : set installdir.

• CMAKE_C_COMPILER : C compiler

• CMAKE_CXX_COMPILER : C++ compiler

• CMAKE_Fortran_COMPILER : Fortran compiler

• CMAKE_SUNDIALS_DIR : Path to install directory for SUNDIALS

• IntelLibPath: For Intel compilers: path to libraries if different than default system paths

• PyUQTk : If ON, then build PyUQTk's Python to C++ interface. Default: OFF

• PYTHON_EXECUTABLE : Path to the Python program

• PYTHON_LIBRARY : Path to the Python library

13

Several pre-set config files are available in the "sourcedir/ confie directory. These scripts set the
configuration flags mentioned above for some common situations and can be used as a template for
your platform. Some of these shell scripts also accept arguments, e.g. c onf ig-opt ions . sh, to switch
between several configurations. Type, for example conf ig- opt ions . sh --help to obtain a list of
options. For a basic setup using default system settings for GNU compilers, see "config-gcc-base.sh".
The user is encouraged to copy of one these script files and edit to match the desired configuration.
Then, step no. z above (cmake <flags> sourcedir) should be replaced by a command running a
particular shell script from the command line, e.g.

(2) >../UQTk/config/config-gcc-base.sh

In this example, the configuration script is run from the build directory, while it is assumed that the
configuration script still sits in the configuration directory of the UQTk source code tree.

If all goes well, there should be no errors. Two log files in the "confie directory contain the output for
Steps (z) and (3) above, for compilation and installation on OS X 10.9.5 using GNU 4.8.3 compilers:

(2) >
../UQTk/config/config-options.sh -c gnu -p ON >& cmake-mac-gnu.log

(3) > make >& make-gnu.log ; make install »& make-gnu.log

After compilation ends, the installdir will be contain the following sub-directories:

PyUQTk Python scripts and, if PyUQTk=0N, interface to C++ classes
bin app's binaries
cpp tests for C++ libraries
examples examples on using UQTk
include UQTk header files
l ib UQTk libraries, including for external dependencies

To use the UQTk libraries, your program should link in the libraries in installdir/lib and add
installdir/include/uqtk and installdir/include/dep directories to the compiler include
path. The apps are standalone programs that perform UQ operations, such as response surface
construction, or sampling from random variables. For more details, see the Examples section.

2.5.2. Installation example

In this section, we will take the user through the installation of UQTk and PyUQTk on a Mac OSX
io.ii system with the GNU compilers. The following example uses GNU 6.i installed under
/opt/local/gc c 61. For the compilation of PyUQTk, we are using Python version 2.7.10 with SciPy

Matplotlib 1.4.2, NumPy i.8.i, and SWIG 3.o.z. Note that you will need to install both swig and
swig-python libraries if you install SWIG via Macports. If you install SWIG from source, you do not
need to install a separate swig-python library.

It will be cleaner to keep the source directory separate from the build and install directories. For
simplicity, we will create a UQTk-build directory in the same parent folder as the source directory,
UQTk . While in the source directory, create the build directory and cd into it:

I4

$ mkdir ../UQTk-build

$ cd ../UQTk-build

It is important to note that the CMake compilation uses the c c and c++ defined compilers by default.
This may not be the compilers you want when installing UQTk. Luckily, CMake allows you to specify
which compilers you want, similar to autoconf. Thus, we type

$ cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \

-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \

-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

Note that this will configure CMake to compile UQTk without the Python interface. Also, we specified
the installation directory to be UQTk- install in the same parent directory at UQTk and UQTk-build.
Figure z-i shows what CMake prints to the screen. To turn on the Python interface just set the CMake

03 0 O Terrninal — bash

hash

myterminal:,/UOTk—build$ cmake ../UOTk-- The C compiler identification is GNU 4.8.2
— The CXX compiler identification is GNU 4.8.2
— Checking whether C compiler has —isysroot
— Checking whether C compiler has —isysroot — yes
— Checking whether C compiler supports OSX deployment target flag
— Checking whether C compiler supports OSX deployment target flag — yes
— Check for working C compiler: /usr/bin/cc
— Check for working C compiler: /usr/bin/cc -- works
— Detecting C compiler ABI info
— Detecting C compiler ABI info — done
— Checking whether CXX compiler has —isysroot
— Checking whether CXX compiler has —isysroot — yes
— Checking whether CXX compiler supports OSX deployment target flag
— Checking whether CXX compiler supports OSX deployment target flag — yes
— Check for working CXX compiler: /usr/bin/c..
— Check for working CXX compiler: /usr/bin/c++ — works
— Detecting CXX compiler ABI info
— Detecting CXX compiler ABI info — done
— The Fortran compiler identification is GNU
— Check for working Fortran compiler: /usr/local/bin/gfortran
— Check for working Fortran compiler: /usr/local/bin/gfortran -- works
— Detecting Fortran compiler ABI info
— Detecting Fortran compiler ABI info — done
— Checking whether /usr/local/bin/gfortran supports Fortran 90
— Checking whether /usr/local/bin/gfortran supports Fortran 90 — yes
— Added NVECTOR_SERIAL module
— Added CVODE module
— Configuring done
— Generating done
— Build files have been written to: /Users/kchowdh/UQTk—build
myterminal:,,MOTk—build$

Figure 2-1. CMake configuration without the Python interface.

flag, PyUQTk, on, i.e.,

$ cmake -DPyUQTk=ON \

-DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILERqopt/local/gcc61/bin/gfortran-6.1.0 \

-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \

-DCMAKE_CXX_COMPILER=/opt/local/gcc6l/bin/g++-6.1.0 ../UQTk

is

9 Terminal — bash

rnyterminal:"./UQTk-build$ cmake -DPYUQTk=ON ../UQTk
-- Added NVECTOR_SERIAL module
— Added CVODE module
— Found SWIG: /opt/local/bin/swig (found version "3.0.2")
— Found PythonLibs: /usr/lib/libpython2.7.dylib (found version "2.7.1")
— Configuring done
— Generating done
-- Build files have been written to: /Users/kchowdh/Wk-build
rnyterminal:-./UpTk-build$

bash

Figure 2-2. CMake configuration with the Python interface.

Figure 2-2 shows the additional output to screen after the Python interface flag is turned on.

If the CMake command has run without error, you are now ready to build UQTk. While in the build
directory, type

$ make

or, for a faster compilation using N parallel threads,

$ make -j N

where one can replace N with the number of virtual cores on your machine, e.g. 8. This will build in the
UQTK-build/ directory. The screen should look similar to Figure 2-3 with or without the Python
interface when building.

Terminal — cclplus

myterminal,/lark-build$ make -j8 &6 make install -j8
Scanning dependencies of target depslatec
Scanning dependencies of target deplbfgs
Scanning dependencies of target depdsfmt
Scanning dependencies of target depnvec
Scanning dependencies of target depcvode
Scanning dependencies of target depblas
Scanning dependencies of target deplapack
Scanning dependencies of target depugtk
[ths] [iSs] I 141 Building C object dep/cvode-2.7.0/nvec_ser/CMakeFiles/depn
vec.dir/nvector_serial.o
[A] Building C object dep/dsfmt/CMakeFiles/depdsfmt.dir/dSFMT.c.o
Building C object dep/lbfgs/CMakeFiles/deplbfgs.dir/lbfgsDR.c.o
[n] Building Fortran object dep/slatec/CMakeFiles/depslatec.dir/dgbfa.f.o
Building C object dep/cvode-2.7.0/coode/CMakeFiles/depcvode.dir/coode.o
[15] Building Fortran object dep/blas/CMakeFiles/depblas.dir/caxpo.f.o
[15] [14] 110 Building Fortran object dep/slatec/CMakeFiles/depslatec.d
r/dgbsl.f.o
Building Fortran object dep/lapack/CMakeFiles/deplapack.dir/dbdsqr.f.o
Building Fortran object dep/blas/CMakeFiles/depblas.dir/ccopy.f.o
[24] Building Fortran object dep/lbfgs/CMakeFiles/deplbfgs.dir/lbfgs_routine

Terminal - hash

[994] Building Fortran object dep/CflakeFiles/depuotk.dir/lapack/ttrtri.f.o
994] J18041 Building CXX object examples/surf_rxn/CMakeFiles/SurfRxnNISO_MC.x

.dir/Utils.cpp.o
Building C object dep/CMakeFiles/depugtk.dir/dsfmt/dSFMT.c.o
DAM Building C object dep/CMakeFiles/depugtk.dir/dsfmt/dsfmt_add.c.o
DAM Building C object dep/CMakeFiles/depugtk.dir/dsfmt/dSFMT_h.c.o
[1004] Building C object dep/CMakeFiles/depugtk.dir/lbfgs/lbfgsDR.c.o
[1004] Building Fortran object dep/ChakeFiles/depuqtk.dir/lbfgs/lbfgs_routines.
f.o
Linking Fortran static library libdapuqtk.a
Linking CXX executable line_infer.x
(1804] Built target line_infer.x
[180h] Built target depuqtk
Linking CXX executable SurflUnDet.x
[1004] Built target SurfibulDet.x
Linking CXX executable SurfiltnNISP_MC.x
Linking CXX executable SurfRxnNISP.x
Linking CXX executable SurfftnISP.x
[1004] Built target SurfRxRNISP_MC.x
[18050 Built target SurfilmINISP.x
[1004] Built target SurflIsnISP.0
nyterminal.-/affk-build$

Figure 2-3. Start and end of build without Python interface.

To verify that the build was successful, run the ctest command from the UQTK-build/ directory to
run the C++ and Python (only if building PyUQTk) test scripts.

$ ctest

The output should look similar to Figure 2-4.

If all looks good, you are now ready to install UQTk. While in the build directory, type

16

t / v i ermmai — 0.11

bash

myterminal:,./UQTk—build$ ctest
Test project /Users/kchowdh/UQTk—build

Start 1: ArrayReadAndWrite
1/7 Test #1:

Start 2:
ArrayReadAndWrite
ArrayDelColumn

Passed 0.01 sec

2/7 Test #2:
Start 3:

ArrayDelColumn
QuadLUTest

Passed 0.01 sec

3/7 Test #3:
Start 4:

QuadLUTest
MCMC2dTest

Passed 0.02 sec

4/7 Test #4:
Start 5:

MCMC2dTest
PyArrayTest

Passed 0.65 sec

5/7 Test #5:
Start 6:

PyArrayTest
PyQuadTest

Passed 1.28 sec

6/7 Test #6:
Start 7:

PyQuadTest
PyMCMCTest

Passed 0.89 sec

7/7 Test #7: PyMCMCTest Passed 1.35 sec

100% tests passed, 0 tests failed out of 7

Total Test time (real) = 4.21 sec
myterminal:-./UQTk—build$

Figure 2-4. Result of ctest after successful build and install.
Note that if you do not build PyUQTk, those tests will not be run.

$ make install

which installs the libraries, headers, apps, examples, and such in the specified installation directory.
Additionally, if you are building the Python interface, the install command will copy over the python
scripts and SWIG modules (* . so) over to PyUQTk/.

As a reminder, commonly used configure options are illustrated in the scripts that are provided in the
c` sourcedir/ confie folder.

2.5.3. Setting up External Libraries

2.5.3.1. Python

If the Python tests fail, even though the compilation went well, a common issue is that the configure
script may have found a different version of the Python libraries than the one that is used when you
issue Python from the command line. To avoid this, specify the path to your Python program and
libraries to the configuration process. For example (on OS X):

cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \

-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \

-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \

-DPYTHON_LIBRARY:FILEPATH=/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/libpython2.7.dylib \

-DPyUQTk=ON \

../UQTk

TJ

2.5.3.2. SUNDIALS

If you would like to use a version of SUNDIALS that you have already installed on your system (rather
than have UQTk download the latest version from github), use the variable CMAKE_SUNDIALS_DIR to
specify the path to its install folder. For example, your config script may look as follows:

cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../install \
-DCMAKE_SUNDIALS_DIR=/Users/myusername/Packages/SUNDIALS/install \

-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_C_COMPILER=gcc
-DCMAKE_CXX_COMPILER=g++

-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \
-DPYTHONLIBRARY:FILEPATHqopt/local/Library/Frameworks/Python.framework/Versions/3.7/libnibpython3.7.dylib \

-DPyUQTk=ON \
../UpTk

Note, if your UQTk configuration links to the dynamically linked version of the SUNDIALS library,
you will also need to add the location of those libraries to your dynamic library path on your platform
(e.g. the #DYLD_LIBRARY_PATH#environment variable on Mac OS X).

18

3. THEORY AND CONVENTIONS

UQTk implements many probabilistic methods found in the literature. For more details on the
methods, please refer to the following papers and books on Polynomial Chaos methods for uncertainty
propagation [4, 18], Karhunen-Loeve (KL) expansions [8], numerical quadrature (including sparse
quadrature) [14, 3, io, 32, 7], Bayesian inference [31, 5, 19], Markov Chain Monte Carlo [6, 9, II, 12.],
Bayesian compressive sensing [I], and the Rosenblatt transformation [2.4].

Below, some key aspects and conventions of UQTk Polynomial Chaos expansions are outlined in order
to connect the tools in UQTk to the broader theory.

3.1. POLYNOMIAL CHAOS EXPANSIONS

• The default ordering of PCE terms in the multi-index in UQTk is the canonical ordering for total
order truncation

• The PC basis functions in UQTk are not normalized

• The Legendre-Uniform PC Basis type is defined on the interval [-i, I], with weight function i/z

19

4. SOURCE CODE DESCRIPTION

For more details on the actual source code in UQTk, HTML documentation is also available in the
doc/doxy/html folder.

4.1. C++ APPLICATIONS

The following command-line applications are available (source code is in cpp/app)

CD generate_quad : Quadrature point/weight generation

CD gen_mi : Polynomial multiindex generation

CD gp_regr : Gaussian process regression

(D lr_regr : Low-rank regression

(D model_inf : Model parameter inference

CD pce_eval : PC evaluation

CD pce_quad : PC generation from samples

CD pce_resp : PC projection via quadrature integration

CD pce_rv : PC-related random variable generation

CD pce_sens : PC sensitivity extraction

CD pdf _cl : Kernel Density Estimation

CD regression : Linear parametric regression

CD sens : Sobol sensitivity indices via Monte-Carlo sampling

Below we detail the theory behind all the applications. For specific help in running an app, type
app_name -h.

20

4.1.1. generate_quad:

This utility generates isotropic quadrature (both full tensor product or sparse) points of given
dimensionality and type. The keyword options are:

Quadrature types: -g <quadType>

• LU : Legendre-Uniform

• HG : Gauss-Hermite

• LG : Gamma-Laguerre

• SW : Stieltjes-Wiegert

• JB : Beta-Jacobi

• CC : Clenshaw-Curtis

• CCO : Clenshaw-Curtis Open (endpoints not included)

• NC : Newton-Cotes (equidistant)

• NCO : Newton-Cotes Open (endpoints not included)

• GP3 : Gauss-Patterson

• pdf : Custom PDF

Sparsity types: -x <fsType>

• full : full tensor product

• spar se : Smolyak sparse grid construction

Note that one can create an equidistant multidimensional grid by using ̀ NC' quadrature type and 'full'
sparsity type.

4.1.2. gen_mi :

This utility generates multi index set of a given type and dimensionality. The keyword options are:

Multiindex types: -x <mi_type>

• TO : Total order truncation, i.e. a = (ai, . . . , ad), where al + • • • + ad = < p, for
given order p and dimensionality d. The number of multiindices is NIT° = (p + d)! 1 (p!d!).

• TP : Tensor product truncation, i.e. a = (al, . . . , ad), where a, < pi, for i = 1, . . . , d.
The dimension-specific orders are given in a file with a name specified as a command-line

argument (-f). The number of multiindices is ATITIP, d = + 1).

21

• HDMR : High-Dimensional Model Representation, where, for each k, k-variate multiindices are
truncated up to a given order. That is, if Hallo = k (i.e. the number of non-zero elements is
equal to k), then < pk, for k = 1, . . . , kmax. The variate-specific orders pk are given in a
file with a name specified as a command-line argument (-f). The number of multiindices

constructed in this way is Nplio 13 PR . = Ekkm aos (pk + k)! 1 (pk!k!).

4.1 .3. gp_regr :

This utility performs Gaussian process regression [23], in particular using the Bayesian perspective of
constructing GP emulators, see e.g. [13, zi]. The data is given as pairs D = {(x(i) , 0))},N_i, where
x E Rd. The function to be found, f (x) is endowed with a Gaussian prior with mean h(x)T c and a
predefined covariance C (x , x') = a2c(x, x'). Currently, only a squared-exponential covariance is

implemented, i.e. c(x, x') = e-(x-x/)T B(x-x/) The mean trend basis vector
h(x) = (Lo(x), . . . , L K _1(X)) consists of Legendre polynomials, while c and o-2 are hyperparameters
with a normal inverse gamma (conjugate) prior

p(c, 0.2) p(00.2)p(a2) cx
(c-c.)T (c-c0)e

202

_
e
0-2(a+1)

The parameters co, V-1 and B are fixed for the duration of the regression. Conditioned on y, = f (x,),
the posterior is a student-t process

f (x)ID , co , , B, a, i3 St-t(te(x), 13-c* (x, x'))

with mean and covariance defined as

p* (x) = h(x)T + t(x)T A-1 (y H 6),

c* (x , x) c(x , x) — t(x)T .11-1t(x') + [h(x)T — t(x)T A-1 H]V*[h(x')T — t(x')T .11-1 ,

where yT = (y(1) , . . , y(N)) and

a = 2/3+ VA-1y (V*)-16
(= V* V-1 co + HT A-1 y) 2

N + 2a — K — 2

t(x)T = (c(x , x(1)), . . . , c(x , x(N))) V* = (V-1 + HT A-1 H)-1

H = (h(x(1))T , . . . , h(x(N))T) Ann = c(x(m) , x(m))

Note that currently the commonly used prior p(c, o-2) oc a-2 is implemented which is a special case
with a = = 0 and co = 0, V-1 = ClicxK • Also, a small nugget of size 10-6 is added to the diagonal
of matrix A for numerical purposes, playing a role of 'data noise'. Finally, the covariance matrix B is
taken to be diagonal, with the entries either fixed or found before the regression by maximizing
marginal posterior [2,1]. More flexibility in trend basis and covariance structure selection is a matter of
current work.

The app builds the Student-t process according to the computations detailed above, and evaluates its
mean and covariance at a user-defined grid of points x.

22

4.1 .4. lr_regr :

This module constructs a canonical low rank approximation of a function in a black box setting given
input/output samples.

Canonical-tensor decomposition: A univariate function u (x) can be written approximately
as

20) (x) = E vioi(x),
i=0 (4.2)

where Oj (x) is the jth basis function and vi is the jth expansion coefficient, for j = 0, . . . , p with some
p > O. Likewise, a multivariate function u(x) can be expanded as

P1 Pm

(0C) 4:40C) = E E (x1) • • • tpAs3(:) (X m)

j m=0

(4.3)

where (i) (x z.) is the jith basis function in the ith coordinate, xi. The number of expansion coefficients
} is flim 1 (pi + 1) or an 0(pr) quantity, if pi = • • • = pm. This exponential increase in the

number of unknowns with dimension is a manifestation of the curse of dimensionality.

A low-rank approximation instead expands u(x) in the form

u(x) P--• 11(x) =
r m

W i(ci) (x i)

k=1 i=1

with each univariate function 74) (xi) being represented, in analogy to Eq. (4.2), as

(i) (i
k ,j

Thus a low-rank approximation of u(x) is given as

u(x) {t
wkZji

k=1 i=1 j i=0

(4•4)

(4•5)

(4.6)

The number of expansion coefficients {wicei3).i } is dramatically reduced to r 1(p, + 1), which is an
O(rmpl quantity, ifpi = • • • = pm, and is linear with dimension m. The value of r and its scaling
with m is dependent on problem and can only be assessed from applications as demonstrated below.
Next, we describe an algorithm, which is based on alternating least squares, to determine the coefficients
TIDO)

k,3, J •

23

Alternating-least-squares algorithm: Before explaining the alternating-least-squares (ALS)
algorithm, we first review the standard least-squares method to determine the coefficients Ivil in Eq.
(4.2). Suppose that we have S sample points of x, {xs Is = 1, . . . , S}, at which we evaluate u (x).
Defining an S-by-(p + 1) matrix 43 by

[00 ()C1) : OP ()C1)4,

00 (Xs) ... OP (XS)

we can express Eq.(4.2) on the sample points as

u 43v,

(4.7)

(4-8)

where u and v are column vectors defined as (u), = u(xi), and (v)3 = v3. The least-squares method
solves for v that minimizes the variance,

11u 4)vg (4.9)

where 11 • 112 is L2 norm of a vector. Hence, the coefficients { J} are obtained by performing the
minimization

min 11u 413vg•
v

which has a closed-form solution,

v = (4>T41)-1 cl3Tu,

in the case of real valued basis functions.

In a low-rank approximation of a multivariate function, we determine the expansion coefficients

{wk(ij)i)- by minimizing the variance in the m-dimensional space,

min
{w}

(4-to)

(4•11)

(4•12)

where u is written as Eq. (4.6). The ALS algorithm consists in performing the standard least-squares

determination of expansion coefficients {/4,1?i1} for one coordinate (say, l = i) at a time, while holding
others (all l except i) fixed, and repeating it for all coordinates cyclically until convergence.

One least-squares iteration for the ith coordinate is carried out as follows. Let the column vector [of
length r (pi + 1)] in the matrix of expansion coefficients corresponding to the ith coordinate be

z (i) = ••.
(i)

(4•13)

where Avk(i) = L"qz0 7 w i)1):T •is a column vector of length p, + 1. We also define an S-by-r (p, + 1)

matrix 4)(i) as

(kW = HD(ii) . . 4:)(i)1
(4•14)

24

with

where

OM (X1)k,1 0 2 . . . C(i) (i)(X2,)k1 pi

4.(:) -[
C(i)

c(i) ,/,(i)(xn c(i) A(i)(xn
k„SKO z •" k,S'i"pi

C(i) =k,s

m

wnxis)/=,40i
= [4)(4)•••4i)(4)]•wn

l=14,

is the part of the multivariate function held fixed in this iteration.

According to Eq. (4.11), we find

= (4)(07 4)1-1 4)(z)T u.

(4.10

(4.16)

(4.17)

(4.18)

Starting with some initial guess of z(i) for all (1 < i < m), we iterate the least-squares determination
of z(z) for one (the ith) dimension at a time, until the L2 norm of difference of z(i) in consecutive
iterations falls below a small tolerance or the maximum iteration count is reached.

Implementation: The syntax of the main script is

lr_regr -x <xfile> -y<yfile> -b <basistype> -r <rank> -t <xcheckfile>
-o <order> -i<maxiter> -s<strpar> -v %-1<dblpar>

-x <xf i le> : A file containing input sample points fxsIs = 1, . . . , S} at which the function
was evaluated (matrix of size S x m). Default is xdat a . dat

-y <yf i le> : A file containing output sample points /L(xs) (A vector of length S). Default is
ydat a . dat

• -b <basistype> : Type of basis
dimensions. There are two options.

(i). Current implementation allows only one basis type for all

- PC corresponds to Polynomial Chaos basis. Type of polynomial chaos is indicated by -s
option (see below)

- POL corresponds to monomial basis i.e. 1, x, x2 . . .

-r <rank> : An integer as Maximum rank of approximation (i.e. r in Eq. (4.4))

25

• -t <xcheckf ile> : A file containing input sample points at which the approximation is tested
for validation or plotting purposes. The output of low rank surrogate evaluation is stored in
ycheck_k . dat files where 1 < k < r. If xcheckf ile . dat is not provided, xdat a . dat is
used instead.

• -o <order> : An integer as order of basis function (i.e. pi in Eq. (4.5)). In the current
implementation, we use the same order in all dimensions. The default order is 4.

• <maxiter> : An Integer for maximum iterations in ALS. The default value is 5o.

• -s <strpar> : A string for type of polynomial chaos (for PC basis). The default used here is
Legendre basis for standard uniform measure.

• -v : Verbosity flag to control display on screen during run time. Do not use it if you want only
the bare minimum.

4.1 .5. model_inf :

This utility perform Bayesian inference for several generic types of models. Consider a dataset
D = {(x(i) , y(i))1fL1 of pairs of x-y measured values from some unknown 'truth' function g 0, i.e.
y(i) = g(x(0)-Frneas.errors. For example, y(') can be measurements at spatial locations x(i), or at time
instances x(i), or x(i) = i simply enumerating several observables. We call elements of x E Its design
or controllable parameters. For simplicity, assume y(i) is a scalar, but the code accepts multiple replica
data for each x(i). Assume, generally, that g is not deterministic, i.e. the vector of measurements y(i) at
each i contains R instances/replicas/measurements of the true output g(x). Furthermore, consider a
model of interest f Pt; x) as a function of model parameters A E EP producing a single output. We are
interested in calibrating the model f (À; x) with respect to model parameters A, seeking an approximate
match of the model to the truth:

f (À; x) ̂ g(x). (4.19)

The full error budget takes the following form

(z) = f (À- x(0) + 6(x(i)) + Et (4.20)

where (5(x) is the model discrepancy term, and E z is the measurement error for the i-th data point. The
most common assumption for the latter is an i.i.d Gaussian assumption with vanishing mean

Ei N N(0, a2), for all i = 1, . . . , L. (4.21)

Concerning model error (5(x), we envision three scenarios:

• when the model discrepancy term 6(x) is ignored, one arrives at the classical construction
y(i) — f (À; x(i)) N N (0, a2) with likelihood described below in Eq. (4.29).

• when the model discrepancy S(x) is modeled explicitly as a Gaussian process with a predefined,
typically squared-exponential covariance term with parameters either fixed apriori or inferred as
hyperparameters, together with À. This approach has been established in [i6], and is referred to
as "Kennedy-O'Hagan", koh approach.

16

• embedded model error approach is a novel strategy when model error is embedded into the
model itself. For detailed discussion on the advantages and challenges of the approach, see [27].
This method leads to several likelihood options (keywords abc, abcm, gausmarg, mvn, full, marg),
many of which are topics of current research and are under development. In this approach, one
augments some of the parameters in A with a probabilistic representation, such as multivariate
normal, and infers parameters of this representation instead. Without loss of generality, and for
the clarity of illustration, we assumed that thefirst M components of A are augmented with a
random variable.

One embedding option is the first-order Gauss-Hermite PC expansion. In other words, is
augmented by a multivariate normal random variable as

—> A = a + A(a)(, (4.22)

where

A(a) =

a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

aMl aM2 ams • • • aMM

0 0 0 ... 0

0 0 0 0
0 0 0 0

DxM

, and (423)

Here is a vector of independent identically distributed standard normal variables, and

a = (an, • • • , am/0 is the vector of size M (M + 1)/2 of all non-zero entries in the matrix A.
The set of parameters describing the random vector A is = (À, a) The full data model then is
written as

y(i) = f (À + A(a)(; x(i)) + Ei

or

(424)

y(i) = f Â(x(i); 6 +0-264,,, (4-25)

where fi(x; 0 is a random process induced by this model error embedding. The mean and
variance of this process are defined as pi (x) and cr?(oc) respectively. To represent this random

A
process and allow easy access to its first two moments, we employ a non-intrusive spectral
projection (NISP) approach to propagate uncertainties in f via Gauss-Hermite PC expansion,

K-1

y(i) =
fik (À) a)Wk(() (4.26)

k=0

for a fixed order p expansion, leading to K = (p + M)!I(p!M!) terms.

The parameter estimation problem for a is now reformulated as a parameter estimation for

A = (A, a). This inverse problem is solved via Bayesian machinery. Bayes' formula reads

p(AID) a *DIA) p(A), (4.27)

posterior likelihood prior

27

where the key function is the likelihood function

LD(A) = *DIA) (4.28)

that connects the prior distribution of the parameters of interest to the posterior one. The options for
the likelihood are given further in this section. For details on the likelihood construction, see [27]. To
alleviate the invariance with respect to sign-flips, we use a prior that enforces ami > 0 for

i = 1, . . . , M. Also, one can either fix cr2 or infer it together with St.

Exact computation of the potentially high-dimensional posterior (4.27) is usually problematic, therefore
we employ Markov chain Monte Carlo (MCMC) algorithm for sampling from the posterior. Model f
and the exact form of the likelihood are determined using command line arguments. Below we detail
the currently implemented model types.

Model types: -f <modeltype>

• prop : for x E 1R1 and E 1R1, the function is defined as f (À; x) = Ax.

• prop_quad : for x E 1R1 and E liFt2, the function is defined as f (À; = Alx A2x2.

• exp : for x E IR1 and E 1R,2, the function is defined as f (À; x) = e'1+A2x

• exp_quad : for x E IR1 and a E 1R3, the function is defined as f (À; x) = eA1+.x2x+.x3x2

• const : for any x E IRn and E 1R1, the function is defined as f (À; x) = À.

linear : for x E 1111 and E lift2, the function is defined as f (À; x) = Al A2x.

• bb : the model is a 'black-box' run via system-call of a script named bb . x that takes
files p . dat (matrix R x D for À) and x . dat (matrix L x S for x) and returns output y. dat
(matrix R x L for f). This effectively simulates f (À; x) at any R values of a and L values of x.

• he at _transf er 1 : a custom model designed for a tutorial case of a heat conduction problem:
for x E IR1 and E IR1, the model is defined as f (À; x) = Ax wdwA + To, where du, = 0.1,
Ali, = 0.04 and To = 273.

• heat_transf er2 : a custom model designed for a tutorial case of a heat conduction problem:
for x E IR,1 and A E 1112, the model is defined as f (À; x) = (2i Au x + A2, where Au, = 0.04 anddk

Q = 20.0.

• f rac_power : a custom function for testing. For x E 1R1 and E IR,4, the function is defined
as f (À; = Ao + Alx + A2x2 + A3(x + 1)3.5

• exp_sket ch : exponential function to enable the sketch illustrations of model error
embedding approach, for x E IR1 and A E Tht2, the model is defined as f (À; x) = A201x — 2.

• inp : a function that produces the input components as output. That is f (À; x(i)) = A„ for
x E 1R1 and E Rd, assuming exactly d values for the design variables x (these are usually
simply indices x, = i for i = 1, . . . , d).

• pcl : the model is a Legendre PC expansion that is linear with respect to coefficients À, i.e.

f (À; x) = EaEs AaTa(x).

28

• pcx : the model is a Legendre PC expansion in both x and À, i.e. z = (À, x), and

f0t; x) = EaEscawa(z)
• pc : the model is a set of Legendre polynomial expansions for each value of x:

f (À; x(i)) = Eacs caiWa(A).
• pc s : same as pc, only the multi-index set S can be different for each x(i),
f (À; x(i)) = EaES, Ca,i‘lja PO'

Likelihood construction is the key step and the biggest challenge in model parameter inference.

Likelihood types: -1 <liktype>

• classical : No a, or M = O. This is a classical, least-squares likelihood

log fp(A) =
(y(i) — f (À; x(i)))2 L

log (27o-2),
2 2 2

i=1

(4.2-9)

• koh : Kennedy-O'Hagan likelihood with explicit additive representation of model
discrepancy [i6].

• full : This is the exact likelihood

LD(A) = 7rhA(y(1), y(L)), (4-30)

where hi is the random vector with entries fi (x(i);) + a261+2. When there is no data noise,
i.e. a = 0, this likelihood is degenerate [27]. Typically, computation of this likelihood requires a

KDE step for each A to evaluate a high-d PDF 7.rhA (.).

• marg : Marginal approximation of the exact likelihood

rD (A) = (0)),
i=1

(4-30

where hii is the i-th component of hi. This requires one-dimensional KDE estimates
performed for all N dimensions.

• mvn : Multivariate normal approximation of the full likelihood

log Gy(A) = — 21 (y tti)TEil (y —) — —112 log (27r) — 2 log (det EA), (4.32)

where mean vector and covariance matrix EA' are defined as = ii,A(x(i)) and

Eiji = — — iii(x(i))7 , respectively.

• gausmarg : This likelihood further assumes independence in the gaussian approximation,
leading to

log LD(A) = (y(') ilA(x(i)))2 1 EL
°
g 27r (62i(x(i)) a2)

2 (a25,(x(i)) + 0-2) 2 i=1 (4.33)

29

• ab cm : This likelihood enforces the mean of to match the mean of data

log Lv(i) =
i=1

(0) PA(x(i)))2 1 log(2w-E2),
2E2 2

• abc : This likelihood enforces the mean of fi to match the mean of data and the
standard deviation to match the average spread of data around mean within some factor

log LD(A) =
i=1

(y(i) P5,(x(i)))2 + (710) 1-ti(x(i))1

2€2

Input files:

For the complete list, type model _ inf -h

-x <xdataf ile> : L x S matrix of x

(4-34)

 2

CII(X(i)) + a')

2

I
log (27E2),

(4.35)

• -y <ydataf ile> : L x E matrix of y, usually E = 1, but one can provide more than one
data point per design parameter x

• -t <xpredf ile> : x S matrix of x values used for posterior prediction, L' L in
general. Defaults value (i.e. no flag given) is xpredf ile=xdataf i le. Most frequently, this is a
file with a dense grid in the x-space.

Output files:

• fmeans . dat : L' x 2 mean predictions. The first column is the posterior mean, the second
column is the MAP.

• fvars . dat : L' x 3 prediction variance components. The first column is the posterior
mean of the variance, the second column is the posterior variance of the mean, and the third
column is the MAP of the variance.

• pmeans . dat : d x 2 mean parameter values. The first column is the posterior mean, the
second column is the MAP.

• pvars . dat : d x 3 parameter variance components. The first column is the posterior mean
of the variance, the second column is the posterior variance of the mean, and the third column is
the MAP of the variance.

• datavars . dat : L x 2 data variance values. The first column is the posterior mean,
while the second column is MAP.

• chain.dat : The raw MCMC chain file of size NA/CMG, x (d + 3). The first
column is simply the MCMC step number, the last two are the Metropolis-Hastings' ratio a and
the log-posterior value, while the rest of the columns are the chain parameters. Chain
dimensionality is d.

30

• pchain . dat : P x d"thinned' posterior samples, where P = int(N mcmc ne),
and the thinning factor ne is given by the input -n <every>

• mapparam.dat : di x 1 vector of chain's MAP values

• fmeans_sams.dat : L' x P 'thinned' posterior samples of the mean predictions

• parampccfs.dat : K x P 'thinned' posterior samples of the input PC coefficients

4.1 .6. pce_eval:

This utility evaluates PC-related functions given input file xdata. dat and return the evaluations in an
output file ydata. dat. It also provides gradient information in an output file gdata. dat for only LU
PC function type. The keyword options are:

Function types: -f <f cn_type>

• PC : Evaluates the function f = Ek=0 ckkli k (0 given a set of e, the PC type, dimensionality,
order and coefficients.

• PC_mi : Evaluates the function f = Ek=0 ckqfk (0 given a set of the PC type, multiindex
and coefficients.

• PCmap : Evaluates 'map' functions from a germ of one PC type to another. That is PCi to PCz is

a function f (e) = C71 C1(e1), where C1 and C2 are the cumulative distribution functions
(CDFs) associated with the PDFs of PC1 and PCz, respectively. For example, HG—>LU is a map
from standard normal random variable to a uniform random variable in [-1, 1].

4.1 .7. pce_quad:

This utility constructs a PC expansion from a given set of samples. Given a set of N samples fx(i)Ev_1

of a random d-variate vector X, the goal is to build a PC expansion

K

(4•3 6)

k =0

where d is the stochastic dimensionality, i.e. = (el , . . , ed). We use orthogonal projection method,
i.e.

Vewic (6) (d(6 wk (6)
Ck
= =

(()) (wz (())
(4•37)

3 I

The denominator can be precomputed analytically or numerically with high precision. The key map

G(e) in the numerator is constructed as follows. We employ the Rosenblatt transformation,
constructed by shifted and scaled successive conditional cumulative distribution functions (CDFs),

= 2F1 (X1) — 1

772 = 2F211(X21X1) — 1

173 = 2F312,1(X31X2, X1) — 1 (4.38)

d = 2 Fdld-1,... ,1(X d1X d-1, • . . X1) — 1.

maps any joint random vector to a set of independent standard Uniform[-i,i] random variables.
Rosenblatt transformation is the multivariate generalization of the well-known CDF transformation,
stating that F (X) is uniformly distributed if F (•) is the CDF of random variable X . The shorthand

notation is 77 = /4(). Now denote the shifted and scaled univariate CDF of the 'germ' ei by H(•), so

that by the CDF transformation reads as 1-1 -(e) = 77. For example, for Legendre-Uniform PC, the germ
itself is uniform and H(.) is identity, while for Gauss-Hermite PC the function H(•) is shifted and

scaled version of the normal CDF. Now, we can write the connection between X and e by

R(X) = , or)e = 0
G

(4.39)

While the computation of H is done analytically or numerically with high precision, the main challenge

is to estimate /4-1. In practice the exact joint cumulative distribution F(xi,... , xd) is generally not
available and is estimated using a standard Kernel Density Estimator (KDE) using the samples available.
Given N samples {x(i)},N_1 , the KDE estimate of its joint probability density function is a sum of N
multivariate gaussian functions centered at each data point x('):

or

1 N (X — x(2."))T (X x(i)))
Nad(27 d/2 E exp

2a2
) i=1

(4.4o)

N

PX (Xl, • . . , X d) =
1 E exp (X — x(ii)) 2 ± • • • + (Xd — X(cii))2

(4.41)1,•••, d N ad (27)d/2 2a2i=i

where the bandwidth a should be chosen to balance smoothness and accuracy, see [29, 3o] for
discussions of the choice of a. Note that ideally a should be chosen to be dimension-dependent,
however the current implementation uses the same bandwidth for all dimensions.

32

Now the conditional CDF is KDE-estimated by

Fklk-1,...,1(xklxk-17 • . . 7 Xi) = liklk-1,...,l(xklxk-17 • • • , x1)dxk

æk Pk,...,1(x/k1Xk-11 . . . , xi)
dX

I
k

Pk-1,...,1(g4-17 . . . Ix].)

_

IV

o-V27r
1 f

exp
(xl—x)2 -k• •.+(æ/k -xn2

2a2

z=1

N
(x1-4))2+•••+(æk_1-41 1)2E exp

2 2
i=1

dxk

N

E exp ((x1—x;.i))2+...+(æk 1—x,i) 02)
x a 1,7, exp ((X/k-4))2

2a2 2a2
i=1

dx
I
k

N
(x1-4))2+...+(æk-1-4) 1)2 E exp

2a2
i=1

N E exp (x1-4))2+.•.+(æk_1-4)
2a2

 X 4)
æk -4

2
))

a
i=1

(4•42)

(x1-4))2+•••+(æk_1_x(ki)1)2E exp
2 2

i=1

where (13(z) is the CDF of a standard normal random variable. Note that the numerator in (4.42) differs

(æk—æk (,)from the denominator only by an extra factor.t• a in each summand, allowing an efficient

computation scheme.

The above Rosenblatt transformation maps the random vector x to a set of i.i.d. uniform random
variables # = (rh, . . . , TN). However, the formula (4.39) requires the inverse of the Rosenblatt
transformation. Nevertheless, the approximate conditional distributions are monotonic, hence they are
guaranteed to have an inverse function, and it can be evaluated rapidly with a bisection method.

With the numerical estimation of the map (4.39) available, we can proceed to evaluation the numerator
of the orthogonal projection (4.37)

(d(6kIfk(()) = f d(x)kifk(x)7((()c/(, (4.43)

where 71 -(6 is the PDF of (. The projection integral (4.43) is computed via quadrature integration

(6k1i k 7r g d((q)k k((q)wq = >2, fi-1(11((q»T kQwq,)4 44
q=1 q=1

where W q) are Gaussian quadrature point-weight pairs for the weight function 7r-()•

33

4.1.8. pce_resp:

This utility performs orthogonal projection given function evaluations at quadrature points, in order to
arrive at polynomial chaos coefficients for a Total-Order PC expansion

f (() :--..--2, E caT a(6 = g(6. (4-45)

IlalliP

The orthogonal projection computed by this utility is

Ca = 1 f f (64 fa(()7r (()d(.',---,
(W«)

q f (eq))‘11 a(eq)) (+46)

Given the function evaluations f (eq)) and precomputed quadrature (eq), wq), this utility outputs the

PC coefficients ca, PC evaluations at the quadrature points g(eq)) as well as, if requested by a
command line flag, a quadrature estimate of the relative L2 error

Ilf - g112 ,..., E=1 wq(f(eq)) - g(eq)))2
11f112 - \ Ecgi 1 wqa4),2 • (4-47)

Note that the selected quadrature may not compute the error accurately, since the integrated functions
are squared and can be higher than the quadrature is expected to integrate accurately. In such cases, one
can use the pce_eval app to evaluate the PC expansion separately and compare to the function
evaluations with an £2 norm instead.

4.1.9. pce_rv:

This utility generates PC-related random variables (RVs). The keyword options are:

RV types: -w <type>

K
• PC : Generates samples of univariate random variable Ek=0 Cic klik(0 given the PC type,

dimensionality, order and coefficients.

• PCmi : Generates samples of univariate random variable EkK_0 ckWk(0 given the PC type,
multiindex and coefficients.

• PCvar : Generates samples of multivariate random variable that is thegerm of a given PC type
and dimensionality.

34

4.1.10. pce_sens:

This utility evaluates Sobol sensitivity indices of a PC expansion with a given multiindex and a
coefficient vector. It computes main, total and joint sensitivities, as well as variance fraction of each PC

ti

term individually. Given a PC expansion c c„ , the computed moments and sensitivity indices
are:

• mean: m = co

• total variance: V = Ec,#6, c« (klic,2

• variance fraction for the basis term a: V, =

• main Sobol sensitivity index for dimension i: SZ = /17 Ea,„,, ca2 (kIfc,2), where IP7 is the set of
multiindices that include only dimension i.

• total Sobol sensitivity index for dimension i: ST = E a Ev, ,If2a where ET is the set of

multiindices that include dimension i, among others.

• joint-total Sobol sensitivity index for dimension pair (i, j): S = vE«EpT c2c, (1112c,), where g
is the set of multiindices that include dimensions i and j, among others. Note that this is
somewhat different from the conventional definition of joint sensitivity indices, which presumes
terms that include only dimensions i and j.

4.1.11. pdf_cl:

Kernel density estimation (KDE) with Gaussian kernels given a set of samples to evaluate probability
distribution function (PDF). The procedure relies on approximate nearest neighbors algorithm with
fast improved Gaussian transform to accelerate KDE by only computing Gaussians of relevant
neighbors. Our tests have shown io-zox speedup compared to Python's default KDE package. Also, the
app allows clustering enhancement to the data set to enable cluster-specific bandwidth selection -
particularly useful for multimodal data. User provides the samples' file, and either a) number of grid
points per dimension for density evaluation, or b) a file with target points where the density is
evaluated, or c) a file with a hypercube limits in which the density is evaluated.

4.1.12. regression:

This utility performs regression with respect to a linear parametric expansions such as PCs or RBFs.
Consider a dataset (x(1), y(z))'Ll that one tries to fit a basis expansion with:

E ckPk(X(i)),
k=1

(4.48)

for a set of basis functions Pk (X). This is a linear regression problem, since the object of interest is the
vector of coefficients c = (ci , . . . , ck), and the summation above is linear in c. This app provides
various methods of obtaining the expansion coefficients, using different kinds of bases.

35

The key implemented command line options are

Basis types: -f <bas i stype>

• PC : Polynomial Chaos bases of total-order truncation

• PC_MI : Polynomial Chaos bases of custom multiindex truncation

• POL : Monomial bases of total-order truncation

• POL_MI : Monomial bases of custom multiindex truncation

• RBF : Radial Basis Functions, see e.g. [zz]

Regression methods: -f <meth>

• lsq : Bayesian least-squares, see [z6] and more details below.

• wbcs : Weighted Bayesian compressive sensing, see [z8].

Although the standard least squares is commonly used and well-documented elsewhere, we detail here
the specific implementation in this app, including the Bayesian interpretation.

Define the data vector = (y(l) • y(N)), and the measurement matrix P of size N x K with
entries Pik = Pk(X(i)). The regularized least-squares problem is formulated as

arg min — 12 + 11Ac1 12

R(c)

with a closed form solution
(pT p A)-1 PT y

where A = diag (01, , OK) is a diagonal matrix of non-negative regularization weights
> O.

(4.49)

(4.5o)

The Bayesian analog of this, detailed in [z6], infers coefficient vector c and data noise variance a2 , given
data y, employing Bayes' formula

Posterior Likelihood Prior

The likelihood function is associated
written as,

p(c, 62 1y) a p(y1c,
0_2) p(c,

 62)

with Gaussian noise model y — Pc N(0, a2IN),

(4•51)

and is

*Mc, (72) = LC,0-2 (y) Pc112) (4.52)= (27ra2)-1 exp (--20.1211Y

Further, the prior p(c, a2) is written as a product of a zero-mean Gaussian prior on c and an
inverse-gamma prior on a2:

(fi)

k=1 /

exp
2 ,

2)—a-1 exp (— '37221 HAC112)
(6

(453)

ik
P(c)

72)

36

The posterior distribution then takes a form of normal-scaled inverse gamma distribution which, after
some re-arranging, is best described as

p(cla2, y) MV N(6, a2E),

p(a21y) ^ IG a +
N K RA)

2 13 + 2

(4.54)

(465)

where c and E, as well as the residual R(.) are defined via the classical least-squares problem (4.49) and

2

0+ T%c)
(4.50). Thus, the mean posterior value of data variance is a = N-K i• Also, note that the residual

2

can be written as R(6) = yT (IN — P (PT + A)-1 PT) y. One can integrate out a2 from (4.53)

to arrive at a multivariate t-distribution

p(cly) N MVT 2a*)a*
(4.56)

with a mean c and covariance c,a** 2 E.

Now, the pushed-forward process at new values x would be, defining P (x) = (P1(x), . . . , Pk(X)), a
Student-t process with mean p,(x) = P(x)6, scale C(x, x') =

a*
P(x)EP(x') and

degrees-of-freedom 2a*.

Note that, currently, Jeffrey's prior for p(a2) = 1/a2 is implemented, which corresponds to the case of
a = = O. We are currently implementing more flexible user-defined input for a and /3. In particular,
in the limit of = aga oo, one recovers the case with a fixed, predefined data noise variance ag.

4.1 .1 3. sens :

This utility performs a series of tasks for for the computation of Sobol indices. Some theoretical
background on the statistical estimators employed here is given in Chapter 5.11. This utility can be used
in conjunction with utility trdSpls which generates truncated normal or log-normal random samples.
It can also be used to generate uniform random samples by selecting a truncated normal distribution
and a suitably large standard deviation.

In addition to the -h flag, it has the following command line options:

• -a <action> : Action to be performed by this utility

splF0 : assemble samples for first order Sobol indices

idxFO : compute first order Sobol indices

sp 1TO : assemble samples for total order Sobol indices

i dxTO : compute total order Sobol indices

- sp 1 Jnt : assemble samples for joint Sobol indices

37

— idxJnt : compute joint Sobol indices

• -d <ndim> : Number of dimensions

• -n <ndim> : Number of dimensions

-u <sp11> : name of file holding the first set of samples, nspl x ndim

-v <sp12> : name of file holding the second set of samples, nspl x ndim

• -x <mev> : name of file holding model evaluations

• -p <pf i 1 e> : name of file possibly holding a custom list of parameters for Sobol indices

4.2. PYTHON MODULES

4.2.1. Bayesian Evidence Estimation

This capability is currently within the UQTk inf erence Python module, and the file is located at
PyUQTk/inf erence/evidence_solvers . py.

Let A denote uncertain model parameters that we are interested in inferring, y the observation data, and
M the assumed model. Bayes' Theorem for the parameter A conditioned on using the model M is

POW, M) =
p(yIA, A4)/3(A1A4)

(4.57)
Ay1M) •

where, with some abuse of notation, p(.) denotes either probability density function (PDF) for a
continuous random variable or probability mass function (PMF) for a discrete random variable. Here,

p(A1M) is known as the prior, p (y IA, M) the likelihood, p (Aly, .A4) the posterior, and p (y 1 .A4) the
evidence.

The evidence is very important for Bayesian model selection. Given a candidate model Mk, we can
write Bayes' rule for the model as

*Mk ly) = p(y1A4k)P(A4k)
p(y) •

The ratio of model posteriors between models M1 and M2 is then

p(Mily) p(044(Mi)
P(A/121y) p(042)P(M2) •

If further assuming uniform prior across the models (i.e., p(A41) = p(M2)), it reduces to

p(Mily) _ /41-M1)

P(•A/121y) p(042) •

(4.58)

(4.59)

(4.60)

38

The RHS of (4.60), being the ratio of model likelihoods (which is also the ratio of evidence terms as
defined in (4.57)) is called Bayes factor between M1 and M2.

Since it is often more numerically stable to work with log values of Bayes' Theorem terms, this module
seeks to estimate the natural logarithm of the evidence, ln p(y), given a model M. We describe the
available functions below.

4.2.1.1. LikelihoodMC_PriorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using prior
sampling:

N
13(y1M) = f i=119(0) A/013(A1M) clA E 1 A(i) m)ITT P (4.61)

Here A(i) r" (A A4) are samples drawn from the prior.

Notes: Requires likelihood values for prior samples. May be inefficient if posterior is very "small"
compared to prior, adaptive importance sampling recommended.

Inputs:

• ln_likelihood — vector of N values of lnp(yP), A4) corresponding to the prior samples
A(2)

Outputs:

• lnp(y1M) estimate

4.2.1.2. ImportanceLikelzhoodMC_PosterzorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using
importance sampling:

(13(04) = f p(y1A
, .A/t)

Pb(A1P004)
M)Pb(A04)

1 X-N"`

N Lai=i /3
O,M)

Pb
W

(A(i) 04)

04) •
(4.62)

Here pb (AIM) is a biasing distribution. In this implementation, we choose it to be a Gaussian
approximation to the posterior constructed using posterior sample moments, i.e.,

1A4) = pa(Aly, A4) p,Ep) where µp and Ep are sample mean and covariance computed
from posterior samples. A(i) N pb(A1M) are samples drawn from this biasing distribution.

Notes: Requires posterior samples, and the ability to evaluate prior and likelihood PDFs at new
points.

The function works in two stages. The first stage involves constructing the biasing distribution and
generating samples from that distribution.

Stage i inputs:

39

• post er i or _sample s — array of posterior samples (each row is a sample)

• n_ imp o r t ance_s ample s — number samples requested from the biasing distribution

• stage — set to i for stage

Stage i outputs:

• importance_samples — array of samples from the biasing distribution (each row is a sample)

• importance_samples_ln_PDF — vector of In pb(A(01.A4) values corresponding to these
samples

At this point, the user needs to externally compute and provide the In-prior and ln-likelihood values for
these samples and pass them back into the function. The second stage can then estimate the
ln-evidence.

Stage z inputs:

• 1n_pr i or — vector of ln p(0)1.A4) values corresponding to the biasing samples generated in
stage

• ln_likelihood — vector of 1n13(y1A(i)1M) values corresponding to the biasing samples
generated in stage

• ln_importance_input — pass back in the output importance_samples_ln_PDF
generated from stage r without modifications

• st age — set to z for stage z

Stage z outputs:

• Inp(y1M) estimate

4.2.1.3. PosteriorGaussian_Pos erzorSamples:

This function estimates the evidence via Gaussian approximation using posterior sample moments:

p(yl-m) =
p(y1A,M)P(AIM) N p(y1A,M)P(A1M)

(4.63)
p(Aly,M) P(Aly,M)

Here, /-5(Aly, .A4) is an estimate to the posterior constructed from a Gaussian approximation using
posterior sample moments, i.e., pb(A1M) = PG (Aly M) N .Ar(Ap, Ep) where Pp and Ep are sample
mean and covariance computed from posterior samples. The above expression is valid for any À, and we
can evaluate it for each posterior sample we already have; the function returns the mean value of 4.63
evaluated for all such samples.

Notes: Requires posterior samples, and the prior and likelihood PDF values for those samples.

Inputs:

• posterior_samples — array of posterior samples (each row is a sample)

40

• ln_pr i or — vector of ln p (AMIM) values corresponding to the posterior samples

• ln_likelihood — vector of lnp(0(i)1M) values corresponding to the posterior samples

Outputs:

• lnp(y1 .A4) estimate

4.2.1.4. Harmonic_PosterzorSampl es :

This function estimates the evidence via the Harmonic approximation formula:

1

-1

1)(y1M) "Tr (1A(z) .A4)
i=1

(4.64)

Here A(z) rs-' POI y, A4) are samples from the posterior.

Notes: Requires likelihood values for posterior samples. Poor numerical stability observed, often yields
NaN.

Inputs:

• ln_likelihood — vector of lnp(y1A(z)1M) values corresponding to the posterior samples

Outputs:

• lnp(y1M) estimate

41

5. EXAMPLES

The primary intended use for UQTk is as a library that provides UQ functionality to numerical
simulations. To aid the development of UQ-enabled simulation codes, some examples of programs that
perform common UQ operations with UQTk are provided with the distribution. These examples can
serve as a template to be modified for the user's purposes. In some cases, e.g. in sampling-based
approaches where the simulation code is used as a black-box entity, the examples may provide enough
functionality to be used directly, with only minor adjustments. Below is a brief description of the main
examples that are currently in the UQTk distribution. For all of these, make sure the environment
variable UQTK_INS is set and points upper level directory of the UQTk install directory, e.g. the
keyword installdir described in the installation section. This path also needs to be added to
environment variable PYTHONPATH to access the Python scripts.

5.1. ELEMENTARY OPERATIONS

Overview

This set of examples is located under examples/ops. It illustrates the use of UQTk for elementary
operations on random variables that are represented with Polynomial Chaos (PC) expansions.

Description

This example can be run from the command-line:

./Ops.x

followed by

./plot_pdf.py samples.a.dat

./plot_pdf.py samples.loga.dat

to plot select probability distributions based on samples from Polynomial Chaos Expansions (PCE)
utilized in this example.

Another example compares the Taylor series to the integration approach for computing the natural
logarithm of a PCE:

42

./LogComp.x

followed by

./plot_logs.py

to plot the comparison in the pdf of the natural log of a.

The script test_all . sh runs through all of these commands.

Ops.x step-by-step

• Wherever relevant the PCSet class implements functions that take either "double *" arguments or
array container arguments. The array containers, named "ArrayiD", "ArrayzD", and"Array3D",
respectively, are provided with the UQTk library to streamline the management of data
structures.

i. Instantiate a PCSet class for a znd order iD PCE using Hermite-Gauss chaos.

int ord = 2;

int dim = 1;

PCSet myPCSet("ISP",ord,dim,"HG");

z. Initialize coefficients for HG PCE expansion a given its mean and standard deviation:

double ma = 2.0; // Mean

double sa = 0.1; // Std Dev

myPCSet.InitMeanStDv(ma,sa,a);

= E
k=0

akT k(0, ao = p,, = a2 = a3 = = 0
\/(0?)

3. Initialize b = 2.0'00(0 + 0.201(0 + 0.0102(e) and subtract b from et:
b[0] = 2.0;

b[1] = 0.2;

b[2] = 0.01;

myPCSet.Subtract(a,b,c);

The subtraction is a term by term operation: ck = ak — bk

4. Product of PCE's, a = et • b:
myPCSet.Prod(a,b,c);

a = ECkIlik(0 =
k=0 (k=0

akklik(0 b

\ k=o
k(0)

P P
(0iOjOk)

i=0 j=0 (q)

The triple product Ciik is computed and stored when the PCSet class is instantiated.

Ck = EE Ciikaibi, Cijk =

43

5. Exponential of a PCE, a = exp(a) is computed using a Taylor series approach

myPCSet.Exp(a,c);

where

NT cin

a = exp(at) = exp(ao) (1 + E -n!
)

ci = —ao=

ri=13

ak (s•2,)
k=1

The number of terms NT in the Taylor series expansion are incremented adaptively until an error
criterion is met (relative magnitude of coefficients compared to the mean) or the maximum
number of terms is reached. Currently, the default relative tolerance and maximum number of
Taylor terms are 10-6 and 500. This values can be changed by the user using public PCSet
methods SetTaylorTolerance and SetTaylorTermsMax, respectively.

6. Division, a = ag):

myPCSet.Div(a,b,c);

Internally the division operation is cast as a linear system, see item 4, a = 6 • a, with unknown
coefficients ck and known coefficients ak and bk. The linear system is sparse and it is solved with a
GMRES iterative solver provided by NETLIB

7. Natural logarithm, a = log(a):

myPCSet.Log(a,c);

Currently, two methodologies are implemented to compute the logarithm of a PCE: Taylor series
expansion and an integration approach. For more details see Debusschere et. al. [4].

8. Draw samples from the random variable a represented as a PCE:
myPCSet.DrawSampleSet(aa,aa_samp);

Currently "Opsf draws sample from both a and log(a) and saves the results to files
,csamples.a.dae and "samples.loga.dae, respectively.

9. The directory contains a python script that computes probability distributions from samples via
Kernel Density Estimate (KDE, also see Lecture #i) and generates two plots, "samples.a.dat.pdf"
and "samples.loga.dat.pdf", also shown in Fig. 5-1.

44

0.9

0.8

0.7

0.6

05

0.4

0.3

0.2

0.1

— optimal

— optima1/2

— optirna102

2 3 6

8

6

4
CZI

3

2

— optimal
— optima1/2
— optimal*2

845 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

log(a)

Figure 5-1. Probability densities for a and log(a) computed via
KDE. Results generated using several KDE bandwidths. This
feature is available in the Python's SciPy package starting with
version 0.11

5.2. POLYNOMIAL FITTING

Overview

This example is located in polynomial. It contains codes to generate a random polynomial data with
noise, fit a set of polynomial models to the data using Markov Chain Monte Carlo, comparing the
models to each other using model evidence, calculate the derivatives of the models with uncertainties,
and produce other plots about the model fits.

Implementation

This workflow has 3 main steps:

i. Getting the data from a random polynomial

• Ran in get _dat a . py

• Picks random coefficients for a third order polynomial, randomly picks is points, and adds
Gaussian noise.

• Relevant flags include:

— --ix <input . xml> the name of the input xml file. Default is <input . xml>

— -g flag to show a plot with the chosen polynomial and the data points

— -e flag to run with the same coefficients used in this example

z. Fitting the model to the data

• Ran in f it .py

• Uses Markov Chain Monte Carlo (MCMC) to fit the models to the data

45

• Relevant flags include:

- - -ix <input . xml> the name of the input xml file. Default is input . xml

- -w <output _f ile> the name of the output file. Results will be printed to this file
along with the command line. Default is output . txt.

3. Postprocessing

• Ran in post . py

• Makes various types of plots and performs various calculations from the MCMC results.

• Relevant flags include:

- - - ix <input . xml> the name of the input xml file. Default is <input . xml>

- -p flag to show the posterior plots

- -g flag to show the parameter graphs

- -d flag to calculate the derivatives and their uncertainties, and to make a plot.

- -v <verbosity> verbosity level. Default is 1

- - -int eract ive flag to show plots interactively. Default is False

- - - j peg flag to save all plots as .jpg. Default is to save as .pdf

- - -evidenc e flag to calculate the evidence values of each model and to make a plot of
all

Plots to view:

- polynomial_all_f its . pdf shows the fits of all the models, along with the true
solution and the data used to fit the model.

polynomial_all_f it s_with_error . pdf shows the fits of all the models with
error bars visualizing standard deviation.

polynomial_all_f it s_with_error_shaded . pdf shows the fits of all the
models with shaded regions visualizing standard deviation, the true solution, and the
data used to fit the model.

- polynomial_derivat ives . pdf shows the derivatives of all the models, with mean
and standard deviation.

polynomial_importance_evidence . pdf shows the log evidence values of all the
models as calculated using Importance sampling.

- *_parameter_graphs . pdf shows the MCMC chains of all the parameters, after the
burnin and with the stride.

- *_model_data_agreement_xy_with_real . pdf shows the model with the MAP
parameters, the real polynomial, and the data points.

46

0.01-

0.00-

-0M1-

-0M2-

-0.03-

-0.04 -

,..-10,

e
t
,' • N.

•
/ %

%
/ \
/ %

• Random data

True Polynomial

1

•\

0//

W%

% 0
• /

• • ••
•

/
t

411. • /.

•

0:0 0.2 0.4

x

0:6 0:8

Figure 5-2. Example output of get_data.py -g -e

1:0

Other relevant files include:

input.xml

— The input xml file where all relevant information for the fitting is stored.

• tools. py

— File where all tools for fitting are stored.

— Most notable is the class for the models.

• graph_tools.py

— File where all helper functions to plot different graphs are stored.

— These functions are general enough to be used for a variety of applications.

full_run.sh

— Example of entire workflow run. Has all necessary flags to run the complete example

Example Outputs

This example run will do all components of full_run . sh step by step. You can run each part
individually or full_run . sh to perform all components at once.

Start in /run

47

Read in the file input.xml for run settings_
Data saved to x_y_data.csv
coefficients saved to coeff.csv
coefficients . [as 0,15, -0,65, 0.5J

Figure 5-3. Command line output of get_data.py

Running for model model_A

Making object for model_A

Scaling down the proposal at step 49

Scaling down the proposal at step 99

Scaling down the proposal at step 149

Scaling down the proposal at step 849

MCMC sample size: (50000, 2)

Overall acceptance rate: 0.42984

Fraction of samples outside of prior bounds: 0.0
MAP parameter set:

a : 1.278484e-02

b : -5.529389e-02

Figure 5-4. Command line output of fit.py

. . /scripts/get_data.py --ix input . xml -g -e For the example, the coefficients are
fixed to [0, 0.15, —0.65, 0.5], running without the -e flag will give 4 random integers in the
range [-10, 10] for the coefficients. It will then chooseis random points from the range [0, 1]
and add Gaussian noise. Fig (5-z) shows the sample graph of the polynomial and chosen data
points. From the sample output shown in Fig (5-3). You can see the files that the outputs are
stored in and the real coefficients of the polynomial.

../scripts/fit.py --ix input.xml -w output.txt

This will use MCMC to fit all the models to the data. Fig (5-4) shows a sample output for one of
the models. A very similar output will also print out for all other tested models. This script will
also produce the files MCMC_samples_polynomial_mA . dat for all models. These files store the
MCMC sample that will be processed in the next stop.

../scripts/post.py -p -g --evidence -d

This will run the post processing with all of the common flag options. Many plots will be
produced including fitting graphs, derivatives graphs, and evidence value graphs. Figs (5-5) and
(5-6) show some examples. There are also many more types of graphs that are produced. See
"Plots to view" in the implementation section for a description of all plots produced.

Troubleshooting

• If get_dat a . py does not produce a good example polynomial:

48

Importance Evidence Values for polynomial

30 -

25 -

20 -

15 -

10 -

5 -

0 -

—10 -

o

Figure 5-5. Importance Evidence Values for the Polynomial
Model. As you can see, model C has the highest evidence value,
implying the best fit. This is good because our true solution is
of order 3.

0.03 -

0.02 -

0.01 -

0.00

—0.01 -

—0.02 -

—0.03 -

—0.04 -

—0.05 -
0.0 0.2

Uncertainty of the fit
polynomial

0.4

x
0.6

True solution

model A

model_B

model_C

model_D

model_E

0.8 1.0

Figure 5-6. Here is the fitted models with uncertainties for all
models. The shaded regions show 1 standard deviation. You
can also see the true solution and the data used.

49

— Try running get _dat a . py a few times

— Try changing error_level in the .xml file, probably to a lower value

— Try changing the size_range in the .xml file

• If the MCMC chain is not mixing well, accepting too many/few samples:

This is a very common place that adjustments will need to be made. Because we are
considering random data that is different each time, there many be a considerable amount
of variability in the acceptance rates and mixing of the chains.

Try changing the value of gamma, increasing gamma will typically decrease your acceptance
rate, and decreasing gamma will typically increase your acceptance rate.

Try increasing the number of samples, and making a longer burn-in period.

— Try changing the initial stating point of the chain

Customizing the code to your model

To customize this workflow to your own model, you only need to change input . xml and
tools .py.

In input . xml, you need to enter all relevant information about the case and the model. Follow the
same format, and see comments in file for all necessary information.

In tools . py, you need to make a new class for your models. To make a model with the same format as
the example models, all you need to do is make a child class of model_lett er, with your desired
prediction function. If desired, you can also add the compute_derivative function to calculate the
derivative of the model. This function can also be edited to calculate any other desired derived quantity.
You also need to edit the make_model_obj ect function in order to make the appropriate type of
model object.

5.3. FORWARD PROPAGATION OF UNCERTAINTY

Overview

• Located in examples/surf _rxn

• Several examples of propagating uncertainty in input parameters through a model for surface
reactions, consisting of three Ordinary Differential Equations (ODEs). Two approaches are
illustrated:

— Direct linking to the C++ UQTk libraries from a C++ simulation code:

50

* Propagation of input uncertainties with Intrusive Spectral Projection (ISP), Non
Intrusive Spectral Projection (NISP) via quadrature , and NISP via Monte Carlo (MC)
sampling.

* For more documentation, see a detailed description below

* An example can be run with . /f orUQ_ sr . py

Using simulation code as a black box forward model:

* Propagation of uncertainty in one input parameter with NISP quadrature approach.

* For more documentation, see a detailed description below

* An example can be run with . /f orUQ_BB_ sr . py

Simulation Code Linked to UQTk Libraties

The example script f orUQ_sr . py, provided with this example can perform parametric uncertainty
propagation using three methods

• NIS P: Non-intrusive spectral projection using quadrature integration

• ISP: Intrusive spectral projection

• NIS P MC: Non-intrusive spectral projection using Monte-Carlo integration

The command-line usage for this example is

./foruQ_sr.py <pctype> <pcord> <method1> [<method2>] [<method3>]

The script requires the xml input template fileforUQ_surf rxn.in.xml.templ. In this template, the
default setting for param_b is uncertain normal random variable with a standard deviation set to 10%
of the mean.

The following parameters are defined at the beginning of the file:

• pctype: The type of PC, supports 'HG', 'LU, 'GLG', IB'

• pcord: The order of output PC expansion

• methodX: NISP, ISP or NISP_MC

• nsam: Number of samples requested for NISP Monte-Carlo (currently hardwired in the script)

51

Description of Non-Intrusive Spectral Projection utilities (SurfRxnNISP.cpp and SurfRxnNISP MC.cpp)

f(),E COP k(6 Ck
(f (64 fk(6) =
(wii(0)

(f (()IF k(6) = I f ((Ai k((*(()c1('--=', f ((q)4 fk((q)wql [k7. P(8)4/k((s)1

NISP NISP_MC

These codes implement the following workflows

i. Read XML file

z. Create a PC object with or without quadrature

• NISP: PCSet myPCSet ("NISP " , order , dim , pcType , 0 .0 , 1 . 0)

• NISP_MC: PCSet myPCSet ("NISPnoq" , order , dim, pcType , 0 .0 , 1 . 0)

3. Get the quadrature points or generate Monte-Carlo samples

• NISP: myPCSet . GetQuadPo int s (qdpts)

• NISP_MC: myPCSet .DrawSamplevar (samPts)

4. Create input PC objects and evaluate input parameters corresponding to quadrature points

S. Step forward in time

- Collect values for all input parameter samples

- Perform Galerkin projection or Monte-Carlo integration

- Write the PC modes and derived first two moments to files

Description of Intrusive Spectral Projection utility (SurfRxnISP.cpp)

This code implement the following workflows

i. Read XML file

z. Create a PC object for intrusive propagation
PCSet myPCSet("ISP",order,dim,pcType,0.0,1.0)

3. Represent state variables and all parameters with their PC coefficients

• u fukl, v {via, w {wk}, z fzkl,

• a —> fakbb {bk}, c {ck}, d e fekl, f { f k} .

52

4. Step forward in time according to PC arithmetics, e.g.
a • u {(a • u)k} with

a • u = ai iiFic()) = aitt3 2
(WiWiWk) „)

k

ij

(a.u)k

Postprocessing Utilities - time series

./p1SurfRxnMstd.py NISP

./p1SurfRxnMstd.py ISP

./p1SurfRxnMstd.py NISP_MC

These commands plot the time series of mean and standard deviations of all three species with all three
methods. Sample results are shown in Fig. 5-7.

0.8

To.o

:10A

0.2

a
0 00

200

Method NISP

400 600

Time [-]

800 1000

„1.0

g 0.8

2 0.4

0.2

a
0.00

Method ISP

200 400 600

Time [-]

800 000

g 0.8

2 0.6

0.4

—‘,1", 0.2
a,
a

200

Method NISP MC

400 600

Time [-]

Figure 5-7. Time series of mean and standard deviations for u,
v, and w with NISP, ISP, and NISP_MC, respectively.

Postprocessing Utilities - PDFs

./p1PDF_method.py <species> <qoi> <pctype> <pcord> <methodi> Pmethod2>1 [<method3>]

e.g.

./p1PDF_method.py u ave HG 3 NISP ISP

800 1000

This script samples the PC representations, then computes the PDFs of time-average (ave) or the final
time value (tf) for all three species. Sample results are shown in Fig. 5-8.

Simulation Code Employed as a Black Box

The command-line usage for the script implementing this example is given as

./foriN_BB_sr.py --nom nomvals -s stdfac -d dim -1 lev -o ord -q sp --npdf npdf

--npces npces

The following parameters can be controlled by the user

• nomvals: List of nominal parameter values, separated by comma if more than one value, and no
spaces. Default is one value, 20.75

53

140

120

100

80
LL

60

40

20-

- NISP

- ISP

- NISP_MC

8 o

12

10-

3

E 6

4

0.1 0.2 0.3 0.4 0 5
Qol: average u

- NISP

- ISP

- NISP_MC

8 0 0.1 0.2 0.3 0.4
Qol: u @ final time

0 5

60 120

50 100

400

E- 30
20

80

60

40

10 20

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Qol: average v

O

- NISP

- ISP

- NISP_MC

8 4
,

0.5 0.6 0.7 0.8
Qol: average w

25

20

00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 8 4
Qol: v @ final time

0.9 1 0

- NISP

- ISP

- NISP_MC

0.5 0 6 0.7 0.8 0.9 1 0
Qol: w @ final time

Figure 5-8. PDFs for u, v, and w; Top row shows results for
average u, v, and w; Bottom row shows results corresponding
to values at the last integration step (final time).

• stdfac: Ratio of standard deviation/nominal parameter values. Default value: 0.1

• dim: number of uncertain input parameters. Currently this example can only handle dim = 1

• lev: No. of quadrature points per dimension (for full quadrature) or sparsity level (for sparse
quadrature). Default value: 21.

• ord: PCE order. Default value: 20

• sp: Quadrature type "fulP or "sparse". Default value: "full"

• npdf No. of grid points for Kernel Density Estimate evaluations of output model PDFs. Default
value 100

• npces: No. of PCE evaluations to estimate output density. Default value 105

Note: This example assumes Hermite-Gauss chaos for the model input parameters.

This script uses the following utilities, located in the bin directory under the UQTk installation path

• generate quad: Generate quadrature points for full/sparse quadrature and several types of rules.

• pce rv: Generate samples from a random variable defined by a Polynomial Chaos expansion
(PCE)

• pce eval: Evaluates PCE for germ samples saved in input file "xdata.dae.

• pce resp: Constructs PCE by Galerkin projection

Sequence of computations:

54

1. forUQ_BB_sr.py
saves the input parameters' nominal values and standard deviations in a diagonal matrix format in
file "pcfile". First it saves the matrix of nominal values, then the matrix of standard deviations.
This information is sufficient to define a PCE for a normal random variable in terms of a standard
normal germ. For a one parameter problem, this file has two lines.

z. generate quad:
Generate quadrature points for full/sparse quadrature and several types of rules. The usage with
default script arguments generate_quad -d1 -g'HG' -xfull -p21 > logQuad.dat

This generates Hermite-Gauss quadrature points for a 2J-point rule in one dimension.
Quadrature points locations are saved in "qdpts.dat" and weights in "wghts.dat" and indices of
points in the iD space in "indices.dat". At the end of "generate_quad" the run, file "qdpts.dat" is
copied over "xdata.dat"

3. pce eval:
Evaluates PCE of input parameters at quadrature points, saved previously in "xdata.dat". The
evaluation is dimension by dimension, and for each dimension the corresponding column from
"pcfile" is saved in "pccf.dat". See command-line arguments below.
pce_eval -x'PC' -p1 -ql -f'pccf.dat' -sHG » logEvalInPC.dat

At the end of this computation, file "input.dae contains a matrix of PCE evaluations. The
number of lines is equal to the number of quadrature points and the number of columns to the
dimensionality of input parameter space.

4. Model evaluations:
funcH("input.dat","output.dat",xmltpl="surf_rxn.in.xml.tp3",

xmlin="surf_rxn.in.xml")

The Python function yuncBB"is defined in file "prob3_utils.py". This evaluates the forward
model at sets of input parameters in file "input.dae and saves the model output in "output.dat".
For each model evaluation, specific parameters are inserted in the xml file "surf rxn.in.xml"
which is a copy of the template in "surf rxn.in.xml.tp3". At the end "output.dae is copied over
"ydata.dat"

5. pce resp:

pce_resp -xHG -o20 -dl -e > logPCEresp.dat

Computes a Hermite-Gauss PCE of the model output via Galerkin projection. The model
evaluations are taken from "ydata.dat", and the quadrature point locations from "xdata.dat".
PCE coefficients are saved in "PCcoeff quad.dat", the multi-index list in "mindex.dat" and these
files are pasted together in "mipc.dat"

55

(average u as a function of parameter b values. Location of quadrature points is shown with
circles.)

6. pce rv:
pce_rv -w'PCvar' -xHG -dl -n100 -p1 -q0 > logPCrv.dat

Draw a ioo samples from the germ of the HG PCE. Samples are saved in file "rvar.dat" and also
copied to file "xdata.dat"

7. pce eval:
pce_eval -x'PC' -p1 -ql -f 'pccf .dat' -sHG » logEvalInPCrnd.dat See item 3 for details.

Results are saved "input_val.dae.

8. Evaluate both the forward model (through the black-box script "funcBB", see item 4) and its PCE
surrogate (see item 3) and save results to files "output_val.dae and "output_val_pc.dat".
Compute L2 error between the two sets of values using function "compute_err" defined in
"utils.py"

9. Sample output PCE and plot the PDF of these samples computed using either a Kernel Density
Estimate approach with several kernel bandwidths or by binning:

6

5

4

LL

3

2

— optimal

— (1/2 optimal)

— (2 optimal)
— binning

21 0.1 0.2 0.3 0.4

PC surrogate
0.5 0 6

56

5.4. NUMERICAL INTEGRATION

Overview

This example is located in example s/num_int eg. It contains a collection of Python scripts that can be
used to perform numerical integration on six Genz functions: oscillatory, exponential, continuous,
Gaussian, corner-peak, and product-peak. Quadrature and Monte Carlo integration methods are both
employed in this example.

Theory

In uncertainty quantification, forward propagation of uncertain inputs often involves evaluating
integrals that cannot be computed analytically. Such integrals can be approximated numerically using
either a random or a deterministic sampling approach. Of the two integration methods implemented in
this example, quadrature methods are deterministic while Monte Carlo methods are random.

Quadrature Integration

The general quadrature rule for integrating a function u(e) is given by:

f u(e)de

Nq

i=1

q2 u(e) (5.3)

where the Nq e are quadrature points with corresponding weights qi.

The accuracy of quadrature integration relies heavily on the choice of the quadrature points. There are
countless quadrature rules that can be used to generate quadrature points, such as Gauss-Hermite,
Gauss-Legendre, and Clenshaw-Curtis.

When performing quadrature integration, one can use either full tensor product or sparse quadrature
methods. While full tensor product quadrature methods are effective for functions of low dimension,
they suffer from the curse of dimensionality. Full tensor product quadrature integration methods
require Nd quadrature points to integrate a function of dimension d with N quadrature points per
dimension. Thus, for functions of high dimension the number of quadrature points required quickly
becomes too large for these methods to be practical. Therefore, in higher dimensions sparse quadrature
approaches, which require far fewer points, are utilized. When performing sparse quadrature
integration, rather than determining the number of quadrature points per dimension, a level is selected.
Once a level is selected, the total number of quadrature points can be determined from the dimension
of the function. For more information on quadrature integration see reference here.

57

Monte Carlo Integration

One random sampling approach that can be used to evaluate integrals numerically is Monte Carlo
integration. To use Monte Carlo integration methods to evaluate the integral of a general function u(0
on the d-dimensional [0, 1]d the following equation can be used:

u(Ock is =1

The N, ei are random sampling points chosen from the region of integration according to the
distribution of the inputs. In this example, we are assuming the inputs have uniform distribution. One
advantage of using Monte Carlo integration is that any number of sampling points can be used, while
quadrature integration methods require a certain number of sampling points. One disadvantage of
using Monte Carlo integration methods is that there is slow convergence. However, this 0(.1v81)

convergence rate is independent of the dimension of the integral.

Genz Functions

(V) (5.4)

The functions being integrated in this example are six Genz functions, and they are integrated over the
d-dimensional [0, 1]d . These functions, along with their exact integrals, are defined as follows. The
Genz parameters wi represent weight parameters and u, represent shift parameters. In the current
example, the parameters w, and ui are set to i, with one exception. The parameters w, and ui are instead
set to o.i for the Corner-peak function in the sparse_quad.py file.

Model Formula: f (A) Exact Integral: f f (A)dA
[o,i]d

Oscillatory
d

cos(27rui + E wiAi)
i=1

d d •
2 sin(+')

cos (27rui + E wi) rj wii=1 i=i
Exponential

d

exp (E wioi - ui))
i=1

d

H wi (exp(wi (1 — ui)) — exp(—wiui))
i=i

Continuous
d

exp(— E wi I Ai — NI)
i=i

d

1-1 wi (2 - exp(—wiui) — exp(wi(ui — 1)))
i=1

Gaussian
d

exp(— E w? (Ai — ui)2)
i=i

d

11 0 (erf(wi (1 — ui)) + erf(wiui))
i=1

Corner-peak
d

(1 + E wi Ai)— (d+i)
i=1

1 (_1> llrlli
d

E
d

d! H tvi „0,11d 1+ E wiri
i=1 i=1

Product-peak
d 2tu.

d

11 wi(arctan(wi(1 — ui)) + arctan(wiui))
i=i

II 1+„,?(Aii_ui>2i=i

Implementation

The script set consists of three files:

• full_quad . py: a script to compare full quadrature and Monte Carlo integration methods.

s8

• spars e_quad . py: a script to compare sparse quadrature and Monte Carlo integration methods.

• quad_t ools . py: a script containing functions called by f ull_quad. py and
spar s e _quad . py.

full quad.py

This script will produce a graph comparing full quadrature and Monte Carlo integration methods. Use
the command . /f ull_quad . py to run this file. Upon running the file, the user will be prompted to
select a model from the Genz functions listed.

Please enter desired model from choices:

genz_osc

genz_exp

genz_cont

genz_gaus

genz_cpeak

genz_ppeak

The six functions listed correspond to the Genz functions defined above. After the user selects the
desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. As full quadrature
integration is being implemented, this script should not be used for functions of high dimension. If you
wish to integrate a function of high dimension, instead use sparse_quad . py .

After the user enters the desired dimension, she/he will be prompted to enter the desired maximum
number of quadrature points per dimension.

Enter the desired maximum number of quadrature points per dimension:

Again, this number should be entered as an integer without any decimal points. Several quadrature
integrations will be performed, with the first beginning with i quadrature point per dimension. For
subsequent quadrature integrations, the number of quadrature points will be incremented by one until
the maximum number of quadrature points per dimension, as specified by the user, is reached. For
example, if the user has requested a maximum of 4 quadrature points per dimension, 4 quadrature
integrations will be performed: one with 1 quadrature point per dimension, another with z quadrature
points per dimension, a third with 3 quadrature points per dimension, and a fourth with 4 quadrature
points per dimension.

Next, the script will call the function generate_qw from the quad_tools . py script to generate
quadrature points as well as the corresponding weights.

59

Then, the exact integral for the chosen function is computed by calling the int eg_exact function in
quad_tools . py. This function calculates the exact integral according to the formulas found in the
above Theory section. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. To account for the random
nature of the Monte Carlo sampling approach, ten Monte Carlo integrations are performed and their
errors from the exact integral are averaged. To perform these Monte Carlo integrations and calculate the
error in these approximations, the function f ind_error found in quad_tools . py is called.
Although we are integrating over [0, 1]d, the sampling points will be uniformly random points in

[— 1, 1]d. We do this so the same function func can be used to evaluate the model at these points and

the quadrature points, which are generated in [-1, 1]d. The function func takes points in [-1, 1]d as
input and maps these points to points in [0, 1]d before the function is evaluated at these new points

Finally, the data from both the quadrature and Monte Carlo integrations are plotted. A log-log graph is
created that displays the total number of sampling points versus the absolute error in the integral
approximation. The graph will be displayed and will be saved as quad_vs_mc . pdf as well.

sparse quad.py

This script is similar to the full_quad . py file and will produce a graph comparing sparse quadrature
and Monte Carlo integration methods. Sparse quadrature integration rules should be utilized for
functions of high dimension, as they do not obey full tensor product rules. Use the command
. /sparse_quad.py to run this script. Upon running the file, the user will be prompted to select a
model from the Genz functions listed.

Please enter desired model from choices:

genz_osc

genz_exp

genz_cont

genz_gaus

genz_cpeak

genz_ppeak

After the user selects the desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. After the user enters the
desired dimension, she/he will be prompted to enter the maximum desired level.

Enter the maximum desired level:

Again, this number should be entered as an integer without any decimal points. Multiple quadrature
integrations will be performed, with the first beginning at level i. For subsequent quadrature
integrations, the level will increase by one until the maximum desired level, as specified by the user, is
reached.

Next, the script will call the function generat e_qw from the quad_tools . py script to generate
quadrature points as well as the corresponding weights.

Then, the exact integral for the chosen function is computed by calling the int eg_exact function in
quad_t o ols . py. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. This is done in the same
manner as in the full_quad . py script.

Lastly, the data from both the sparse quadrature and Monte Carlo integration are plotted. A log-log
graph is created that displays the total number of sampling points versus the absolute error in the
integral approximation. The graph will be displayed and will be saved as sparse_quad . pdf. .

quad tools.py

This script contains four functions called by the full_quad . py and sparse_quad . py files.

• generat e_qw (ndim , param, sp= ' full ' , type= ' LU'): This function generates quadrature
points and corresponding weights. The quadrature points will be generated in the d-dimensional

[— 1, lid.

— ndim: The number of dimensions as specified by the user.

— param: Equal to the number of quadrature points per dimension when full quadrature
integration is being performed. When sparse quadrature integration is being performed,
param represents the level.

— sp: The sparsity, which can be set to either full or sparse. The default is set as sp= ' full ',
and to change to sparse quadrature one can pass sp= ' sparse ' as a parameter to the
function.

type: The quadrature type. The default rule is Legendre-Uniform ('LU). To change the
quadrature type, one can pass a different type to the function. For example, to change to a
Gauss-Hermite quadrature rule, pass type= 'HG ' to the function. For a complete list of the
available quadrature types see the gener at e_quad subsection in the Appli c at i ons
section of Chapter 3 of the manual.

• func (xdat a , model , func_params): This function evaluates the Genz functions at the
selected sampling points.

61

— xdata: These will either be the quadrature points generated by generate_qw or the
uniform random points generated in the f ind_error function. The points specified as
xdata into this function will be in [-1, 1]d and thus will first be mapped to points in [0, 1]d
before the function can be evaluated at these new points.

— model: The Genz function specified by the user.

— func params: The parameters, wi and u2J of the Genz function selected. In the
full_quad . py file, all Genz parameters are set to i. In the sparse_quad. py file, all Genz
parameters are set to i for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to o.i.

• int eg_exact (model , func_params): This function computes the exact integral f f (À)dA
And

of the selected Genz function, f PO.

— model: The Genz function selected by the user.

— func params: The parameters, wz and ui, of the Genz function selected. In the
full_quad . py file, all Genz parameters are set to i. In the sparse_quad. py file, all Genz
parameters are set to i for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to o.i.

• f ind_error: This function performs io Monte Carlo integrations, and returns their average
error from the exact integral. The function takes inputs: pts, ndim, model, integ_ex, and
func params.

— pts: The number of uniform random points that will be generated. Equal to the total
number of quadrature points used.

— ndim: The number of dimensions as specified by the user.

— model: The Genz function selected by the user.

— integ_ex: The exact integral f f (A)clA of the selected Genz function returned by the
[oo]d

int eg_exact function.

— func params: The parameters, wi and ui, of the Genz function selected. In the
full_quad . py file, all Genz parameters are set to i. In the sparse_quad. py file, all Genz
parameters are set to i for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to o.i.

6z

Sample Results

Try running the f ul l_quad . py file with the following input:

Please enter desired model from choices:

genz_osc

genz_exp

genz_cont

genz_gaus

genz_cpeak

genz_ppeak

genz_exp

Please enter desired dimension: 5

Enter the desired maximum number of quadrature points per dimension: 10

Your graph should look similar to the one in the figure below. Although the Monte Carlo integration
curve may vary due to the random nature of the sampling, your quadrature curve should be identical to
the one pictured.

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Exponential Model with Dimension 5

le

o
1c 104

ru

10-"=
o
tn
_0

10"

10 16
10

— Full Quadrature

— Monte Carlo

101 102 10
Total number of Sampling Points

105

Figure 5-9. Sample results of full_quad.py

63

Now try running the spar se_quad . py file with the following input:

Please enter desired model from choices:

genz_osc

genz_exp

genz_cont

genz_gaus

genz_cpeak

genz_ppeak

genz_cont

Please enter desired dimension: 14

Enter the maximum desired level: 4

While the quadrature integrations are being performed, the current level will be printed to your screen.
Your graph should look similar to the figure below. Again, the Monte Carlo curve may differ but the
quadrature curve should be the same as the one pictured.

Comparison of Sparse Quadrature and Monte Carlo Integration
for Genz Continuous Model with Dimension 14

io-3

10' I
1o2 1o3 io4
Total Number of Sampling points

105

Figure 5-10. Samples results of sparse_quad.py

Next, try running full_quad . py with a quadrature rule other than the default Legendre-Uniform.

64

Locate the line in full_quad . py that calls the function generate_quad. It should read:

xpts,wghts=generate_qw(ndim,quad_param)

Now, change this line to read:

xpts,wghts=generate_qw(ndim,quad_param, type= 'CC')

This will change the quadrature rule to Clenshaw-Curtis. Then run the file with input:
genz_gaus , 5 , 10. Sample results can be found in the figure below.

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Gaussian Model with Dimension 5

10°

A
b
s
o
l
u
t
e
 E
rr
or
 i
n
In
te
gr
al
 A
p
p
r
o
x
i
m
a
t
i
o
n

10 1

10 2

10 3

10 4

10 5

106

10-7

10-8

10-'

10 "

10 11
100

— Full Quadrature

— Monte Carlo

iol 102 iO3 1o4
Total number of Sampling Points

105

Figure 5-11. Sample results of full_quad.py with Clenshaw-
Curtis quadrature rule.

65

5.5. FORWARD PROPAGATION OF UNCERTAINTY
WITH PYUQTK

Overview

This example is located in examples/fwd_prop. It contains a pair of Python scripts that propagate
uncertainty in input parameters through a heat transfer model using both a Monte Carlo sampling
approach and a non-intrusive spectral projection (NISP) via quadrature methods.

Theory

Heat Transfer

T.
To

TA

In this example, the heat transfer through a window is calculated using samples of seven uncertain
Gaussian parameters. These parameters, along with their means and standard deviations are defined
below.

Parameter Mean Standard deviation (%)
Ti: Room temperature 293 K 0.5

T0: Outside temperature 273 K 0.5

dw: Window thickness o.oi m i
kw: Window conductivity i W/mK 5
1-4: Inner convective heat transfer coefficient z W/m2K is
It,: Outer convective heat transfer coefficient 6 W/m2K 15

TA: Atmospheric temperature iso K 10

66

Once we have samples of the 7 parameters, the following forward model is used to calculate heat flux

Q:
Q = 14(77, — = k,, T1d T2 = 110(T2 — 710) + co- (71 — T1),,

T1 represents the inner window temperature and T2 represents the outer window temperature. E is the
emissivity of uncoated glass, which we take to be 0.95, and 0- is the Stefan-Boltzmann constant.

Polynomial Chaos Expansion

In this example, the forward propagation requires the representation of heat flux Q with a
multidimensional Polynomial Chaos Expansion (PCE). This representation can be defined as follows:

= C2k4fIc(e17 ...1

k=0

• Q: Random variable represented with multi-D PCE

• Q k: PC coefficients

• k: Multi-D orthogonal polynomials up to order p

• Gaussian random variable known as the germ

• n: Dimensionality = number of uncertain model parameters

• P + i: Number of PC terms = (n+13)1n!p!

Non-lntrusive Spectral Projection (NISP)

Having specified a PCE form for our heat flux Q, we must determine the PC coefficients. We do so
through a non-intrusive Galerkin Projection. The coefficients are determined using the following
formula:

(QT)
Qk = = f k(Ow(Ock

(WZ) (4q)

In this example we use quadrature methods to evaluate this projection integral to determine the PC
coefficients.

Kernel Density Estimation

Once we have a large number of heat flux samples, to obtain a probability density function (PDF)
curve, a kernel density estimation (KDE) is performed. When performing KDE, the following formula
is used to evaluate the PDF at point Q:

PDF(Q) =
NshE K h

67

Qi are samples of the heat flux, N, is the number of sample points, K represents the kernel, a
non-negative function, and h > 0 is the bandwidth. In this example we use the Gaussian kernel,

2

K (x) = 27 r
. The results rely heavily on the choice of bandwidth, and there are many rules that

can be used to calculate the bandwidth. In our example, the built-in SciPy function employed
automatically determines the bandwidth using Scott's rule of thumb.

Implementation

The script set consists of two files:

• rad_he at _transf er_atm_pce . py: the main script

• heat_transf er_pce_t o ols . py: functions called by rad_heat_transf er_atm_pce . py,
mainly contains problem specific functions

• pce_tools . py: functions called by rad_heat _transf er_atm_pce .py, contains more
general functions for PCEs.

rad heat transfer atm pce.py

This script will produce a graph comparing PDFs of heat flux generated using NISP full and sparse
quadrature methods and a Monte Carlo sampling method. Use the command
. /rad_heat_transf er_atm_pce . py to run this file.

This file can take a number of flags that are useful to consider. Please use -h for more details.

• - -no_verbose, Flag to turn off intermediate print statements

• -r, --no_compute_rad: Flag set not include radiation; Default to include. Note, radiation is
used, the nonlinear solver in Python sometimes has a hard time converging, in which case you
will see a warning message pop up.

• - -nord: the order of the PCE, default is 3

• - -ndim: the number of dimensions of the PCE, Default at 7 when radiation is computed and 6
when radiation is not computed.

• - -pc_type: indicates the polynomial type and weighting function. The default is set to 'HG','
Hermite-Gauss. (And this is currently the only option for which the code will produce the
correct results.)

• -a, pc_alpha and -b, pc_beta: Free parameters greater than -i. Used with Gamma-Laguerre and
Beta-Jacobi PC types. Defaults are alpha = o.o and beta = 1. o

• - -param: The parameter used for quadrature point generation. Equal to the number of
quadrature points per dimension for full quadrature or the level for sparse quadrature methods.
This parameter is generally set to nord + r in order to have the right polynomial exactness.
Default is nord + 1.

68

• - -n_MC: Number of random samples to use in MC sampling (of the full problem or of the PCE
of the solution) Default is i00000.

Monte Carlo Sampling Methods
The script begins by assigning the input parameters and their means and standard deviations. Using this
information, a large number of random parameter samples (default is ioo,000) is generated. With these
samples and our forward model, the function comput e_heat _f lux then calculates the heat flux
assuming that no radiative heat transfer occurs. This simply requires solving a system of three linear
equations. Then, using the values of Q, T1, and T2 obtained from comput e_heat _f lux as initial
guesses, the function r_heat _f lux calculates the total heat flux (including radiative heat transfer)
using the SciPy nonlinear solver opt imize . f solve. Using the heat flux samples, a kernel density
estimation is then performed using function KDE.

NISP Quadrature Methods
After the Monte Carlo sampling process is complete, forward propagation using projection methods
will take place. At the beginning of this section of the script, the following variables are defined:

While running the file, a statement similar to the following will print indicating that PC objects are
being instantiated.

Instantiating PC Objects

Generating 4-7 = 16384 quadrature points.

Used 4 quadrature points per dimension for initialization.

Level 0 / 4

Level 1 / 4

Level 2 / 4

Level 3 / 4

Level 4 / 4

Instantiation complete

These PC objects contain all of the information needed about the polynomial chaos expansion, such as
the number of dimensions, the order of the expansion, and the sparsity (full or sparse) of the
quadrature methods to be implemented.

Next, a NumPy array of quadrature points is generated, using the function UQTkGet QuadPo int s.
Then, the quadrature points in are converted to equivalent samples of the input parameters, taking
advantage of the fact that the inputs are assumed to be Gaussian. If we let µ represent the mean of an
input parameter, a represent its standard deviation, and qdpts be a vector of quadrature points, the
following equation is used to convert these samples in to equivalent samples of the input parameter:

parameter_samples = µ + a(qdpts)

6 9

Now that we have samples of all the input parameters, these samples are run through the forward model
to obtain values of Q using the function fwd_model. Then the actual Galerkin projection is performed
on these function evaluations to obtain the PC coefficients, using the function
UQTkGalerkinProj ect ion.

Next, to create a PDF of the output Q from its PCE, germ samples are generated and the PCE is
evaluated at these sample points using the function UQTkDrawSarnplesPCE. Lastly, using our PCE
evaluations, a kernel density estimation is performed using function KDE

This entire process is done twice, once with full tensor product quadrature points and again with sparse
quadrature points.

Printing and Graphing
Next, statements indicating the total number of sampling points used for each forward propagation
method will be printed.

Monte Carlo sampling used 100000 points

Full quadrature method used 16384 points

Sparse quadrature method used 6245 points

Finally, a graph is created which displays the three different heat flux PDFs on the same figure. It will be
saved under the file name heat _f lux_pce . pdf. .

heat transfer pce tools.py

This script contains several functions called by the rad_he at _transf er_atm_pce . py file.

• comput e_heat _f lux (Ti , To , dw, , kw, , hi , ho) : This function calculates heat flux Q,
assuming no radiative heat transfer occurs.

— Ti, To, dw, kw, hi, ho: Sample values (scalars) of the input parameters

• r_heat _f lux (Ti , To , dw , kw , hi , ho , TA , estimates): This function calculates heat flux Q,
assuming radiative heat transfer occurs. The SciPy non-linear solver optimize . f solve is
employed.

— Ti, To, dw, kw, hi, ho, TA: Sample values (scalars) of the input parameters

— estimates: Estimates of Q, T1, and T2 required to solve the nonlinear system. For these
estimates, we use the output of the function c omput e_heat_f lux, which solves the
system assuming no radiative heat transfer occurs.

• fwd_model (Ti_samples , To_samples , dw_samples , kw_sampl es , hi_sampl es ,

ho_samples , verbose) :

This function returns a NumPy array of evaluations of the forward model. This function calls
the functions c omput e _heat _f lux and r_he at _f lux.

7 0

— Ti samples, To samples, dw samples, kw samples, hi samples, ho samples: ID NumPy
arrays (vectors) of parameter sample values.

• f wd_model_rad (Ti_samples , To_samples , dw_samples , kw_s ample s , hi_samples ,

ho_samples , TA_samples , verbose) :

Same as fwd_model but with radiation enabled, and an extra argument for the samples of TA.

• KDE (f cn_evals) : This function performs a kernel density estimation. It returns a NumPy
array of points at which the PDF was estimated, as well as a NumPy array of the corresponding
estimated PDF values.

— ftn evals: A NumPy array of evaluations of the forward model (values of heat flux Q).

pce tools.py

This script is stored in PyUQTk/PyPCE. This script contains several, not problem specific, functions
called by the rad_heat _transf er_atm_pce . py file.

• UQTkGet QuadPo int s (pc_model): This function generates a NumPy array of either full tensor
product or sparse quadrature points. Returns number of quadrature points, totquat, as well.

— pc model: PC object with information about the PCE, including the desired sparsity for
quadrature point generation.

• UQTkGalerkinProj ect ion (pc_model, f _evaluations) : This function returns a ID
NumPy array with the PC coefficients.

— pc model: PC object with information about the PCE.

— f evaluations: ID NumPy array (vector) with function to be projected, evaluated at the
quadrature points.

• UQTkDrawSamplesPCE (pc_model ,pc_coef f s ,n_samples): This function draws a given
number of samples from the germ and evaluates the samples at the PCE. This function returns a
ID NumPy array with PCE evaluations.

— pc model: PC object with information about the PCE.

— pc coeffi: ID NumPy array with PC coefficients. This array is the output of the function
UQTkGalerkinProjection

— n_samples: number of samples to evaluate

71

Sample Results

Run the file rad_heat _transf er_atm_pce . py with the default settings. You should expect to see
the following print statement, and your graph should look similar to the one found in the figure
below.

Monte Carlo sampling used 100000 points

Full quadrature method used 16384 points

Sparse quadrature method used 6245 points

0.040

0.035

0.030

0.025

121 0.020

0.015

0.010

0.005

0.000

Heat Transfer Through a Window

— NISP full quadrature method

— Monte Carlo Sampling

— NISP sparse quadrature method

20 40 60 80 100

Total Heat Flux (W/m2)

120 140

Figure 5-12. Sample results of rad_heat_transfer_atm_pce.py

Now trying changing one of the default settings. Try adding the flag --nord 2. This will change the
order of the PCE to z, rather than 3. You should expect to see the following print statement, and a
sample graph is found in the figure below.

Monte Carlo sampling used 100000 points

Full quadrature method used 2187 points

Sparse quadrature method used 1023 points

72

0.040

0.035

0.030

0.025

4-,
A 0.020
a.,

0.015

0.010

0.005

0.000
20 40 60 80 100

Total Heat Flux (W/m2)

Heat Transfer Through a Window

— NISP full quadrature method

— Monte Carlo Sampling

— NISP sparse quadrature method

120 140

Figure 5-13. Sample results of rad_heat_transfer_atm_pce.py
with nord = 2

5.6. EXPANDED FORWARD PROPAGATION OF
UNCERTAINTY - PYUQTK

Overview

This example is contains two pairs of python files, each pair consists of a main script and a tools file that
holds functions to be called from the main script. They are located in UQTk/examples/window. This
example is an expanded version of the previous forward propagation problem, it utilizes a more
complex model that provides additional parameters. One pair of scripts produces a probability density
function of the heat flux for a twelve dimension model, using fourth order PCE's and sparse quadrature.
The other pair produces a probability density function of the heat flux for a fifth dimension model,
using fourth order PCE's. This script compares the results of using sparse and full quadrature, as well as
Monte Carlo sampling. It also produces a separate plot showing the spectral decay of the PC
coefficients.

73

Theory

Heat Transfer - Dual Pane Window

T
T1

Q

T3 ,v T4

Glass Air Gap

da

To

The heat flux calculations are implemented using random samples from the normal distribution of each
of the uncertain Gaussian parameters. The standard deviations assigned are estimates. These parameters
are defined in the table below:

Parameter Definition Mean Value Standard Deviation %

T Inside temperature z93 K 0.5
To Outside temperature 273 K 0.5
T, Sky Temperature [i] 263 K 10
ku, Conduction constant for glass i W1m2K 5
ka Conduction constant for air 0.024 W Im2K 5
hz Inside convection coefficient z W 1m2K 15
ho Outside convection coefficient 6 W/m2 15
da, Width of the glass 5 mm i

da Width of the air gap i cm i
p, Viscosity or air 1.86x10-5 kg/m s 5
p Density of air 1.29 kg1m3 5

/3 Thermal expansion coefficient 3.67x10-311K 5

The forward model that was developed relies on the same set of steady state heat transfer equations
from the first example, with the addition of a combined equation for conduction and convection for the

74

air gap. This is defined as conductance, and was implemented in order to provide an alternative to
determining the convection coefficient for this region, which can be challenging[z].

0.16

T1Q = hi(Ti — = ku,
T2
= 0.41ka (gl3P2da3

773 774
7'2 T31] (T2 T3) = k„, cito

I-1
2 1

= ho(T4 — 710) ea(T44 — 71)

[i] Leonard, John H. IV, Leinhard, John H. V. A Heat Transfer Textbook - 4th edition. pg 579.
Phlogiston Press. zoit [z] Rubin, Michael.Calculating Heat Transfer Through Windows. Energy
Research. Vol. 6, pg 341-349. 198z.

T1 represents the glass temperature of the outer facing surface for the first glass layer, and T2 represents
the temperature of the inner surface for the first glass layer, T3 represents the temperature of the inner
surface of the second glass layer, T4 represents the outer facing surface of the second glass layer. E is the
emissivity of uncoated glass, which we take to be 0.95, and o- is the Stefan-Boltzmann constant.

Polynomial Chaos Expansion*

Non-lntrusive Spectral Projection (NISP)*

Kernel Density Estimation*

*Please see previous example.

Implementation

The first set of scripts:

• 5D_f wd_prop . py: the main script

• fwd_prop_tools . py: functions called by 5D_f wd_prop . py

5D fwd prop.py

This script will produce a plot comparing the probability density function of the heat flux using three
methods. Non-intrusive spectral projection full and sparse quadrature methods, and Monte Carlo
sampling. It also produces a plot showing the spectral decay of the PC coefficient magnitude in relation
to the PC order. This plot illustrates the how the projection converges to give a precise representation of
the model. Changing the order of this script (nord) may alter the results of the second plot, since it has
elements that are not dynamically linked. Use the command python 5D_fwd_prop . py to run this
file from the window directory.

The second set of scripts:

75

106

105

102

10
1

Number of Samples Per Order for Given Dimension

— 12D - Full Quadrature, max order = 2

 12D - Sparse Quadrature, max order = 4

 5D - Full Quadrature

 5D - Sparse Quadrature

2 3
PCE Order

4

Figure 5-14. Increase in number of samples with change in order.

• highd_sparse . py: the main script

• tools_conductance_dp_pce_wrad .py: functions called by highd_sparse . py

highd sparse.py

5

This script will produce of the probability density function of the heat flux in twelve dimensions, using
only non-intrusive spectral projection with sparse quadrature. Use the command
python highd_sparse . py to run this file from the window directory. Adjustments may be made

to nord if desired, though the number of points produced increases dramatically with an increase in
order, as illustrated by figure 5.9.

Monte Carlo Sampling Methods
This is very similar to the previous example with the exception of compute_heat_f lux producing T1 ,
T2 , T3, T4 and Q. This function consists of a solved set of five linear equations, our forward model
neglecting convection for the air gap and radiative heat transfer, which are evaluated for the parameter
samples. The values obtained are used as initial inputs for r_heat_f lux, which calculates the total heat
flux for all heat transfer modes, using the SciPy nonlinear solver optimize . f solve. Using the heat
flux samples, a kernel density estimation is then performed using function KDE.

76

NISP Quadrature Methods
Please see previous example.

Printing and Graphing
Next, statements indicating the total number of sampling points used for each forward propagation
method will be printed. The number of Monte Carlo points is fixed, but the number of points
produced by quadrature method will vary with the number of uncertain parameters and the order of
the PCE.

Monte Carlo sampling used 100000 points

Full quadrature method used xxxxxxx points

Sparse quadrature method used xxxxxxx points

Finally, a graph is created which displays the three different heat flux PDFs on the same figure. It will be
saved under the file name heat_flux_pce.pdf.

fwd prop tools.py and tools conductance dp pce wrad.py

This scripts contain several functions called by the 5D_fwd_prop. py and highd_sparse . py files.
The five dimension example uses the five parameters with the highest uncertainty, li,hi,ho,kw,ka.

• comput e_heat_f lux (Ti , To , dw , da , kw , ka , hi ,ho): This function calculates heat flux Q,
assuming no radiative heat transfer occurs and no convective heat transfer occurs in the air gap.

— Ti, To, dw, da, kw, ka, hi, ho: Sample values (scalars) of the input parameters

• r_heat_f lux (Ti , To , Ts , dw , da , kw , ka , hi,ho,beta,rho, mu , estimates): This
function calculates heat flux Q, assuming radiative heat transfer, and convective heat transfer for
the air gap occurs. The SciPy non-linear solver opt imize . f solve is employed.

Ti, To, Ts, dw, da, kw, ka, hi, ho, beta, rho, mu: Sample values (scalars) of the input
parameters

— estimates: Estimates of Q, T1, T2 , T3, and T4 are required to solve the nonlinear system. For
these estimates, we use the output of the function compute_heat_f lux, which solves the
system assuming no radiative or convective heat transfer for the air gap occurs.

• get_quadpts(pc_model,ndim)*

• fwd_model(Ti_samples,To_samples,Ts_samples,dw_samples,da_samples,kw_samples,

ka_samples,hi_samples,ho_samples,beta_samples,rho_samples,mu_samples):

This function returns a NumPy array of evaluations of the forward model. This function calls
the functions comput e_heat_f lux and r_he at_f lux.

— Ti samples, To samples,7; samples, dw samples, da samples, kw samples, ka samples,
hi samples, ho_samples, beta samples, rho samples, mu samples: iD NumPy arrays
(vectors) of parameter sample values.

77

• GalerkinProj e ct i on (pc_model , f _evaluations)*

• evaluate_pce (pc_model ,pc_coeff s , germ_samples)*:

• KDE (f cn_evals)*:

• get _mult i_ index (pc_model ,ndim) This function computes the multi indices to be used in
the inverse relationship plot.

— pc model: Contains information about the PC set.

— ndim: Number of model dimensions.

• plot_mi_dims (pc_model , c_k ,ndim) This function produces the inverse relationship plot
using the multi indices produced in the previous function, and the value of the PC coefficients.

— pc model: Contains information about the PC set.

— ndim: Number of model dimensions.

— c k: Numpy array of PC coefficients.

*Please see previous example.

Sample Results

Run the file highd_sparse . py with the default settings. You should expect to see the following print
statement, and your graph should look similar to the one found in the figure below. This sample is for a
problem with twelve dimensions, the PCE is fourth order. The following will print to the terminal:

Sparse quadrature method used 258681 points

The next two figures show the two results of the five dimension example with a fourth order PCE. The
following will print to the terminal:

Monte Carlo sampling used 100000 points

Full quadrature method used 3125 points

Sparse quadrature method used 10363 points

78

Heat Transfer Through a Dual Pane Window - PCE order 4

0.06

0.05

0.04

u6 0.03
0_

0.02

0.01

0.00
10 20 30 40 50

Total Heat Flux (W/m2)

60 70

Figure 5-15. Sample results of highd_sparse.py

80

79

Heat Transfer Through a Dual Pane Window - PCE order 4

0.045

0.040

0.035

0.030

0.025

t
ci_

0.020

0.015

0.010

0.005

0.000

— NISP full quadrature method

— Monte Carlo Sampling

— NISP sparse quadrature method

—20 0 20 40 60

Total Heat Flux (W/m2)

80

Figure 5-16. Sample results of 5D_fwd_prop.py

100

8o

P
C
 C
oe

ff
ic

ie
nt

 M
a
g
n
i
t
u
d
e

o

10-4

10 6

108

10-1°

Spectral Decay of the PC Coefficients

1 1

1

11
1 1

ot 1st 2nd

1

4t 1 \ \\,

o 20 40 60 80

Coefficient Number
100

Figure 5-17. Sample results of 5D_fwd_prop.py

120

8i

5.7. FORWARD PROPAGATION OF UNCERTAINTY
USING BASIS ADAPTATION

Overview

This example is located in examples/d_spring_series. It contains several Python scripts that
propagate uncertainty in input parameters through a series springs model using basis adaptation
approach, and is compared with Monte Carlo sampling method and non-intrusive spectral projection
(NISP) via sparse quadrature method.

Theory

Effective Modulus for d Springs in Series

In this example, the effective modulus for d springs in series is represented as:

flid 1(1 + ax, + b4)
f (x1, x2, ..., xd) = 1-rd

0i

+ ax + bX)1 + b Ecil 1 113=1(1 3 2
3

3

(5.5)

each spring has modulus (1 + axi + bx2). Where d is the dimension, a and b are coefficients. In our
example, we have springs with {xi, i = 1, ..., 7} independent Gaussian distribution, where
xi ..AT(5.0, 0.6) with i = 1, ..., 4 and x, ./V(4.0, 0.5) with i = 5, ..., 7. Associated coefficients are
a = 0.5 and b = 1.0.

Basis Adaptation

By emphasizing the mathematical structure on Gaussian Hilbert spaces, a reduced order is obtained,
which capture the Gaussian probabilistic information of QoI and maintains its dependence on the
original parameter space.

Let A be an isometry on Rd and n be:

= AAT = I (5.6)

• = (el, • • • , ed): Gaussian random variable know as the germ

Since 97 is another basis just like the orthogonal basis in span the orthogonal basis in Letting
kIi;? (77) = kW, and we have the equivalent PCEs:

P

k=0

P

QkwkW, QA (n) = (21V(71), (5.7)
1=0

8z

Letting QW QA (n), yields:

Q1 = E k(W (17))

k=0

Q k = E Ql(V(roko
1=0

(5.8a)

(5.8b)

This provides us with a tool to compare coefficients of two PCEs of full dimension.

After the projection of A, suppose that important probabilistic information of QoI is concentrated to
the first several components of then we can use these components to form a lower dimensional PCE.
One of the options would be letting A be such that:

11]. =
=

Qeiei (5.9)

• ei: subset of multi-indices with i at ith location and zeros elsewhere

• Q first order expansion coefficients of d dimension

so that first component of 77 captures the complete Gaussian components of Q. Letting the first row of
A be the Gaussian components, the remaining parts of A can be constructed in two approaches. The
first one is putting i in the diagonal zeros elsewhere, the second one is put the largest Gaussian
component in the second row with column position the same as it appears in the first row, and put the
second largest in the third row with column position the same as it appears in the first row too, so on so
forth. We call the second approach "sort by importance" method. Then A is constructed by the
Gram-Schmidt (or other orthogonalization) of matrix A.

We first perform the i dimensional reduction and obtain associated PC coefficients. Then the z
dimensional reduction and compare the coefficients with the i dimensional PC coefficients, stop if
converged or proceed to 3 dimensional reduction if not, so on so forth. To compare coefficients of
different dimensional PCEs, say di dimensional and di dimensional with di < di, we need first project
coefficient from Ca (a E ICp) to Co (0 E Id3,29), where id,p denote the set of all d-dimensional
multi-indices of degree less than or equal to p. This is easily done by letting:

=
..., di) = a and a" (di + 1, ..., d3) = 0

m
0 otherwise

(5.)

• a" : multi-indices E

• Cei: projected coefficients of Ca

This provides a convergence criterion.

We can also compare any dimensional PCE in 77 space (rotated space) with PCE in space. Which is
done by first projecting coefficients of, say do dimensional, PCE in 77 space to coefficients of d
dimensional PCE in space by equation 5.io, and then projecting coefficients in ri space to space by
equation 5.8. Then we can judge the accuracy of reduced PCE with respect to full dimensional PCE by
comparing the coefficients, in space.

83

Implementation

The script set contains three files:

• run_d_springs . py: the main script

• d_spr ings_t ools . py: function called by run_d_ springs . py, mainly contains classical PCE
needed modules and forward model

• adapt at i on_t o ols . py: function called by run_d_ springs . py, contains modules that deal
with the basis adaptation. This function is a library files located at "Rinstall} /PyUQTk /PyPCE"

exec d springs.py

This scripts will produce two figures, the first figure compare the projected coefficients of z dimensional
PCE and full dimensional PCE in space, the second figure compares PDFs of effective modulus of the
7 dimensional series springs model generated by zd Gaussian adaptation method, Monte Carlo
sampling method and NISP full dimension sparse quadrature method.

Some of the important input parameters are:

• nord: The order of PCE

• ndim: The dimension of PCE, set to 7 in our example

• pc_type: Polynomial type and weighting function. Hermite-Gauss, "HG", is selected in
adaptation method

• param: Quadrature level, usually set to nord+i to have the right polynomial exactness

• method: Method used to generate A matrix. The default one, method = 0, is using
Gram-Schmidt of A, method = 1 is using orthogonal decomposition of AAT, method = 2 is
using orthogonal decomposition of the Householder matrix, and the last one, method = 3, is
using "sort by importance" method. The default method is method = 0, which is satisfying for
most problems, if not, then we recommend to use method = 3

• a: a = 0.5 in our example

• b: b = 1.0 in our example

There are also other fixed parameters. One is nord0, which is equal to i, denoting the PC order used to
compute first order coefficients, while the quadrature level parameter param0 is equal to i too.

The first step of the work flow for adaptation PCE is to compute the Gaussian coefficients (first order
coefficients) of the associated QoI. Then, Gaussian coefficients are used to construct rotation matrix A.
Starting from 1 dimension, the reduced PCEs are then obtained until coefficients of two successive
dimensional PCEs are converged.

84

Printing and Graphing
The statements indicating the total number of sampling points used for each forward propagation
method will be printed. The number of Monte Carlo points and number of points produced by sparse
quadrature points are fixed, but the number of total quadrature points produced in the adaptation
method depends on when the convergence is reached.

Monte Carlo sampling used 100000 points

Sparse quadrature method used 6245 points

Adaptation method used 244 points

Note that the points used in the adaptation method include points in calculating Gaussian coefficients,
id adaptation of PCE, and zd adaptation of PCE (used to ensure the convergence of id adaptation). So
actually, only id adaptation is enough to get a good result.

Then two graphs are generated. The first figure is a verification of zd Gaussian adaptation with full
dimension PCE by comparing the coefficients, coefficients of zd Gaussian adaptation are projected to
full dimensional PCE space. The second figure gives the PDFs of effective modulus generated by
different methods.

d springs tools.py

This script contains several functions called by run_d_springs . py file.

fwd_model (xx , a , b) : This function compute the effective modulus of the d series springs,
and the output is a NumPy array with dimension the size of samples.

— xx: Nsampi„ x d NumPy array, where Nsampies is the size of samples

— a, b: Input parameters in the d series springs model.

• KDE (f cn_evals)*

• EvaluatePCE (pc_model , pc_ coef f s , germ_samples) : This function evaluate QoI using
the PCE model and coefficients at customized samples.

— pc model: Known PCE model

— pc coefficients: Feed in PC coefficients

— germ_samples: Germ samples used to evaluate

*Please see previous examples.

85

adaptation tools.py

This script contains functions related to Gaussian adaptation method.

• gaus s_adaptat ion (c_k , ndim, method = 0): Function to obtain rotation matrix A
from first order PC coefficients.

— c k: First order PC coefficients with size equal the dimension of the problem

— ndim: Same as before, the dimension of the problem

— method: Methods used to construct matrix A, default method = 0 refers to Gram-Schmidt
procedure on matrix A with Gaussian coeffs (normalized) at its first row, and ones along
diagonal zeros elsewhere for other rows. And method = 1 refers to orthogonal
decomposition of AAT, method = 2 refers to orthogonal decomposition of Householder

2 A1A
2'

matrix H = I and method = 3 refers to "sort by importance" method.
I1A11

et a_t o_xi_mapping (eta, A, zeta = None): This function maps lower dimensional n
space to full dimensional space.

— eta: n array with size N samples X d
A: Rotation matrix

— zeta: Provides an option to specify augment matrix of 77 to match the size of Augment
matrix is 0 if not specified

mi_terms_loc(dl, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0):

Find multi-indices "locations" of dl dimensional PCE in d2 dimensional PCE. Where the
"locations" refers to locations of multi-indices in d2 dimensional PCE, where the first dl terms of
which equal to multi-indices of dl dimensional PCE and the remaining terms equal to o, as
described in equation 5.1o. This function is called by 12_error_et a (.) function in file
adaptation_tools .py.

— dr, d2: Dimensions of PCEs with dl < d2

— nord, pc type, param, sf : Parameters of the polynomial basis and quadrature method,
where mord refers to order, pe_type refers to polynomial type, param refers to quadrature
level, and s f refers to choice of " spar se" or "full" quadrature

— pc alpha, pc beta*

12_error_eta(c_1, c_2, d1, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0)

Function to compute the / 2 error of coefficients of dl dimensional PCE and d2 dimensional
PCE, where coefficients of dl dimensional PCE are projected to dl dimensional PCE. The
projected coefficients of dl dimensional PCE are also returned.

— c 1, c 2: Coefficients of two different dimensional PCEs

— di, d2: Dimensions of PCEs

86

— nord: Order of PCEs

— pctype, param, sf, pc alpha, pc beta*

transf_coeffs_xi(coeffs, nord, ndim, eta_dim, pc_type, param, R, sf="sparse", pc_al

Transfer coefficients from n space to space. Only make sense when etadim = ndim.

— coeffr: Coefficients in 71 space

— eta dim: Dimension ofn

— R: Rotation matrix

— nord, ndim, pc type, param, 5f pc alpha, pc beta *

*Same as mentioned before in this example.

Sample Results

Run the file run_d_spr ings . py with the default settings. One should obtain the two figures as
below:

Note that y axis of Figure 5-18 is plot in log scale, so the dominant coefficients of these two are very close.
The PDF showed in Figure 5-19 proves that the basis adaptation method can achieve high accuracy.

Here we use 2 dimension adaptation to make a comparison, but i dimension adaptation is already very
accurate (PC coefficients of which are converged to the 2 dimension values).

101

100

10-3

10-4

full dimension PCEs

2 dimension adapt PCEs j

J

_r f J

20 40 60 80 100 1 0
PCE terms

Figure 5-18. Coefficients comparison of adaptation method and
full dimension PCE

88

0.5

0.4

0.1

0.0

- Monte Carlo Sampling

- NISP sparse quadrature m

- NISP 2d linear adaptive m

ethod

ethod

6 7 8 9 10 11

Effective modulus

12 13 14

Figure 5-19. PDFs of effective modulus generated with different
methods

89

5.8. BAYESIAN INFERENCE OF A LINE

Overview

This example is located in examples/line_inf er It infers the slope and intercept of a line from noisy
data using Bayes' rule. The C++ libraries are called directly from the driver program. By changing the
likelihood function and the input data, this program can be tailored to other inference problems.

To run an example, type . /line_ inf er . py directly. This file contains quite a bit of inline
documentation about the various settings and methods used. To get a listing of all command line
options, type . /line_ inf er . py -h". A typical run, with parameters changed from command-line, is
as follows:

./line_infer.py --nd 5 --stats

This will run the inference problem with 5 data points, generate plots of the posterior distributions, and
generate statistics of the MCMC samples. If no plots are desired, also give the - -noplot s argument.

More details

After setting a number of default values for the example problem overall, the line_ inf er . py script
sets the proper inference inputs in the file line _ inf er . xml, starting from a set of defaults in
line_ inf er . xml . templ. The file line_ inf er . xml is read in by the C++ code line_ inf er . x,
which does the actual Bayesian inference. After that, synthetic data is generated, either from a linear, or
cosine model, with added noise.

Then, the script calls the C++ line inference code line_ inf er . x to infer the two parameters (slope
and intercept) of a line that best fits the artificial data. (Note, one can also run the inference code directly
by manually editing the file line_ inf er . xml and typing the command . /line _ inf er . x)

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag - -noplot s is specified, the script computes and plots the following:

• The pushed-forward and posterior predictive error bars

Generate a dense grid of x-values

Evaluate the linear model y = a + bx for all posterior samples (a, b) after the burn-in

- Pushed-forward distribution: compute the sample mean and standard deviation of using
the sampled models

Posterior predictive distribution: combine pushed-forward distribution with the noise
model

• The MCMC chain for each variable, as well as a scatter plot for each pair of variables

90

6.5

6.0

5.5

>. 5.0

4.5

4.0

3
-
.5
1.0 -0.5 0 0

X
0.5 1 0

Figure 5-20. The pushed forward posterior distribution (dark
grey) and posterior predictive distribution (light grey).

• The marginal posterior distribution for each variable, as well as the marginal joint distribution for
each pair of variables

If the flag --stats is specified, the following statistics are also computed:

• The mean, MAP (Maximum A Posteriori), and standard deviations of all parameters

• The covariance matrix

• The average acceptance probability of the chain

• The effective sample sizes for each variable in the chain

Sample Results

91

5.2

5.1

4.80
50000 Immo

MCMC step

0.6

150000 200000

0.6

0.7

0.8

-0.9-

soaoo

1.2,

1.3-

1.4-

1., 8
4.9 5.0

a
5.1 5.2

iod000
MCMC step

150000

Figure 5-21. MCMC chains for parameters a and b, as well as a
scatter plot for a and b

200000

92

4.8 5 0 5.2

-0.8-

-1.0-

-1.2-

1.4

4.8 5 0 5.2 -1.4 -1.2 -1.0 -0.8

_0

Figure 5-22. Marginal posterior distributions for all variables, as
well as marginal joint posteriors

5.9. SAMPLING OF MULTIMODAL POSTERIOR PDFS
USING TMCMC

Overview

This example is located in examples/tmcmc_bimodal. It generates samples distributed according to
an underlying 3-dimensional bimodal posterior PDF, being a product of a Normal prior PDF and a
bimodal likelihood PDF. It utilizes the Transitional Markov chain Monte Carlo (TMCMC) method [1],
a variant of a class of MCMC algorithms known as tempering methods, which also provides an estimate
of the model evidence at no extra computational cost (i.e. no further evaluations of likelihood and/or
prior PDFS). The C++ libraries are called directly from the driver program. By changing the likelihood
function and prior PDF (in bimodal . cpp), along with providing consistent samples from the prior
PDF in tmcmc_prior_samples . dat, this program can be tailored to other problems. It utilizes shell
scripts to spawn multiple processes for parallel evaluation of likelihood and prior PDFs.

To run an example, type . /tmcmc_bimodal . py directly. To get a listing of all command line options,
type . /tmcmc _bimodal . py -h. A typical run is as follows:

./tmcmc_bimodal.py

93

This will run the TMCMC sampler, starting with s000 samples from the prior PDF, generate plots of
the posterior distributions along with intermediate samples (artifacts of TMCMC). If no plots are
desired, also give the - -noplots argument.

More details

TMCMC combines aspects of simulated annealing optimization with Markov chain Monte Carlo,
creating an algorithm that has strong capacity for parallelism, and provides an estimate of model
evidence, a component of Bayesian model selection. It starts with samples from the prior distribution
Pr (9), and utilizes importance sampling (with a resampling step) to provide samples from intermediate
PDFs given by Pr(D19)13 Pr (9) while introducing diversity through MCMC steps. Pr (D119) is the
likelihood function and /3 is the temperature parameter that monotonically increases from o to i, with
step sizes chosen adaptively (i.e. varying from one step to the next) such that the coefficient of variation
of the importance sampling weights does not exceed a threshold (see [34] for a relevant discussion).

In general, the performance of TMCMC as implemented in UQTk heavily depends on the maximum
allowable coefficient of variation of the sample weights. This can be controlled using the MCMC class
member function initTMCMCCv. Based on numerical experiments, the UQTk default value of o.i
should be adjusted down whenever the apparent bias in the resulting posterior samples is insufficiently
high (i.e. when the generated ensemble does not adhere to the structure inherent in the posterior PDF).
This situation seems to arise whenever the discrepancy between the prior and posterior PDFs is high (as
dictated by the likelihood). However, the need to adjust the coefficient of variation is reduced with (a)
greater number of TMCMC samples, and/or (b) longer MCMC chains (to encourage mixing as
controlled via the initTMCMCMFact or member function).

This example involves a driver python script, tmcmc_bimodal . py, that invokes the program (based on
provided C++ code) tmcmc_b imodal . x. This program sets up the MCMC class object, specifying the
dimensionality of the problem, number of samples required, and number of processes for parallel
evaluation of likelihood and prior, along with other algorithmic choices. The TMCMC algorithm
proceeds with loading the user-provided prior PDF samples from tmcmc_prior_samples . dat, and
iterating through the cooling steps. In each step, two shell scripts are invoked to spawn multiple
processes for parallel evaluation of likelihood and prior PDFs, namely tmcmc_getLL . sh and
tmcmc_getLP . sh, respectively. In turn, each process involves running bimodal . x (with
corresponding C++ source bimodal . cpp) which evaluates the prior and/or likelihood for an ensemble
of samples at one particular TMCMC step.

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag - -noplot s is specified, the script computes and plots the following:

• z-dimensional scatter plots of posterior samples

• z-dimensional scatter plots of intermediate TMCMC samples (for intermediate)3 values)

• The marginal posterior distribution for each variable, as well as the marginal joint distribution for
each pair of variables

94

0.5

0

-0.5

-0.5

01
0.5

0.5

0

-0.5

-0.5 0

01
0.5

0.5

0

-0.5

-0.5 0

02

0.5

Figure 5-23. 2-dimensional scatter plots of posterior samples

.1. .1°

Figure 5-24. 2-dimensional scatter plots of intermediate TMCMC
samples, from prior to posterior

Sample Results

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-0.5 0.5

0.5 •

05.
101)

0.5

0

-0.5

0.5

10.8

. 0.6

0.4

0.2

O

O
O

-0.5

010
0.5

1.8

1.6

1.4

11.2,6

1.4

1.2

ra 0.8

0.6

0.4

0.2

0
-0.5 0.5

1.41.8

1.6 1.6 1.2

1.4
0.5

1.4

1.2 1.21 t
0.

1
0, 0.8

0.8 0.8' 0.6

0.6 -0.5 0.6 0.4

0.4 0.4 0.2

0 2 0.2
0

-0.5 0') 0.5 -0.5 0
0,

0.5

Figure 5-25. Marginal posterior distributions for all variables, as
well as marginal joint posteriors

95

5.10. FORWARD PROPAGATION OF UNCERTAINTIES,
SURROGATE CONSTRUCTION AND GLOBAL
SENSITIVITY ANALYSIS

Overview

• Located in examples/uqpc

• A collection of scripts that propagate input parameter uncertainties to output via PC expansions.
As a special, and most commonly used, case the scripts can construct a PC surrogate for a
multi-output computational model. The latter is as a black box simulation code. The workflow
also provides tools for global sensitivity analysis of the outputs of this black box model with
respect to its input parameters or input PC germs.

Theory

Consider a function f (A; x) where A = (Al , . . . , Ad) are the model input parameters of interest, while
xERm are design parameters with controllable values. For example, x can denote a spatial coordinate
or a time snapshot, or it can simply enumerate multiple quantities of interest. Furthermore, assume the
input parameters are given by a (generally, joint) Polynomial Chaos expansions as

Ai =
Ki —1

k=0

aikT k(e) , for i = 1, . . . , d, (5 al)

where kilk (e) = 41 k(ei, . . eci) are standard multivariate polynomials, defined as products of
univariate polynomials Oki (ez) as follows:

k(0 Oki (6) Okd (Q)- (5.12)

Note that the stochastic input e = . . . , eci) does not need to have the same dimensionality as the

parameter vector = (Ai , . . . , Ad), i.e. d d in general. However, most commonly, it is. For example,
if parameters are given by their ranges only,

E [ai , for i = 1,d, (5.13)

one can think of it as first-order Legendre-Uniform PC by the linear transformation

bi

2

bi --

2

a,
Ai = a + for i = 1, . . . , d. (5.14)

The goal is to build a PC representation for each value of design parameter x, i.e. for l = 1, . . . L,

K-1

f(A; xl) ̂ gc(À; x1) = COW k(0. (5.10

k=0

9 6

Note that if inputs are given independently on their respective ranges, E [cti, bi], the PC expansion
(5.15) is simply a polynomial surrogate with respect to scaled inputs

bi±ctiAi — 2

2

E [-1,1] for i = 1,d. (5.16)

A typical truncation rule in (5.15) is defined according to the total order of the basis terms, i.e. only
polynomials with the total order < p are retained for some positive integer order p, implying

1k11 + • • • + <
. .

p, and K = (d + p)! 1 (d!p!). The scalar index k is simply counting the
multi-indices (k1, . , kd).

The three generic methods of finding the PC coefficients cid are detailed below.

P roject i o n : The basis orthogonality enables the projection formulae

ckl = f f (A(0; xl)x k(07r(Ock (5.17)

where)1/4(0 simply denotes the PC form (5.13) or the linear scaling relation in (5.14), and 71(0 is the PDF
of Note that 7r(0 = 2—d for the linear, Legendre-Uniform PC case.

The projection integral is taken by quadrature integration

N

Ckl E wqf (A(e)); xl)411(e))

q=1

(5.18)

where (q) are Gaussian quadrature points, and tug are the associated weights. See the description of the
app pce_resp as well.

Bayesian Least-Squares Regression: In cases when model outputs are noisy, or highly
non-linear, or when one can not afford model evaluations at a predefined quadrature locations, it is
convenient to reformulate the coefficient finding as a regression problem. More specifically, consider the
least-squares problem that attempts to solve, for each design condition l = 1, . . . L,

K -1

)

2

arg min E f Pk(e5)); xi) — E as))

c s=1 k=0

(5.19)

Due to linearity of the polynomial form with respect to coefficients ckl, the exact solution of this
minimization problem is available via matrix manipulations, see, e.g. [2.6]. In the description of the app
regress ion, the Bayesian generalization of this least-squares fit is described.

97

Bayesian Compressive Sensing (BCS): For high-dimensional problems, i.e. when d is
sufficiently large, the number of terms K for a reasonable truncation order in the output PC (5.15) is
large. In such cases, one typically has fewer model evaluations available than the number of basis terms,
i.e. the problem is underdetermined. In such situations, one can employ fi regularization techniques,
building on the compressive sensing work from image processing community. Here, we have
implemented the Bayesian reformulation of such an algorithm, with approximate and fast procedure of
pruning the unnecessary terms in the PC expansion. See [I, 28] for more details on BCS.

After computing the PC coefficients cm, one can extract the global sensitivity information, also called
Sobol indices or variance-based decomposition. For example, the main sensitivity index with respect to
the dimension i (or variable is

Si
(xiEke C1,/ 1 1Wk 1 12
) — K-1 (5.20)

Ek=1 C12,/ 114q1

where 14 is the indices of basis terms that involve only the variable i.e. the one-dimensional
monomials /Pi (,), In other words, these are basis terms corresponding to multi-indices with
the only non-zero entry at the i-th location. For further details regarding global sensitivity analysis
(GSA), see the theory side of the description of the "GSA via Sampline workflow, and the description
of the app pce_sens in Section 4.1.1o.

Implementation

The script set consists of the following files:

• uq_pc . py
terminal.

: the main script, see Table 5-1. Also one can run uq_pc . py -h for help in the

• model . py : black-box example model. See Figure 5-z6 for visual explanation of the expected
input-output structure. Try model . py -h for help in the terminal. The syntax of this script is

model.py <input_file> -o <output_file> -m <model_name>

The list of arguments:

-i <input_f i le> : N x d file that stores the input parameter ensemble of N samples of
d-dimensional input.

-o <output_f ile> : N x L file where output f WO, x1) is stored, with N rows
(number of input parameter samples) and L columns (number of outputs, or number of
design parameter values).

-m <model_name> : Name of the model. Options are example (default) and genz.

A2
* example : an example function f (À; x) = (Eid i)ki) (Eid

A ±
t) is

implemented that also produces the file designPar . dat for design parameters
xj = j for j = 1, . . . , L, with L = 7. The function has d inputs and L = 7 outputs.

98

* genz : this function has two outputs (L = 2): Gaussian and Osccillatory Genz
functions.

User can create a black-box model . py with similar I/0 structure, or augment model . py with
their own function.

• plot _prep . py : plotting before surrogate construction. The syntax of the script is
plot_prep . py <plot_type> < . . . >.

Try plot_prep .py -h or plot_prep . py <plot_type> -h, where plot _type is

pcoord : Plots the inputs in parallel coordinates.

xx : Plots one input parameter versus another.

xy : Plots one of the outputs versus one of the inputs.

xxy : Surface-plot of one of the outputs versus two inputs.

• plot . py : plotting after surrogate construction, reading the pickle file results . pk
produced by uq_pc . py. The syntax of the script is plot . py <plot _type> < . . . >.
Try plot .py -h or plot .py <plot_type> -h, where plot_type is

sens : Plots the sensitivity information in a bar-plot. This command also produces
allsens_main . dat or all sens_t ot al . dat, the sensitivity indices in a format r x d,
where each row corresponds to a single value for the design parameter, and each column
corresponds to the sensitivity index of a parameter.

s ens c irc : Plots sensitivity circular plots for all outputs, and averaged as well.

sensmat : Plots sensitivity matrix for all outputs and for the most important inputs.

dm : Plots model-vs-data for all values of the design parameter (i.e. for all outputs).

idm : Plots model and data values on the same axis, for all the values of the design
parameter.

ld : Plots id surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

2d : Plots zd surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

mindex : Visualizes the multiindex for all outputs.

micf : Plots the multiindex for all outputs in a different way, meaningful only for zd
and 3d.

pdf : Plots the PDF of the output. Sampling size parameter is hardwired.

senserb1 : Computes sensitivities with errorbars. Not tested enough. Some hardwired
parameters. Requires uq_pc . py method (-m) lsq or bcs and prediction mode (- i) ms c.
Relies on script model_sens . x as a black-box model-sensitivity evaluator for each fixed
sample pf PC coefficients.

99

senserb2 : Plots the sensitivities with errorbars. Not tested enough. Needs to be run
only after plot . py senserbl.

The user is encouraged to enhance or change the visualization scripts on their own, taking
plot . py as an example of unrolling the surrogate construction output pickle file results . pk.

Both plot_prep.py and plot . py would accept (but not require!) parameter name file
pnames . txt (d rows) and output names file outnames . txt (r rows) if one wants to have
informative plot labels.

Other auxiliary or example scripts are listed below:

• prepare_inpc . py : Prepares PC coefficient file given marginal PCs or samples.
The output, param_pcf . txt file can be used with flag -c in uq_pc . py.

• generate_input samples . py : Auxiliary script to generate example jointly distributed
random samples.

• j o in_result s . py : Auxiliary script as an example ofjoining a set of surrogate
construction pickle files into a single pickle file results . pk.

• model_sens .x
PC coefficients.

: Auxiliary script as a sensitivity evaluation black-box for given

• transpose_file.x : Transpose a given matrix file.
Symax:transpose_file.x <file_in> > <file_out>

• scale.x : Scale given matrix file to or from a given hypercube to
[-1, l]d. Syntax: scale .x <input> <to or from> <domain> <output>

• getrange .x : Get parameter ranges of a given set of samples. Syntax:
getrange.x <samples.dat> [cushion_fraction] > <ranges.dat>

• example_0.x : Minimal example workflow. Assumes input . dat
(N x d) and output . dat (N x L) are given.

• example_1. x : Surrogate construction example workflow.

• example_2.x : Uncertainty propagation example workflow.

• example_3.x : Surrogate-for-time-series (i.e. each output is a snapshot)
example workflow.

V
 v

al
id

at
io

n

cN

a
E

d inputs

ptrain. dat

A E IRN"

pval.dat

A c IRV"

Ilack-box model

y = f (À, x)
for

x = xl, . . . ,xL

A = A(1), , A(NorV)

Black-box model

L outputs

ytrain.dat

y E RNxL

yvaLdat

y E RV"-

Figure 5-26. Sketch of the expected input-output structure of
the black-box model.

Argument Options Description

-r <run_regime> The regime in which the workflow is employed.
online_example A black-box model model (), defined in model . py, is run directly as parameter ensemble becomes avail-

able. User can provide their own model (. . .) with minimal surgery.
online_bb A black-box model script model . x <input_f ile> <output_f ile> is run. The intention is that the user

provides the model .x script with the appropriate I/0.
of f 1 ine_pr ep Prepare the input parameter ensemble and store in ytrain.dat and, if validation is requested,

yval .dat. The user then should run the model (model .py ptrain.dat ytrain.dat and perhaps
model . py pval . dat yval . dat) in order to provide ensemble output for the of f line_post stage.

of fline_post Postprocess the output ensemble, assuming the model is run offline with input ensemble provided in the
of fline_prep stage producing ytrain. dat and, if validation is requested, yval . dat. The rest of the
arguments should remain the same as in of f ine_prep.

-p <domain_file> A file with d rows and 2 columns, where d is the number of parameters and each row consists of the lower and
upper bound of the corresponding parameter.

Input PC coefficient file.

Input PC stochastic dimension.

-c <inpc_f ile>

-d <in_pcdirn>

-x <pctype> HG , LU, LU_N,
GLG , JB , SW PC type.

-o <in_pcord> Input PC order.

-m <fit_method> The method of finding the PC surrogate coefficients.
proj Projection method outlined in (5.17) and (5.18)
1 s q Bayesian least-squares.
bc s Bayesian compressive sensing.

-s <sam_method> The input parameter sampling method.
rand Uniformly random points. To be implemented.
quad Quadrature points. This sampling scheme works with the projection method only, described in (5.18)

-n <nqd> Number of samples requested if sam_method=rand, or the number of quadrature points per dimen-
sion, if sam_method=quad and sparsity=full, or the level of quadrature if sam_method=quad and
sparsity=sparse.

-v <nval> Number of uniformly random samples generated for PC surrogate validation, can be equal to o to skip valida-
tion.

-f <sparsity> full, sparse Sparsity, if sam_method=quad.

-t <out_pcord> Output PC order.

i<pred m, ms, ms c Prediction mode to compute the mean only (m), mean and standard deviation (ms), mean and full covariance
with respect to x (msc).

-e <tolerance> Tolerance parameter (currently for f it_method=bcs only).

-z <cleanup> Flag to cleanup after (be careful: removes *log and *dal files).

Hardwired inputs (also see Figure 5-2.6)
ptrain.dat
qtrain.dat
wtrain.dat
ytrain.dat
pval.dat
qval.dat
yval.dat

N x d matrix, each row is a d-variate parameter sample
the same scaled to [-t,t]
quadrature weights only if sampling method is quadrature
N x L vector of outputs
V x d matrix, each row is a d-variate parameter sample
the same scaled to [-IA
V x L vector of outputs

Output file
results . pk Python pickle file containing a dictionary with all the results. The visualization plot . py serves as an example

of how to unroll it.

Table 5-1. Arguments of the main script uq_pc.py.

102.

5.11. GLOBAL SENSITIVITY ANALYSIS VIA SAMPLING

Overview

• Located in PyUQTk/sens

• A collection of Python functions that generate input samples for black-box models, followed by
functions that post-process model outputs to generate total, first-order, and joint effect Sobol
indices

Theory

Let X = (X1, • • • , Xri) : Q X c IRn be an n—dimensional Random Variable in L2 (Q, S , P)
with probability density X rs, px (x). Let x = (x1, • • • , xn) E X be a sample drawn from this density,
with X = X2 • • • X72, and X c IR, is the range of Xi.

Let x_i = (X1, • • • , Xi_1, Xi+i, • • • , Xn) : Q x_i C Rn—1, where
X_i = Px (x) / xi (xi), 13x2 (x i) is the marginal density of Xi,
= (x1, • • • , xi+1, • • • , xn), and x_i = Xl 0 • • • 0 xi_1 xi+1 0 • • • 0 xn.

Consider a function Y = f (X) : Q IR, with Y E L2 (Q, S, P). Further, let Y rs, py(y), with
y = f (x). Given the variance of f is finite , one can employ the law of total variance/ to decompose
the variance of f as

V[f] = Vxj[E[f lxi]] + Exi[V[f lxi]] (5.2a)

The conditional mean, E[f E [f (X)1Xi = xi], and conditional variance,
V[f = V[f (X)1Xi = xi], are defined as

(f)—i EE E[f = Jr f (s.zz)
x_i

V[fIxi] = E[(f — (f)
= E[(f2 — 2f (f)—i
= E[f2lxi] — —i(f)—i + (f)2i

= Jr f — (f)2—i (5.13)
x_

The terms in the rhs of Eq. (s.zi) can be written as

Vxi[E[flxi]] = Exi [(E[flxi] — Exi[E[Axi]])2 (5.24)

=Exi[(E[f fo)2

= Exi[(E[fIxi])2

I E[fIxi]213xi(xj)dxj — fo

len.wikipedia.org/wiki/Law_of_total_variance

'en.wikipedia.org/wiki/Law_of_total_expectation

103

where fo = E[f] = Ex,[E[fIxi]] is the expectation of f, and

The ratio

Exi[V[flx,]] = I V[fIxdpx,(x,)dx, (5.2,5)

Vx.[E[fIxifi
S, =

V[f]

is called the first-order Sobol index [33] and

ST = Exi[V[flx,]]

—

,

V [f]

(5.2,6)

(5.27)

is the total effect Sobol index for x_i. Using Eq. (5.zi), the sum of the two indices defined above is

SZ + STi = S_, + ST = 1 (5.z8)

Joint Sobol indices sii are defined as

[E[f lxi,xj]]

V [f]
— Si (5.29)

for i, j = 1, 2 . . . , n and i j.

Si can be interpreted as the fraction of the variance in model f that can be attributed to the i-th input
parameter only, while Sii is the variance fraction that is due to the joint contribution of i-th and j-th
input parameters. ST measures the fractional contribution to the total variance due to parameter xi and
its interactions with all other model parameters.

The Sobol indices are numerically estimated using Monte Carlo (MC) algorithms proposed by
Saltelli [2,5] and Kucherenko et al [17]. Let xk = (xi, • • • be a sample of X drawn from px. Let
xth, be a sample from the conditional distribution px_,Ix,(x' i14), and x',:k a sample from the
conditional distribution px21 x_2 (xi' l xk i).

The expectation fo = E[f] and variance V = V[f] are estimated using the Xk sarnples as

N N
I .1f 0 ,,,.,,a,

N

E f (xk), v- ,,,,...,_,

N

E f (x1c)2 f(?
(5.30)

k=1 k=1

where N is the total number of samples. The first-order Sobol indices Si are estimated as

1
V(—N1 f (xic) f (x'ic U 4) —f(!) (5.31)

k=1

The joint Sobol indices are estimated as

v

N
. — (5-32)

f(xk)f(xlIc(i,j)
U —

N

(

k=1

104

For ST, UQTk offers two alternative MC estimators. In the first approach, ST is estimated as

V N

11 (f (xk) f (x,:k u xk_z) — f(,)
N

ST = — 512
k=1

In the second approach, ST is estimated as

/ N

Tv E (f(xk) f(xk-i u X2lk))2)k=1

Implementation

(5.33)

(5.34)

Directory pyUQTk/sens it ivity contains two Python files

• gsalib . py : set of Python functions implementing the MC sampling and estimators for Sobol
indices

• gsatest . py : workflow illustrating the computation of Sobol indices for a toy problem

gsalib . py implements the following functions

• genspl_Si (nspl , ndim, abrng ,**kwargs) : generates samples for Eq. (5.31). The input
parameters are as follows

nspl: number of samples N,

ndim: dimensionality n of the input parameter space ,

abrng: a z-dimensional array n x 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

mat f ile: name of binary output file for select MC samples. These samples are used in
subsequent calculations ofjoint Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib . py

• gensens_Si (modeval ,ndim,**kwargs) : computes first-order Sobol indices using Eq. (5.31).
The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

105

verb: verbosity level

The default value for the optional parameter is listed in gs al ib . py

• genSpl_SiT (nspl , ndim, abrng , **kwargs) : generates samples for Eqs. (5.33-5.34). The
input parameters are as follows

nspl: number of samples N,

ndim: dimensionality n of the input parameter space ,

abrng: an 2-dimensional array n x 2, containing the range for each component xi.

The following optional parameters can also be specified

spl out: name of ascii output file for MC samples

mat f i le: name of binary output file for select MC samples. These samples are used in
subsequent calculations of Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gs al ib . py

• gensens_SiT (modeval , ndim , **kwargs) : computes total Sobol indices using either
Eq. (5.33) or Eq. (5.34). The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

type: specifies wether to use Eq. (5.33) for type = " typei" or Eq. (5.34) for type " typei"

verb: verbosity level

The default value for the optional parameter is listed in gs al ib . py

• genSpl_Si j (ndim, **kwargs) : generates samples for Eq. (5.32). The input parameters are as
follows

ndim: dimensionality n of the input parameter space ,

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

mat f ile: name of binary output file for select MC samples saved by genSpl_Si.

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gs al ib . py

io6

0.5

0.06
0.4

0.3
0.04

crr
0.2

0.02

0.1

0
x2

X4 (X1 ,X2) (X2 ,X3) (X3 ,X4)

Figure 5-27. First-order (left frame) and joint (right frame) Sobol
indices for the model given in Eq. (5.35). The black circles show
the theorerical values, computed analytically, and the error bars
correspond to ±o- computed based on an ensemble of 10 runs.

• genSens_Sij (sobolSi ,modeval ,**kwargs) : computes joint Sobol indices using
Eq. (5.32). The input parameters are as follows

sobolSi: array with values for first-order Sobol indices S,

modeval: name of ascii file with model evaluations.

The following optional parameter can also be specified

verb: verbosity level

The default value for the optional parameter is listed in gsalib . py

gsatest . py provides the workflow for the estimation of Sobol indices for a simple model given by

n n-1

f (xi, x2, . . . , xn) = xz + •2

i=1 i=1

In the example provided in this file, n (ndim in the file) is set equal to 4, and the number of samples N
(nspl in the file) to 104. Figures 5-27 and 5-2,8 show results based on an ensemble of 10 runs. To
generate these results run the example workflow:

python gsatest.py

107

0.5

0.4

0.3

0 2

0 1

0

• • Exact

Est.1

 Est.2

0- -

Off

X2 .173 X4

Figure 5-28. Total-order Sobol indices for the model given in
Eq. (5.35). The red bars shows results based on Eq. (5.33) while
the yellow bars are based on Eq. (5.34). The black circles show
the theorerical values, computed analytically, and the error bars
correspond to ±o- computed based on an ensemble of 10 runs.
For this model, Eq. (5.34) provides more accurate estimates for
ST compared to results based on Eq. (5.33).

5.12. KARHUNEN-LOÈVE EXPANSION OF A
STOCHASTIC PROCESS

• Located in example s /kl e_ ex l

• Some examples of the construction of ID and zD Karhunen-Loeve (KL) expansions of a
Gaussian stochastic process, based on sample realizations of this stochastic process.

Theory

Assume stochastic process F(r, w) : D x R is L2 randorn field on D, with covariance function
C y). Then F can be written as

00

F , w) = (F(~ w)), Okk fk(r)ek (5.36)
k=1

where f k(r) are eigenfunctions of C(x, y) and are corresponding eigenvalues (all positive). Random
variables ek are uncorrelated with unit variance. Projecting realizations of F onto fk leads to samples of
ek. These samples are generally not independent. In the special case when F is a Gaussian random
process, ek are i.i.d. normal random variables.

to8

The KL expansion is optimal, i.e. of all possible orthonormal bases for L2 (D x CZ) the above
{ fk (x)lk = 1, 2, . . .} minimize the mean-square error in a finite linear representation of F (.). If
known, the covariance matrix can be specified analytically, e.g. the square-exponential form

2C(x, = exp —c2Y1 (5-37)

where 1 x — y1 is the distance between x and y and c1 is the correlation length. The covariance matrix
can also be estimated from realizations, e.g.

1c(x, y) =
N

(F (x, co) — (T' (x, ci.))) w)(F , w) — (F , w))
w

(5.38)

where N„, is the number of samples, and (F (x, co)) is the mean over the random field realizations at
x.

The eigenvalues and eigenvectors in Eq. (5.36) are solutions of the Fredholm equation of second kind:

fC (x , y) f (y)dy = f (x) (5.39)

One can employ the Nystrom algorithm [2.,o] to discretize of the integral in the left-hand side of

Eq. (5.39)
Np

wiqx,yi) f (yi) = (x)
i=1

(5.40)

Here w, are the weights for the quadrature rule that uses Np points yi where realizations are provided.
In a iD configuration, one can employ the weights corresponding to the trapezoidal rule:

{ Y2 -Y1
2

Yi+1-Yi-1
2

Y.i\ip -YNp -1

2

After further manipulation, Eq. (5.4o) is written as

if i = 1,

if 2 < i < Np,

if i = Np,

Ag = Ag

(5.41)

where A = WKW and g =W f, with W being the diagonal matrix Wii = Vw, and
Ki3 = C (xi, y3). Since matrix A is symmetric, one can employ efficient algorithms to compute its
eigenvalues Ak and eigenvectors gk. Currently UQTk relies on the dsyevx function provided by the
LAPACK library.

The KL eigenvectors are computed as fk = W—igk and samples of random variables are obtained by
projecting realizations of the random process F on the eigenmodes fk

41w, = (F (x, CO) (F (x w)) fk(x)) x 1 Okic

109

Numerically, these projections can be estimated via quadrature

NP

= E w, (F(xi,wi) - (F(xi,w)>„) fk(xi)/N/Ak (5.42)
i=1

If F is a Gaussian process, 4 are normal RVs, i.e. automatically have first order Wiener-Hermite
Polynomial Chaos Expansions (PCE). In general however, the KL RVs can be converted to PCEs (not
shown in the current example).

1D Examples

In this section we are presenting ID RFs generated with The RFs are generated on a
non-uniform iD grid, with smaller grid spacing near x = 0 and larger grid spacing towards x = 1. This
grid is computed using an algebraic expression [is]

x, = L
+ 1 — (,3 — 1)r, (fi 1)1' i — 1

 i = 1 , 2 N,
ri + 1

rz /3 1 , —
Np — 1

,. . . p (543)

The fi > 1 factor in the above expression controls the compression near x = O. It results in higher
compression as fi gets closer to 1. The examples shown in this section are based on default values for the
parameters that control the grid definition in

= 1.1, L = 1, Np = 129

Figure 5-2,9 shows sample realizations for ID random fields (RF) generated with a square-exponential
covariance matrix employing several correlation lenghts cl. These figures were generated with

./mkplots.py samples 0.05

./mkplots.py samples 0.10

./mkplots.py samples 0.20

20

10

Ez:7
0

-10

-28

(a) ci = 0.05
20

0 0.2 0.4 0.6 0.8 1 0
x

(b) cl = 0.10

0.2 0.4 0.6 0.8
x

1 0

20

10

Ez:7
0

-10

2Q
u.0 0.2

(c) cl = 0.20

44‘^

tAVAt

0.4 0.6 0.8 1.0
X

Figure 5-29. Sample 1D random field realizations for several
correlation lengths 0.

110

Once the RF realizations are generated the covariance matrix is discarded and a "numericar covariance
matrix is estimated based on the available realizations. Figure 5-3o shows shaded illustration of
covariance matrices computed using several sets of ID RF samples. These figures were generated with
./mkplots.py numcov 0.05 512 ./mkplots.py numcov 0.20 512

./mkplots.py numcov 0.05 8192 ./mkplots.py numcov 0.20 8192

./mkplots.py numcov 0.05 131072 ./mkplots.py numcov 0.20 131071

These matrices employ RF samples generated on a non-uniform grid with higher density of points near
the left boundary. Hence, the matrix entries near the diagonal in the upper right corner show larger
values. Grids grow further apart away from the left boundary hence the region near the diagonal grows
thinner for these grid points.

(a) cl = 0.05, Ar, = 29 (b) cj = 0.05,N, = 213 (c) ol = 0.05, N, = 217

(d) c1 = 0.20,N, = 29 (e) ci = 0.20,N, = 213 (f) cl = 0.20, N, = 217

Figure 5-30. Illustration of covariance matrices computed from
1 D RF realizations. Red corresponds to large values, close to 1,
while blue corresponds to small values, close to 0.

Figure 5-31 shows the eigenvalue solution of Fredholm equation (5.39) in its discretized form given by
Eq. (5.4o). This figure was generated with

./mkplots.py pltKLeig1D 512 131072

For this ID example problem, 29 = 512 RF realizations are sufficient to estimate the KLE eigenvalue
spectrum. As the correlation length decreases the eigenvalues decrease more slowly suggesting that more
terms are needed to represent RF fluctuations.

Figure 5-32 shows first four KL eigenvectors corresponding to c1 = 0.05, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

III

102

-a

io°

ra
210-2

wc 104

- - =0.05

- - =0.10

- - =ChM

106
0 10 20 30

Eigenvalue #
40 50

Figure 5-31. KL eigenvalues estimated with two sets of RF real-
izations: 29 = 512 (dashed lines) and 217 = 131072 (solid lines).

./mkplots.py numKLevec 0.05 512 on

./mkplots.py numKLevec 0.05 8192 off

./mkplots.py numKLevec 0.05 131072 off

Unlike the eigenvalue spectrum, the eigenvectors are very sensitive to the covariance matrix entries. For
cl = 0.05, a large number of RF realizations, e.g. N„, = 217 in Fig. 5-3zc, are required for computing a
covariance matrix with KL modes that are close to the ones based on analytical covariance matrix
(analytical modes not shown).

(a) NW = 29 (b) Nw = 213 (C) NW = 217

0 0.2 0.4 0.6 0.8 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0 0 0.2 0.4 0.6 0.8 1 0
x x x

Figure 5-32. Illustration of first 4 KL modes, computed based on
a numerical covariance matrices using three sets of RF realiza-
tions with c1 = 0.05

Figure 5-33 shows first four KL eigenvectors corresponding to 0 = 0.20, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

II2

./mkplots.py numKLevec 0.20 512 on

./mkplots.py numKLevec 0.20 8192 off

./mkplots.py numKLevec 0.20 131072 off

For larger correlation lengths, a smaller number of samples is sufficient to estimate a covariance matrix
and subsequently the KL modes. The results based on NW = 213 = 8192 RF realizations, in Fig. 5-33b,
are close to the ones based on a much larger number of realizations, /V,„ = 217 = 131072 in Fig. 5-33c.

(a) IV, = 29

0 0.2 0.4 0.6 0.8 10
x

(b) = 2'3
4

2

-2

(c) Nw = 217

'80 0.2 0.4 0.6 0.8 10 t 0 0'.2 0'.4 0.6 0'.8 10X x

Figure 5-33. Illustration of first 4 KL modes, computed based on
a numerical covariance matrices using three sets of RF realiza-
tions with Ci = 0.20

One can explore the orthogonality of the KLE modes to compute samples of germ ek, introduced in
Eq. (5.36). These samples are computed via Eq. (eq:xirealiz) and are saved in files xiclata* in the
corresponding run directories. Using the e samples, one can estimate their density via Kernel Density
Estimate (KDE). Figures 5-34 and 5-35. These figures were generated with

./mkplots.py xidata 0.05 512 ./mkplots.py xidata 0.20 512

./mkplots.py xidata 0.05 131072 ./mkplots.py xidata 0.20 131072

Independent of the correlation length, a relatively large number of samples is required for "converged"
estimates for the density of e.

Figures 5-36 and 5-37 show reconstructions of select RF realizations. As observed in the figure showing
the decay in the magnitude of the KL eigenvalues, more terms are needed to represents small scale
features occurring for smaller correlation lengths, in Fig. 5-36, compared to RF with larger correlation
lengths, e.g. the example shown in Fig. 5-37. The plots shown in Figs. 5-36 and 5-37 were generated
with

./mkplots.py pltKLreconlD 0.05 21 51 10

./mkplots.py pltKLreconlD 0.10 63 21 4

113

(a) N„, = 29

-2 0 2
W))

4

(b) NW = 217

-2 0 2
(())

Figure 5-34. Probability densities for &•/, obtained via KDE using
samples obtained by projecting RF realizations onto KL modes.
Results correspond to cl = 0.05.

(a) 1\c, = 29 (b) N„, = 217

Figure 5-35. Probability densities for &•/, obtained via KDE using
samples obtained by projecting RF realizations onto KL modes.
Results correspond to cl = 0.20.

2D Examples on Structured Grids

4

In this section we are presenting zD RFs generated with kl_zD.x. The RFs are generated on a
non-uniform structured zD grid [0, Lx] x [0, Ly], with smaller grid spacing near the boundaries and
larger grid spacing towards the center of the domain. This grid is computed using an algebraic
expression [is]. The first coordinate is computed via

,

(2a + 1) (1 + ri)

(2a + 0)ri + 2a — + 1 1-a i — 1
xi = bx ri

— 1 — 1
— = 1, 2, ... , Nx (s.44)

The > 1 factor in the above expression controls the compression near x = 0 and x = Lx, while
a E [0, 1] determines where the clustering occurs. The examples shown in this section are based on
default values for the parameters that control the grid definition in Icl_zDic:

a = 1/2, = 1.1, Lx, = Lx2 L = 1, Nx1 = Nx2 = 65

14

(a) Mean

10

0 0

(b) Mean + 10 terms (c) Mean + 20 terms

0 0

10

1 0

(d) Mean + 30 terms (e) Mean + 40 terms (f) Mean + 50 terms

10

0 0 0.2 0.8 0 0 0.2

Figure 5-36. Reconstructing realizations with an increasing
number of KL expansion terms for c1 = 0.05

Figure 5-38 shows the zD computational grid created with these parameters. This figure was generated
with the Python script "plzDsgrid.py"

./p12Dsgrid.py cvspl2D_0.1_4096

Figure 5-39 shows zD RF realizations with correlation lengths c1 = 0.1 and c1 = 0.2. As the correlation
length increases the realizations become smoother. These figure were generated with

. /mkplots . py samples2D 0 . 1 4096 2 (Figs. 5-39a,5-39b)

. /mkplots . py samples2D 0. 2 4096 2 (Figs. 5-39c,5-39d)
In a zD configuration the rhs of Eq. (eq:fredint) is discretized using a zD finite volume approach:

/V- 1 -1 /\T 2 -1

f Cov •(xl y)f(y)dy (Cov(xl y)f(y)) (545)
i=1 i=

Here, Aia is the area of rectangle (ij) with lower left corner (i, j) and upper right corner (i + 1, j 1),
and (Cov(x, y) f (y))1ii is the average over rectangle (ij) computed as the arithmetic average of values
at its four vertices. Eq. (5.45) can be further cast as

Nx1 Nx2

fCov(x, y) f (y)dy ̂ E E (cov(x, y) f (y))
i=1 j=1

(5.46)

where wz,i is a quarter of the area of all rectangles that surround vertex (i, j).

Figures 5-40 and 5-41 shows first 8 KL modes computed based on covariance matrices that where
estimated from 212 = 4096 and 216 = 65536 number of RF samples, respectively, and correlation
length c1 = 0.1 for both sets. The results in Fig. 5-41 are close to the KL modes corresponding to the
analytical covariance matrix (results not shown), while the results in Fig. 5-40 indicate that 212 RF
realizations is not sufficient to generate converged KL modes. These figures were generated with

115

(a) Mean (b) Mean + 4 terms (c) Mean + 8 terms

10

0 0 0 0

10

1 0

(d) Mean + 12 terms (e) Mean + 16 terms (f) Mean + 20 terms

10

o

0 0 0.2 0.8 0 0 0.2

Figure 5-37. Reconstructing realizations with an increasing
number of KL expansion terms for c1 = 0.10

. /mkplots .py numKLevec2D 0.1 4096 (Fig. 5-40)

. /mkplots . py numKLevec2D 0.1 65536 (Fig. 5-41)

Figure 5-42 shows first 8 KL modes computed based on a covariance matrix that was estimated from

212 = 4096 number of RF samples. For these results, with correlation length c1 = 0.5, 212 samples are

sufficient to estimate the covariance matrix and subsequently KL modes that are close to analytical

results (results not shown). The plots in Fig. 5-42 were generated with

. /mkplots .py numKLevec2D 0.5 4096

Figures 5-43 and 5-44 show reconstructions of select 2D RF realizations. As observed in the previous

section for ID RFs, more terms are needed to represents small scale features occurring for smaller

correlation lengths, in Fig. 5-43, compared to RF with larger correlation lengths, e.g. the example shown

in Fig. 5-44. The plots shown in Figs. 5-43 and 5-44 were generated with

. /mkplots .py pltKLrecon2D 0.2 3 85 12 (Fig. 5-43)

. /mkplots .py pltKLrecon2D 0.5 37 36 5 (Fig. 5-44)

2D Examples on Unstructured Grids

For this example we choose a computational domain that resembles the shape of California. A number

of 212 = 4096 points were randomly distributed inside this computational domain, and a triangular

grid with 8063 triangles was generated via Delaunay triangulation. The 2D grid point locations are

provided in "data/cali_grid.dat" and the grid point connectivities are provided in "data/cali_tria.dat".

Figure 5-45 shows the placement of these grid points, including an inset plot with the triangular grid

connectivities. This figure shows the grids on a uniform scale in terms of latitude and longitude degrees

and was generated with

./p12Dugrid.py

116

1.0

0.8

0.6

0.4

0.2

Figure 5-38. Structured grid employed for 2D RF examples.

(a) c1 = 0.1

0 0.2 0.4 0.6
Xl

0.8 1 0

(b) = 0.1
1.0 1.0

0.8 -

0.6

0.4

0.2

0.9

(c) c1 = 0.2

0 0.2 0.4 0.6
X1

0 8 1

(d) cl = 0.2

Figure 5-39. Sample 2D random field realizations for 0 = 0.1 and
cl = 0.2.

Figure 5-46 shows zD RF realizations with correlation lengths c1 = 0.5° and c1 = 2°. These figure were
generated with

. /mkplots . py samples2Du 0 . 5 4096 2 (Figs. 5-46a,5-46b)

. /mkplots . py samples2Du 2 . 0 4096 2 (Figs. 5-46c,5-46d)

Figure 5-47 shows first 16 KL modes computed based on a covariance matrix that was estimated from
216 = 65536 number of RF samples, with correlation length c1 = 0.5°. The KL modes corresponding
to an analytically estimated covariance matrix with the same correlation length are shown in Fig. 5-48.
For this example, it seems that 216 samples are sufficient to estimate the first 12 to 13 modes accurately.
Please note that some of the modes can differ up to a multiplicative factor of —1, hence the colorscheme
will be reversed. Higher order modes start diverging from analytical estimates, e.g. modes 14 through 16
in this example. Figure 5-49 shows KL modes corresponding to a covariance matrix estimated from RF
realizations with c1 = 2°. For this correlation length, 216 samples are sufficient to generate KL modes
that are very close to analytical results (not shown). These figures were generated with

. /mkplots . py numKLevec2Du 0 . 5 65536 (Fig. 5-47)

117

(a) Mode 1
1

0.8 -

0.6F

0.4 -

0.2

°' 0 0 0.2 0.4 0.6 0.8

1.0

xi

(e) Mode 5

1 0

8

0 6

0.4

(b) Mode 2

1 0 CI 0

0.6 -

0.4

0.2

1.0

0.6

0.4

0 2

0.2 0.4 0.6 0.8 1 0
X 1

(f) Mode 6
1 0

0.8

0.6

0.4

0.2

(c) Mode 3

(g) Mode 7

(d) Mode 4

1 0 4 0 0.2 0.4 0.6
X 1

(h) Mode 8

0.8 1 0

4 0 6.2 014 6.6 0.8 1 0 4 0 0.2 0.4 0.6 0.8 1 0 4 0 0.2 0.4 0.6 0.8 1 0 4 0 0.2 0.4 0.6
x1 x1 x1 x1

Figure 5-40. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 212 2D RF
realizations with 0 = 0.1

. /mkplots . py anlKLevec2Du SqExp 0 .5 (Fig. 5-48)

. /mkplots .py numKLevec2Du 2 .0 65536 (Fig. 5-49)

0.8 1 0

IIg

(a) Mode 1

0.8

0.6

0.4

0.2

0 0

1.

•
0.2 0.4 0.6

xl

(e) Mode 5

1.0

0.6

0.4

0.2

44

1.0

0.8

0.6

0.4

0.2

(b) Mode 2

4.0 0:2 0.4 0.6
xl

1.

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0 8 1 0
0.180

x1

(f) Mode 6

1.0

0.8

0.6

0.4

0.2

10 4.0

F-7

1.0

0.8

0.6

0.4

0.2

(c) Mode 3

0.2 0.4 0.6
x1

(g) Mode 7

(d) Mode 4

0.2

0.8 10 010 0.2 0.4 0.6
xl

1.0

0.8

0.

0.4

(h) Mode 8

0.8 10

0.4 0.6 0.8 10
0.Q
0.0 0.2 0.4 0.6 0.8 10

0.10 0
.2 0.4 0.6

X]

Figure 5-41. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 2'6 2D RF
realizations with cl = 0.1

0.8 10

119

(e) Mode 5

(a) Mode 1

E.7

1.0

0.8

0.Q
U 0 0.2 0.4 0.6 0.8 10

xl

1.0

0.8

0.6

0.4

(b) Mode 2

a? 0 0.2 0.4 0.6 0.8 10
Xi

1.0

0.8

0.6

0.4

0.2

(f) Mode 6

0.,B

(c) Mode 3
1.0

8

0.6

0

1.0

0.8

0.6

0.4

0.2

1.0

0.8

n 0.6

0.2

0.180
0 0.4 0.6 0.8 10

X1

(g) Mode 7
1.0

0.8

0.6

0.4

0.2

(d) Mode 4

0.2 0.4 0.6
x1

(h) Mode 8

0.2 0.4 0.6 0.8 10 a? 0 0.2 0.4 0.6 0.8 10 40 0.2 0.4 0.6 0.8 10
xl

Figure 5-42. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 212 2D RF
realizations with 0 = 0.5

(a) Mean

x1

(b) Mean + 12 terms (c) Mean + 24 terms (d) Mean + 36 terms

x1

1.0

0.4

- -
-

0.4 0.6 0.8 10
x1 x1

(e) Mean + 48 terms (f) Mean + 60 terms (g) Mean + 72 terms (h) Mean + 84 terms
1.0

a

0.4,

• ks,
0.27, \‘`\,

<

on.) ‘1..

-00 0.2 0.4 0.6 0.8 10
x1

•
0.2 0.4 0.6 0.8 10

x1
0.2 0.4 0.6 0.8 1.0

x1

1.0

8

0.6

0.4

0.2

\ • - - -

0.210 0.2 0.4 0.6 0.8 10
xl

Figure 5-43. Reconstructing 2D realizations with an increasing
number of KL expansion terms for 0 = 0.2

120

1.0

(a) Mean

0.8 - ;

n

0.6 - "/--/-

•

0.2

•

0.8 1 0
xl

(b) Mean + 5 terms (c) Mean + 10 terms (d) Mean + 15 terms
1 0

0.8

0.6- - -

0.4 0.6 0.8 1 0
xl xl

1.0

0.8

1
0.2

`‘,
,

0.0
0 0.2 OA 0.6 0.8 1 0

x1

(e) Mean + 20 terms (f) Mean + 25 terms (g) Mean + 30 terms (h) Mean + 35 terms
LO

0.8

0 6

• (
'

•

••••••

1.0,

•
0.8

0.6

1.00

0.8
e
 ;,

0 6

•
0.2- • 0.2- s‘ 0.2

\
s̀S

0O.a 0.2

s

018 1 0 (4) .07.; 018 1.0 CI 0 0.2 OA 0.6 0.8
x1

•

1.0

1.0,

e s.
0.8 -

-,s
0.2- s‘ ‘ •

♦ (46 - 014 '0:'6 '018
xl

Figure 5-44. Reconstructing 2D realizations with an increasing
number of KL expansion terms for 0 = 0.5

40°

38°

36°

34°

-124° -122' -120' -118°

Ion
-116°

Figure 5-45. Unstructured grid generated via Delaunay traingu-
lation overlaid over California.

1.0

IZI

(a) Ci = 0.5°

Ion

(b) ci = 0.5°

Ion

(c) c = 2° (d) cl = 2°

OC))N

lon lon

Figure 5-46. Sample 2D random field realizations on an unstruc-
tured grid for c1 = 0.5° and c1 = 2°.

(a) Mode 1

LB'

Ion

(b) Mode 2

Ion

(c) Mode 3

Ion

(e) Mode 10 (f) Mode 16

Ion Ion

(d) Mode 6

Ion

Figure 5-47. Illustration of select KL modes, computed based
on a numerical covariance matrix estimated using 216 2D RF
realizations on an unstructured grid with 0 = 0.5°.

12,2,

(a) Mode 1

Ion

(b) Mode 2

Ion

(e) Mode 10

lon

(c) Mode 3

Ion

(f) Mode 16

Ion

(d) Mode 6

lon

Figure 5-48. Illustration of select KL modes, computed based
on an analytical covariance matrix for 2D RF realizations on an
unstructured grid with c, = 0.5° and a square-exponential form.

(a) Mode 1

lon

(b) Mode 2

Ion

(e) Mode 10

Ion

(c) Mode 3

Ion

(f) Mode 16

lon

(d) Mode 6

Ion

Figure 5-49. Illustration of select KL modes, computed based
on a numerical covariance matrix estimated using 216 2D RF
realizations on an unstructured grid with c, = 2°.

113

6. SUPPORT

UQTk is the subject of continual development and improvement. If you have questions about or
suggestions for UQTk, feel free to e-mail the UQTk developers at
uqtk-developers@software . sandia. gov, or share your questions directly with the UQTk Users
list, at uqtk-users@software . sandia. gov. We also maintain an announcement list
uqtk-announce@software . sandia. gov for announcements about UQTk. To sign up for these
mailing lists, please visit the UQTk website at https ://www . sandia. gov/UQToolkit/.

124

REFERENCES

[1] S. Babacan, R. Molina, and A. Katsaggelos. Bayesian compressive sensing using Laplace priors.
IEEE Transactions on Image Processing,19(I):53-63, zolo.

[2] J. Ching and Y-C. Chen. Transitional markov chain monte carlo method for bayesian model
updating, model class selection, and model averaging. Journal of Engineering Mechanics,
133(7):816-832, 2007.

C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an automatic computer.
Numerische Mathematik, 2:197-205, 1960.

B.J. Debusschere, H.N. Najm, P.P. Pebay, O.M. Knio, R.G. Ghanem, and O.P. Le Maitre.
Numerical challenges in the use of polynomial chaos representations for stochastic processes.
SIAM Journal on Scienqfic Computing, 26(z):698-719, 2004.

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman & Hall CRC, 2 edition, 2003.

[6] Stuart Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI-6(6):72I-741, 1984.

[7] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical
Algorithms, I_ R (3-4) :20 9 -232, 1998. (also as SFB 256 preprint 553, Univ. Bonn, 1998).

[8] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag,
New York, 1991.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, London, 1996.

[m] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23:221-230,
1969.

[II] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli,
7:223-242, 2001.

[3]

[4]

[5]

[9]

[12] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: Efficient adaptive
mcmc. Statistics and Computing, 16(4):339-354, 2006.

[13] R.G. Haylock and A. O'Hagan. On inference for outputs of computationally expensive
algorithms with uncertainty on the inputs. Bayesian statistics, 5:629-637, 1996.

[4] F.B. Hildebrand. Introduction to Numerical Analysis. Dover, 1987.

125

[is] K.A Hoffmann and S.T. Chiang. Computational Fluid Dynamics, volume i, chapter 9, pages
358-426. EES, z000.

[i6] M. C. Kennedy and A. O'Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B, 63(3)425-464, zoo"

[7] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity indices for models
with dependent variables. Computer Physics Communications, 183:937-946, zofz.

[i8] O.P. Le Maitre and O.M. Knio. Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics (Scientific Computation). Springer, ist edition.
edition, April zoio.

[19] Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos acceleration of
Bayesian inference in inverse problems. Journal of Computational Physics, 228(6):1862-1902, 2009.

[zo] E.J. Nyström. Ober die praktische auflösung von integralgleichungen mit anwendungen auf
randwertaufgaben. Acta Mathematica, 54W:185-204, 1930.

[zi] J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model
outputs. Biometrika, 89(4):769-784, 2002.

[22] Mark Orr. Introduction to radial basis function networks. Technical Report, Center for Cognitive
Science, University of Edinburgh, 1996.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
zoo6.

M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics,

23(3)470 — 472, 1952.

[25] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics
Communications, 145:280-297, 2002.

[26] K. Sargsyan. Surrogate models for uncertainty propagation and sensitivity analysis. In
R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quantification.
Springer, 2017.

K. Sargsyan, H.N. Najm, and R. Ghanem. On the Statistical Calibration of Physical Models.
International Journal of Chemical Kinetics, 47(4):246-276, 2015.

[28] K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto, and P. Thornton. Dimensionality
reduction for complex models via Bayesian compressive sensing. International Journal of
Uncertainty Quantification, 4(0:63-93, 2014.

D.W. Scott. Multivariate Density Estimation. Theory, Practice and Visualization. Wiley, New
York, 1992.

[3o] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London, 1986.

[3f] D.S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford Science, 1996.

[23]

[24]

[27]

[29]

126

[32] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Mathematics Dokl., 4:24o-243, 1963.

[33] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Modeling and
Comput. Exper., 1:407-414, 1993.

[34] K. M. Zuev and J. L. Beck. Asymptotically independent markov sampling: A new mcmc scheme
for Bayesian inference. In Vulnerability, Uncertainty, and Risk : QuantOcation, Mitigation, and
Management - CDRM y, pages 2022-203I. 2014.

127

DISTRIBUTION

Email—lnternal (encrypt for OUO)

Name Org. Sandia Email Address

CA Technical Library 8551 cateclib@sandia.gov

12,8

129

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

