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Executive Summary

MFIX (Multiphase Flow with Interphase eXchanges) is a general purpose code that can be used
for describing the hydrodynamics, chemical reactions, and heat transfer of dense or dilute
multiphase fluid flows. MFIX calculations give detailed information on pressure, temperature,
composition, and velocity distributions in the defined system. This report provides an overview
of MFIX’s expressions for single phase flow and continuous dispersed multiphase flow (i.e., the
two-fluid model). In addition to the two fluid model (MFIX-TFM), MFIX contains a discrete
element model (MFIX-DEM) and a multi-phase particle in cell model (MFIX-PIC) that are not
reviewed within this document.

MFIX, developed at the National Energy Technology Laboratory (NETL), has the following
capabilities: mass and momentum balance equations for a single continuous fluid phase and
multiple dispersed solids phases; energy equations for each phase; an arbitrary number of species
balance equations for each of phase; a user friendly chemistry; a three-dimensional Cartesian
coordinate system with Cartesian cut cell application for complex geometry; nonuniform mesh
size; impermeable and semipermeable internal surfaces; a user-friendly GUI (graphical user
interface) for setting up the simulation; multiple, single-precision, binary, direct-access, output
files that minimize disk storage and accelerate data retrieval; and extensive error reporting. For
MFIX-TFM, the code also includes granular stress equations based on kinetic and frictional flow
theory.

Chapter Two presents the continuous phase model which traditionally represents a gas or liquid
phase. The continuous phase may be run by itself as single phase CFD or coupled with one of the
disperse (e.g., solids) models for coupled multiphase flows. Chapter Three outlines the Eulerian
two fluid model (MFIX-TFM), wherein the additional dispersed phases are inherently
characterized as solids. The literature on the conservation equations and constitutive relations is
briefly surveyed, and different parts of the model are highlighted.

viii



Theoretical Review of the MFIX Fluid and Two-Fluid Models

Chapter 1: Introduction

MFIX is a general purpose code written in Fortran and used for describing the hydrodynamics,
heat transfer, and chemical reactions in dense or dilute fluid-solids flows. The objective of the
Multiphase Flow Science (MFS) group is to create a tool to aid in the understanding, design,
optimization, and scale-up of multiphase systems such as gasifiers, carbon capture devices, and
chemical looping reactors.

1.1 Overview

Development of MFIX started at the Morgantown Energy Technology Center (METC) in 1991
as a continuation of a multi-particle version [1] of the Eulerian-Eulerian (EE) code of Gidaspow
and Ettehadieh [2]. The initial MFIX release was completed in 1993 and contained only the two-
fluid model, MFIX-TFM. Public distribution was handled through the Energy Science and
Technology Software Center starting in 1995. Afterwards the code underwent several revisions
whereby high-resolution discretization methods were added, the source code was migrated from
FORTRAN 77 to Fortran 90, and it was parallelized to run on shared memory and distributed
memory systems [3]. Further advancements include the inclusion of a k — € turbulence model
[4], Cartesian cut cells for complex geometries [5], a stiff chemistry solver, variable solids
density [6], and a number of kinetic theories for granular flows [7, 8, 9, 10, 11].

A Lagrangian solids model was implemented in 2004 whereby the position and trajectory of each
solids particle is tracked through resolving all particle collisions via a soft-sphere spring-dashpot
model [12]. The discrete element model, MFIX-DEM, is capable of pure granular simulations in
addition to being coupled with an Eulerian (e.g., gas or liquid) phase model. DEM modeling uses
fewer and less complex closures than the TFM and is therefore considered to contain less overall
uncertainty. However, the computational intensity of tracking particles limits its application to
small-scale devices. Recent efforts have included verification and validation studies [13, 14],
dynamic solids inventory capabilities, and the inclusion of species and energy conservation
equations [15]. Moderate-sized investigations containing tens of millions of particles were made
possible by recent distributed [16] and shared memory [17] parallelization efforts.

A second Lagrangian solids model, MFIX-PIC, was implemented in 2013 [18] and has since
undergone substantial revisions. The multiphase particle in cell (PIC) technique uses parcels for
the solids where a parcel may represent a fraction of one particle or thousands of individual
particles. This approach is more computationally efficient than other Lagrangian solids models
because collisions are not resolved, but rather approximated using frictional stress model and
averaged field quantities. Uncertainty in PIC models arises from the closure needed for the solids
interaction terms, the need for accurate interpolation between the Eulerian and Lagrangian
frames of reference, and a strong dependence on model implementation. However, this approach
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offers the potential to shorten the time-to-solution making it ideal for initial design investigations
for large multiphase devices where accuracy is not paramount.

MFIX development activities have been preserved through a concurrent versioning system
(CVS) since 1999 to track source code changes. The CVS database was transferred to a Git®
repository in 2014 to accommodate a more flexible development. Direct code access supports
efforts to extend the reach of MFIX by encouraging greater community involvement in
development and maintenance activities.

The integrity of the source code was originally maintained through nightly regression tests where
a subset of tutorial and test cases was executed and the results compared to a fixed solution set
[3]. This approach was replaced by a continuous integration (CI) server to expand the testing
capabilities by running all tests and tutorials any time modifications are committed to the source
code repository.

1.2 Document Organization

Chapter Two presents the continuous phase model which traditionally represents a gas or liquid
phase. The continuous phase may be run by itself as single phase CFD or coupled with one of the
disperse (e.g., solids) models for coupled multiphase flows. Chapter Three outlines the Eulerian
two fluid model (MFIX-TFM), wherein the additional dispersed phases are inherently
characterized as solids.
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Chapter 2: Eulerian Fluid Phase Model

2.1 Overview

This chapter presents the MFIX Eulerian continuous fluid phase model. The fluid phase is
referred to throughout this document as the gas phase, however it could also be a liquid. The
fluid phase model presented here is done so in the context of a multiphase system. As a result,
phasic volume fractions and interphase transfer terms arise in the governing equations. For single
phase flow, the gas phase volume fraction is one and interphase transfer terms are generally
zero'. The fluid phase model is consistent across the multiphase models, (MFIX-TFM, MFIX-
DEM, and MFIX-PIC), unless specifically noted. It is also worth noting that here, and in the two
fluid model section, the equations are presented in conservative form, however, in MFIX the
equations are solved in non-conservative. The non-conservative form is obtained by subtracting
the respective continuity equation from the conservative form.

2.2 Limitations
Limitations of the MFIX fluid phase model include:

e The fluid is incompressible (divergence free).
e The entire flow domain must contain the fluid phase such that the fluid phase volume
fraction is always greater than zero.

2.3 Volume Fraction Equation

To derive the MFIX equations that describe multiphase flows, point variables are averaged over
a region that is large compared with particle spacing but much smaller than the flow domain
[19]. This results in phasic volume fractions that specify the fractions of the average volume
occupied by each phase. The volume fractions are assumed to be continuous functions of space
and time, and by definition, must sum to one. Therefore, for a system containing a gas phase and
M disperse phases, the gas phase volume fraction, &4, is

gg=1—g¢, (2-1)
where, for later convenience, the notation & is introduced representing the total volume fraction
of the M dispersed phases (e.g., the total solids volume fraction):

! Here single phase flow generally implies that the gas volume fraction is one and no interphase transfer occurs.
However, single phase flows through a porous media are permitted wherein the gas volume fraction may have
values other than one and interphase transfer is possible.
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M
& = z Em (2-2)

m=1
and g, is the m*" disperse phase volume fraction. The gas phase volume fraction is one in a
single phase system (i.e., &, = 1 and &; = €, = 0).

2.4 Conservation Equations

This section presents the basic set of gas phase conservation equations solved by MFIX.? The
equations, with the exception of the internal energy equation, are presented in conservative form,
however, as already noted, the numerical implementation uses the non-conservative forms.

2.4.1 Conservation of Mass

The conservation of mass (i.e., the continuity equation) for the gas phase is

Ng
0 d 2-3
ot (Sgpg) + 0_x] (Sgnggj) = z Rgn + 84 (2-3)
n=1

where p,, is the gas phase density, ¢, is the gas phase volume fraction, Uy is the j* component
of the gas phase velocity, N, is the number of chemical species comprising the gas phase, R, is

the rate of formation per unit volume of the nt* gas phase species, and Sy is a general user-

defined gas phase mass source term.®> The left hand side terms account for the rate of mass
accumulation and the net rate of convective mass flux. The first term on the right hand side
represents the production or consumption of mass attributed to interphase mass transfer from
chemical reactions or physical processes, such as evaporation. Users may specify phase changes
or heterogeneous chemical reactions that will subsequently give the first term on the right hand
side a nonzero value. A user-defined mass source may also be specified to give the second term
on the right hand side nonzero value. By default, however, the right hand side is zero in MFIX.

2.4.2 Conservation of Species Mass

The conservation equation for the nt"* gas phase species mass is

d d d
= - . = — (e i . (2-4)
ot (‘Sgpgxgn) + ox; (ggpg UgJXgn) ox; (ggfgj) + Rgn + Sgn

2 The equations in this section describe flow in the laminar regime (low Reynolds number flow). Modeling of
turbulent flows is examined in a later section.

3 The general user-defined source term has not been propagated to the non-conservative form of the governing
equations with respect to the numerical implementation.
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where X, is the nt" gas phase species mass fraction, and Sgn is a general user-defined gas
species mass source term. The left hand side terms account for the rate of species mass
accumulation and the net rate of convective species mass flux. The first term on the right hand
side is the diffusive species mass flux. The second term on the right hand side represents the
production or consumption of species mass attributed to chemical reactions or phase changes.
Rgy, is zero by default in MFIX, however, users may specify phase changes or chemical reactions
giving rise to nonzero values. The last term is a general user-defined species mass source, which
is zero by default but may be specified to give the term value.

MFIX solves a conservation equation for each species comprising a phase. As such, ill-defined
species mass source terms or poor numerical convergence may lead to the sum of mass fractions
deviating from one.

2.4.3 Conservation of Momentum

The gas phase momentum balance is

d d aRg aTgij _
a(sgnggi) + a_xj(ggpg Unggi) = _6_xi + dx; + €9Pggi + Sgi- (2-5)

where F; is the gas pressure, 74;; is the gas phase stress tensor, and g; body force due to gravity.
The first term on the left hand side represents the net rate of momentum accumulation while the
second term is the net rate of momentum transferred by convection. The first three terms on the
right hand side are the pressure force, viscous stress, and gravitational force. Finally, S ; is a
general gas phase momentum source term. For single phase flow defined by ¢, = 1, this latter

term is generally zero, however, exceptions exists.* A user-defined gas phase momentum source
may be specified to add to this term. Later sections present models that also contribute to this
term, including interphase momentum transfer® and resistance due to flow through a porous
media®.

Recall the fluid phase transport equations presented here are done so in the context of a
multiphase system, and are the result of an averaging process that is based on the work of
Anderson and Jackson [19] for a fluidized system of particles. Consequently, the fluid phase
equation may still be written as shown in equation (2-5) upon introduction of a total fluid-
particle interaction force (i.e., interphase momentum transfer) as a separate term encompassed
here in §,;. However, once traditional closures for this interphase transfer term are incorporated,

* For single phase flow through a porous media, &, may have values other than unity and S,; may become non-zero.
5 Interphase momentum transfer due to mass transfer is zero in this formulation [205].

& Here resistance due to flow through a porous media specifically refers to the use of the internal surface feature in
MFIX. However, a porous media approach may also be established by specifying a stationary, secondary phase
(multiphase), and then a resistance to flow occurs through the associated interphase momentum transfer term.
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the form of the governing equation is also altered. This term is discussed in more detail in the
chapter on the two fluid model (TFM).

2.4.4 Conservation of Internal Energy

The conservation of internal energy is presented in terms of temperature. The derivation of the
temperature form of the equation in non-conservative form obtained from the internal energy
formulation is presented in Appendix A along with simplifying assumptions.

The equation for the gas phase internal energy [20, 21] is

aT, aT,

d 2-6
€gPgChpg lﬁ + Ugj %] =- a_xj(eng) + 8y (2-6)

where Ty is the gas phase temperature, and C,, is the gas phase mixture specific heat. The left
hand side terms account for the accumulation and convection of thermal energy. The first term
on the right hand side is the conductive heat flux, and the last term, S, is a general source term.
For single phase flow defined by ¢, = 1, it includes heat transfer due to radiation.” However,
user-defined gas phase energy sources may also be specified which add to this term. The source
term contribution arising from the production or consumption of gas phase species is presented
in section 2.5.8.2. For multiphase flows, additional contributions may include interphase
convective heat transfer and enthalpy transfer accompanying interphase mass transfer. Models
for these terms are presented in the chapter on the two fluid model.

2.5 Gas Phase Supplementary and Constitutive Equations

This section presents the additional relationships and constitutive equations used by MFIX to
fully close the gas phase presented conservation equations presented above.

2.5.1 Gas Phase Equation of State

The gas phase density, pg, is either specified as constant, calculated using a user-defined
function®, or calculated from the ideal gas law:

P,MW.
py =L 2-7)

RT,

" For single phase flow through a porous media, £, may have values other than unity.

8 MFIX ensures that the continuity equation is satisfied by solving a pressure correction equation which, to improve
stability of mildly compressible flows, relies on the derivative of density with respect to pressure, dp, /3P, [213].
The implementation uses the derivative of equation (2-7) which may lead to inconsistencies when user-defined
functions are employed to specify the equation of state.
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Here, MWj, is the gas phase mixture molecular weight, R is the gas constant, and the other

quantities are as before. The equation of state provides a linkage between the energy equation
and mass and momentum equations [22]. For constant density fluids, no linkage occurs and the
energy equation only needs to be solved if the problem involves heat transfer.

2.5.2 Gas Phase Stress

The gas phase is assumed to be an isotropic Newtonian fluid so that the viscous stress tensor,
Tgij, IS given by®

Uy Uy, Vg )
Tgij = Hg.eff (6_x] *ox, ) T e\ G 2-8)

where u, . is the effective dynamic viscosity and A, . ¢ is an effective second viscosity,

modeled as

2 2-9
Ageff = ~Hg.efr 3 (2-9)

By default, the effective viscosity in MFIX is taken as the mixture molecular viscosity, u,,

defined in section 2.6.1. However, the effects of turbulence are incorporated though the
additional of an eddy viscosity, u,, if one of the turbulence models available in MFIX is used
(see section 2.5.4).

UHgerr = Hg + Ue (2_10)

2.5.3 Porous Media / Semipermeable Surfaces

Resistance due to flow through a porous media specifically refers to the semipermeable surface
feature in MFIX.1® Homogeneous porous media are modeled by the addition of a momentum
source term, Sg; ,,m, to the gas phase momentum equation (2-5).
Hg 1
Sgipm =~ ¢ Ugi = 5 C2Pg|Ugi| Ui (2-11)
where pg4, pg, and g, are the mixture molecular viscosity, density, and volume fraction of the gas
phase, and C; and C, are use defined constants. The first term represents viscous losses while the

9 MFIX assumes the fluid phase bulk (or volume) viscosity is zero. Recall, the bulk viscosity is the proportionality
constant relating pure volumetric-rate-of strain to the normal stress. Here it is also implicit that viscosity is
independent of the rate of shear.

10 A porous media approach may also be established by specifying a stationary, secondary phase (multiphase) so that
resistance to flow occurs through the associated interphase momentum transfer term.
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second term captures inertial losses. The porous media source term is added in the gas phase
momentum equation (2-5) through the general source term, Sg;.

2.5.4 Turbulence

Turbulence is modeled in MFIX using the Boussinesq hypothesis which relates Reynolds stresses
to mean rates of deformation of fluid elements [22]. This technique is implemented by using an
effective viscosity in the gas phase viscous stress tensor that combines the mixture molecular
viscosity with a turbulent mixing coefficient, commonly referred to as eddy viscosity. Although
eddy viscosity has the same units as molecular viscosity, it is not a property of the fluid; instead it
is a function of both fluid properties and flow conditions [23]. By default, eddy viscosity is zero
in MFIX, however two eddy viscosity models are available and are presented the following
sections.

2.5.4.1 Mixing Length Model

Prandtl’s mixing length hypothesis [24] is an algebraic (zero-equation) turbulence model that
relates turbulent fluctuations to a user-defined length scale, [,,,;,, and velocity gradient [25].

Ue = erznixpg /IgZD (2-12)

Here, 1,,p is the second invariant of the deviatoric strain rate tensort?,
Ly = = (S8 (2-13)
92D — E( gij gji)

2.5.4.2 k-¢ Model

A modified version of the two-equation k-e model [4] relates the turbulent eddy viscosity to the
turbulent kinetic energy, k,, and turbulent dissipation, €, by a constant, C;,.

k2
g (2-14)

Ue = pgclue_
g

! The second invariant of a general second order tensor (T;;) is given by % (TyiT;j — T;;T;;). Inregard to the

deviatoric rate-of strain tensor, however, S,,,;; = 0. So the magnitude of the second invariant of S,,;; reduces as
shown.
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The kinetic energy and dissipation are given by

dk dk aU,; d Ue 0k
g 9| _ gt e g
ggpg [? + Ugj a—x]] = Sngij _an — ggpgeg + a—x] <€g o_ka_x]> + Skg (2'15)

de de d Ugt O € aU,;
-9 U I Tot”g 9 9t 2-16
€40y l o+ Usj ale =% (eg p ax,-> + ¢, ke <C16 Tgij 7%, p962669> + S, (2-16)

where oy, ¢, Cy¢, and €, are model constants provided in Table 2-1. S} and S, are interphase

turbulent exchange terms which are zero for a single phase simulation. Closures for the
interphase turbulent exchange terms are specific to particular kinetic theory models implemented
in the MFIX two-flow model.

Table 2-1: Default values for the MFIX k-e model constants [26]

Constant Ok Oc Cie Coe Cip

MFIX Default 1.0 1.3 1.44 1.92 0.09

2.5.5 Diffusive Mass Transfer

Species mass flux through the gas phase is based on Fick’s First Law of diffusion [27]:
0X

fgj = pg‘Dgntjn (2'17)

where D, is the nt" gas phase species diffusion coefficient described in section 2.6.6 and the
other quantities are defined as before.

2.5.6 Conductive Heat Transfer

Conductive heat flux through the gas phase is described by Fourier’s Law [27]:

oT,
Kg axj

Agj = (2-18)

where k4 is the gas phase thermal conductivity described in section 2.6.5 and the other quantities
are defined as before.

2.5.7 Radiative Heat Transfer

Gas phase radiative heat transfer is modeled by the simple relation,

Sgrad = VRrg (ng - Tg4) (2-19)
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where T, and yg4 are the radiative temperature and heat transfer coefficient. By default radiative
heat transfer is not considered, that is, Tz, and yg, are taken as zero. The gas phase radiation
source term is added in the gas phase internal energy equation (2-6) through the general source
term, Sy ;.

2.5.8 Chemical Reaction Source Terms

Source terms associated with chemical reactions are zero by default in MFIX. To incorporate
chemical reactions, users must define chemical equations (stoichiometry) in the input deck, in
addition to specifying reaction rates via user-defined functions'2. Subsequent subsections present
how user-provided information is used to calculate source terms that contribute to the species
mass and internal energy conservation equations.

2.5.8.1 Production and Consumption of Species Mass

The rate of production per unit volume of the n" gas phase species due to the p** chemical
reaction is given by*3

Ry, = Saz @20
an

where MW, is the molecular weight of the n" gas phase species (not to be confused with MW,

the gas phase mixture molecular weight defined in section 2.6.2). R, is the user-defined reaction

rate for the pt" reaction** and ayp IS the signed stoichiometric coefficient of the nt" gas phase

species for the pt" reaction. The sign of the stoichiometric coefficient is positive for products
(e.g., the nt" species is produced by the pt" reaction) and negative for reactants (e.g., the nt*
species is consumed by the p** reaction). The total rate of production (or consumption), Ryn, is
obtained by summing the contributions from all reactions

Ron = ) [Ronl, (2-21)
14

and substituted into equations (2-3) and (2-4).

12 Details on how to specify chemical equations and reaction rates is provided in the MFIX User Guide available
online at https://mfix.netl.doe.gov/doc/mfix/latest

13 Intraphase and interphase species mass transfer terms are evaluated identically; specifically, user-defined reaction
rates and signed stoichiometric coefficients are combined to determine the net rate of production (or consumption)
of each species within the gas mixture. As a result, similar descriptions are provided in subsequent chapters in the
context of multiphase heterogeneous chemical reactions and/or phase changes.

14 The unit systems adopted in MFIX are not consistent with the general definitions, and as such, MFIX uses units of
kmole/kg for molecular weight in Sl and mole/gram in CGS units. A consequence of these units is that user-
defined reaction rates have units of kmole /m3sec in Sl and mole /m3sec in CGS units.

10
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2.5.8.2 Energy Change Due to Mass Production and/or Consumption

The pt" chemical reaction contributes to the general source term in the gas phase internal energy
equation due to the production or consumption of gas phase species. This contribution may be
specified™® or computed as

Ng
[0, = =D hon [Rgn], (222

N, is the total number of species comprising the gas phase mixture, and hg, is the specific

enthalpy of the nt" gas species, defined in section 2.6.4. The total source term arising from
intraphase enthalpy change is added in the gas phase internal energy equation (2-6) through the
general source term, S

Sa = [S0il, (2-23)
14

2.6 Gas Phase Physical Properties
This section defines physical properties for the gas phase.
2.6.1 Mixture Molecular Viscosity

The gas phase mixture molecular viscosity, p, is either specified as constant, calculated using a
user-defined function, or calculated based on Sutherland's formula [28]. The latter is the default

model and is given as
3/2
= (&) (M) (2-24)
97 T\ Ty T, +C

where C is the Sutherland constant for the gas, T, is a reference temperature, and ,..¢ is a
reference viscosity at the reference temperature. The constant and reference values for the default
model correspond to air and are provided in Table 2-2.

15 If a constant heat of reaction is specified, then the evaluation of enthalpy defined in equation (2-27) is not
performed so that the sensible heat contribution is not incorporated. Additionally, the partitioning of the specified
heat of reaction between phases must also be provided.

11
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Table 2-2: Default values for Sutherland’s Law model constants [29]

.uref Tref C
Unit Pa-s K K
Air 1.7 x 1075 273 110

2.6.2 Mixture Molecular Weight

The gas phase mixture molecular weight, MW,, is either specified as constant or calculated as

Ng
1 N _Xgn (2-25)
MW, L MW,

n=

where X, and MW, are the mass fraction and elemental molecular weight of the nt" gas phase
chemical species.

2.6.3 Mixture Specific Heat

The gas phase mixture specific heat, C,, is either specified as constant'® or calculated as

gl
Ng

Cpg = Z XgnCpgn

n=1

(2-26)

where C, 4, is the specific heat of the nt" gas phase species. The species specific heat is obtained
from either the BURCAT database [30] or from a user provided entry following the same format.

2.6.4 Species Specific Enthalpy

The specific enthalpy each species is calculated by combining the heat of formation, I-I;n(Tref),O
and integrating the specific heat of that species from the reference temperature, T;..f, to the gas
phase temperature.

Ty
hgn = Hrn(Trer) + J Cpgn(T) dT (2-27)
Tref
The species heat of formation is obtained from either the BURCAT database [30] or as a user
provided entry following the same format.

16 Specifying a constant specific heat for the gas phase is only permissible for non-reacting flows.

12
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2.6.5 Thermal Conductivity

The gas phase thermal conductivity, kg, is either specified as constant, calculated using a user-

defined function, or calculated using a temperature dependence model that has basis in kinetic
theory for dilute monatomic gases [27]. The latter is the default model and is given as:

T

g
K, =K p—
g ref Tref

(2-28)

where T,..f is a reference temperature and k.. is a reference conductivity evaluated at the

reference temperature. The reference values for the default model correspond to air and are
provided in Table 2-2 [31].

Table 2-3: Default values for temperature dependent thermal conductivity
(See 8.B1 Computation of the Prandtl Number for Gases at Low Density, p263 [31])

Krer Tres
Unit W /(mK) K
Air 0.0252 300

2.6.6 Diffusivity

The gas phase species diffusivity, D, is either specified as constant, calculated using a user-
defined function, or calculated based on a correlation by Fuller, Schettler and Giddings (FSG).
In their effort, the temperature dependence was determined from fitting a generalized function
with theoretical foundations to experimental data [32]. The FSG correlation is used to form the
default model:

7/4
p —p [ Jo\ (FPre (2-29)
agn nref Tref Rg

Here T;..r and P,.., are a reference temperature and pressure, respectively, while D,, .. is a
reference diffusion coefficient for species n defined at the reference temperature and pressure.
The reference values for the default model correspond to the diffusivity of CO, and N> with
values provided in Table 2-4. A dilute mixture approximation for multicomponent diffusion [33]
is available to evaluate D,, ,..,. This approximation is based on the binary diffusion coefficient of
all gas pairs in the mixture as:

Ng Ng
Durer=| > ¥ Xgn (2-30)
nref — gn’ D

n'=1 ni=1 ™M

n'#n n'#n

13
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Here D,,,,, is the binary diffusion coefficient for gas phase species n and n’, which is given in

Table 2-4 for CO» and Na.

Table 2-4: Default values for temperature and pressure dependent diffusion based on CO: in N2
(See Table 16.2-2 Experimental diffusivities of some dilute gas pairs, p503 [31])

Pref Tref Dn,ref
Unit Pa K m?/sec
CO2— N2 1.01 298.2 1.65 x 107

14
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Chapter 3: Eulerian Solids Phase Model (MFIX-TFM)

MFIX-TFM (two-fluid model), also referred to as the gas-solids continuum model, the Euler-
Euler model, or the multi-fluid model, describes the motion of a mixture of a continuous phase
and one or more dispersed phases. The continuous phase was presented in Chapter 2 and is
commonly referred to throughout this chapter as the gas phase, however it may be taken to
represent other fluids.!” The gas phase is identified as the continuous phase because its volume
fraction must always be greater than zero. A dispersed phase is generally referred to throughout
this chapter as a solids phase, but it could be liquid droplets or gas bubbles. Elements of a
dispersed phase, referred to as particles, are assigned to separate phases that delineate size,
density, and chemical species composition; a total of M dispersed phases may be defined. Like
the continuous phase, a dispersed phase is described as a continuum. However, volume fractions
may be zero. Specifically, a dispersed phase may be absent in regions of the domain (e.g., the
freeboard of a dense bubbling bed), whereas the continuous phase must always be present. Here
the equations are presented in conservative form, however, in MFIX the equations are solved in
non-conservative form by subtracting the respective phase continuity equation.

3.1 Overview

Many approaches have been used to derive the governing equations of motion for multiphase
flow. Two broad categories for such attempts include the mixture (drift-flux) approach [34, 26,
35] that treats the mixture as a whole, and a multiphase averaging approach [19, 36, 37, 38, 39,
40, 41, 42, 43]. This section focuses on the latter. The Eulerian multiphase model allows for the
modeling of multiple separate interacting materials called phases. In the Eulerian approach, each
phase is described as a continuum occupying the same region of space.

Application of an averaging process to the continuum equations describing the exact motion of
each material at each point establishes a connection with the corresponding exact or microscopic
description. Two well-known averaging technigues include ensemble averaging and volume
averaging. In general terms, ensemble averaging involves averaging over each point in space
over an ensemble of macroscopically equivalent systems. VVolume averaging, on the other hand,
involves a local spatial average taken over regions small in extent compared to macroscopic
scales of interest. For further details the reader is referred to Chapter 2 of [39]. Regardless, the
formal process of averaging leads to equations with a number of terms whose form is not
determined?®; that is, a closure problem remains. Expressing these quantities in well-defined
terms that reflect the behavior at the microscopic level is a difficult task. Here, well-defined

17 When the continuous phase is no longer considered gaseous, then additional physics may become important that
MFIX does not currently consider. For example, virtual mass may become important in liquid-solid or bubbly
flows.

18 Namely, terms involving integrals of point properties over the microscopic domain remain.

15
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refers to having closure relationships for unknown terms written explicitly in terms of the same
averaged variables (e.g., locally averaged velocity or phase concentration) as in the governing
equations.

Developing the corresponding constitutive equations remains a formidable task. In particular,
what form they should take and what approximations may be implied in their use is not always
clear. The existence of interfaces between phases and the discontinuities associated with them is
especially challenging in terms of experimentation and modeling. Thus constitutive equations
for the interfacial terms are often considered the weakest link in multifluid model formulation
[44]. An alternate approach to the formal averaging process still models the system as
interpenetrating continuous fluids. However, the equations are formulated based more on
intuitive ideas, and constrained by general principles of continuum mechanics. This may lead to
similar equations, but it does not reveal how the macroscopic relations arise from appropriate
microscopic considerations [39].

The following sections outline the equations that comprise the MFIX-TFM dispersed phase
model. Recall the MFIX-TFM continuous phase model is as presented in Chapter 2 unless
otherwise indicated.

3.2 Limitations
Limitations of MFIX-TFM include:

e The continuous, or fluid, phase volume fraction (e, ) is always greater than zero such that
the dispersed, or solids, phase volume fractions (&,,) cannot sum to one.

3.3 Conservation Equations

This section presents the m*" phase conservation equations solved by MFIX. To solve this set of
equations requires specifying additional closures, which includes, among others, the interphase
momentum transfer and stress terms. Modeling of these terms must proceed carefully as
discussed in the sections following.

3.3.1 Conservation of Mass

The conservation of mass (or continuity equation) for the m*" phase is

N
i) d -
a (Smpm) + a (gmmemj) = Z Rpn +m (3 1)
J n=1

where, &, is the m‘™ phase volume fraction, p,, is the m‘" phase material density, U,; is the j*"

component of the m®" phase velocity, N,, is the number of chemical species comprising the m"
phase, R, is the rate of production/consumption of the m‘" phase n* chemical species, and S,,,

16
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is a general user-defined m*" phase mass source term. The left hand side terms account for the
rate of mass accumulation and the net rate of convective mass flux. The first term on the right
hand side is the interphase mass transfer attributed to chemical reactions or physical processes,
such as evaporation. Users may specify sources due to phase changes or chemical reactions that
will give this first term on the right hand side value. A user-defined mass source may also be
specified to give the second term on the right hand side value. By default, however, the right
hand side is zero in MFIX.

3.3.2 Conservation of Species Mass

The nt" species mass conservation equation for the m" phase is

(Smpm mn) + (Smpm Uijmn) xj (gmfmj) + Rmn + Smn (3-2)
where X,,,, is the m*" phase nth species mass fraction, and §,,,, is a general user-defined
mt*phase species mass source term. The left hand side terms account for the rate of species
mass accumulation and the net rate of convective species mass flux. The first term on the right
hand side is the diffusive species mass flux. The second term on the right hand side is the rate of
production of species mass attributed to chemical reactions or physical processes. R, is zero
by default in MFIX, however, users may specify phase changes or chemical reactions giving rise
to nonzero values (see section 3.4.11). The last term is a general user-defined species mass
source, which is by default zero but may be specified to give the term value. Properties of the
mt" phase are discussed later in this chapter, however, it is worth noting that D,,,,, is zero by
default in MFIX (i.e., no species diffusion occurs within the m" solids phase). As a result, the
right hand side is also by default zero in MFIX.

MFIX solves a conservation equation for each species comprising each phase. As such, ill-
defined species mass sources, poor convergence, or inappropriate numerical techniques can lead
to the sum of mass fractions deviating from unity.

3.3.3 Conservation of Momentum

This section presents the gas and m*" phase momentum equation formulations available in
MFIX-TEM.

3.3.3.1 Default Formulation

The default MFIX-TFM gas and momentum balances are

aP argl]

0 0
—(sp U -)+—(£p Uy ) =——=— +&40q9i + 3, (3-3)
ot < 9F97a) T gy \"9Pa e 61 gPgYi T 9gi
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aPm aTml'j

d d
a (gmmemi) + a_x] (gmmeijmi) = - a_xl + 9

where P,, is the mt" phase pressure, t,,; j is the mt" stress tensor and S,,; is a general mt" phase
momentum source term. The other terms are as before in the presentation of the fluid phase
governing equations, that is, P, is the gas pressure, t;; is the gas phase stress tensor, g; is the
body force due to gravity and §; is a general gas phase momentum source term. The source
terms include contributions from interphase momentum transfer, such as, gas-solids drag. User-
defined momentum sources may also be specified. Note that the gas phase momentum balances
given by Equations (2-5) and (3-3) are identical. As noted in presentation of the Eulerian fluid
phase model, the above set of Eulerian multiphase governing equations are the result of an
averaging process that is chiefly based on the work of Anderson and Jackson [19] for a fluidized
system of particles.*®

] t EmpPmgi t CS‘mi (3_4)

]

This section more closely examines the form of the interphase momentum transfer term and how
its definition impacts the overall form of the governing equations when inserted. For
convenience S,; and §,,; are redefined to specifically distinguish the contribution(s) due to

interphase momentum transfer between the gas and mt" phase:

M
‘Sgi = - Z Igmi + ‘Sgi, (3'5)
m=0
Smi = Igmi + CS‘mi, (3-6)

Here I.,; represents contributions to the gas-m‘" phase interphase momentum transfer term, M
represents the number of additional phases beyond the fluid phase, and S,;" and S,,,;" are general
gas and m**phase momentum source terms excluding that due to gas-m®" phase interphase
momentum transfer. The default form for this interphase transfer term in MFIX is presented here
for quick reference but discussed in more detail later?.

dP,

3-7
Igmi =—é&n Y + ﬁgm(Ugi - Umi) (&7)
i

19 Following Anderson and Jackson [19] the default momentum balances shown in (3-3) and (3-4) involve some
mathematical manipulation wherein similarities are leveraged between 1) the definition for the force exerted on a
single particle by the surrounding fluid (i.e., the surface integral of the fluid stress tensor over the particles’ surface)
and 2) a surface integral term that arises from averaging the point wise fluid stress tensor.

20 Additional gas-solids interaction terms are possible, such as, virtual mass and the Basset force. However, these
are not incorporated into the default model.
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The corresponding default form of the governing equations are obtained upon introduction of
this force and they are shown here for context and comparison with other available options in
MFIX.

0 0
7t (egPgUgi) + a_x] (9PgUg;Ug:)

o (3-8)
0F, 07y !
=—g-—+ +Zﬁgm(Umi _Ugi)+egpggi+$gi
axi axj
m
0 d
3 (EmpmUnmi) + a (Smpm Unmj Umi) (3-9)

an aPm N aTmij

= Tom Oxi B axi ax]

+ .Bgm(Ugi - Umi) + EmPmYi + Smi’

Multiphase flow equations have been derived from formal averaging of the microscopic
description by both Anderson and Jackson [19] and Ishii [45]. The authors employed different
averaging methods (volume versus time) and applied their technique to differing multiphase flow
systems. In particular, Ishii’s formulation considers both phases to be a fluid and as such the
interphase term is treated the same. While in Jackson’s formulation the fluid and solids phases
are treated differently and as a result the interphase interaction term appears differently in the
fluid and solids phases’ momentum equation [46]. Regardless, the assumptions inherent in their
treatment suggest the types of multiphase flows to which they can be most appropriately applied
[46]. In addition to the default form presented above, multiphase momentum equation
formulations based on each of these works is also available in MFIX as discussed subsequently.

3.3.3.2 Jackson Formulation

Anderson and Jackson [19, 38, 39] presented a formal averaging procedure for fluid-particle
systems and examined the impact of different definitions of the gas-solids interphase momentum
transfer term. Shown below is their interpretation of the total interaction force and the
corresponding form of the governing equations:2

0P, 0T, ;i _
Igmi = —é&n <a_xgl - %}:) + .Bgm(Ugi - Umi) (3 10)

2L Anderson and Jackson [19] and Jackson [36] acknowledge additional gas-solids interaction terms including added
mass and the Basset force. Discussion of such additional terms is reserved until section 3.4.4 on the gas-solids
momentum transfer.
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This form of the interaction force follows a series of arguments building first on a single particle
in an undisturbed fluid, to a single particle in a fluid with diverging streamlines to fluid flow
through an assembly of particles. The resulting momentum equations are shown here.?

0 0
7t (egPgUgi) + a_x] (e9PgUg;Uqgi)

(3-11)
OP aTgU ’
—g, o, -+ g 3%, + Zﬁgm(Umi —Uy) + €4p49: + Sy
m
0 0
a (empm Umi) + a (Smpm Umj Umi)
dP, ot B, Ot (3-12)
gij m mij
—&m %, + Em 0x] - %, + ax % + ﬁgm(Ugl Umi) + EmPmYi
+ Smi’

The above form of the multiphase momentum equations is also available in MFIX. The default
formulation in MFIX for the multiphase momentum equations (equations 3-8 and 3-9) closely
mirrors Jackson’s formulation with two primary differences. First, Jackson’s m*" phase
momentum balance contains the gas phase volume fraction multiplied by the gas phase shear
stress tensor. This term is wholly absent from the default MFIX formulation. Second, in
Jackson’s gas phase momentum balance, the divergence of the gas phase shear term is also
multiplied by the gas phase volume fraction.

3.3.3.3 Ishii Formulation

Ishii [45] presented a formal averaging procedure for fluid-fluid systems. The resulting
multiphase formulation of Ishii, as presented by van Wachem [46], is reproduced here?®

d d
ot (ggpg Ugi) + ox (Sgpg Ugj Ugi)
J (3-13)

= _Eg (’)xl (EngU) + Z ﬁgm(Uml Ugi) + &PgGi + Sgi’

22 These equations shown here differ slightly from Anderson and Jackson [19] as their derivation is based on a
monodisperse gas-solids system. As a result, gas-solids interphase momentum transfer is the only source term
present in the formal equation set. Recall, however, that the MFIX-TFM implementation includes extensions for
polydispersity, hence the summation over M.

Z3As noted by van Wachem et al. [43] a few terms in Ishii’s interphase momentum transfer model have been
neglected in this presentation, including an interfacial shear term and a term due to pressure differences between the
bulk and the interface.
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] 0
a (Smpm Umi) + a_ (Smmemj Umi)
oF, d ,
=—&mm—t5— (ngmij) + ﬁgm(Ugi - Umi) + Empmdi + Smi
axi axj

The above form of the multiphase momentum equations is also available in MFIX. As evident
by comparison, the default formulation for the multiphase momentum equations in MFIX is
slightly different from this modified version of the multiphase momentum equations of Ishii. For
example, the default gas-phase momentum equation in MFIX is similar to those based on Ishii
except the latter has the gas phase volume fraction multiplying the gas phase shear term.
Differences are also evident in the m*"* phase momentum equations.

This form of the m®" phase momentum balance, presented above, is modified further when
applied to gas-solids systems in MFIX. Specifically, the solids-phase stress tensor is not
multiplied by the solids volume fraction as its functionality is accounted for in the solids phase
model description (e.g. kinetic theory model). Moreover, a solids pressure term is included (see
[46]) in the solids phase momentum balance. Note that the mt" phase momentum equation
shown above do not reflect these modifications, but in MFIX they are incorporated into the m®"
phase solids momentum equation when applied to gas-solids systems with a kinetic theory
description for solids. This formulation based on Ishii [45] is more appropriate for a dispersed
phase consisting of a fluid material (e.g., fluid droplets) as opposed to solids particles [46].

3.3.4 Conservation of Internal Energy

The conservation of internal energy is presented in terms of temperature. The derivation of the
temperature form of the equation, obtained from the internal energy formulation [20, 21], is
presented in Appendix A along with simplifying assumptions.

The mt" phase energy equation is

_0(emdmy) | o (3-15)

m
ax]'

oT, oT,
gmmepm Ia_;n + Umj axrfll
]

where T, is the mt" phase temperature, and Cpom is the m®" phase mixture specific heat. The left
hand side terms account for the accumulation and convection of thermal energy. The terms on
the right hand side include the conductive heat flux, and a general source term, §,,,. A user-
defined m*" phase energy source may be specified to add to this term. Other contributions may
include heat transfer due to radiation, interphase heat transfer, and enthalpy transfer
accompanying intra- and interphase mass transfer.
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3.4 Solids Phase Supplementary and Constitutive Equations

This section presents the additional relationships and constitutive equations used by MFIX to
fully close the m*™ phase conservation equations presented above. As evident below, these
relationships assume a granular basis, that is, the mt" phase is a solids phase with a characteristic

diameter and density.

3.4.1 Solids Phase Stress

As noted earlier MFIX was originally designed to model multiphase gas-solids flows.
Accordingly, MFIX-TFM characterizes the m*" phase as a granular material wherein individual
particles are not resolved. Granular flows are often classified into two limiting flow regimes,
quasi-static (referred to here as frictional) and kinetic, as shown in Figure 3-1 [47, 48].%*
Stresses in the quasi-static/friction regime are the result of the internal structure of the granular
material (quasi-linear structures or chains), which supports the bulk internal stress within the
material [49, 50]. These quasi-static materials demonstrate apparent frictional behavior in that
the shear and normal stresses are related; the stresses can be related through the compressive
force acting on the structure and the angle of the structure, which generally does not vary
significantly. In a shearing material, these chains are dynamic structures that may collapse and
form new ones. Stresses in the kinetic regime are considered the result of collisional and
streaming momentum transfer of particles wherein it is generally assumed that particle contacts
occur instantaneously. Therefore, constitutive equations for particle-particle interactions must
consider the fundamentally different modes of force transmission across flow regimes.

Frictional regime Transition Kinetic regime
N >
Slow flow Rapid flow
Strain rate independent Strain rate dependent
Based on soil mechanics f .T.;, Based on kinetic theory

oy s e s 24
o o b & ?
- ik AL
i
s e, .] P N.‘\ 2 ROIZ.{; 1

<

denser solids

>

diluter solids

Figure 3-1: Schematic of the transition between the quasi-static/frictional regime and the Kinetic regime [51].

24 The term frictional may be somewhat misleading as these relations refer to the internal behavior of a collection of
particles, that is, the behavior of the internal structure of the granular material [46]. It is not a simple function of
friction between grains (e.g., consider deformation). In other words, stresses are not necessarily simply the result of
particles sliding over one another (classic frictional picture) Nevertheless, this terminology is used here.
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A general continuum mechanics theory for computational purposes that is capable of
simultaneously capturing these different rheological behaviors is lacking. However, constitutive
equations describing all flow regimes are needed, since all may exist at any time at various
locations in a granular flow system. Moreover, the transition between the two limiting regimes,
where particle-particle contacts are of intermediate duration is difficult to describe [48, 52].
Therefore, the results taken from both limiting regimes are typically stitched together to describe
all flow situations. That is, the frictional and kinetic regime contributions to the solids pressure
and solids stress tensor are combined through addition [53, 52, 48] While this superposition
principle is ad hoc, it has been used to investigate a wide range of slow and rapid granular flows
[54]. For further discussion see section 3.4.2.1.1.

Since the rheological behavior of the granular phase varies depending on the regime, the form of
the constitutive equations may also be expected to differ. Nevertheless, the stresses are cast in
the same general form for computational purposes. For context in the following, refer back to
the governing m*" phase momentum equation: equation 3-4 or equivalently equation 3-9. The
general formulation for the total mt" phase solids stress tensor is given by

Tmij = 2UmDmij + AmDmkic6ij (3-16)

where p,, is the viscosity, A,, is referred to as the second viscosity? and D,,,; ; Is the rate-of-
strain tensor. The latter two quantities are defined as

1 <6Umi .\ aUmj>

mij E ax] axi

(3-17)

2
Am = Hpm — §:um (3-18)

where py,,, is the bulk viscosity of the m®" phase. For completeness, it should also be noted that
some publications present the solids stress tensor in terms of the deviatoric rate-of-strain tensor,

Sml]

Tmij = 2UmSmij + UomDmici0ij (3-19)

10U, 0Uy; 10U
Smij=2< =+ mj)—— UL

2 0x; ox; 3 0x % (3-20)

This representation illustrates that the bulk viscosity is the proportionality constant relating pure
volumetric-rate-of-strain to the normal stress. The two definitions of the stress tensor, (3-16) and

% The second viscosity is employed to facilitate computations and is a composite parameter representing the
combination of all the viscous effects associated with the volumetric-rate-of-strain.

23



Theoretical Review of the MFIX Fluid and Two-Fluid Models

(3-19), are identical. The motivation in providing both definitions is to establish a connection
between the equations modeled in MFIX and common variants found in literature.

Using the superposition principle, the solids stress tensor is obtained by summing solids stress
contributions from frictional and kinetic models for granular material:

Tmij = Toy + Tty (3-21)
This may also be accomplished through its components. That is, the m*" phase solids viscosity
and solids second viscosity are obtained by summing the viscosity and second viscosity
contributions from the frictional and kinetic models.

U =ty € + plin (3-22)
A = AITIC 4 pkin (3-23)

Specific models for the frictional and kinetic contributions are provided in the subsequent
sections. Like solids stress, the total m*" phase solids pressure is obtained by summing solids

pressure contributions from frictional, P,ﬁ”c, and kinetic, P models for granular material.

P, = PT'¢ 4 pkin (3-24)

Specific models for the frictional and kinetic contributions are provided in the subsequent
sections 3.4.2 and 3.4.3, respectively.

Under the assumption that the stresses can be treated in an additive manner, each contribution is
evaluated independently as if it acted alone. This ad hoc formulation provides a mechanism to
describe each regime within the same framework. A well-established quantitative methodology
for characterizing the two limiting flow conditions (kinetic and frictional) or their transition is
not available [55].2% In early efforts [48, 53], the stresses from each regime were simply
summed regardless of the flow conditions. Alternatively, Syamlal et al. [56] introduced a switch
function where the frictional stresses are included only when a critical solids volume fraction is
reached. This approach is followed here. Namely, the frictional models only contribute to the
solids pressure and solids viscosity when the gas phase volume fraction falls below some value
representative of close pack or frictional conditions (section 3.4.2 equations 3-25 and 3-28 or

26 More recently, simulations (e.g., [184, 208, 210, 209]) based on Discrete Element Methods have been used to
investigate the rheology of granular materials. Using these tools flow regime maps have been described, however,
they rely on material properties (e.g., elasticity), which are not found in the typical frictional and kinetic models
employed in the Eulerian Method (current Chapter). Therefore, their usefulness for specifying a transition criteria in
the context of these continuum approaches remains uncertain.
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3-32 and 3-34) as shown in Figure 3-2. Under the currently implemented frictional models
(section 3.4.2), this approach also results in a step transition or discontinuity in the solids
pressure and viscosity.

kinetic model
contributions

friction model
contributions

< diluter solids )

denser solids |
close pack / quasi-static
condition

Figure 3-2: Schematic illustrating the instantaneous onset of frictional stresses when the solids packing
surpasses a close pack condition.

3.4.2 Frictional Stress Models

When particles undergo long enduring contacts in which the bulk material exhibits a solid-like
behavior (e.g. soil mechanics, silos), the system is considered to be in the quasi-static or slow-
flow regime. A few options are available in MFIX to describe the motion of particles in this
flow regime, which are discussed in the following. The condition under which these physics are
functioning depends on the invoked model (see below for the specific criteria), but generally the
fluid volume (void) fraction must be lower than some specified void fraction representing close-
pack (g4 < &%) or frictional conditions (¢, < 1 — s}""”). The theories used here for the frictional
contribution are largely based on the critical state theory of soil mechanics (e.g., [57]), but as
indicated by Johnson and Jackson [48] such efforts are largely empirical.

3.4.2.1 Schaeffer Model [56]

Syamlal et al. [56] developed a constitutive model for the quasi-static flow regime where the
shear viscosity is adapted from Schaeffer [58] and Pitman and Schaeffer [59] who examined the
equations for compressible and incompressible granular flow, respectively. Originally written
for a single phase, here it adapted for M phases:

P, sin(¢) €
vV 4lmap s

0 g, ="
g =
where ¢ is the angle of internal friction, u*** is a specified maximum granular viscosity?’, P.
represents the solids pressure in the quasi-static flow regime, &, is the mt" phase volume

fric _
m =

(3-25)

27 An upper limit is specified to help stabilize the calculation as the calculated values are large and become
unbounded as I,,,, = 0.
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fraction, &, represents the total volume fraction of M dispersed phases, that is, the total solids
volume fraction (e, = YXM_, &,,,), and &* is the void fraction at close packing [60, 51] described
below.? The quantity I,,,,, is the magnitude of the second invariant of the deviatoric rate-of-
strain tensor:?°

Imap = %(Smijsmji)- (3-26)

This quantity may be expressed in terms of components of the rate-of-strain tensor as follows:
1
Imap = 3 [(Dm11 = Din22)? + (Dinaz — Din3z)® + (Das — Dpma1)?] + D + D35 + D33 (3-27)

As indicated by [48, 54], the pressure in this quasi-static regime is expected to increase rapidly
with volume fraction and diverge on approaching some close packed value. This critical or
close-pack pressure is given here by an arbitrary expression related to the void fraction that
allows some compressibility in the solids phase [56]:

Apc(e" —¢ )npc g, < &*
pc g g
Fe = . (3-28)
0 &g 2 €
The model constants are given in Table 3-1. As before &* is the void fraction at close packing.*
As shown, the critical pressure only has value when the void fraction falls below a critical void

fraction (the void fraction at close packing).

For uniformly sized particles the close-pack void fraction is a specified constant, whereas for
polydisperse mixtures it can estimated from correlations or also simply specified as a constant.
Note the void fraction at close packing is related to the maximum volume fraction at close
packing '%* as:

gr=1-—¢ghx (3-29)

Correlations available in MFIX for the maximum volume fraction at close packing are presented
in Appendix D.

The close-pack solids pressure, P., contributes to the total solids phase pressure (3-24) through
the frictional solids pressure term by taking P/ = P. in this case. While the frictional flow

28 |f stress blending is used (section 3.4.2.1.1) then &* is replaced with &;,.
29 The second invariant of a general second order tensor (T;;) is given by % (TyT;; — T;;Tj;). Inregard to the

deviatoric rate-of strain tensor, however, S,,,;; = 0. So the magnitude of the second invariant of S,,,;; reduces as
shown.
30 If stress blending is used (section 3.4.2.1.1) then &* is replaced with &;;.
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shear viscosity, u,’;lric, is added to the total solids viscosity in equation (3-22). Note that, this

model does not contribute to the solids second viscosity in equation (3-23).%!

Table 3-1: Default values for Schaeffer model [56]

Constant Nye | Apc [barye]

MFIX Default 10 10%

3.4.2.1.1 Stress Blending

While rapid transition between these two regimes may be expected in many gas-solid flow
applications (i.e. bubbling bed, spouted bed), the physics of this transition is not well understood
[48]. The current step transitioning (see section 3.4.1 Figure 3-2) leads to slow convergence due
to numerical instabilities [61, 62]. To circumvent this issue, a blending function is introduced to
obtain a smooth but rapid transition between the frictional and kinetic regimes depending on the
void fraction as indicated here [61, 63].

P = f(gg)PE™ + (1= f(g,) ) PIT (3-30)
Tmij = f(eg)TI;riL?j + (1 - f(eg)) T‘rj;l:llc (3-31)

More precisely, blending of solids stress is achieved by blending the kinetic and frictional
contributions to solids viscosity as indicated in section 3.4.1; the model based on Schaeffer [58]
does not contribute to solids second viscosity. Two options for the blending function are
available as shown in Table 3-2 and illustrated in Figure 3-3.

1
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Figure 3-3: Schematic illustrating the blending function around the critical void fraction (void fraction at
maximum packing).

31The stress model of Schaeffer does not match the total stress formula given by 3-16 and so not all terms in the
latter are represented. Recall, it was re-written and cast in this form for computational reasons.
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Table 3-2: Blending functions available in MFIX!

Type Function £ &,
. E [tanh <2nw> + 1.0] g <gg< g
Hyperbolic () = & — & 0.99¢* | 1.01&"
Tangent g 1.0 &< gg ' '
0.0 g < g

‘P(gg) «
fleg) = {(p(e{i) f9 < fu

1.0 g =g

Truncated

Sigmoidal | where 0.99¢* | 1.01¢

a—c*
o(a) = [1.0 + 0.0185—%]

1) Asindicated earlier, £* is the void fraction at close packing [60, 51] (see 3.4.2.1 for more detail).

3.4.2.2 Srivastava Friction Model [54]

Srivastava et al. [54, 64] proposed a constitutive model for the frictional regime that follows a
rigid-plastic rheological model based on the works of Schaeffer [58], Tardos [65], and Prakash
and Rao [66].

fric

Hm = 3/Om/d% + SmijSmji
min

O Eng_Ef

( V2P; sin ¢ Pf>% (sm

n-— (n - 1) (FC E_S> &y <1- E}nln (3_32)

Here ¢ is the angle of internal friction, d,,, represents the diameter of particles in the m®" phase,
and 0,, is the mt" phase granular temperature (see section 3.4.3). Based on arguments of
Savage [52], Srivastava introduced the term ©,,/d?, in the denominator to eliminate a numerical
singularity appearing in regions of little to no flow. Here ©,, has dimensions of square of
velocity (see section 3.4.3.3.2). The conditional criteria is based on s}"i” which represents the
minimum total solids volume fraction required for the onset of frictional stresses. The last term
in 3-32, (&,,/¢s), 1S an ad-hoc extension of the original model for polydisperse mixtures where
&, is the mt™ phase volume fraction and &, represents the total volume fraction of M dispersed
phases, that is, the total solids volume fraction (e, = XX _, &)

The exponent (n) is determined on whether the granular assembly is dilating or compacting.

V3
n=42sin¢
1.03 Dy < 0; compaction

Diik = 0; dilation (3-33)

P, and Py are the critical state and frictional pressures:
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[ 0 (1-¢gm) <g,
((1 ) min)r
—g,)—¢ , i
Fe =\ Fr 7 e+ <g <(1—gMm) (3-34)
(eg—¢)
L%Jr(g(eg) gg<e+6
P D n
¥ (1 _ mick ) <€_m> (3-35)
P NV2sin ¢ /Sy Smji + O/ dz, Es

As communicated in [67], the expression for P /P, is correctly expressed with an exponent as
n — 1 rather than as 1/(n — 1) shown in [54]. Here the expression for P, is based on that
proposed in Johnson et al. [68], who also provides values for the model constants, Fr, r, and s,
as they are cited in [54] and listed here in Table 3-3. Dy, and S,;; are given by equations
(3-17) and (3-20), respectively. As in the Schaeffer Model (section 3.4.2.1), g is the void
fraction at close packing. Similar to the viscosity term in 3-32, the last term in 3-35 (g,,/¢;)
represents an ad-hoc extension of the original model for polydisperse mixtures. To avoid a
discontinuity in P, when ¢, equals that of £*, while also providing a stable and continuous
function, the third conditional criteria is introduced. Here, Le;+s(gg) is the linearization of

P. (eg) at void fraction approaching that of close packing, that is, for ¢, = £* + § where and §
represents a small constant deviation whose value is also listed in Table 3-3.

(- =6—erm) r[l—g—5—grn]
G* ’ 6° (3-36)
s [1—e —8—ern]
651

L£§+5(sg) = Fr

+ (" +6—¢)

Table 3-3: Default values for Princeton Model constants [54, 68]

Fr
[barye]

MFIX Default | 0.5 0.5 2.0 5.0 0.01

Constant e}"i" r s )

The frictional solids pressure, P,,C”C, contributes to the total solids phase pressure in equation
fric

(3-24). Similarly, the frictional flow shear viscosity, u,, , is added to the total solids viscosity

in equation (3-22), while the frictional second viscosity, Afnr ‘e contributes to the total second
viscosity in equation (3.25) through its definition given in equation (3-18).
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3.4.3 Viscous Stresses

When the particles move freely and interact via nearly instantaneous collisions, then the system
is considered in the rapid-flow regime and is commonly referred to as either collision-dominated
flow, a rapid flow or a granular gas. Several kinetic theory based options are available in MFIX
to describe the motion of particles in this flow regime, which are discussed in the following.

For reference, granular flows generally refer to systems where the interstitial fluid does not play
a significant role in determining the overall mechanics and therefore can be ignored (also
referred to as dry granular gas). In such a case, the physical picture of a granular gas is viewed
analogously to that of a molecular gas; both are composed of many individual entities interacting
through collisions. The key difference is that particles undergo dissipative collisions. Thus to
maintain the motion, kinetic energy must be continually added (e.g., shaking, vibrating,
shearing). Nevertheless, the fluctuating velocity in a granular gas (corresponding to the random
motion of the particles) is viewed similarly to the thermal velocity in a molecular gas. Thus, the
kinetic energy in a granular system is referred to as granular temperature (0). A complete
thermodynamic analogy, however, is not applicable as granular ‘gases’ are inherently non-
equilibrium systems. Still, this parallel has provided a useful framework for discussing the
behavior of granular systems. In particular, dense-gas kinetic theory [69] modified to account
for grain inelasticity provides one of the more sophisticated methods for modeling such systems.

The hydrodynamic equations, including constitutive relations, can be derived from a
fundamental basis in kinetic theory. In this approach, the closures follow as mathematical
consequence of the theory, and not phenomenologically as from experiment or intuitive
argument (see section 3.1). Generally, this analyses involves some constraints although
development in the area of kinetic-theory based models for granular flows has evolved over time.
Savage & Jeffrey [70] were the first to place the problem of developing a model for granular
gases in the more formal context of dense-gas kinetic theory. However, Lun [71] was the first to
incorporate the kinetic contribution to momentum transport (previously only collisional transfer
was considered). Each subsequent iteration has generally incorporated more representative
physics and/or less assumptions. Such inclusions, however, give rise to greater complexity of
the calculations in the derivation. The remainder of this section is intended to provide a short
introduction to the various kinetic theory based models that are currently available in MFIX and
highlight their essential differences. For further details on various kinetic theory based
treatments and their implications, see references [10, 72].

Briefly, kinetic theory based models for granular flows may be differentiated from one another
based on a number of conditions that may restrict their application or expected accuracy. Some
of these are listed here for convenience and are discussed below in more detail: number of
components or phases (i.e., monodisperse vs polydisperse systems); the specific starting kinetic
equation; the solution method and assumptions/technicalities used in the subsequent derivation
process. Table 3-4 lists the current kinetic theory based models available in MFIX along with
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some of their various limitations and differences in derivation. Of the kinetic theory based
models available in MFIX, several standard simplifying assumptions are used: 1) particles are
smooth, frictionless spheres; and 2) particle collisions are instantaneous, binary and
characterized by a constant coefficient of restitution. In addition, the Knudsen numbers of the
continuum variables are also small (i.e., the theory is of Navier-Stokes-order).

Essentially the hydrodynamic equations derived from kinetic theory for the granular material are
combined with those that describe the fluid phase resulting in the two-fluid equations and closure
relations for the solids-phase stresses [48, 73, 56, 74, 75, 39, 76]. At a basic level, interaction
forces, such as drag, were then typically included to account for transfer of momentum between
the phases. However, incorporating the role of a fluid phase on a more fundamental level has
also received more recent attention. Generally speaking, two things happen when the equations
are combined: (1) the solids stress r’ﬁ,ﬁ?j in two-fluid model is taken as the granular stress in the
kinetic theory of granular gases; (2) a granular energy equation(s) is added to the two-fluid
model. The precise details, however, depend on the kinetic theory model.
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Table 3-4: Comparison of kinetic theory models available in MFIX

Number of | Restitution Velocity Hydro_ . 4
Reference Year 1 Y S dynamic Fluid Effects
Phases Ceofficient Distribution . 3
Variables

Lun et al. [71] 1984 1 'g M e~1 non-Maxwellian ny, Uy;,0; not inherently

Cao and Ahmadi 1995 1 m:"‘§ M e~1 non-Maxwellian ny, Uy, 04 influence of gas velocity fluctuations due to

[77] turbulence considered in solids phase
description through a heuristic approach

Simonin [78] and 1996 1 "g M e~1 non-Maxwellian ny, Uy, ©4 influence of gas velocity fluctuations due to

Balzer [79] turbulence considered in solids phase
description through a heuristic approach

Garzo and 1999 1 inelastic non-Maxwellian ny, Uy, 04 not inherently

Dufty [7]

Iddir and 2005 M em~1 Maxwellian (unlike) | ny,, Upi, ©404 | NOtinherently

Arastoopour [8] non-Maxwellian (like)

Garzoetal. [9,10] | 2007 M inelastic non-Maxwellian Ny, Uyi, Oy | NOtinherently

Garzo et al. [11] 2012 1 inelastic non-Maxwellian ny, Uy;,04 influence of gas phase effects in solids phase
description are incorporated on a fundamental
level

1) The number of phases considered in the original derivation is given along with an indication of whether any ad hoc modifications have been included to extend the theory in
the MFIX implementation.

2) Here, e~1 refers to theory based on an expansion about a nearly-elastic state and “inelastic” to one based on expansion about a homogenous cooling system. While no formal
restriction on dissipation may exist in the latter, strong dissipation may lead to breakdown of the Enskog equation with regard to the assumption of molecular chaos.

3) While no subscripts are generally necessary in the monodisperse case, here the subscript 1 is kept for consistency with MFIX notation. It refers to the case M = 1 som = 1.
For Garzo et al. (2007) the subscript M refers to the mixture value as opposed to an mt" phase value. For Iddir and Arastoopour (2005) the subscript IA on granular
temperature refers to mt" phase temperature defined in terms of velocity fluctuations relative to the mean phase velocity instead of a mixture velocity as is often used by
polydisperse kinetic theories.

4)  For reference see discussion of incorporating an interstitial fluid in section 3.4.3.3.8. While fluid effects may not be inherent to the indicated kinetic theory, the influence of a

fluid phase has been incorporated at various levels depending on the kinetic theory model. Such details are reserved for the discussion for each available kinetic theory based
model. Otherwise, a mean drag force is added into the momentum balance that effectively results in the basic two fluid model formulation.
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3.4.3.1 Kinetic Theory in Brief

Kinetic-theory-based models for granular gases generally starts with a kinetic equation which
describes the evolution of the single particle velocity distribution function (f). Models based on
the Boltzmann kinetic equation are limited to dilute systems (e.g., [80, 81]). However,
extensions to moderately dense systems are possible by employing the Enskog(-Boltzmann)
kinetic equation (e.g., [71, 7, 8, 9, 10]). In the latter, the collisional term involves finite-volume
effects (which are important in dense systems), whereas the former treats the particles as points.
More precisely, the difference between these equations essentially stems from the treatment of
the two particle distribution function (f5) which appears in the collisional integral. The theories
available in MFIX employ the Enskog equation (either revised or standard Enskog Theories; see
next), and none are based on the Boltzmann equation.

In the Boltzmann equation, the two particle distribution function is assumed equal to the product
of two single-particle distribution functions evaluated at the same location. In contrast, the
Enskog equation (or Enskog kinetic theory), incorporates the pair correlation function (i.e., a
quantity related to the radial distribution function or RDF) as a factor and the single particle
distribution functions are evaluated at different locations (accounting for the finite distance
between touching particles). The difference between the revised Enskog Theory (RET) and
Standard Enskog Theory (SET) concerns the treatment of the radial distribution function during
the derivation. In the latter, the RDF is taken as a function of the component densities, while in
RET, it is taken as functionals [82]%2. SET is found to be inconsistent with irreversible
thermodynamics [82]. Generally speaking, using RET is more important for mixtures and states
far from equilibrium.®® It is worth noting that in either case, the Enskog equation neglects
velocity correlations between particles that are about to collide (molecular chaos assumption).
So that, strictly speaking, multiparticle collisions, including recollision events (“ring” collisions)
are not described.

3.4.3.2 Solution Method

The hydrodynamic (continuum) equations may be obtained by taking moments of the kinetic
equation (i.e., they follow from the corresponding moments of the kinetic equation and the
definition of the hydrodynamic fields in terms of integrals of the distribution function). This

32 In a nonuniform equilibrium state the local RDF may involve gradients in the local density, higher powers of
those gradients and higher order space derivatives than the first. This cannot be properly expressed based on a local
value only (SET) but can be expressed as a functional of the local density (RET), that is, as a function of local
density and its gradients (non-local dependence on the field at all points).

33 For monodisperse systems (M = 1), SET and RET yield the same Navier-Stokes equations [79]. However,
Burnett and high-order hydrodynamic equations will not be properly described based on SET. For polydisperse
systems (M > 1), different Navier-Stokes transport coefficients are obtained.
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leads to the constitutive terms as functionals of the single particle velocity distribution function
(see [83]). An exact analytic solution for the single particle distribution function is itself not
practical [9], however, finding even an approximation for the single particle distribution function
is nontrivial. While exact balance equations for the hydrodynamic fields can be obtained, they
are not closed until the constitutive equations are also expressed as functions of the
hydrodynamic fields and their gradients®*. Ultimately a solution for the single particle velocity
distribution function as a functional of the hydrodynamic fields is sought, and this is referred to
as the “normal” solution.®

Generally speaking, two different approaches have been used to solve the kinetic equation for the
single particle velocity distribution function: Grad’s method of moments and its generalizations
[71, 84, 85] or the Chapman-Enskog (CE) expansion [7, 8, 9, 10, 86]. Alternatively, a form of
the single particle velocity distribution may simply be conjectured and then substituted into the
balance equations. Such studies do not involve a direct or systematic analysis of the starting
Kinetic equation. Several of the theories available in MFIX are based on the CE expansion, and
so, the following short discussion focuses on this method. The CE expansion involves a
perturbative expansion about the zeroth order solution to the kinetic equation (e.g., Boltzmann-
Enskog equation). Approximate methods are used to obtain a solution and different simplifying
assumptions can further distinguish the various kinetic theories models available. The solution is
then used to obtain explicit expressions for the constitutive equations in terms of the
hydrodynamic variables.

3.4.3.2.1 Order of Expansion (CE)

As noted above, CE expansion is a method for solution to the Enskog equation (RET) and it
involves a perturbative expansion. More specifically, this expansion is about low Knudsen (Kn )
numbers which is defined as the ratio of the mean free path to the characteristic length scale of
mean-flow gradients (spatial variation in hydrodynamic variable). A low Knudsen number
generally corresponds to small variation in the flow on a scale of the mean free path. Granular
flows are often characterized by lack of separation of length and time scales. In particular,
clusters can produce regions of high mean free paths and large Knudsen number based on
velocity gradients. As a result the appropriateness of a continuum description based on such an
assumption is a topic of debate (e.g., [87, 88, 89] ref). Mitrano et al. [89] demonstrated that
kinetic-theory-based continuum models are accurate even at large Knudsen-numbers. The
expansion order refers to how many terms are used in the perturbative expansion. For reference,
a first order expansion yields the Navier-Stokes equation and the next are the Burnett and super-

34 All space and time dependence of the single particle distribution function is made to occur through functionals of
the hydrodynamic fields.
3 For polydisperse systems, the solution for each component, or phase in MFIX terms, is needed.
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Burnett orders. As indicated, the Navier-Stokes equations can, in principle, be refined by
expanding to high order in Kn, however, the approach is non-trivial (e.g. [81]).3® As noted
earlier, the theories available in MFIX are of Navier-Stokes order.

3.4.3.2.2 Base State (CE)

Several theories a priori assume a form of the zeroth order distribution function in an effort to
simplify the analysis (e.g., [81]). However, this base state should be determined as a solution to
the kinetic equation to zeroth order gradient expansion. For classic molecular systems (i.e.,
purely elastic), the zeroth order corresponds to a state of local equilibrium (Maxwellian
distribution). That is, it is a solution of the pertinent kinetic equation. In contrast, granular
systems are inherently dissipative so that no such “equilibrium” state exists (i.e. energy must be
added to maintain motion). Nonetheless, this same zeroth order solution has been used to derive
theories for granular systems (e.g., [8, 81, 90]). Strictly speaking, such theories are restricted to
nearly elastic systems; they should not only involve an expansion about small Kn, but also about
small degree of inelasticity (1 — e?; where e is the restitution coefficient).*” The zeroth order
solution for inelastic systems is found to correspond to the local homogenous cooling state.
Theories based on the homogenous cooling system as the zeroth-order solution (e.g., [7, 9, 10,
80]), do not have such formal restrictions on inelasticity (see Table 3-4).

3.4.3.2.3 Order of Sonine Polynomial Expansion (CE)

A truncated Sonine polynomial expansion is employed to allow analytic evaluation of the
collision integrals. Generally speaking all applicable theories available in MFIX employ the
lowest, nonzero order, (1%) order of the polynomial expansion. The interested reader is referred
to Dufty and Baskaran [83] for further details and additional references on the topic.

3.4.3.3 Additional Comments and Considerations
3.4.3.3.1 Number of Phases

The earliest theoretical models for granular gases were limited to monodisperse systems (i.e.
systems composed of identical particles) (e.g., [71, 7]). However, most industrially relevant
systems will be polydisperse wherein particles may differ by size, density and/or some other
factor. More recently, kinetic theory based models for polydisperse systems have been
developed with varying degrees of sophistication and rigor. Jenkins and Mancini [86] were one

%Burnett equations also require higher-order boundary conditions, which is an active area of research (see Hrenya
[69]).

37 Many early kinetic theories failed to perform a systematic expansion about both parameters; they assume the
single particle distribution function to be Maxwellian with an added perturbation about small Kn but not about (1 —
e) (for further clarification see Sela and Goldhirsch [78]).
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of the first to develop a complete kinetic-theory based model for a binary granular mixture in a
general flow field. Some recent theories have been derived for a more general system of M
distinct phases (e.g., [8, 9, 10]). A polydisperse kinetic theory is generally largely analogous to a
monodisperse theory, however, several items are worth discussing.

While a monodisperse theory is insufficient for most realistic systems, polydisperse theories
were not available at first. Thus, some monodisperse theories were generalized in an ad hoc
manner so that they can be used for polydisperse systems (e.g., [91]). In MFIX, such a technique
was used to extend the monodisperse theory of Lun et al. [71] to polydisperse systems; the
details of which are discussed in the corresponding 3.4.3.5. As indicated by Mathiesen et al.

[91] the generalized multiphase model should be consistent, that is, the model description for an
arbitrary number of identical phases reduces to the model description for a single phase
(discussed in more detail below). That said, such a generalized monodisperse theory will miss
contributions found in a polydisperse theory that has been systematically developed.

Polydisperse theories are expected to reduce to a monodisperse theory under equivalent limiting
conditions. For example, one expects the same results if the number of phases is equal to one
(M = 1) or if multiple identical phases are used (M > 1 withd,, =d, =d, =+, my,, =m; =
m, = ---) and compared to a monodisperse system of the same total solids volume fraction (¢; =
g, =YM_ e.,). Some polydisperse theories have been found to fail this monodisperse limit
[92]. For example, in the theory of Iddir and Arastoopour [8] the sum of the kinetic stresses of
two identical phases (or components) do not add to that of an equivalent monodisperse system.
To ensure the monodisperse limit is correctly reached an ad hoc modification to this theory was
proposed [92].

3.4.3.3.2 Granular Temperature Definition

Generally speaking the definition of the m*" solids phase granular temperature is given as
follows:

0 1
mo 3

Here, m,,, is the mass of a particle from the m*" solids phase and V,,,; is the peculiar or
fluctuating velocity. The latter is defined as V,,,; = v,,; — Upi, Where v,,; is the instantaneous
velocity of the m" solids phase, and U,,; is the mass-averaged mixture velocity.

My, < V2, > (3-37)

_ Z%: 1Pmém Umi

Uny: =
m Z%=1 Pmém

(3-38)

Here it is worth noting that p,,&,, = m,,n,,, Where n,, is the m‘* phase number density. The
other quantities are as before. For monodisperse theories mass is often not included in the
definition of granular temperature (e.g., [71]), in which case, granular temperature has
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dimensions of velocity squared. Furthermore, not all polydisperse kinetic theories employ this
definition of granular temperature. For example, Iddir and Arastoopour [8] define the peculiar
velocity relative to the average phase velocity (U,,;) instead of the mass-averaged mixture
velocity (U,;). For reference see Table 3-4.

3.4.3.3.3 Equipartition of Energy

Equipartition of energy assumes the granular temperature of each phase is equal (@ = 0, =

0, = ---). While this assumption has been used in the derivation of several early polydisperse
kinetic theories [86, 85], it is not used by either of the polydisperse theories available in MFIX.3®
Such an assumption would restrict the validity of the theory to nearly elastic systems and
systems without mass disparities (i.e., unlike particles have equal masses).*°

3.4.3.3.4 Single Particle Velocity Distribution Function

Evaluation of the collision integrals is challenging. To ease the calculations, the form of the
single particle velocity distribution has often been assumed to be Maxwellian. This assumption
is only valid for perfectly elastic systems in equilibrium. Most of the theories available in MFIX
incorporate a non-Maxwellian distribution. However, the polydisperse theory of Iddir and
Arastoopour [8] assumes a Maxwellian distribution when evaluating the collision integrals
between unlike particles and a non-Maxwellian distribution to evaluate collision integrals
between like particles.

3.4.3.3.5 Hydrodynamic Variables

In developing a hydrodynamic description, the relevant hydrodynamic fields are first identified
and the subsequent balance equations are then derived. These equations reflect the macroscopic
description corresponding to the behavior on the microscopic scale. The selection of these fields
is not necessarily clear and their choice will impact that resulting set of balance equations.
Ideally, these fields have long time and length scales that exceed those of the transient
microscopic dynamics [83, 10]. A locally conserved quantity will demonstrate this property; it
will approach a constant as the system becomes uniform. Thus, for an elastic gas, species
number densities (mass), total momentum (velocity) and total energy density (temperature) are
selected as the hydrodynamic fields. Note that the number density is related to the solids volume
fraction as follows: n,, = ¢,,,/V,, Where V,, is the volume of a particle from the m*" solids

38 The notion of equipartition of energy is not relevant when considering the ad-hoc modifications to extend the
monodisperse kinetic theory of Lun et al. [68] to polydisperse systems.

39 The theory of Garzo et al. [9, 10] use ©,, as a hydrodynamic variable but allows for a non-equipartition of energy.
The granular temperature of each phase (0,,,) are obtained through solution of the cooling rate as opposed to solving
a conservation balance equation.
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phase (i.e., V,,, = md3,/6 or equivalently n,,m,, = &,,pm Where m,, is the mass of a particle
from the m*" solids phase). In a granular gas, the granular energy is not conserved (recall
section 3.4.3). However, the cooling rate may be slow compared to the microscale dynamics and
therefore granular energy may be considered a relevant slow variable.

For monodisperse systems, number density, average velocity and granular temperature (n,, Uy; ,
0, respectively, here m = 1 for M = 1) become the set of hydrodynamic variables. For
polydisperse kinetic systems, however, various sets of hydrodynamic variables have been used as
indicated in Table 3-4. Namely, Iddir and Arastoopour [8] utilize the number density, average
velocity and granular temperature associated with each phase present (n,,,, U,,;, and 0,,,
respectively), whereas Garzo et al. [10] use the phasic number density, mixture average velocity,
and mixture granular temperature (n,,, Uy, Oy, respectively, where the subscript M refers to a
mixture quantity as opposed to that associated with a specific phase). This choice of a mixture
granular temperature (©,,) is observed to be the more appropriate [10, 72].

In regard to polydisperse theories, the choice of hydrodynamic variables will not only influence
the form of the resulting balance equations but also dictate the total number of balance equations
that are required to describe the system (see [72] for details). Namely, a theory using n,,,, U,
and ©,,, will have 3M differential balances (M mass balances, M momentum balances and M
granular energy balances), whereas a theory using n,,, Uy;, and ©,, will have M+2 balances (M
mass balances, a mixture momentum balance and a mixture granular energy balance). That said,
the one polydisperse theory available in MFIX which uses this latter set of hydrodynamic
variables [10] involves closures which are largely implicit in form as opposed to explicit. That
is, for a given values of the hydrodynamic variables a set of algebraic equations must be solved
to find the constitutive quantity. Thus, while the number of balance equations may be less,
additional computational effort is required to determine the corresponding constitutive quantities.

3.4.3.3.6 Radial Distribution Function at Contact

Recall that the Enskog equation employs a factor that encompasses the spatial correlations
arising from volume exclusion effects (i.e. finite volume) which can be related to the radial
distribution function at contact [82, 93]. In the revised Enksog theory (RET), this factor is
treated as a functional of species densities, while in the “standard” Enskog theory (SET), this
factor is treated as a function of species densities at a single position (i.e., a constant value) [83].
The latter results in equations that are inconsistent with irreversible thermodynamics (see section
3.4.3.1 for more detail).
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In the dilute limit, the radial distribution function (RDF) at contact has a value of one since no
spatial correlations exist.*° The value of the RDF then increases with increases in concentration
to reflect the development of spatial correlations due to volume exclusion effects.

A number of different RDF at contact have been proposed and several area available in MFIX as
listed in Table 3-5. The radial distribution function can be obtained experimentally, numerically
from computer simulation techniques, or theoretically based on an appropriate intermolecular
potential [94, 95].%* Of those listed, Lebowitz [96] provides the earliest contribution and it is
based on a generalization of the Percus-Yevick integral equation for the radial distribution
function of a hard sphere fluid to that of a general mixture. An explicit relation for the radial
distribution function is given. Carnahan and Starling [97] provided an equation of state (EOS)
for a hard sphere fluid (monodisperse), which can be used to construct an expression for the
hard-sphere radial distribution function [98, 99]. The radial distribution function has been
employed in numerous works describing the behavior of hard spheres (e.g., [70, 71]) The
equation of state was also generalized to mixtures [99, 100], the latter whom also presents the
corresponding radial distribution function.

The RDF/EOS cited above [96, 97, 99, 100] yield a finite value as the solids volume fraction
approaches that of maximum close packing diverging only when the solids volume fraction
approaches one. However, from the molecular dynamic simulation data reported by Alder and
Wainright [101] the RDF should diverge as the solids volume approaches close packing because
particles are in close contact [46, 102, 103]. Alternative expressions have been proposed that
tend to infinity at close packing, such as, those proposed by Iddir and Arstoopour [8] and van
Wachem et al. [46]. These authors modify the expressions of Lebowitz and Mansoori/Boublick,
respectively, by incorporating a maximum volume fraction at close packing (e*%%).

A few additional items are worth noting. Estimating the value of £*** used in several of the
above referenced expressions is an important problem. As discussed in section 3.4.2.1, e***
may be specified as a constant or estimated using correlations that are available to describe the
packing of polydisperse systems. As evident, for polydisperse systems the radial distribution
functions depends on the volume fraction and diameter of each phase (&, and d,,, respectively),
while for monodisperse systems the radial distribution function depends only on the volume

40 Note that simply replacing the RDF with a value of 1 in the kinetic equation does not result in the Boltzmann
equation; the Enskog equation also evaluates the distribution functions at different locations. The latter results in
non-zero collisional transfer of quantities that are conserved during collision (e.g., momentum) ( [80, 69]).

4 Principles from statistical mechanics may be used to estimate the equation of state from a suitable intermolecular
potential model but the calculations quickly become complex. A different approach to developing the equation of
state involves the introduction of the radial distribution function. The radial distribution function is directly related
to the interaction potential, but computing the former from the latter is still a non-trivial task. Nevertheless, the
equation of state and the radial distribution function are related. Knowing the RDF, the equation of state can be
derived in two different ways, that is, one can obtain the corresponding equation of state through the virial equation
or through the use of the isothermal compressibility relation [93, 91, 92].
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fraction. Finally, simply swapping one RDF expression for another in a given polydisperse
kinetic theory may not be appropriate. Instead, the diffusion force should be re-evaluated as it is
derived from the expression used for the RDF at contact (greater see Hrenya [72]). Here it is
worth noting that SET and RET result in different expressions for the diffusion force due to their
different treatment for the RDF at contact (i.e., as a function or functional) (e.g., [104, 105]).

Table 3-5. Radial distribution functions at contact available in MFIX

Reference Expression*
Carnahan & Starling [97]? _ 2-—¢p
gmm - 2(1 _ 85)3
or equivalently
1 3 & 1 &2
Imm =G T 20— 2( £
Lebowitz [96] 1 3 &  dpd
Imi = +=
(1 - gs) 2 (1 - 85)2 dml
where
dy + d,
dml - mz
1 &
=)0
p=1_"
Mansoori et al [100] and _ 1 N § & dnd;
Boublick [99] Gmi = (1—g) 2(1—¢e9)? dpy
N 1 &2 (dmdl>
2 (1 — 55)3 dml
Iddir and Arastoopour [8] _ 1 3 '3 dmd,
(modified Lebowitz [96]) 9m1 = e\ 2 e N d
(1-g) 2(1- i)
van Wachem et al. [46] 3 1 3 § dmd,
(modified Mansoori et al. Gm = & *t3 e \2 dom
[100]) ( _e;"“"> (1 };W)
1 2 dmd;\
+= 5 - ( m l)
2 E dml
(1 - o)
SS

1)  Hereitis convenient to introduce the notation &, which represents the total volume fraction of all dispersed M phases, or
total solids volume fraction: &, = ¥M_, ..
2)  While this expression is presented in terms of the m*" phase, it is intended for a monodisperse fluid of hard spheres so that

& = &y
3.4.3.3.7 Corrections In Dilute Limit

Early research on an infinite shearing system of particles (i.e., unbounded) observed the shear
stress asymptotes to infinity as the solids volume fraction approaches zero [106, 107]. This was
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observed in computer simulation data and in those theoretical predictions based on a kinetic
theory treatment which included collisional and kinetic contributions.*? The physical reasoning
for this behavior is described by Campbell [107]; in short, temperature dissipation decays faster
than temperature production resulting in infinite temperature and therefore infinite stress..
Nevertheless, the author questions the plausibility of the ¢, — 0 asymptote in any realistic
application and that unaccounted dissipation mechanisms may forestall such behavior as these
works only accommaodate dissipation due to particle-particle collisions. In reality, particle-wall
collisions and/or aerodynamic forces on the particles should also act to dampen the granular
temperature independently of the inter-particle collision rate.

Sinclair and Jackson [73] and Louge et al. [108] proposed a heuristic correction to shear stress to
ensure it vanishes as the volume fraction approaches zero. More specifically, the modification
involved an adjustment to the calculation of shear viscosity and thermal conductivity. They
attributed the problem to the calculation of the mean free path of the particle which tended
toward infinity as g = 0. The modification constrained the mean free path by a characteristic
dimension of the physical system. Namely as the solids volume fraction becomes small, particle-
wall collisions begin to play an increasing role. This is consistent with the idea that all wall-
bounded flows contain a Knudsen layer adjacent to the wall where particle-wall collisions as
opposed to particle-particle collisions dictate the behavior [109, 110]. That said, particle-particle
collisions are still important to consider in these dilute systems and may not necessarily be
ignored [111, 112]. The applied correction is a rough attempt to capture a transition to Knudsen
flow. If the Knudsen layer is small then the effects of the Knudsen layer need not be
incorporated (a continuum regime can be expected; see section 3.4.3.2.1). However, at higher
Knudsen numbers a more rigorous mathematical description may become necessary.

In the context of gas-solid flows, as is discussed in more depth below, Balzar et al. [113]
provides insight using through three characteristic time scales: inter-particle collision time,
particle relaxation time due to drag, and time scale of fluid turbulence as viewed by the particle.
For a granular system without an interstitial fluid phase the characteristic time scale is that of the
inter-particle collision time (as discussed above). However, the fluid introduces the latter two
time scales. When the interparticle collision time is large (as can be expected in dilute flows),
the gas may be expected to play a dominate role in the fluctuating motion of particles and may
shorten the particle mean free path.

3.4.3.3.8 Interstitial Fluid Effects

Up to now the discussion has focused on developing a hydrodynamic description for a fluid of
particles. Other important effects, such as, an interstitial fluid phase (e.g., gas) were not

42 If the kinetic contribution is ignored then the predictions would tend to zero as solids volume fraction goes to zero
[43].
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included. When the fluid phase does impact the movement of the particles, then the systems are
referred to as fluid-solids (or multiphase or two-phase) flows. Efforts to incorporate the effects
of the fluid into the solids phase hydrodynamic description have advanced over time. Some of
these advancements are discussed briefly here given their relevance to several options available
in MFIX-TFM. The interested reader is referred to Hrenya [72] and Garzo et al. [11] for
additional discussion, and to the original sources for greater detail.

In early efforts to describe two phase flows the effects of the fluid were simply described through
the addition of a mean drag force (given simply by a mean drag coefficient times a mean relative
velocity difference)* into the momentum balance (see sections 3.3.3.1 and 3.4.4.2) (e.g., [73]).
A refinement of this implementation considered the fluctuation in particle velocity in the
interaction (drag) force [114]. This treatment leads to an additional sink term in the granular
energy balance that has been referred to as dissipation due to viscous drag (i.e., viscous
dampening). Incorporation of the effects of the local fluid fluctuation on the particle velocity in
the interaction force, a further refinement, was also considered during the derivation of the
granular energy balance. This disturbance results in an additional source that has been referred
to as production due to slip. These terms are also found in the granular energy equations
presented by Louge [108] and Gidaspow [74]. Sangani et al. [115] proposed a more
comprehensive expression for the additional sink due to viscous effects of the interstitial gas, and
similarly, Koch and Sangani [116] for the additional source.

While these aforementioned treatments lead to modification of the balance equation they did not
consider how the incorporating such effects might influence the constitutive relations for the
solids phases. Efforts in this regard have also been undertaken with varying levels of rigor. For
example, Ma & Ahamdi [117] and Balzer, Boelle & Simonin [113] accounted for the effects of
velocity fluctuations in the gas phase arising from fluid-phase turbulence into the solids phase
description.

One of the limitations of these earlier works to incorporate gas and/or solids phase fluctuations is
that they tend to maintain that the same basic form of the fluid interaction force (drag coefficient
times a relative velocity difference) in terms of mean hydrodynamic fields also holds in terms of
local fluctuating (instantaneous) quantities. In contrast, Garzo et al. [11] employ a more
generalized model for the interaction force to cover a wide range of conditions. This model is
then used to derive the solids phase balance equations and constitutive relations. Thus, gas-
phase effects are incorporated more systematically on the most fundamental level through its
incorporation in the starting kinetic equation (see section 3.4.3.1)

43 Here mean refers to the value associated with the faraway fluid field as opposed to the instantaneous or fluctuating
value.
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3.4.3.4 Summary

As discussed earlier and summarized in Table 3-4, there are several kinetic theory options
available in MFIX-TFM. Monodisperse kinetic theory models include those of Lun et al. [71],
Garzo and Dufty [7], Garzo et al. [11]. In MFIX-TFM, the theory of Lun et al. [71] has been
extended to describe polydisperse systems. Also available are the theory of Simonin [78] and
Balzer et al. [113] and the theory of Cao and Ahmadi [77]. Both of these treatments include
kinetic theory stresses as well as gas-phase turbulence models that account for the exchange of
turbulence energy between the gas and solids phases (see section 3.4.6). Similar to the
implementation of Lun et al. [71] these theories have been extended for polydisperse systems.

Two kinetic theories developed specifically for describing poly-dispersed systems have been
implemented in MFIX-TFM (lddir and Arastoopour [8]; and Garzo et al, [9, 10]). See Hrenya
[72] for a critical comparison of kinetic theories for poly-dispersed systems. Benyahia [92] also
compared four different kinetic theories for poly-dispersed systems in a simple shear flow setup,
and of those, found Iddir and Arastoopour [8] theory to provide the most accurate predictions.

An examination of the MFIX implementation of the Lun et al. [71] kinetic theory follows. A
similar analysis of each kinetic theory model available in MFIX is not included here at this time.

3.4.3.5 Lunetal. (1984) [71]

In this section the monodisperse kinetic theory of Lun et al. [71] as implemented into MFIX-
TFM is described. It is worth noting that the implementation of this theory in MFIX includes a
number of ad hoc modifications to extend the theory beyond its original scope. The
modifications target generalizing the monodisperse description for polydispersity and including
effects of the fluid phase.

The monodisperse model is generalized and made consistent for M number of solids phases to
enable description of realistic industrial systems characterized by particle size/density
distributions (see section 3.4.3.3.1). To accommodate polydispersity, solids specific quantities
(e.g., diameter, density, volume fraction) in the theory of Lun et al. are now denoted with
subscript m to indicate the specific m*" solids phase. And occurrences of ¢,,,g, are generally
replaced with Y12, &,g,,; to maintain consistency.

Incorporating the effects of the fluid phases is accomplished in two ways (see section 3.4.3.3.8).
First, the viscosity and granular conductivity are modified as indicated in Agrawal et al. [76].
Second, two additional terms are included in the granular energy balance, discussed below, that
describes the effects of velocity fluctuations of the gas and those of the individual particles. The
result is a term that describes production due to gas-particle slip and another to describe
dissipation due to viscous damping. These modifications will be highlighted as they are
introduced below.
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The solids pressure contribution from the kinetic theory is described as follows:

M
O |1+ 41 ) 21y
=1

For convenience the total stress tensor introduced earlier in equation 3-19 is re-written here in
terms of its kinetic contribution:

(3-39)

kin _
Bn" = €mpm

km

Tmij = Zﬂkmsmlj + ull;;?Dmkkaij (3_40)

As before, uki™ is the kinetic contribution to viscosity, uX" is the kinetic contribution to bulk
viscosity, Sy,;; is the deviatoric rate-of-strain tensor, and D,y,;; is the rate-of-strain tensor. The
solids viscosities arising from Kinetic theory are represented by the equations below:
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The leading multiplicative factor, %(2 + @), that appears in the kinetic contribution to the mt"

solids phase viscosity is not in the work of Lun et al. As described by Johnson and Jackson [48]
it is effectively an adjustable parameter in which « is a constant of order unity. The quantity u;,
also represents a modification to that of Lun et al. and incorporates the role of the interstitial
fluid into the granular viscosity as indicated by Agrawal [76]. Here, the term S, represents the
drag coefficient as discussed in section 3.4.4.2. Inelasticity is introduced through the coefficient
of restitution e,,,,,. Finally, ©,, is the granular temperature or pseudo-thermal energy of the m*"
phase, which has dimensions of the square of velocity (see section 3.4.3.3.2 and for additional
discussion see section 3.4.3 along with Table 3-4). Like traditional thermal energy this quantity
has its own balance equation (see sections 3.4.3.3.5).
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In MFIX-TFM, the monodisperse theory of Lun et al. is re-written in terms of each solids phase.
So, instead of a single granular energy equation describing the system, a granular energy
associated with each solids phase emerges. Here, the m*" phase granular temperature is
calculated from the following granular energy balance equation:

3 [aem a(é)ml 0 < 6®m> Ui

> EmPm |5+ mja—xj = Kma_xj +Tmija—xj_]m+nm (3-46)

The first term on the right-hand side stands for the granular temperature diffusion or conduction,
the second term represents production by shear, the third term denotes the collisional dissipation
and the final term encompasses the effects of gas-particle slip and viscous dissipation. Closures
for these are presented below.

The granular conductivity, associated with the conduction of granular temperature, is
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Like uy, above, k;, represents a modification to that of Lun et al. for the effects of the interstitial
fluid [76]. Note that the original expression for the granular heat flux also contains an additional
term proportional to the gradient in the number density of the solids phase (the Dufour effect).
This quantity is, by default, ignored in the MFIX-TFM implementation of this theory.

The expression for the collisional dissipation term is

M
Jm = =1L = Mempm (Z elgml> ck (3-50)

=1
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The final term in equation (3-46) incorporates the effects of the interstitial fluid and includes
production of granular energy due to gas-particle slip and dissipation by viscous damping. These
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two terms are not present in purely granular systems and they serve as a modification to that of
Lun etal. Koch [114] developed expressions for both viscous dissipation and production due to
gas particle slip for dilute systems. Louge et al. [108], and later Gidaspow [74], present
equivalent versions of the former, which is given here by the first term of equation (3-51). This
model for viscous dissipation is extended in a later work [115]. The second term in equation (3-
50) is also effectively given by Koch [114], but without the quantity g,,.., appearing in the
denominator [76]. Koch and Sangani [116] later extend their source term due to gas particle
interactions. For further discussion see section 3.4.3.3.8.

81emu2|Uy — Up|”
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As indicated previously, in MFIX-TFM the monodisperse theory of Lun et al. is generalized as a
polydisperse theory. In addition to assuring consistency (see section 3.4.3.3.1), an additional
term is also included to describe the momentum transfer between particles of different phases.
Here it should be noted that when two particles of a given phase collide, no overall momentum
change occurs for that phase (overall momentum is conserved during a collision). In this case,
however, the single momentum balance has been generalized and written for each distinct phase.
So a gain in momentum for one phase and a loss in that of the other may occur, while the net
momentum change for both combined is zero. This new term, and how it is closed, is described
in more detail in section 3.4.5.

3.4.3.5.1 Algebraic

Rather than solving the complete granular energy balance given in equation (3-46), a simplified
algebraic expression for the granular energy has also been proposed (see [55] and later in [56]).
In this approach, granular energy is assumed to dissipate locally, hence convection and diffusion
are neglected. Assuming steady state, the rate of production is balanced by dissipation and an
algebraic form of the energy equation is obtained:
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This approach is considered reasonable in dense flow regions wherein granular energy is
expected to be generated and dissipated locally (transport is negligible). For example,
researchers have used this in their simulation of bubbling beds (e.g., [118, 119]). The algebraic
form may reduce the computational cost of simulations as faster convergence is obtained [119,
46].

(3-56)

3.4.4 Momentum Transfer Between the Fluid and mt" Phase

As indicated in section 3.3.3.1, §,4; and S,,; are redefined for convenience and to distinguish the
contribution due to interphase momentum transfer between the gas and m** phase:

M
‘Sgi = - z Igmi + ‘Sgi, (3'5)
m

Smi = Igmi + Smi, (3-6)

Here I.,; represents the contribution due to interphase momentum transfer between the gas and
m®" phase, M represents the number of additional phases beyond the fluid phase and Sgi’ and

S’ are general gas and mt" phase momentum source terms excluding that due to the interphase
momentum transfer between the gas and m‘" phase, respectively.

Several different mechanisms for gas-solids interphase momentum transfer have been identified
from studies of the motion of a single particle in a fluid [120]: drag force, caused by velocity
differences between the phases; buoyancy, caused by the fluid pressure gradient; virtual or added
mass effect, caused by relative acceleration between phases; Saffman lift force, caused by fluid-
velocity gradients; Magnus force, caused by particle spin; Basset force, originating from the
history of the particle’s motion through the fluid; Faxen force, a correction applied to the virtual
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mass effect; and forces caused by temperature and density gradients. The mechanisms and
formulation of momentum transfer have been reviewed in detail [121, 122].

3.4.4.1 Buoyancy

The buoyancy force is the result of the fluid stress acting on the m‘" phase [19]. This force is
generally considered as the result of the vertical pressure gradient that is induced by the
gravitational body force although other contributions to the pressure gradient may occur.
Accordingly, different mathematical interpretations of the buoyancy force are possible [19, 39].
In MFIX the default form of the buoyancy force is defined as

oF,
Igmi,Bouy = _gma_xi (3-57)

This form leads to the multiphase momentum equations presented in 3-8 and 3-9. It has been
termed Model A [123], and it leads to an ill-posed set of equations in a canonical problem
involving simplified two-phase flow. In particular, 1D incompressible, inviscid-flow equations
without virtual-mass effects are ill-posed as an initial value problem [36]. The ill-posed nature
prompted researchers to develop modifications to the momentum equations that ensure a well-
posed model for this simplified case. One approach has been to simply remove the gas pressure
gradient term in the m*" phase momentum equation [123], which those authors refer to as Model
B. However, such a formulation ignores buoyancy. Alternatively, buoyancy may be accounted
for as

Igmi,Bouy = —&mPgyYi (3-58)
which results in the body force terms appearing as p,g; and sm(pm - pg) g; in the gas and m®"
phase momentum equations, respectively. This form of the momentum equations is referred to
as Model B in MFIX, but it has its own limitations [124]. While the Model B formulation is
available in MFIX, the Model A formulation is generally used in practice and is seen as a good
approximation of the well-posed model.

Jackson [39] presents different definitions of the buoyancy force along with a discussion on the
remaining contributions in the interphase interaction term and the corresponding form of the
governing equations for gas solids systems. Two of those definitions are discussed here for
context and comparison with the above formulations. The first formulation was presented earlier
(see equation 3-10) but is repeated here for convenience:

/ 0k _ @) (3-59)

gmi,Bouy m
< axl- ax]

This form leads to the multiphase momentum equations presented in 3-11 and 3-12, which are
available in MFIX. As evident, this definition is similar to the MFIX default shown in equation
3-57 that led to the momentum equations designated Model A. The primary difference is the
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appearance of the gas phase stress tensor in Jackson’s definition (see [19, 39] for details). The
second formulation [39] is given as

aUgi 6Ugi ]
Igmi,Bouy = —Pgém (.gi - <? + Ugja—xj (3-60)

This second formulation is not currently available in MFIX. However, it is worth noting that this
definition is similar to MFIX’s alternative definition shown in equation 3-58 that led to the
momentum equations designated Model B. The difference is that Jackson’s form is re-written to
accommodate acceleration.

Regardless of the formulation for the buoyancy force, the value of the total interaction force
(Igmi) should remain the same. That is, if one is to consider decomposing the interface
interaction force into the sum of a buoyancy force and all remaining contributions, then when
different interpretations of the buoyancy force are used the latter terms should be formulated
such that the total interface interaction force remains the same. Using the two different
interpretations of buoyancy discussed above, Jackson shows that the remaining interaction terms
must be related by a factor of void fraction (g4). For example, consider decomposing the
interphase transfer term into buoyancy and drag due to relative velocity differences (see below).
To ensure that the total interaction force is the same, then the drag force coefficients are related
as: Bgmp = Bgm.al€g- Here Bgm 4 cOrresponds to the drag coefficient in the total interaction
force when the first formulation for buoyancy is used (equation 3-59), while S, 5 corresponds
to the drag coefficient when the second formulation for buoyancy is used (equation 3-60). This
same practice is used in the MFIX implementation of Model A and Model B. These different
definitions and their relation are also discussed by Van der Hoef [125].

The buoyancy force is added to the gas and mt" phase momentum balances (equation 3-3 and
3-4, respectively) through their corresponding general source terms Sg; and S,,,; as a component
of the interphase momentum transfer term (see equations 3-5 and 3-6).

3.4.4.2 Drag Force

The drag force results from relative motion between the phases. The gas-solids drag force
encompasses skin friction and form drag arising from small scale distortions of the fluid
streamlines in the neighborhood of the particle [19]. In MFIX, the gas-solids drag force is
assumed to be a function of the difference in velocities,

Igmi,Drag = .Bgm(Ugi - Umi) (3-61)
where B, is the drag coefficient. Drag coefficients available in MFIX are presented in
Appendix B. Their presented form assumes Model A form of the momentum equations,
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otherwise division by void fraction is necessary for Model B (for further detail see section
3.4.4.1).

The drag force is added to the gas and solids phase momentum balances (equation 3-3 and 3-4,
respectively) through their corresponding general source terms S,; and S,,,; as a component of
the gas-solids interphase momentum transfer term (see equations 3-5 and 3-6).

3.4.4.3 Virtual (Added) Mass Effect

The added (virtual) mass force results from relative acceleration and is the force required to
displace the fluid surrounding the accelerating body (e.g. particle) [122]. As noted by Anderson
and Jackson [19], the relative acceleration term, like the buoyancy force, is not necessarily a
well-defined quantity. As a result, different but acceptable definitions are possible. In MFIX,
the virtual mass force is defined as follows.

oU; oU,; 0U i 0Up,;
s = Comimeoty | T2+ Uy o2 ) = (Tt vy T | (3-62)
1

where C,,,, is the virtual mass coefficient defined with a constant value C,,,, = 5.44 When the

particle has a lower density compared to the fluid, the virtual mass force generally becomes
relatively important to the corresponding solids momentum balance [122]. In MFIX, it acts to
increase the inertia of the dispersed phase, which generally stabilizes numerical simulation of
bubbly flows.*® For gas-solids flows, however, the added mass term is generally negligible.

The virtual mass force is added to the gas and m*" phase momentum balances (equation 3-3 and
3-4, respectively) through their corresponding general source terms S; and S,,,; as a component
of the gas-solids interphase momentum transfer term (see equations 3-5 and 3-6, respectively).
In MFIX, the added mass force may only be invoked between the gas phase and a single user-
designated dispersed phase M. No additional phases are involved in the calculation.

3.4.5 Momentum Transfer Between the mt" and I*" Dispersed Phases

In section 3.3.3.1, §,; and S,,; are redefined to distinguish the contribution(s) due to interphase
momentum transfer between the gas and m" phase (see equations 3-5 and 3-6). For systems
containing more than one dispersed phase (i.e. M > 1), interphase momentum transfer between
M dispersed phase may also arise. This contribution is included in the term §,,,; and, like
interphase momentum transfer between the gas and m‘" phase, a constitutive closure is needed.

4 For a single perfect sphere accelerating through a fluid medium a virtual mass coefficient of 1/2 can be derived.
%5 In this scenario, the fluid phase is treated as liquid while the solids phase (dispersed phase) becomes a gaseous
phase.
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As with interphase momentum transfer between the gas and m®" phase, different mechanisms
may contribute to the interphase momentum transfer between the dispersed phases. For
example, drag arises due to relative motion between the mt" and [*" dispersed phases and is
represented in MFIX-TFM as

Smi,Drag = z le(Uli - Umi) (3'63)
m=1m=l
where F,,,; is the drag coefficient. The force is added to the mt" phase momentum equation
(equation 3-4) through the general source term, S,,;.

This term acts to hinder relative motion between phases (e.g. inhibit segregation) and has been
found important for modeling solids-solids segregation [126]. Recall granular flows are often
classified into frictional and kinetic regimes as discussed in section 3.4.1. In terms of the kinetic
regime, this term arises due to particle-particle collisions and so is referred to as the collisional
momentum source. Note that when two particles of a given phase collide, no momentum change
occurs for that phase since total momentum is conserved during a collision. However, when
particles of different phases collide, a gain in momentum for one phase and a loss in that of the
other may occur such that the net momentum change (for both combined) is zero. Kinetic theory
based models for polydisperse solids provide for this term inherently, and so, such descriptions
are not discussed here, but are instead included in context of the individual kinetic theory as
appropriate. In the case of a generalized multiphase model based on monodisperse theory,
however, such a term must be provided.

Expressions for solids-solids drag have been determined experimentally and theoretically [127,
128, 129, 130, 131]. Syamlal [129] used a simplified version of kinetic theory to derive an
expression for the drag coefficient F,,,;:

i w2 (d, +d))?
F ml — 3(1 + emm) < + ¢ f 8 ) Zﬂ(pmn;?n + Pzd?) pmplgmllumi - Ulil (3-64)

Here C; represents the coefficient of friction between particles of phase m and 1.

Gera et al. [132] later modified this expression by incorporating a “hindrance effect” caused by
particles in enduring contact, where S, is an adjustable parameter and £, represents the close-
packed solids pressure (see section 3.4.2):

/s 77,'2 (d + dl)Z
le - 3(1 + emm) < + Cf 3 ) Zﬂ(pmn;?n + Pzd?) pmplgmllUmi - Ulil + Scoech (3_65)

Owoyemi et al. [126] examined the influence of several different models for the solids-solids
drag relation on mixing and segregation in a bi-disperse fluidized bed. For the different models
examined they observed similar results in regard to overall mixing, overall segregation, bubbling
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dynamics and bulk properties (average bed height and bed voidage). However, removal of the
term resulted in excessive segregation in contrast to experiment observation.

MFIX-TFM also has several polydisperse kinetic theory based models with their own solids-
solids interphase momentum transfer term that includes solids-solids drag due to relative velocity
(e.g., Iddir and Arastoopour [8]). If one of the polydisperse theories is invoked then the above
formula is changed accordingly.

3.4.6 Turbulence Effects

As mentioned in section 2.5.4 on turbulence, a modified k-e theory [4] is available in MFIX to
model the influence of gas phase turbulence in multiphase gas-solids flow. This modified theory
is based on the formulations of Simonin [78] and Balzer [79]. Similarly, another modified k-¢
theory description is available based on the work of Cao and Ahmadi [77]. Both efforts involve
some kinetic theory formalism in their derivation, but as indicated in [4], they generally do not
distinguish kinetic theory contributions (see sections 3.4.3.3.7 and 3.4.3.3.8 in section 3.4.3)
from those of turbulence. As discussed in [133] the lack of distinction between turbulent Kinetic
energy and granular energy is erroneous and will lead to an incorrect or incomplete formulation
for multiphase turbulence.

In general, the modified version(s) in MFIX-TFM involve the same k-e equations as those for
single phase except for the inclusion of additional exchange terms. In particular, the Simonin-
based implementation incorporates a new source term to both the kinetic energy and dissipation
transport equations, whereas the Ahmadi based implementation only includes new source term to
the kinetic energy transport equation. For greater detail on the development of either of these
theories the reader is referred back to the original sources as well as those of Ma & Ahamdi

[117, 134, 135] and Balzer et al. [113].

3.4.7 Diffusive Mass Transfer

Species mass flux through the m" solids phase is based on a form of Fick’s first law of diffusion
[27] (817.1, pp 514-520):

0 Xmn
Fmj = PmDmn—_— (3-66)
mj m~mn axj

where D,,,,, is the nt"* solids phase species diffusion coefficient described in section 3.5.7 and the
other quantities are defined as before.

3.4.8 Conductive Heat Transfer

Similar to that of the fluid phase (section 2.5.6), the conductive heat flux in the m®" phase (first
term on the RHS of equation (3-15) is assumed to follow a standard Fourier Law [27] form:
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9T (3-67)
q = —K —_— -
mj m ax]
where k., is the m*" phase thermal conductivity described in section 3.5.6. For a solids phase
representing a collection of particles, k,, cannot simply be considered the material conductivity
of the particle itself, but instead represents an effective m*" phase solids conductivity [136, 137]

as described in section 3.5.6.
3.4.9 Radiative Heat Transfer

Radiative heat transfer is modeled by the simple relation,
Sm,rad = VYRm (T}gm - TT‘TI-l)' (3'68)

where Tg,,, and yg,, are the radiative temperature and heat transfer coefficient. By default radiative
heat transfer is not considered, that is, Tg,, and yx,, are taken as zero. The radiation source term
is added in the m*" phase internal energy equation (3-15) through the general source term, S,,,.

3.4.10 Convective Heat Transfer

Interphase convective heat transfer in MFIX ¢ is assumed to be a function of the temperature
difference,

Sm,conv = ng(Tm - Tg) (3-69)
where y,,,is the coefficient of heat transfer between the gas phase and the mt" phase.
Convective heat transfer is added to the gas phase internal energy equation (2-6) through the
general source term, S;, and subtracted from the m*" phase internal energy equation (3-15)
through the general source term, S,,,.

The interphase heat transfer coefficient, y,,, includes a correction in the heat transfer caused by

interphase mass transfer. This correction follows from a film theory analysis presented in reference
(See 821.5 Transfer Coefficients at High Mass-Transfer Rates: Film Theory, p658-668 [31]):

_ Cpg Rgm
oo () -1

agm

%6 Interphase convective heat transfer refers strictly to heat transfer between the gas phase and m disperse phases.
MFIX-TFM does not contain any sub-models that account for the direct transfer of heat between separate
continuous solids phases.
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Here, ng represents an intrinsic, or uncorrected, heat transfer coefficient. As is frequently done
in more complex heat transfer problems, ygy, is determined using a suitable correlation for the
Nusselt number, Nu:

6e,K -
Yo = dr;ng Nu (3-71)

0
. . . . d
Here, the dimensionless Nusselt number is defined as Nu = y’fz‘—m.‘” Nusselt number
g

correlations available in MFIX are presented in Appendix C. By default the correlation of Gunn
[138] is used in equation (3-71). This correlation was developed to describe heat transfer to

particles in fixed and fluidized beds over varying Reynolds number and void fraction. Finally, it
is worth pointing out that in the limit of zero interphase mass transfer (R,,, — 0) equation (3-71)

reduces to intrinsic heat transfer (Vgm = vgm)-

3.4.11 Chemical Reaction Source Terms

Source terms associated with chemical reactions are zero by default in MFIX. To incorporate
chemical reactions, users must define chemical equations (stoichiometry) in the input deck in
addition to specifying reaction rates via user-defined functions*®. Subsequent subsections present
how user-provided information is used to calculate source terms that contribute to the species
mass and internal energy conservation equations.

3.4.11.1 Production and Consumption of Species Mass

Change in species mass is evaluated identically for homogeneous and heterogeneous chemical
reactions. Specifically, for the pt" reaction, let R, be the user-defined reaction rate,* and Amnp
be the signed stoichiometric coefficient of the m*" phase’s nt"* species. The sign of the
stoichiometric coefficient is positive for products (i.e., the p** reaction produces the mt" phase’s
nt" species) and negative for reactants (the mt" phase’s nt" species is consumed by the pt*
reaction). Then, the total rate of change of species mass per unit volume for the p" reaction is
given by

47 The additional factor of 6¢,,/d,, corresponds to the specific area or surface area per unit volume for a bed of
uniform spheres. It provides the conversion from heat flux to the heat transfer rate per unit volume. Therefore, the
implementation implies a system wherein the mt" phase is comprised of dispersed spheres.

48 Details on how to specify chemical equations and reaction rates is provided in the MFIX User Guide available
online at https://mfix.netl.doe.gov/doc/mfix/latest

49 The unit systems adopted in MFIX are not consistent with the general definitions, and as such, MFIX uses units of
kmole/kg for molecular weight in Sl and mole/gram in CGS units. A consequence of these units is that user-
defined reaction rates have units of kmole/cm3sec in Sl and mole /m3sec in CGS units.
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a R
[Rmn]p = I\T/IH\TX;? L (3'72)
mn

where MW,,,,, is the molecular weight of the m®" phase n*"* species. Here, the phase index m
ranges from zero to the total number of additional phases (M) beyond the fluid phase (m = 0),
that is, m = 0 represents the fluid (or gas) phase (i.e., Ry, = Ryn)>°. The total rate of production
(or consumption),

Run = )[Rl (3-73)
p
is substituted into equations (2-3) and (2-4) for m = 0, and (3-1) and (3-2) otherwise to account
for changes in species mass.

3.4.11.2 Energy Change Due to Mass Production and/or Consumption

The pt" chemical reactions contributes to the general source term in the m*" phase internal
energy equation due to the production or consumption of m" phase species. This contribution
may be specified®! or computed as

] - zhmn " @70

N,, is the total number of species comprising the mt" phase mixture, and h,y,,, is the specific
enthalpy of the nt" species of the m*" phase, , defined in section 3.5.5. The total source term
arising from mass production and/or consumption is added in the m*"* phase internal energy

equation (3-15) through the general source term, S,,,:

Smi= ) [Smil (375
14

3.4.11.3 Energy Change Accompanying Interphase Mass Transfer

The energy transfer accompanying interphase mass transfer, specifically transfer between the gas
and m*" phase (i.e., a heterogeneous reaction between the gas and m®" phase), is given by [139]:

%0 Observe that equations (3-72) and (3-72) are consistent with equations (2-20) and (2-21) provided in section
2.5.8.1 for gas phase reactions. Specifically, these are the same equations with (2-20) and (2-21) having the index
m=0=g.

5L If a constant heat of reaction is specified, then the evaluation of enthalpy defined in equation (3-83) is not
performed so that the sensible heat contribution is not incorporated. Additionally, the partitioning of the specified
heat of reaction between phases must also be provided.
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Ng
Smrn =D | Y (gn(Tym)[Ronl ) ). (3-76)
D n=1

Here, [Rgn]p represents the rate of production (or consumption) of the nt" gas phase species

attributed to the p*" reaction between the gas phase and the m*" phase and is given by equation
(2-20). The quantity hgy, (Tgm) is the specific enthalpy of the nt"* gas phase species at
temperature, T, identified by

(3-77)

{ T, for [Rgn]p < 0 (i.e., consumption of n'* gas species)
gm =

T, for [Rgn]p > 0 (i.e., production of n'* gas species)

where T, and T,,, and the gas and mt" phase temperatures, respectively. Energy transfer
accompanying interphase mass transfer is added to the gas phase internal energy equation (2-6)
through the general source term, S, and subtracted from the mt" phase internal energy equation
(3-15) through the general source term, §,,,.

3.5 Solids Phase Physical Properties
This section defines the m*" phase physical properties.
3.5.1 Mixture Solids Density

The m®" phase (solids) density is either specified as constant, calculated using a user-defined
function, or calculated as a function of the chemical species mass fractions. In case of the latter,
a variable solids phase density is calculated from a baseline solids density, pZ , defined as

Nm

B
iB - z % (3-78)
pm n=1 pmn

where XB . and pZ are the m*" solids phase baseline n‘* chemical species mass fraction and
material density. The term baseline is used to assert that these values are specific to the solids
phase description and may differ from the initial conditions used in setting up a simulation. For
example, consider a solids phase defined to represent coal particles and taken to be composed of
four pseudo-species; char, ash, volatiles and moisture. The baseline mass fractions would likely
reflect the proximate analysis of the coal and the material densities would reflect the densities of

the four components; char, coal-ash, volatile matter, and liquid water.

Equation (3-78) is only valid when calculating the baseline solids density because its derivation
uses the assumption that the volume of a particle is equivalent to the total mass of the particle
divided by the material density; however, as mass is lost or gained, this assumption no longer
holds. Xue et al. [6] observed this phenomenon and suggested that the apparent solids density
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should be related to the baseline density by a multiplier accounting for increased porosity. This
can be avoided by exploiting the notion that the mass of an inert chemical species is constant so
that the mass of the m*" solids phase, m,,,, is given by

By/B Xﬁ“

my, = (pme)X_' (3-79)
mli

where the subscript [ is the index of the inert solids phase species. Given that the solids phase
volume is constant, V,, = V.E = m5, /pB , the apparent m*" solids phase density is

B
B Xml
=
X
This model requires users identify one solids phase chemical species as inert. This is a

reasonable approach given that the solids diameter is invariant to mass loss and therefore an inert
material is needed to provide a rigid matrix to support reactants and/or products.

Pm = (3-80)

3.5.2 Viscosity, Bulk Viscosity, and Pressure

As discussed previously, the mt" phase stress, ,,,; j» is cast in the form provided in equations
(3-16)-(3-18). This model requires two transport coefficients for closure: viscosity, u,,, and bulk
viscosity, upm,. Three options are available for defining these quantities. 1) The mt" phase
viscosity, u,,,, may be specified as a constant at which point the mt" phase bulk viscosity, u.,,
and the m*" phase stress, P,,, are set to zero. 2) It may be calculated using a user-defined
function, which also allows for specification of the bulk viscosity and pressure. 3) It may be
calculated based on a selected solids model, wherein the bulk viscosity and pressure are defined
accordingly. The latter is the default approach as discussed in section 3.4.1 along with sections
3.4.2and 3.4.3.

3.5.3 Mixture Molecular Weight

The m*™ phase mixture molecular weight, MW,,,, is either specified as constant or calculated as

N
1 Xmn

MW,,  ZiMW,,,

n=1

where X,,,,, and MW,,,,, are the mass fraction and elemental molecular weight of the m*"* phase
nt" chemical species.

(3-81)

3.5.4 Mixture Specific Heat

The m*™ phase mixture specific heat, Cpm. is either specified as constant®? or calculated as

52 Specifying a constant specific heat for the m*" phase is only permissible for non-reacting flows.
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Nm
Cpm = Z anCpmn (3-82)
n=1

where C,nyis the specific heat of the mt" phase nt" chemical species. The species specific heat

is obtained from either the BURCAT database [30] or from a user provided entry following the
same format.

3.5.5 Species Specific Enthalpy

The specific enthalpy each species is calculated by combining the heat of formation, Hp,, (Tyr),
and integrating the specific heat of that species from the reference temperature, T;.. ¢, to the gas
phase temperature.

T

o g
honn = Hen(Trer) + f Comn(T) dT (3-83)
Tref
The species heat of formation is obtained from either the BURCAT database [30] or as a user
provided entry following the same format.

3.5.6 Thermal Conductivity

The mt" phase thermal conductivity, k,,, is either specified as constant, calculated using a user-
defined function, or calculated using a thermal resistance model that is based on heat transfer in a
dispersed medium. The latter model is described here.

Formulating the conductive heat transfer between particles is a challenging problem and various
approaches have been used. For particles dispersed in a continuous medium, heat transfer is
commonly considered through a mixture, or effective bed, conductivity approach, wherein
different mechanisms [140, 141] are considered simultaneously. Such mechanisms may include
heat transfer between particles in contact, through the fluid (gas) gap between particles and
radiation between particles. An effective thermal conductivity is then used to simultaneously
describe the influence of these distinct mechanisms.

In MFIX-TFM, the model of Bauer and Schlunder [140] is used to approximate the m*" phase
thermal conductivity [136, 56]. Their model examines the total heat transfer through a unit cell
separated into two contributions: 1) heat transfer only through the surrounding fluid phase and 2)
heat transfer through both the fluid and solids. These are considered to act in parallel or as
additive fluxes [140, 142] and several mechanisms of heat transfer are considered including
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conduction, radiation between particles and the contribution to gas conductivity due to the
Smoluchowski or Knudsen effect.>

As discussed, this model [140] considers the total effective thermal conductivity of the system as
the sum of two contributions. Since MFIX considers heat transfer through the fluid phase
separately (section 2.6.5), it is only the second contribution®* that is used to formulate an
approximate m" phase thermal conductivity. This contribution is further simplified by 1)
neglecting the influence of the Smoluchowski effect to the gas phase conductivity®®, and 2)
dropping radiation®® since radiative heat transfer is also treated separately (section 3.4.9) [136].
Finally, the original model of Bauer & Schlunder also provides for a modified or mean particle
conductivity that incorporates the influence of an oxidation layer on the thermal conductivity of
the particle. This aspect® is not incorporated. The resulting simplified equation effectively
encompasses direct conduction through a factional contact area and indirect conduction through
the gas wedge between contacting particles. As in Kuipers et al [137], a solids phase thermal
conductivity is obtained from Bauer and Schlunders’ model for effective bed conductivity via the
following relation:

Kp

Ks =7——= -
s 1- eg) (3-84)
where in MFIX, the quantity «;, is defined as
kp =Kg [1—¢4 (R + (1 —¢)D) (3-85)

and

_ 2 B(R_l)zn(§>+g+l(3+1) (3-86)
1_% R(1—§> R 2

B
R 1°%

Here, k4 is the fluid phase conductivity defined in Equation (2-28). The quantity ¢ represents

the fraction of the heat transfer surface area that is in contact (compared to the remaining surface

%3 The thermal conductivity of an unconfined gas is independent of pressure. When the mean free path approaches
or exceeds the distance between bounding solid surfaces (Kn>0.001), then heat transfer depends on pressure which
reflects the number of molecules participating in heat transfer with the mean free path inversely proportional to
pressure. For more details see [214, 215].

54 Expression 3 in Bauer and Schlunder [138] is assumed to contain a typo. The first term in the parenthesis on the
right-hand-side should reflect the quantity 1/, but the expression is missing the numerator A — only the
denominator A, is written.

5 The term % = 1 in the expressions of Bauer and Schlunder [138].
D

% The term %R = 0 in the expressions of Bauer and Schlunder [138].
5 The term A3 = A in the expressions of Bauer and Schlunder [138].
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area through the two particles that are the gas wedges). A value for ¢ is found from a
combination of theoretical computation and fitting of experimental data:
23pZ
¢ = i‘l = 7.26x10_3 (3'87)
1+22p3

Here p2 was determined experimentally. Specifically, a value of p2 = 3.5x10~* was found to
work equally well for several different instances of uniformly sized spherical packings of
ceramic particles, in which values of diameter ranged from 0.05mm to 2mm. The quantity B is
described as a deformation factor that is determined on the basis of geometric considerations and
for uniform spherical particles it is written as:

10
1—e\9
B = 1.25< gg) (3-88)
&g
Finally, the quantity R is the ratio of the microscopic, or material, thermal conductivity of the
solids particle to that of the gas:

k
R=-2% (3-89)

Kg

For the default model, k,, is assigned a constant value of 1.0 W /(m - K) taken from Mills [143],
Table A.3, dry-soil, p912.

While the model of Bauer and Schlunder allows for incorporating the influence of a particle size
distribution through the quantity B (see Bauer and Schlunder equation 6), a uniform spherical
distribution is assumed in the expression shown here. For systems with more than one solids
phase (differing in size, density or other material property), MFIX employs an ad-hoc extension
by replacing kg with k,,, for the m*"* solids phase in Equation (3-84) and k,, with k,, in Equation
(3-89):

Kbm

_ __ " _
R, = Km (3-91)
Kg

As evident, the same model is applied separately to each m*" phase. Conduction between
different solids phases is not considered.

Finally, this conductivity model was developed based on the depiction of particles in a packed
configuration. However, this is the default model regardless of the flow regime (i.e., fluidized or
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packed). For the default values given here, the bed conductivity, k,, is plotted in Figure 3-4
where the gas phase thermal conductivity is calculated using equation (2-28) with temperatures
ranging from 300K to 2100K. The bed thermal conductivity is bounded above by the solids
material (microscopic) thermal conductivity for physical fluid volume fractions (¢, > 0.25), and
decreases with increasing &, becoming comparable to «, for dilute flows.

3.0
— i, (T, = 300K)
2.5 4 — (T = 600K)
R—— ——— K3 (T, = 900K)
k, (all temperatures) — K (T, = 1200K)

——— 1, (T, = 1500K)
K (T, = 1800K)
Ky (Ty = 2100K)

N

0.0 T T T T
0.15 0.35 0.55 0.75 0.95

Fluid Volume Fraction, &g

Bed Conductivity, k;, (W /m - K)

Figure 3-4: Bed thermal conductivity, k, given by equation (3-85), is shown as a function of gas phase volume
fraction. The gas phase thermal conductivity, k, is evaluated at several temperatures (300K — 2100K) using

equation (2-28) and with all values shown as a single gray line. The constant solids material conductivity, k,, =
1.0 W/(m.K), is plotted as a dashed line. The bed conductivity is bounded above by k,, for physical volume
fractions (e, > 0.25), and decreases with increasing gas volume fraction.

3.5.7 Diffusivity

The m*™ phase species diffusivity, D,,,,, is either specified as constant, calculated using a user-
defined function, or taken as zero.
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Appendix A: Internal Energy Equations Derivation

Simplifying assumptions have been made in the formulation of internal energy equations:

(1) The irreversible rate of increase of internal energy due to viscous dissipation and
interphase momentum transfer has been neglected. Such terms are negligible except in
the case of very large relative velocities;

(2) Interfacial work terms are negligible;

(3) Energy transfer accompanying species diffusion is negligible.

A.1 Gas Phase Energy Equation.

The gas phase internal energy equation is [20, 21]

de de, U,
S Capalo) + 5 (Sgpg Ugily) = (egqgl) pg<af +5—xf>+5; (A-1)

where I, is the specific internal energy of the gas phase. The terms on the left hand side are the

rate of internal energy accumulation and the net rate of convective internal energy flux. The three
terms on the right hand side are the conductive heat flux, work done by the gas to change the
volume fraction, and a generalized source term whereby contributions from additional models
are incorporated.®

The gas phase enthalpy is defined as

Hy =1, + (pg> (A-2)
Pg

which is used to recast (A-1) as

0H 0H
€g9Pg ( atg + Uy, 6xf) +H ((’)t (Egpg) + (Egpg 1))

(A-3)
op op :
= (egqgl) + g ( atg + Uy a;j) +S,

Here we can see the left hand side of the continuity equation (2-3) multiplied by H, such that
(A-3) can be written as

%8 Several terms defined in the referenced works (i.e., equation 2.3 in [21]) are omitted. Specifically, equation (A-1)
does not include changes in internal energy due to interphase momentum and mass transfer, nor does it include
changes in internal energy due to viscous dissipation. The remaining omitted terms, such as interphase convective
heat transfer and changes in internal energy arising from phase change and/or chemical reactions, are covered in
section 3.4.
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dH, dH,
€9Pg\ 5 T Uai S
(A-4)
dpg dpg

Ng
d
= —a—Xi(qugi) + Sg <W + Ugi G—Xl> - Hg Z Rgn + Sg
n=1

The enthalpy of the gas mixture is defined as the sum of the enthalpies of the individual species,

A5
Hy =) hgnXgn (A-5)

n=1
The specific enthalpy each species is calculated by combining the heat of formation and
integrating the specific heat of that species from the reference temperature to the gas phase
temperature,

T

o g
hgn = Hin(Trer) + f Cogn(T) dT (A-6)
Tref
Differentiating (A-5) and (A-6) yields
Ng
dHy = (dhgnXon + hgndXgn) (A7)
n=1
and
A-8
dhgy = CpgndT, (A-8)
Substituting (A-8) into (A-7) gives
Ng
dH, = Z XgnCpgndTy + hgndX ) (A-9)
n=1

Substituting the definition of the gas phase mixture specific heat (2-26) into (A-9)

Ng

A-10

dHy = CogdTy + ) hondXe, (A-10)
n=1

Substituting (A-10) into (A-4) and expanding the derivatives results in the energy equation in
terms of temperatures and enthalpies,
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oT, 9T,
€9PgCrg | 5 t Usi ax;
d apg apy
== ox; (e909:) + 2 <W + Uy ox; (A-11)
N N
" Xy Xy g ,
- Z hgn ggpg W + Ugia—xi + Xgn Z Rgn' + Sg
n=1 n'=1

Combining the gas phase continuity and nt* gas phase species equations gives (to obtain the
non-conservative form of the species equation),

Ng
0Xgn 0Xgn d 0Xgn A-12
9Py <T+Ugi 0x; :a_xj Dgna—xj +R9n_XgnZRgn (A-12)

n=

Substituting (A-12) into (A-11),
aT aT
€gPgCpg (E + Ugi 6_xl)
d opy opy

oz, (Ealla) + & < at 9y, (A-13)

Ng
0 0Xgn ,
- Z hgn a Dgn W + Rng + Sg
n=1 J J
Neglecting expansion effects and diffusive enthalpy transfer yields,

Ng

(aT aT (A-14)

0
€9PgCpg ot + Ugi a_xl) = s (eg41) — Z hgn Rgn + Sg-
n=
Finally, we obtain the gas phase energy equation, shown below as well as equation (2-6), by
combining the change in enthalpy due to the production and/or consumption of species mass®®
with the general source term.

aT aT d
€9PgCpg (E + Uy E) == ax; (eg41) + 85

(A-15)

% The source term for change in enthalpy due to the production and/or consumption of species mass is defined
separately from the energy equation (see section 2.5.8.2).
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Note that the prime superscript is removed from the source term to indicate that the final source
term is not identical to the source term identified initially in equation (A-1). Although this last
modification to the energy equation is not necessary, it casts the final equation into the same
form as the other conservation equations whereby specific models and sub-models are presented
separately from the conservation equation.

A.2 Continuum Solids Phase Energy Equation.
The mt" phase internal energy equation is [20, 21]

0 0 d
a (Smpmlm) + a_xl (EmmemiIm) = a_xl (ngmi) + 51111 (A_16)

where I,,, is the specific internal energy of the mt" solids phase. The terms on the left hand side
are the rate of internal energy accumulation and the net rate of convective internal energy flux.
The terms on the right hand side include the conductive heat flux described by Fourier’s Law and
a general source term S,,,.

The mt" solids phase enthalpy is defined as

Ho =1 (A-17)
is used to recast(A-17) as
0H 0H 0 d
EmPm (a_gn + Ui a_xm) + Hp, (a (empm) + ox (gmmemi)>
‘ ' (A-18)

d
= - a_xl (SQOi) + cs‘Tln

Here we can see the left hand side of the continuity equation (3-1) multiplied by H,,, such that
(A-18) can be written as

N

OHm f””m) -2 (A-19)

EmPm (T + Umi a—xl - axi (gmqmi) - Hm Rmn + 5791

n=1

The enthalpy of the solids is defined as the sum of the enthalpies of the individual species,

Nm
H,, = Z hmn Xmn (A-ZO)
n=1

The specific enthalpy of each species is calculated by combining the heat of formation and
integrating the specific heat of that species from the reference temperature to the gas phase
temperature,
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Tm

honn = Hn(Trep) + f ) Cpmn(T) dT (A-21)
ref
Differentiating (A-20) and (A-21) yields
N
dH,, = Z(dhmnan + Ry @ X ) (A-22)
n=1
and
AR, = Comnd Ty, (A-23)
Substituting (A-23) into (A-22) gives
Nm
dH,, = Z(ancpmndrm + R X o) (A-24)
n=1

Substituting the definition of the solids phase mixture specific heat (3-82) into (A-24)
Nm
dHy = Cpad Ty, + Z Ry d Xy (A-25)
n=1
Substituting (A-25) into (A-19) and expanding the derivatives results in the energy equation in
terms of temperatures and enthalpies,
T, oT,
EmPmC (—’" +U —m)
mPm pm ot mi axi

- a_xl (SQOi) (A-26)

Nm

0X 0X
Z hmn | €EmPm aTtnn Uni amn] Xmn z Rmn’ + 5791

n'=1

Combining the m*™" solids phase continuity and species mass equations gives,

N
X X -
EmPm — + Um] =) = Ripn — Xmn Ry (A-27)
ot ox; L
n —3

Substituting (A-27) into (A-26) gives the solids energy equation in terms of temperature.

0T, aTm)

0
Empmcpm (W + Upy a_xl = - a_xl (EmGmi) — Z hnRmn + Sm (A-28)
e
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Finally, we obtain the gas phase energy equation, shown below as well as equation (2-6), by
combining the change in enthalpy due to the production and/or consumption of species mass®
with the general source term.

aT, aT, 0
gmpmcpm< a;n + Umi axm> = - (SQOi) - CS‘m (A-29)
i

axi

As in the previous section, the prime superscript is removed from the source term to indicate that
the final source term is not identical to the source term identified initially in equation
(A-16)(A-1). Although this last modification to the energy equation is not necessary, it casts the
final equation into the same form as the other conservation equations whereby specific models
and sub-models are presented separately from the conservation equation.

% The source term for change in enthalpy due to the production and/or consumption of species mass is defined
separately from the energy equation (see section 3.4.11.2).
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Appendix B: Drag coefficients

An expression for the interaction force is necessary to close the averaged equation of motion
(Section 3.3.3). While providing closure models for the interaction force is an active area of
research, it is a complex problem and precise evaluation is possibly in only certain very limited
circumstances. As discussed in Section 3.4.4 several different physical mechanisms responsible
for gas-solids interphase momentum transfer have been identified. By default, MFIX accounts
for buoyancy and drag in its formulation for this term.

Several well-known formulas accurately represent the drag force on a single-sphere as a function
of the Reynolds number [144]. In a multi-particle system, the nearness of other particles makes
the drag force on each particle significantly greater than that given by the single-particle drag
formula. Thus, the formula for multi-particle drag force must include the gas volume fraction as
an additional parameter to account for the effect of neighboring particles. For practical purposes
an expression(s) that describes the phenomena of interest over the whole range of Reynolds and
Stokes numbers and up to high solids volume fraction [39] is desirable.

Traditionally, experimental information has been used to derive empirical correlations for the
drag force. One type, valid for high values of the solids volume fraction, is the packed-bed
pressure drop correlation, such as the Ergun equation [145]. Another type of experimental data
is the terminal velocity in fluidized or settling beds, given as correlations for the ratio of the
terminal velocity of a multi-particle system to that of a single particle [146]. Deducing a drag
model capable of spanning the whole range of Reynolds numbers from this approach, however,
is also not clear-cut [39]. To this end, the ratio of the drag force in a multi-particle system to that
on a single particle was used to encompass the entire regions of flow [147]. In recent years,
models for the drag force have been derived from accurate numerical experiments. Several of
these models have been incorporated into MFIX over the years [148, 149, 150, 151, 152, 148,
149, 153, 154], however a detailed analysis of their formulation and implementation are not
included here at this time.

Since the drag force arises due to relative motion between the phases, its general form is often
represented in terms of a drag coefficient and relative velocity difference. MFIX follows this
approach, and the expression given in Chapter 3 is repeated here for convenience:

Igmi,Drag = ﬁgm(Ugi - Umi) (3-61)

Bgm is referred to as the drag coefficient and is generally taken as a scalar function that depends
on a number of factors, such as, size and shape of the particle, properties of the fluid, the solids
volume fraction and magnitude of the relative velocity difference.
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The traditional drag force correlations (Ergun [145], Wen and Yu [147]) are effectively limited
to describing a monodisperse system. However, systems found in nature or in industry are
typically characterized by nonuniform solids. As a result, these monodisperse drag force models
are generalized in an ad hoc manner for application to polydisperse systems. Namely, the
particle diameter is replaced with the m‘" phase particle diameter (d,,,) and the solids velocity is
replaced with the m*" phase solids velocity. Finally, in the multi-fluid model (MFIX-TFM), the
monodisperse drag coefficient expression is also scaled by the ratio of the mt" phase solids
volume fraction to total solids volume fraction, or equivalently, by €., /(1 — ;) as:

(B-1)

Em
.Bgm 1= & .Bgm

In the discrete element model (MFIX-DEM), these same expressions for the drag coefficient are
used to find the drag force on the particle:

@ p® (B-2)

!
g _1—egﬁgm

Finally, as noted in Section 3.4.4.1, some ambiguity can also occur in regard to the definition of
the different interaction terms and how they are carried through into the averaged equations.
Thus sufficient care must be taken to ensure the total interaction force remains the same
regardless of the decomposition. Since MFIX has two definitions for the buoyancy force
(pressure gradient versus Archimedean form), the definition of the drag force must reflect those
changes. The drag coefficients presented in this Appendix assume that buoyancy is given by the
pressure gradient (i.e., equation 3-59). Thus, the drag coefficient does not include the effect of
relative motion on the local pressure gradient. Otherwise, if the Archimedean formulation for
buoyancy is used (equation 3-60), then MFIX automatically divides the expressions given here
for B4 by the void fraction to ensure equivalency of the total interaction force [39].

B.1 Wen-Yu [147]

Wen and Yu [147] extend the work of Richardson and Zaki [146] to derive an expression for the
drag force in a particulate system to encompass a wide range of Reynolds number. They
measured pressure drop and void fraction data in single sized particle fluidization experiments
starting at high flow rates and decreasing until fixed bed conditions were achieved. Their
tabulated data, along with additional literature data, was used to correlate a voidage function
defined as the ratio of force on a particle in a multiparticle system to that in single particle
system. The force in a single particle system was expressed using Schiller and Naumann [155]
correlation for the single particle drag coefficient, which is valid for Reynolds numbers ranging
from 0.001 to 1000. Following some manipulation their correlation for the average drag force

88



Theoretical Review of the MFIX Fluid and Two-Fluid Models

exerted on a particle in a multiparticle system by the fluid can be expressed in terms of a drag
coefficient as:

1— &)Uy = Upi
wenyu — %CDS Pgeg(1 = &g)|Ugi = Upnil £5265 (B-3)

dpm

where

24
—(1+ 0.15Reo'687) Re <1000
Re (B-4)

0.44 Re > 1000

_ Pg€g|Ug = Um|dpm
Hg

Re (B-5)

Here, as done elsewhere (e.g., [156, 157]), the expression for the single particle drag coefficient
is extended for Reynold numbers greater than 1000. % Specifically, in the range of Reynold
numbers between about 1000 to 2x10°, the drag coefficient for a smooth sphere remains
relatively constant (c.f. [158, 159] and Chapter 5 and Figure 5.12 in [160]). Here it is held at a
constant value of 0.44. At even higher Re a transition to turbulent flow occurs resulting in
immediately lower values of Cp¢ followed by increasing Cp¢ with Re. This behavior is not
captured here.

B.2 Gidaspow [74]

A drag model is formulated that is a combination of Ergun [145] and Wen and Yu [147]
correlations stitched together based on void fraction. Here it is referred to as the Gidaspow [2,
161] drag model. Ergun proposed a comprehensive correlation for pressure drop through a
packed bed of granular solids using data from the literature and his own experimental data which
recognized the importance of simultaneous consideration of viscous and inertial energy loss.
More specifically, he measured pressure drop through packed beds involving crushed solids
materials (e.g., sand, pulverized coke) with different void fractions and over different gas flows.
The drag force is then related to the pressure drop over the system so that the drag coefficient is
written as:

%1 In determining their correlation the particle Reynold number was defined as a function of the superficial fluid
velocity. Here it is replaced with the relative velocity difference of the fluid and solids phases.
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2
’BrErgun _ 150(1 B gg) Hg + 1'75'09(1 B gg)lugi B Umil (B-6)
gm ggd2, d,

As has been well-noted (e.g., 82.4 in [39]), Ergun’s expression is intended for dense flow
conditions. To ensure representative behavior is predicted in the dilute limit it is replaced with a
new expression. Wen and Yu (see section B.1 of this appendix) derived an expression for the
drag force over a wide range of Reynolds number using literature data and their own data from a
series of de-fluidization experiments (starting at fluidized state and decreasing the flow rate until
a fixed bed condition). In the limit of a single particle (¢, — 1), Wen and Yu’s expression will

reduce to Schiller and Naumann [155] drag relation.
In this combined model, the correlation of Ergun is used for a void fraction less than 0.8 (or
solids volume fraction greater than 0.2) otherwise the correlation of Wen and Yu is used:%?

1 WenYu
gm g, =08

Bom = (8-7)

1 Ergun

gm £, <038

B.3 Gidaspow Blend [162]

The drag model correlation referred to as the Gidaspow model [161, 2] (Appendix B.2) produces
a discontinuity in the drag force at a void fraction of 0.8 (e.g., see discussion in [163]). To avoid
numerical convergence problems, various approaches have been used to eliminate this
discontinuity (e.g., [162, 164, 165, 166]). Lathouwers and Bellan [162, 164] use an inverse
tangent function with a stitch point of £, = 0.8, that is, the function passes through the point 0.5
at void fraction of 0.8. For void fractions below this point the function becomes zero, and above
this point the function becomes one. Later Huilin and Gidapow [166] essentially employ the
same continuous function with the only difference between an additional multiplying factor of
1.75 is included within the arctan function. It is this latter version of the continuous stitching
function that is implemented in MFIX:

ﬁém = d’gsﬁé%enyu + (1 - d)gs)ﬁ‘;rb;zrgun (B-8)

where

62 Selection of &, = 0.8 as the switch point between these two models, likely stems back to discussion in [222]
concerning a comparison of the Kozeny-Carman equation to reported experimental data and its inability to capture
flow behavior in liquid-fluidized beds for &, > 0.8.
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Pgs = tan~! (150 x« 1.75(e, — 0.8)) Ves +% (B-9)

And the drag coefficients B4 e™'* and g, 7*" are presented in expressions (B-3) (along with
(B-4) and (B-5)) and (B-6), respectively. Leboreiro et al. [167] explored the impact of the value
of the transition point (given here by &, = 0.8) as well as the stitching function on injected-

bubble and freely bubbling beds. They found the transition point itself had more influence in the

former system then the latter. For further details see [167].
B.4 Syamlal-O’Brien [168]

Syamlal & O’Brien [168] propose a model for the drag force in multiparticle systems using the
correspondence of the force balance relationships found under terminal settling conditions for
single and multiple particle systems combined with a velocity-voidage correlation and an
expression for the single particle drag coefficient. The applicability of the derived relationship
beyond the terminal settling condition is then reasoned. The velocity voidage equation (1)
expresses the ratio of the terminal settling velocity of a multiparticle system (V;) to that of a
single particle (V) as a function of the void fraction. A well-known example is based on the
sedimentation work of Richardson-Zaki [146]. Rather than use their expression for determining
the drag force, which requires an iterative procedure, the velocity-voidage correlation proposed
by Garside and Al-Dibouni [169] is used for which an analytic solution can be obtained. The
resulting expression implemented in MFIX is shown below.®3

2
3 (1 - gg)ggpg Vrm
_3 Vrm U B-10
Bgm = 7 o 0.63 + 4.8 | == |Ugi = Upi (B-10)
where
V. =05 [A — 0.06Re ++/(0.06Re)? + 0.12Re(2B — A) + AZ] (B-11)
A = gkt (B-12)

83 1t is worth noting that the velocity-voidage correlation proposed by Garside and Al-Dibouni [166] was defined as
a function of the particle Reynolds number based on the terminal velocity of a single particle. In the derivation of
Syamlal and O’Brien [165] the Reynolds number is expressed a function of the relative velocity difference of the
phases.
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0.8¢}28 ¢, <0.85

B = (B-13)
€5 £,>085
u,—-U,|d
Re = Pgl g p ml m (B-14)
g
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Appendix C: Nusselt Number Correlations

Nusselt number correlations reported in the literature span from single-particle correlations [170]
to packed or fluidized beds [171, 137, 172]. The Nusselt number correlations available in MFIX
are presented in the following sections. Table C-1 outlines the availability of each correlation
with respect to each solids model.

Table C-1: Nusselt number heat transfer correlation availability in MFIX.

Correlation Availability
MFIX-TFM | MFIX-DEM | MFIX-PIC
Gunn, 1978 [137] (default)
Ranz and Marshall, 1952 [170] (default) (default)

C.1 Gunn [137]

The Nusselt number correlation of Gunn [137],

Nu,, = (7 — 10g, + 5¢2)(1 + 0.7Rep2Pr'/3) 1)

+(1.33 — 2.4¢, + 1.2¢2 )Repy Pri/3

is applicable for a porosity range of 0.35-1.0 and a Reynolds numbers up to 10°. Here, where Re
and Pr are the dimensionless Reynolds and Prandtl numbers given by

Re,, = Pgeg|Ug = Um|dpm (C-2)
Hg
pr = Zpots (-9
Kg

C.2 Ranz and Marshall [170]

The Nusselt number correlation of Ranz and Marshall [170],

Nu = 2.0 + 0.6Rel/2pri/3 (C-4)

was developed for single, isolated particles where Re and Pr are the Reynolds and Prandtl
numbers.
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Appendix D: Maximum Packing Correlations

This section provides the empirical correlations for computing the solids maximum packing in

polydisperse systems.

D.1 Yu and Standish [173]

The Yu and Standish [173] correlation is used to calculate the solids volume fraction at

maximum packing for a solids mixture containing two or more components.

(D-1)

(D-2)

(D-3)

max __ : E"Tgax
gs,mix - mrerﬁg/l] max
M Em |\ CXi
1o, (1- ) e
em Dij ij
where % js the maximum packing of the m®" solids phase. The remaining terms are defined
as follows:
l ?4=1 &
1- rl%' ..
l
Xij =
1- 7"5‘ C
1- m ] =1
by = e + &M (1 — ") (1 — 2.351y; + 1.357%) 1 < 0.741
1y =

E{nax rl'j > 0.741

dpi/dp; 12]
Ty = o
dp,j/dp,i l <]

D.2 Fedors and Landel [174]

(D-4)

(D-5)

The Fedors and Landel [174] correlation is used to calculate the solids volume fraction at

maximum packing for a binary mixture of solids.

94



Theoretical Review of the MFIX Fluid and Two-Fluid Models

S;rlnax

max maxy.max?
eN*+(1-eM*)e]

For cx; <

emar = [ — ™) + (1 — \f0) (1 — e )]

cx, (D-6)
[+ (1= e ) ef ] e + €5
2
otherwise,
et = (1— Jrp) [ + (1 — &™) el ]cx, + 5. (D-7)

where cx; and cx, are given by Equation (D-2) and r, 4 is obtained from Equation (D-5).
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