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Executive Summary 

MFIX (Multiphase Flow with Interphase eXchanges) is a general purpose code that can be used 

for describing the hydrodynamics, chemical reactions, and heat transfer of dense or dilute 

multiphase fluid flows.  MFIX calculations give detailed information on pressure, temperature, 

composition, and velocity distributions in the defined system.  This report provides an overview 

of MFIX’s expressions for single phase flow and continuous dispersed multiphase flow (i.e., the 

two-fluid model).  In addition to the two fluid model (MFIX-TFM), MFIX contains a discrete 

element model (MFIX-DEM) and a multi-phase particle in cell model (MFIX-PIC) that are not 

reviewed within this document. 

 

MFIX, developed at the National Energy Technology Laboratory (NETL), has the following 

capabilities:  mass and momentum balance equations for a single continuous fluid phase and 

multiple dispersed solids phases; energy equations for each phase; an arbitrary number of species 

balance equations for each of phase; a user friendly chemistry; a three-dimensional Cartesian 

coordinate system with Cartesian cut cell application for complex geometry; nonuniform mesh 

size; impermeable and semipermeable internal surfaces; a user-friendly GUI (graphical user 

interface) for setting up the simulation; multiple, single-precision, binary, direct-access, output 

files that minimize disk storage and accelerate data retrieval; and extensive error reporting.  For 

MFIX-TFM, the code also includes granular stress equations based on kinetic and frictional flow 

theory. 

 

Chapter Two presents the continuous phase model which traditionally represents a gas or liquid 

phase. The continuous phase may be run by itself as single phase CFD or coupled with one of the 

disperse (e.g., solids) models for coupled multiphase flows.  Chapter Three outlines the Eulerian 

two fluid model (MFIX-TFM), wherein the additional dispersed phases are inherently 

characterized as solids.  The literature on the conservation equations and constitutive relations is 

briefly surveyed, and different parts of the model are highlighted. 
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Chapter 1: Introduction 

MFIX is a general purpose code written in Fortran and used for describing the hydrodynamics, 

heat transfer, and chemical reactions in dense or dilute fluid-solids flows. The objective of the 

Multiphase Flow Science (MFS) group is to create a tool to aid in the understanding, design, 

optimization, and scale-up of multiphase systems such as gasifiers, carbon capture devices, and 

chemical looping reactors. 

1.1 Overview 

Development of MFIX started at the Morgantown Energy Technology Center (METC) in 1991 

as a continuation of a multi-particle version [1] of the Eulerian-Eulerian (EE) code of Gidaspow 

and Ettehadieh [2]. The initial MFIX release was completed in 1993 and contained only the two-

fluid model, MFIX-TFM. Public distribution was handled through the Energy Science and 

Technology Software Center starting in 1995. Afterwards the code underwent several revisions 

whereby high-resolution discretization methods were added, the source code was migrated from 

FORTRAN 77 to Fortran 90, and it was parallelized to run on shared memory and distributed 

memory systems [3]. Further advancements include the inclusion of a 𝑘 − 𝜖 turbulence model 

[4], Cartesian cut cells for complex geometries [5], a stiff chemistry solver, variable solids 

density [6], and a number of kinetic theories for granular flows [7, 8, 9, 10, 11]. 

A Lagrangian solids model was implemented in 2004 whereby the position and trajectory of each 

solids particle is tracked through resolving all particle collisions via a soft-sphere spring-dashpot 

model [12]. The discrete element model, MFIX-DEM, is capable of pure granular simulations in 

addition to being coupled with an Eulerian (e.g., gas or liquid) phase model. DEM modeling uses 

fewer and less complex closures than the TFM and is therefore considered to contain less overall 

uncertainty. However, the computational intensity of tracking particles limits its application to 

small-scale devices. Recent efforts have included verification and validation studies [13, 14], 

dynamic solids inventory capabilities, and the inclusion of species and energy conservation 

equations [15]. Moderate-sized investigations containing tens of millions of particles were made 

possible by recent distributed [16] and shared memory [17] parallelization efforts.  

A second Lagrangian solids model, MFIX-PIC, was implemented in 2013 [18] and has since 

undergone substantial revisions. The multiphase particle in cell (PIC) technique uses parcels for 

the solids where a parcel may represent a fraction of one particle or thousands of individual 

particles.  This approach is more computationally efficient than other Lagrangian solids models 

because collisions are not resolved, but rather approximated using frictional stress model and 

averaged field quantities. Uncertainty in PIC models arises from the closure needed for the solids 

interaction terms, the need for accurate interpolation between the Eulerian and Lagrangian 

frames of reference, and a strong dependence on model implementation. However, this approach 
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offers the potential to shorten the time-to-solution making it ideal for initial design investigations 

for large multiphase devices where accuracy is not paramount. 

MFIX development activities have been preserved through a concurrent versioning system 

(CVS) since 1999 to track source code changes. The CVS database was transferred to a Git® 

repository in 2014 to accommodate a more flexible development. Direct code access supports 

efforts to extend the reach of MFIX by encouraging greater community involvement in 

development and maintenance activities.  

The integrity of the source code was originally maintained through nightly regression tests where 

a subset of tutorial and test cases was executed and the results compared to a fixed solution set 

[3]. This approach was replaced by a continuous integration (CI) server to expand the testing 

capabilities by running all tests and tutorials any time modifications are committed to the source 

code repository.  

1.2 Document Organization 

Chapter Two presents the continuous phase model which traditionally represents a gas or liquid 

phase. The continuous phase may be run by itself as single phase CFD or coupled with one of the 

disperse (e.g., solids) models for coupled multiphase flows. Chapter Three outlines the Eulerian 

two fluid model (MFIX-TFM), wherein the additional dispersed phases are inherently 

characterized as solids.   
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Chapter 2: Eulerian Fluid Phase Model 

2.1 Overview 

This chapter presents the MFIX Eulerian continuous fluid phase model. The fluid phase is 

referred to throughout this document as the gas phase, however it could also be a liquid. The 

fluid phase model presented here is done so in the context of a multiphase system. As a result, 

phasic volume fractions and interphase transfer terms arise in the governing equations. For single 

phase flow, the gas phase volume fraction is one and interphase transfer terms are generally 

zero1. The fluid phase model is consistent across the multiphase models, (MFIX-TFM, MFIX-

DEM, and MFIX-PIC), unless specifically noted.  It is also worth noting that here, and in the two 

fluid model section, the equations are presented in conservative form, however, in MFIX the 

equations are solved in non-conservative. The non-conservative form is obtained by subtracting 

the respective continuity equation from the conservative form.  

2.2 Limitations 

Limitations of the MFIX fluid phase model include: 

• The fluid is incompressible (divergence free). 

• The entire flow domain must contain the fluid phase such that the fluid phase volume 

fraction is always greater than zero. 

2.3 Volume Fraction Equation 

To derive the MFIX equations that describe multiphase flows, point variables are averaged over 

a region that is large compared with particle spacing but much smaller than the flow domain 

[19]. This results in phasic volume fractions that specify the fractions of the average volume 

occupied by each phase. The volume fractions are assumed to be continuous functions of space 

and time, and by definition, must sum to one. Therefore, for a system containing a gas phase and 

𝑀 disperse phases, the gas phase volume fraction, 𝜀𝑔, is 

𝜀𝑔 = 1 − 𝜀𝑠, 
(2-1) 

where, for later convenience, the notation 𝜀𝑠 is introduced representing the total volume fraction 

of the 𝑀 dispersed phases (e.g., the total solids volume fraction): 

 

 

1 Here single phase flow generally implies that the gas volume fraction is one and no interphase transfer occurs. 

However, single phase flows through a porous media are permitted wherein the gas volume fraction may have 

values other than one and interphase transfer is possible.  
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𝜀𝑠 = ∑ 𝜀𝑚

𝑀

𝑚=1

 (2-2) 

and 𝜀𝑚 is the 𝑚𝑡ℎ disperse phase volume fraction. The gas phase volume fraction is one in a 

single phase system (i.e., 𝜀𝑔 = 1 and 𝜀𝑠 = 𝜀𝑚 = 0).  

2.4 Conservation Equations 

This section presents the basic set of gas phase conservation equations solved by MFIX.2 The 

equations, with the exception of the internal energy equation, are presented in conservative form, 

however, as already noted, the numerical implementation uses the non-conservative forms.  

2.4.1 Conservation of Mass 

The conservation of mass (i.e., the continuity equation) for the gas phase is 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗) = ∑𝑅𝑔𝑛

𝑁𝑔

𝑛=1

+ 𝒮𝑔 
(2-3) 

where 𝜌𝑔 is the gas phase density, 𝜀𝑔 is the gas phase volume fraction, 𝑈𝑔𝑗 is the 𝑗𝑡ℎ component 

of the gas phase velocity, 𝑁𝑔 is the number of chemical species comprising the gas phase, 𝑅𝑔𝑛 is 

the rate of formation per unit volume of the 𝑛𝑡ℎ gas phase species, and 𝒮𝑔 is a general user-

defined gas phase mass source term.3  The left hand side terms account for the rate of mass 

accumulation and the net rate of convective mass flux. The first term on the right hand side 

represents the production or consumption of mass attributed to interphase mass transfer from 

chemical reactions or physical processes, such as evaporation.  Users may specify phase changes 

or heterogeneous chemical reactions that will subsequently give the first term on the right hand 

side a nonzero value.  A user-defined mass source may also be specified to give the second term 

on the right hand side nonzero value.  By default, however, the right hand side is zero in MFIX. 

2.4.2 Conservation of Species Mass 

The conservation equation for the 𝑛𝑡ℎ gas phase species mass is 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑋𝑔𝑛) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑋𝑔𝑛) =

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝒿𝑔𝑗) + 𝑅𝑔𝑛 + 𝒮𝑔𝑛 (2-4) 

 

 

2 The equations in this section describe flow in the laminar regime (low Reynolds number flow).  Modeling of 

turbulent flows is examined in a later section. 
3 The general user-defined source term has not been propagated to the non-conservative form of the governing 

equations with respect to the numerical implementation. 
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where 𝑋𝑔𝑛 is the 𝑛𝑡ℎ gas phase species mass fraction, and 𝒮𝑔𝑛 is a general user-defined gas 

species mass source term. The left hand side terms account for the rate of species mass 

accumulation and the net rate of convective species mass flux. The first term on the right hand 

side is the diffusive species mass flux. The second term on the right hand side represents the 

production or consumption of species mass attributed to chemical reactions or phase changes.  

𝑅𝑔𝑛 is zero by default in MFIX, however, users may specify phase changes or chemical reactions 

giving rise to nonzero values.  The last term is a general user-defined species mass source, which 

is zero by default but may be specified to give the term value. 

MFIX solves a conservation equation for each species comprising a phase. As such, ill-defined 

species mass source terms or poor numerical convergence may lead to the sum of mass fractions 

deviating from one. 

2.4.3 Conservation of Momentum 

The gas phase momentum balance is 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖) = −

𝜕𝑃𝑔

𝜕𝑥𝑖
+
𝜕𝜏𝑔𝑖𝑗

𝜕𝑥𝑗
+ 𝜀𝑔𝜌𝑔𝑔𝑖 + 𝒮𝑔𝑖 . (2-5) 

where 𝑃𝑔 is the gas pressure, 𝜏𝑔𝑖𝑗 is the gas phase stress tensor, and 𝑔𝑖 body force due to gravity. 

The first term on the left hand side represents the net rate of momentum accumulation while the 

second term is the net rate of momentum transferred by convection. The first three terms on the 

right hand side are the pressure force, viscous stress, and gravitational force. Finally, 𝒮𝑔𝑖 is a 

general gas phase momentum source term.  For single phase flow defined by 𝜀𝑔 = 1, this latter 

term is generally zero, however, exceptions exists.4  A user-defined gas phase momentum source 

may be specified to add to this term.  Later sections present models that also contribute to this 

term, including interphase momentum transfer5 and resistance due to flow through a porous 

media6.   

Recall the fluid phase transport equations presented here are done so in the context of a 

multiphase system, and are the result of an averaging process that is based on the work of 

Anderson and Jackson [19] for a fluidized system of particles.  Consequently, the fluid phase 

equation may still be written as shown in equation (2-5) upon introduction of a total fluid-

particle interaction force (i.e., interphase momentum transfer) as a separate term encompassed 

here in 𝒮𝑔𝑖.  However, once traditional closures for this interphase transfer term are incorporated, 

 

 

4 For single phase flow through a porous media, 𝜀𝑔 may have values other than unity and 𝒮𝑔𝑖 may become non-zero.  
5 Interphase momentum transfer due to mass transfer is zero in this formulation [205]. 
6 Here resistance due to flow through a porous media specifically refers to the use of the internal surface feature in 

MFIX.  However, a porous media approach may also be established by specifying a stationary, secondary phase 

(multiphase), and then a resistance to flow occurs through the associated interphase momentum transfer term.  
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the form of the governing equation is also altered.  This term is discussed in more detail in the 

chapter on the two fluid model (TFM). 

2.4.4 Conservation of Internal Energy 

The conservation of internal energy is presented in terms of temperature. The derivation of the 

temperature form of the equation in non-conservative form obtained from the internal energy 

formulation is presented in Appendix A along with simplifying assumptions. 

The equation for the gas phase internal energy [20, 21] is 

𝜀𝑔𝜌𝑔𝐶𝑝𝑔 [
𝜕𝑇𝑔

𝜕𝑡
+ 𝑈𝑔𝑗

𝜕𝑇𝑔

𝜕𝑥𝑗
] = −

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝑞𝑔𝑗) + 𝒮𝑔 (2-6) 

where 𝑇𝑔 is the gas phase temperature, and 𝐶𝑝𝑔 is the gas phase mixture specific heat. The left 

hand side terms account for the accumulation and convection of thermal energy. The first term 

on the right hand side is the conductive heat flux, and the last term, 𝒮𝑔, is a general source term.  

For single phase flow defined by 𝜀𝑔 = 1, it includes heat transfer due to radiation.7  However, 

user-defined gas phase energy sources may also be specified which add to this term. The source 

term contribution arising from the production or consumption of gas phase species is presented 

in section 2.5.8.2. For multiphase flows, additional contributions may include interphase 

convective heat transfer and enthalpy transfer accompanying interphase mass transfer. Models 

for these terms are presented in the chapter on the two fluid model.  

2.5 Gas Phase Supplementary and Constitutive Equations  

This section presents the additional relationships and constitutive equations used by MFIX to 

fully close the gas phase presented conservation equations presented above. 

2.5.1 Gas Phase Equation of State 

The gas phase density, 𝜌𝑔, is either specified as constant, calculated using a user-defined 

function8, or calculated from the ideal gas law: 

𝜌𝑔 =
𝑃𝑔MW𝑔

𝑅𝑇𝑔
 (2-7) 

 

 

7 For single phase flow through a porous media, 𝜀𝑔 may have values other than unity. 
8 MFIX ensures that the continuity equation is satisfied by solving a pressure correction equation which, to improve 

stability of mildly compressible flows, relies on the derivative of density with respect to pressure, 𝜕𝜌𝑔/𝜕𝑃𝑔 [213]. 

The implementation uses the derivative of equation (2-7) which may lead to inconsistencies when user-defined 

functions are employed to specify the equation of state. 
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Here, MW𝑔 is the gas phase mixture molecular weight, 𝑅 is the gas constant, and the other 

quantities are as before.  The equation of state provides a linkage between the energy equation 

and mass and momentum equations [22].  For constant density fluids, no linkage occurs and the 

energy equation only needs to be solved if the problem involves heat transfer. 

2.5.2 Gas Phase Stress  

The gas phase is assumed to be an isotropic Newtonian fluid so that the viscous stress tensor, 

𝜏𝑔𝑖𝑗, is given by9 

𝜏𝑔𝑖𝑗 = 𝜇𝑔,𝑒𝑓𝑓 (
𝜕𝑈𝑔𝑖

𝜕𝑥𝑗
+
𝜕𝑈𝑔𝑗

𝜕𝑥𝑖
) + 𝜆𝑔,𝑒𝑓𝑓 (

𝜕𝑈𝑔𝑘

𝜕𝑥𝑘
) (2-8) 

where 𝜇𝑔,𝑒𝑓𝑓 is the effective dynamic viscosity and 𝜆𝑔,𝑒𝑓𝑓 is an effective second viscosity, 

modeled as  

𝜆𝑔,𝑒𝑓𝑓 = −𝜇𝑔,𝑒𝑓𝑓
2

3
 (2-9) 

By default, the effective viscosity in MFIX is taken as the mixture molecular viscosity, 𝜇𝑔, 

defined in section 2.6.1.  However, the effects of turbulence are incorporated though the 

additional of an eddy viscosity, 𝜇𝑒, if one of the turbulence models available in MFIX is used 

(see section 2.5.4). 

𝜇𝑔,𝑒𝑓𝑓 = 𝜇𝑔 + 𝜇𝑒 (2-10) 

2.5.3 Porous Media / Semipermeable Surfaces 

Resistance due to flow through a porous media specifically refers to the semipermeable surface 

feature in MFIX.10  Homogeneous porous media are modeled by the addition of a momentum 

source term, 𝑆𝑔𝑖,𝑝𝑚, to the gas phase momentum equation (2-5).  

𝒮𝑔𝑖,𝑝𝑚 = −
𝜇𝑔

𝐶1
𝑈𝑔𝑖 −

1

2
𝐶2𝜌𝑔𝜀𝑔|𝑈𝑔𝑖|𝑈𝑔𝑖 (2-11) 

where 𝜇𝑔, 𝜌𝑔, and 𝜀𝑔 are the mixture molecular viscosity, density, and volume fraction of the gas 

phase, and  𝐶1 and 𝐶2 are use defined constants.  The first term represents viscous losses while the 

 

 

9 MFIX assumes the fluid phase bulk (or volume) viscosity is zero.  Recall, the bulk viscosity is the proportionality 

constant relating pure volumetric-rate-of strain to the normal stress.  Here it is also implicit that viscosity is 

independent of the rate of shear.  
10 A porous media approach may also be established by specifying a stationary, secondary phase (multiphase) so that  

resistance to flow occurs through the associated interphase momentum transfer term. 



Theoretical Review of the MFIX Fluid and Two-Fluid Models 

 

  8 

 

second term captures inertial losses. The porous media source term is added in the gas phase 

momentum equation (2-5) through the general source term, 𝒮𝑔𝑖. 

2.5.4 Turbulence 

Turbulence is modeled in MFIX using the Boussinesq hypothesis which relates Reynolds stresses 

to mean rates of deformation of fluid elements [22]. This technique is implemented by using an 

effective viscosity in the gas phase viscous stress tensor that combines the mixture molecular 

viscosity with a turbulent mixing coefficient, commonly referred to as eddy viscosity.  Although 

eddy viscosity has the same units as molecular viscosity, it is not a property of the fluid; instead it 

is a function of both fluid properties and flow conditions [23].  By default, eddy viscosity is zero 

in MFIX, however two eddy viscosity models are available and are presented the following 

sections. 

2.5.4.1 Mixing Length Model  

Prandtl’s mixing length hypothesis [24] is an algebraic (zero-equation) turbulence model that 

relates turbulent fluctuations to a user-defined length scale, 𝑙𝑚𝑖𝑥, and velocity gradient [25].  

𝜇𝑒 = 2𝑙𝑚𝑖𝑥
2 𝜌𝑔√𝐼𝑔2𝐷 (2-12) 

Here, 𝐼𝑔2𝐷 is the second invariant of the deviatoric strain rate tensor11. 

𝐼𝑔2𝐷 =
1

2
(𝑆𝑔𝑖𝑗𝑆𝑔𝑗𝑖) 

(2-13) 

2.5.4.2 k-ε Model 

A modified version of the two-equation 𝑘-𝜖 model [4] relates the turbulent eddy viscosity to the 

turbulent kinetic energy, 𝑘𝑔, and turbulent dissipation, 𝜖, by a constant, 𝐶1𝜇. 

𝜇𝑒 = 𝜌𝑔𝐶1𝜇
𝑘𝑔
2

𝜖𝑔
 (2-14) 

 

 

11 The second invariant of a general second order tensor (𝑇𝑖𝑗) is given by 
1

2
(𝑇𝑖𝑖𝑇𝑗𝑗 − 𝑇𝑖𝑗𝑇𝑗𝑖).  In regard to the 

deviatoric rate-of strain tensor, however, 𝑆𝑚𝑖𝑖 = 0.  So the magnitude of the second invariant of 𝑆𝑚𝑖𝑗  reduces as 

shown.   
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The kinetic energy and dissipation are given by 

𝜀𝑔𝜌𝑔 [
𝜕𝑘𝑔

𝜕𝑡
+ 𝑈𝑔𝑗

𝜕𝑘𝑔

𝜕𝑥𝑗
] = 𝜀𝑔𝜏𝑔𝑖𝑗

𝜕𝑈𝑔𝑖

𝜕𝑥𝑗
− 𝜀𝑔𝜌𝑔𝜖𝑔 + 

𝜕

𝜕𝑥𝑗
(𝜀𝑔

𝜇𝑒
𝜎𝑘

𝜕𝑘𝑔

𝜕𝑥𝑗
) + 𝒮𝑘𝑔 (2-15) 

𝜀𝑔𝜌𝑔 [
𝜕𝜖𝑔

𝜕𝑡
+ 𝑈𝑔𝑗

𝜕𝜖𝑔

𝜕𝑥𝑗
] =

𝜕

𝜕𝑥𝑗
(𝜀𝑔

𝜇𝑔𝑡

𝜎𝜖

𝜕𝜖𝑔

𝜕𝑥𝑗
) + 𝜀𝑔

𝜖𝑔

𝑘𝑔
(𝐶1𝜖 𝜏𝑔𝑖𝑗

𝜕𝑈𝑔𝑖

𝜕𝑥𝑗
− 𝜌𝑔𝐶2𝜖𝜖𝑔) + 𝒮𝜖𝑔  (2-16) 

where 𝜎𝑘, 𝜎𝜖, 𝐶1𝜖, and 𝐶2𝜖 are model constants provided in Table 2-1. 𝒮𝑘𝑔 and 𝒮𝜖𝑔 are interphase 

turbulent exchange terms which are zero for a single phase simulation. Closures for the 

interphase turbulent exchange terms are specific to particular kinetic theory models implemented 

in the MFIX two-flow model. 

Table 2-1: Default values for the MFIX 𝒌-𝝐 model constants [26] 

Constant 𝜎𝑘 𝜎𝜖 𝐶1𝜖 𝐶2𝜖 𝐶1𝜇 

MFIX Default 1.0 1.3 1.44 1.92 0.09 

 

2.5.5 Diffusive Mass Transfer 

Species mass flux through the gas phase is based on Fick’s First Law of diffusion [27]: 

𝒿𝑔𝑗 = 𝜌𝑔𝒟𝑔𝑛
𝜕𝑋𝑔𝑛

𝜕𝑥𝑗
 (2-17) 

where 𝒟𝑔𝑛 is the 𝑛𝑡ℎ gas phase species diffusion coefficient described in section 2.6.6 and the 

other quantities are defined as before.   

2.5.6 Conductive Heat Transfer 

Conductive heat flux through the gas phase is described by Fourier’s Law [27]: 

𝑞𝑔𝑗 = −𝜅𝑔
𝜕𝑇𝑔

𝜕𝑥𝑗
 (2-18) 

where 𝜅𝑔 is the gas phase thermal conductivity described in section 2.6.5 and the other quantities 

are defined as before.   

2.5.7 Radiative Heat Transfer 

Gas phase radiative heat transfer is modeled by the simple relation, 

𝑆𝑔,𝑟𝑎𝑑 = 𝛾𝑅𝑔(𝑇𝑅𝑔
4 − 𝑇𝑔

4) (2-19) 
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where 𝑇𝑅𝑔 and 𝛾𝑅𝑔 are the radiative temperature and heat transfer coefficient.  By default radiative 

heat transfer is not considered, that is, 𝑇𝑅𝑔 and 𝛾𝑅𝑔 are taken as zero. The gas phase radiation 

source term is added in the gas phase internal energy equation (2-6) through the general source 

term, 𝒮𝑔,𝐼. 

2.5.8 Chemical Reaction Source Terms  

Source terms associated with chemical reactions are zero by default in MFIX. To incorporate 

chemical reactions, users must define chemical equations (stoichiometry) in the input deck, in 

addition to specifying reaction rates via user-defined functions12. Subsequent subsections present 

how user-provided information is used to calculate source terms that contribute to the species 

mass and internal energy conservation equations.  

2.5.8.1 Production and Consumption of Species Mass 

The rate of production per unit volume of the 𝑛𝑡ℎ gas phase species due to the 𝑝𝑡ℎ chemical 

reaction is given by13 

[𝑅𝑔𝑛]𝑝 =
𝛼𝑛,𝑝ℛ𝑝

MW𝑔𝑛
 (2-20) 

where MW𝑔𝑛 is the molecular weight of the 𝑛𝑡ℎ gas phase species (not to be confused with MW𝑔 

the gas phase mixture molecular weight defined in section 2.6.2).  ℛ𝑝 is the user-defined reaction 

rate for the 𝑝𝑡ℎ reaction14 and 𝛼𝑛,𝑝 is the signed stoichiometric coefficient of the 𝑛𝑡ℎ gas phase 

species for the 𝑝𝑡ℎ reaction.  The sign of the stoichiometric coefficient is positive for products 

(e.g., the 𝑛𝑡ℎ species is produced by the 𝑝𝑡ℎ reaction) and negative for reactants (e.g., the 𝑛𝑡ℎ 

species is consumed by the 𝑝𝑡ℎ reaction). The total rate of production (or consumption), 𝑅𝑔𝑛, is 

obtained by summing the contributions from all reactions  

𝑅𝑔𝑛 =∑[𝑅𝑔𝑛]𝑝
𝑝

 (2-21) 

and substituted into equations (2-3) and (2-4). 

 

 

12 Details on how to specify chemical equations and reaction rates is provided in the MFIX User Guide available 

online at https://mfix.netl.doe.gov/doc/mfix/latest 
13 Intraphase and interphase species mass transfer terms are evaluated identically; specifically, user-defined reaction 

rates and signed stoichiometric coefficients are combined to determine the net rate of production (or consumption) 

of each species within the gas mixture. As a result, similar descriptions are provided in subsequent chapters in the 

context of multiphase heterogeneous chemical reactions and/or phase changes. 
14 The unit systems adopted in MFIX are not consistent with the general definitions, and as such, MFIX uses units of 

𝑘𝑚𝑜𝑙𝑒/𝑘𝑔 for molecular weight in SI and 𝑚𝑜𝑙𝑒/𝑔𝑟𝑎𝑚 in CGS units. A consequence of these units is that user-

defined reaction rates have units of 𝑘𝑚𝑜𝑙𝑒/𝑚3𝑠𝑒𝑐 in SI and 𝑚𝑜𝑙𝑒/𝑚3𝑠𝑒𝑐 in CGS units.  
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2.5.8.2 Energy Change Due to Mass Production and/or Consumption 

The 𝑝𝑡ℎ chemical reaction contributes to the general source term in the gas phase internal energy 

equation due to the production or consumption of gas phase species. This contribution may be 

specified15 or computed as 

[𝒮𝑔,𝐼]𝑝 = −∑ℎ𝑔𝑛

𝑁𝑔

𝑛=1

[𝑅𝑔𝑛]𝑝 
(2-22) 

𝑁𝑔 is the total number of species comprising the gas phase mixture, and ℎ𝑔𝑛 is the specific 

enthalpy of the 𝑛𝑡ℎ gas species, defined in section 2.6.4. The total source term arising from 

intraphase enthalpy change is added in the gas phase internal energy equation (2-6) through the 

general source term, 𝒮𝑔: 

𝒮𝑔,𝐼 =∑[𝒮𝑔,𝐼]𝑝
𝑝

 (2-23) 

2.6 Gas Phase Physical Properties 

This section defines physical properties for the gas phase. 

2.6.1 Mixture Molecular Viscosity  

The gas phase mixture molecular viscosity, 𝜇𝑔, is either specified as constant, calculated using a 

user-defined function, or calculated based on Sutherland's formula [28]. The latter is the default 

model and is given as 

𝜇𝑔 = 𝜇𝑟𝑒𝑓 (
𝑇𝑔

𝑇𝑟𝑒𝑓
)

3 2⁄

(
𝑇𝑟𝑒𝑓 + 𝐶

𝑇𝑔 + 𝐶
) (2-24) 

where 𝐶 is the Sutherland constant for the gas, 𝑇𝑟𝑒𝑓 is a reference temperature, and 𝜇𝑟𝑒𝑓 is a 

reference viscosity at the reference temperature. The constant and reference values for the default 

model correspond to air and are provided in Table 2-2.  

 

 

 

15 If a constant heat of reaction is specified, then the evaluation of enthalpy defined in equation (2-27) is not 

performed so that the sensible heat contribution is not incorporated. Additionally, the partitioning of the specified 

heat of reaction between phases must also be provided. 
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Table 2-2: Default values for Sutherland's Law model constants [29] 

 𝜇𝑟𝑒𝑓 𝑇𝑟𝑒𝑓 𝐶 

Unit 𝑃𝑎 ∙ 𝑠 𝐾 𝐾 

Air 1.7 × 10−5 273 110 

 

2.6.2 Mixture Molecular Weight  

The gas phase mixture molecular weight, MW𝑔, is either specified as constant or calculated as 

1

MW𝑔
= ∑

𝑋𝑔𝑛

MW𝑔𝑛

𝑁𝑔

𝑛=1

 
(2-25) 

where 𝑋𝑔𝑛 and MW𝑔𝑛 are the mass fraction and elemental molecular weight of the 𝑛𝑡ℎ gas phase 

chemical species. 

2.6.3 Mixture Specific Heat  

The gas phase mixture specific heat, 𝐶𝑝𝑔, is either specified as constant16 or calculated as 

𝐶𝑝𝑔 = ∑𝑋𝑔𝑛𝐶𝑝𝑔𝑛

𝑁𝑔

𝑛=1

 
(2-26) 

where 𝐶𝑝𝑔𝑛is the specific heat of the 𝑛𝑡ℎ gas phase species. The species specific heat is obtained 

from either the BURCAT database [30] or from a user provided entry following the same format. 

2.6.4 Species Specific Enthalpy 

The specific enthalpy each species is calculated by combining the heat of formation, 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓),0 

and integrating the specific heat of that species from the reference temperature, 𝑇𝑟𝑒𝑓, to the gas 

phase temperature. 

ℎ𝑔𝑛 = 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓) + ∫ 𝐶𝑝𝑔𝑛(𝑇)

𝑇𝑔

(𝑇𝑟𝑒𝑓)

𝑑𝑇 (2-27) 

The species heat of formation is obtained from either the BURCAT database [30] or as a user 

provided entry following the same format. 

 

 

16 Specifying a constant specific heat for the gas phase is only permissible for non-reacting flows. 
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2.6.5 Thermal Conductivity 

The gas phase thermal conductivity, 𝜅𝑔, is either specified as constant, calculated using a user-

defined function, or calculated using a temperature dependence model that has basis in kinetic 

theory for dilute monatomic gases [27].  The latter is the default model and is given as:  

𝜅𝑔 = 𝜅𝑟𝑒𝑓√
𝑇𝑔

𝑇𝑟𝑒𝑓
  (2-28) 

where 𝑇𝑟𝑒𝑓 is a reference temperature and 𝜅𝑟𝑒𝑓 is a reference conductivity evaluated at the 

reference temperature. The reference values for the default model correspond to air and are 

provided in Table 2-2 [31].  

 

Table 2-3: Default values for temperature dependent thermal conductivity 

(See 8.B1 Computation of the Prandtl Number for Gases at Low Density, p263 [31]) 

 𝜅𝑟𝑒𝑓 𝑇𝑟𝑒𝑓 

Unit 𝑊/(𝑚𝐾) K 

Air 0.0252 300 

2.6.6 Diffusivity 

The gas phase species diffusivity, 𝒟𝑔𝑛, is either specified as constant, calculated using a user-

defined function, or calculated based on a correlation by Fuller, Schettler and Giddings (FSG).  

In their effort, the temperature dependence was determined from fitting a generalized function 

with theoretical foundations to experimental data [32].  The FSG correlation is used to form the 

default model: 

𝒟𝑔𝑛 = 𝐷𝑛,𝑟𝑒𝑓 (
𝑇𝑔

𝑇𝑟𝑒𝑓
)

7/4

(
𝑃𝑟𝑒𝑓

𝑃𝑔
) (2-29) 

Here 𝑇𝑟𝑒𝑓 and 𝑃𝑟𝑒𝑓, are a reference temperature and pressure, respectively, while 𝐷𝑛,𝑟𝑒𝑓 is a 

reference diffusion coefficient for species n defined at the reference temperature and pressure.  

The reference values for the default model correspond to the diffusivity of CO2 and N2 with 

values provided in Table 2-4. A dilute mixture approximation for multicomponent diffusion [33] 

is available to evaluate 𝐷𝑛,𝑟𝑒𝑓.  This approximation is based on the binary diffusion coefficient of 

all gas pairs in the mixture as: 

𝐷𝑛,𝑟𝑒𝑓 =

(

 ∑ 𝑋𝑔𝑛′

𝑁𝑔

𝑛′=1
𝑛′≠𝑛 )

 

(

  ∑
𝑋𝑔𝑛′

𝐷𝑛′𝑛

𝑁𝑔

𝑛′=1
𝑛′≠𝑛 )

 ⁄  (2-30) 
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Here 𝐷𝑛′𝑛 is the binary diffusion coefficient for gas phase species 𝑛 and 𝑛′, which is given in 

Table 2-4 for CO2 and N2.  

 

Table 2-4: Default values for temperature and pressure dependent diffusion based on CO2 in N2 

(See Table 16.2-2 Experimental diffusivities of some dilute gas pairs, p503 [31]) 

 𝑃𝑟𝑒𝑓 𝑇𝑟𝑒𝑓 𝐷𝑛,𝑟𝑒𝑓 

Unit 𝑃𝑎 𝐾 𝑚2/𝑠𝑒𝑐 

CO2 – N2 1.01 298.2 1.65 × 10−5 
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Chapter 3: Eulerian Solids Phase Model (MFIX-TFM) 

MFIX-TFM (two-fluid model), also referred to as the gas-solids continuum model, the Euler-

Euler model, or the multi-fluid model, describes the motion of a mixture of a continuous phase 

and one or more dispersed phases. The continuous phase was presented in Chapter 2 and is 

commonly referred to throughout this chapter as the gas phase, however it may be taken to 

represent other fluids.17 The gas phase is identified as the continuous phase because its volume 

fraction must always be greater than zero. A dispersed phase is generally referred to throughout 

this chapter as a solids phase, but it could be liquid droplets or gas bubbles. Elements of a 

dispersed phase, referred to as particles, are assigned to separate phases that delineate size, 

density, and chemical species composition; a total of 𝑀 dispersed phases may be defined.  Like 

the continuous phase, a dispersed phase is described as a continuum.  However, volume fractions 

may be zero. Specifically, a dispersed phase may be absent in regions of the domain (e.g., the 

freeboard of a dense bubbling bed), whereas the continuous phase must always be present.  Here 

the equations are presented in conservative form, however, in MFIX the equations are solved in 

non-conservative form by subtracting the respective phase continuity equation.  

3.1 Overview 

Many approaches have been used to derive the governing equations of motion for multiphase 

flow. Two broad categories for such attempts include the mixture (drift-flux) approach [34, 26, 

35] that treats the mixture as a whole, and a multiphase averaging approach [19, 36, 37, 38, 39, 

40, 41, 42, 43].  This section focuses on the latter.  The Eulerian multiphase model allows for the 

modeling of multiple separate interacting materials called phases. In the Eulerian approach, each 

phase is described as a continuum occupying the same region of space.   

Application of an averaging process to the continuum equations describing the exact motion of 

each material at each point establishes a connection with the corresponding exact or microscopic 

description.  Two well-known averaging techniques include ensemble averaging and volume 

averaging.  In general terms, ensemble averaging involves averaging over each point in space 

over an ensemble of macroscopically equivalent systems.  Volume averaging, on the other hand, 

involves a local spatial average taken over regions small in extent compared to macroscopic 

scales of interest.  For further details the reader is referred to Chapter 2 of [39]. Regardless, the 

formal process of averaging leads to equations with a number of terms whose form is not 

determined18; that is, a closure problem remains. Expressing these quantities in well-defined 

terms that reflect the behavior at the microscopic level is a difficult task.  Here, well-defined 

 

 

17 When the continuous phase is no longer considered gaseous, then additional physics may become important that 

MFIX does not currently consider.  For example, virtual mass may become important in liquid-solid or bubbly 

flows. 
18 Namely, terms involving integrals of point properties over the microscopic domain remain. 
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refers to having closure relationships for unknown terms written explicitly in terms of the same 

averaged variables (e.g., locally averaged velocity or phase concentration) as in the governing 

equations. 

Developing the corresponding constitutive equations remains a formidable task.  In particular, 

what form they should take and what approximations may be implied in their use is not always 

clear.  The existence of interfaces between phases and the discontinuities associated with them is 

especially challenging in terms of experimentation and modeling.  Thus constitutive equations 

for the interfacial terms are often considered the weakest link in multifluid model formulation 

[44].  An alternate approach to the formal averaging process still models the system as 

interpenetrating continuous fluids. However, the equations are formulated based more on 

intuitive ideas, and constrained by general principles of continuum mechanics. This may lead to 

similar equations, but it does not reveal how the macroscopic relations arise from appropriate 

microscopic considerations [39]. 

The following sections outline the equations that comprise the MFIX-TFM dispersed phase 

model. Recall the MFIX-TFM continuous phase model is as presented in Chapter 2 unless 

otherwise indicated. 

3.2 Limitations 

Limitations of MFIX-TFM include: 

• The continuous, or fluid, phase volume fraction (𝜀𝑔) is always greater than zero such that 

the dispersed, or solids, phase volume fractions (𝜀𝑚) cannot sum to one. 

3.3 Conservation Equations 

This section presents the 𝑚𝑡ℎ phase conservation equations solved by MFIX.  To solve this set of 

equations requires specifying additional closures, which includes, among others, the interphase 

momentum transfer and stress terms. Modeling of these terms must proceed carefully as 

discussed in the sections following.   

3.3.1 Conservation of Mass 

The conservation of mass (or continuity equation) for the 𝑚𝑡ℎ phase is 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗) = ∑𝑅𝑚𝑛

𝑁𝑚

𝑛=1

+ 𝒮𝑚 (3-1) 

where, 𝜀𝑚 is the 𝑚𝑡ℎ phase volume fraction, 𝜌𝑚 is the 𝑚𝑡ℎ phase material density, 𝑈𝑚𝑗 is the 𝑗𝑡ℎ 

component of the 𝑚𝑡ℎ phase velocity, 𝑁𝑚 is the number of chemical species comprising the 𝑚𝑡ℎ 

phase, 𝑅𝑚𝑛 is the rate of production/consumption of the 𝑚𝑡ℎ phase 𝑛𝑡ℎ chemical species, and 𝒮𝑚 
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is a general user-defined 𝑚𝑡ℎ phase mass source term. The left hand side terms account for the 

rate of mass accumulation and the net rate of convective mass flux. The first term on the right 

hand side is the interphase mass transfer attributed to chemical reactions or physical processes, 

such as evaporation. Users may specify sources due to phase changes or chemical reactions that 

will give this first term on the right hand side value.  A user-defined mass source may also be 

specified to give the second term on the right hand side value.  By default, however, the right 

hand side is zero in MFIX.  

3.3.2 Conservation of Species Mass 

The 𝑛𝑡ℎ species mass conservation equation for the 𝑚𝑡ℎ phase is 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝑋𝑚𝑛) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑋𝑚𝑛) =

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝒿𝑚𝑗) + 𝑅𝑚𝑛 + 𝒮𝑚𝑛 (3-2) 

where 𝑋𝑚𝑛 is the 𝑚𝑡ℎ phase 𝑛𝑡ℎ species mass fraction, and 𝒮𝑚𝑛 is a general user-defined 

𝑚𝑡ℎphase species mass source term.  The left hand side terms account for the rate of species 

mass accumulation and the net rate of convective species mass flux.  The first term on the right 

hand side is the diffusive species mass flux. The second term on the right hand side is the rate of 

production of species mass attributed to chemical reactions or physical processes.  𝑅𝑚𝑛 is zero 

by default in MFIX, however, users may specify phase changes or chemical reactions giving rise 

to nonzero values (see section 3.4.11).  The last term is a general user-defined species mass 

source, which is by default zero but may be specified to give the term value.  Properties of the 

𝑚𝑡ℎ phase are discussed later in this chapter, however, it is worth noting that 𝒟𝑚𝑛 is zero by 

default in MFIX (i.e., no species diffusion occurs within the 𝑚𝑡ℎ solids phase).  As a result, the 

right hand side is also by default zero in MFIX. 

MFIX solves a conservation equation for each species comprising each phase. As such, ill-

defined species mass sources, poor convergence, or inappropriate numerical techniques can lead 

to the sum of mass fractions deviating from unity.  

3.3.3 Conservation of Momentum 

This section presents the gas and 𝑚𝑡ℎ phase momentum equation formulations available in 

MFIX-TFM. 

3.3.3.1 Default Formulation 

The default MFIX-TFM gas and momentum balances are  

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖)  = −

𝜕𝑃𝑔 

𝜕𝑥𝑖
+
𝜕𝜏𝑔𝑖𝑗  

𝜕𝑥𝑗
+ 𝜀𝑔𝜌𝑔𝑔𝑖 + 𝒮𝑔𝑖 (3-3) 
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𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑈𝑚𝑖)  = −

𝜕𝑃𝑚 

𝜕𝑥𝑖
+
𝜕𝜏𝑚𝑖𝑗  

𝜕𝑥𝑗
+ 𝜀𝑚𝜌𝑚𝑔𝑖 + 𝒮𝑚𝑖 (3-4) 

where 𝑃𝑚 is the 𝑚𝑡ℎ phase pressure, 𝜏𝑚𝑖𝑗 is the 𝑚𝑡ℎ stress tensor and 𝒮𝑚𝑖 is a general 𝑚𝑡ℎ phase 

momentum source term. The other terms are as before in the presentation of the fluid phase 

governing equations, that is, 𝑃𝑔 is the gas pressure, 𝜏𝑔𝑖𝑗 is the gas phase stress tensor, 𝑔𝑖 is the 

body force due to gravity and 𝒮𝑔𝑖 is a general gas phase momentum source term.  The source 

terms include contributions from interphase momentum transfer, such as, gas-solids drag.  User-

defined momentum sources may also be specified. Note that the gas phase momentum balances 

given by Equations (2-5) and (3-3) are identical.  As noted in presentation of the Eulerian fluid 

phase model, the above set of Eulerian multiphase governing equations are the result of an 

averaging process that is chiefly based on the work of Anderson and Jackson [19] for a fluidized 

system of particles.19   

This section more closely examines the form of the interphase momentum transfer term and how 

its definition impacts the overall form of the governing equations when inserted.  For 

convenience 𝒮𝑔𝑖 and  𝒮𝑚𝑖 are redefined to specifically distinguish the contribution(s) due to 

interphase momentum transfer between the gas and 𝑚𝑡ℎ phase: 

𝒮𝑔𝑖 = −∑ 𝐼𝑔𝑚𝑖

𝑀

𝑚=0

+ 𝒮𝑔𝑖′ (3-5) 

𝒮𝑚𝑖 = 𝐼𝑔𝑚𝑖 + 𝒮𝑚𝑖′ (3-6) 

Here 𝐼𝑔𝑚𝑖 represents contributions to the gas-𝑚𝑡ℎ phase interphase momentum transfer term, 𝑀 

represents the number of additional phases beyond the fluid phase, and 𝒮𝑔𝑖′ and 𝒮𝑚𝑖′ are general 

gas and 𝑚𝑡ℎphase momentum source terms excluding that due to gas-𝑚𝑡ℎ phase interphase 

momentum transfer.  The default form for this interphase transfer term in MFIX is presented here 

for quick reference but discussed in more detail later20. 

𝐼𝑔𝑚𝑖 = −𝜀𝑚
𝜕𝑃𝑔 

𝜕𝑥𝑖
+ 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) 

(3-7) 

 

 

19 Following Anderson and Jackson [19] the default momentum balances shown in (3-3) and (3-4) involve some 

mathematical manipulation wherein similarities are leveraged between 1) the definition for the force exerted on a 

single particle by the surrounding fluid (i.e., the surface integral of the fluid stress tensor over the particles’ surface) 

and 2) a surface integral term that arises from averaging the point wise fluid stress tensor.  
20 Additional gas-solids interaction terms are possible, such as, virtual mass and the Basset force.  However, these 

are not incorporated into the default model. 
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The corresponding default form of the governing equations are obtained upon introduction of 

this force and they are shown here for context and comparison with other available options in 

MFIX. 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖)  

= −𝜀𝑔
𝜕𝑃𝑔 

𝜕𝑥𝑖
+
𝜕𝜏𝑔𝑖𝑗  

𝜕𝑥𝑗
+∑𝛽𝑔𝑚(𝑈𝑚𝑖 − 𝑈𝑔𝑖)

𝑀

𝑚

+ 𝜀𝑔𝜌𝑔𝑔𝑖 + 𝒮𝑔𝑖′ 

(3-8) 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑈𝑚𝑖)  

= −𝜀𝑚
𝜕𝑃𝑔 

𝜕𝑥𝑖
−
𝜕𝑃𝑚 

𝜕𝑥𝑖
+
𝜕𝜏𝑚𝑖𝑗  

𝜕𝑥𝑗
+ 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) + 𝜀𝑚𝜌𝑚𝑔𝑖 + 𝒮𝑚𝑖′ 

(3-9) 

Multiphase flow equations have been derived from formal averaging of the microscopic 

description by both Anderson and Jackson [19] and Ishii [45].  The authors employed different 

averaging methods (volume versus time) and applied their technique to differing multiphase flow 

systems.  In particular, Ishii’s formulation considers both phases to be a fluid and as such the 

interphase term is treated the same. While in Jackson’s formulation the fluid and solids phases 

are treated differently and as a result the interphase interaction term appears differently in the 

fluid and solids phases’ momentum equation [46].  Regardless, the assumptions inherent in their 

treatment suggest the types of multiphase flows to which they can be most appropriately applied 

[46].  In addition to the default form presented above, multiphase momentum equation 

formulations based on each of these works is also available in MFIX as discussed subsequently. 

3.3.3.2 Jackson Formulation 

Anderson and Jackson [19, 38, 39] presented a formal averaging procedure for fluid-particle 

systems and examined the impact of different definitions of the gas-solids interphase momentum 

transfer term.  Shown below is their interpretation of the total interaction force and the 

corresponding form of the governing equations:21 

𝐼𝑔𝑚𝑖 = −𝜀𝑚 (
𝜕𝑃𝑔 

𝜕𝑥𝑖
−
𝜕𝜏𝑔𝑖𝑗 

𝜕𝑥𝑗
) + 𝛽𝑔𝑚(𝑈𝑔𝑖 −𝑈𝑚𝑖) 

(3-10) 

 

 

21 Anderson and Jackson [19] and Jackson [36] acknowledge additional gas-solids interaction terms including added 

mass and the Basset force.  Discussion of such additional terms is reserved until section 3.4.4 on the gas-solids 

momentum transfer.   
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This form of the interaction force follows a series of arguments building first on a single particle 

in an undisturbed fluid, to a single particle in a fluid with diverging streamlines to fluid flow 

through an assembly of particles.  The resulting momentum equations are shown here.22. 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖)  

= −𝜀𝑔
𝜕𝑃𝑔 

𝜕𝑥𝑖
+ 𝜀𝑔

𝜕𝜏𝑔𝑖𝑗 

𝜕𝑥𝑗
+∑𝛽𝑔𝑚(𝑈𝑚𝑖 − 𝑈𝑔𝑖)

𝑀

𝑚

+ 𝜀𝑔𝜌𝑔𝑔𝑖 + 𝒮𝑔𝑖′ 

(3-11) 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑈𝑚𝑖)  

= −𝜀𝑚
𝜕𝑃𝑔 

𝜕𝑥𝑖
+ 𝜀𝑚

𝜕𝜏𝑔𝑖𝑗 

𝜕𝑥𝑗
−
𝜕𝑃𝑚 

𝜕𝑥𝑖
+
𝜕𝜏𝑚𝑖𝑗  

𝜕𝑥𝑗
+ 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) + 𝜀𝑚𝜌𝑚𝑔𝑖

+ 𝒮𝑚𝑖′ 

(3-12) 

The above form of the multiphase momentum equations is also available in MFIX.  The default 

formulation in MFIX for the multiphase momentum equations (equations 3-8 and 3-9) closely 

mirrors Jackson’s formulation with two primary differences. First, Jackson’s 𝑚𝑡ℎ phase 

momentum balance contains the gas phase volume fraction multiplied by the gas phase shear 

stress tensor. This term is wholly absent from the default MFIX formulation. Second, in 

Jackson’s gas phase momentum balance, the divergence of the gas phase shear term is also 

multiplied by the gas phase volume fraction.   

3.3.3.3 Ishii Formulation 

Ishii [45] presented a formal averaging procedure for fluid-fluid systems.  The resulting 

multiphase formulation of Ishii, as presented by van Wachem [46], is reproduced here23: 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑔𝜌𝑔𝑈𝑔𝑗𝑈𝑔𝑖)  

= −𝜀𝑔
𝜕𝑃𝑔 

𝜕𝑥𝑖
+
𝜕 

𝜕𝑥𝑗
(𝜀𝑔𝜏𝑔𝑖𝑗) +∑𝛽𝑔𝑚(𝑈𝑚𝑖 −𝑈𝑔𝑖)

𝑀

𝑚

+ 𝜀𝑔𝜌𝑔𝑔𝑖 + 𝒮𝑔𝑖′ 

(3-13) 

 

 

22 These equations shown here differ slightly from Anderson and Jackson [19] as their derivation is based on a 

monodisperse gas-solids system. As a result, gas-solids interphase momentum transfer is the only source term 

present in the formal equation set. Recall, however, that the MFIX-TFM implementation includes extensions for 

polydispersity, hence the summation over 𝑀. 
23As noted by van Wachem et al. [43] a few terms in Ishii’s interphase momentum transfer model have been 

neglected in this presentation, including an interfacial shear term and a term due to pressure differences between the 

bulk and the interface. 
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𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖) +

𝜕

𝜕𝑥𝑗
(𝜀𝑚𝜌𝑚𝑈𝑚𝑗𝑈𝑚𝑖)  

= −𝜀𝑚
𝜕𝑃𝑔 

𝜕𝑥𝑖
+
𝜕 

𝜕𝑥𝑗
(𝜀𝑚𝜏𝑚𝑖𝑗) + 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) + 𝜀𝑚𝜌𝑚𝑔𝑖 + 𝒮𝑚𝑖′ 

(3-14) 

The above form of the multiphase momentum equations is also available in MFIX.  As evident 

by comparison, the default formulation for the multiphase momentum equations in MFIX is 

slightly different from this modified version of the multiphase momentum equations of Ishii. For 

example, the default gas-phase momentum equation in MFIX is similar to those based on Ishii 

except the latter has the gas phase volume fraction multiplying the gas phase shear term. 

Differences are also evident in the 𝑚𝑡ℎ phase momentum equations.  

This form of the 𝑚𝑡ℎ phase momentum balance, presented above, is modified further when 

applied to gas-solids systems in MFIX. Specifically, the solids-phase stress tensor is not 

multiplied by the solids volume fraction as its functionality is accounted for in the solids phase 

model description (e.g. kinetic theory model). Moreover, a solids pressure term is included (see 

[46]) in the solids phase momentum balance. Note that the 𝑚𝑡ℎ phase momentum equation 

shown above do not reflect these modifications, but in MFIX they are incorporated into the 𝑚𝑡ℎ 

phase solids momentum equation when applied to gas-solids systems with a kinetic theory 

description for solids.  This formulation based on Ishii [45] is more appropriate for a dispersed 

phase consisting of a fluid material (e.g., fluid droplets) as opposed to solids particles [46]. 

3.3.4 Conservation of Internal Energy 

The conservation of internal energy is presented in terms of temperature. The derivation of the 

temperature form of the equation, obtained from the internal energy formulation [20, 21], is 

presented in Appendix A along with simplifying assumptions. 

The 𝑚𝑡ℎ phase energy equation is 

𝜀𝑚𝜌𝑚𝐶𝑝𝑚 [
𝜕𝑇𝑚
𝜕𝑡
+ 𝑈𝑚𝑗

𝜕𝑇𝑚
𝜕𝑥𝑗
] = −

𝜕(𝜀𝑚𝑞𝑚𝑗)

𝜕𝑥𝑗
+ 𝒮𝑚 

(3-15) 

where 𝑇𝑚 is the 𝑚𝑡ℎ phase temperature, and 𝐶𝑝𝑚 is the 𝑚𝑡ℎ phase mixture specific heat. The left 

hand side terms account for the accumulation and convection of thermal energy. The terms on 

the right hand side include the conductive heat flux, and a general source term, 𝒮𝑚.  A user-

defined 𝑚𝑡ℎ phase energy source may be specified to add to this term.  Other contributions may 

include heat transfer due to radiation, interphase heat transfer, and enthalpy transfer 

accompanying intra- and interphase mass transfer. 
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3.4 Solids Phase Supplementary and Constitutive Equations  

This section presents the additional relationships and constitutive equations used by MFIX to 

fully close the 𝑚𝑡ℎ phase conservation equations presented above.  As evident below, these 

relationships assume a granular basis, that is, the 𝑚𝑡ℎ phase is a solids phase with a characteristic 

diameter and density. 

3.4.1 Solids Phase Stress 

As noted earlier MFIX was originally designed to model multiphase gas-solids flows. 

Accordingly, MFIX-TFM characterizes the 𝑚𝑡ℎ phase as a granular material wherein individual 

particles are not resolved.  Granular flows are often classified into two limiting flow regimes, 

quasi-static (referred to here as frictional) and kinetic, as shown in Figure 3-1 [47, 48].24  

Stresses in the quasi-static/friction regime are the result of the internal structure of the granular 

material (quasi-linear structures or chains), which supports the bulk internal stress within the 

material [49, 50].  These quasi-static materials demonstrate apparent frictional behavior in that 

the shear and normal stresses are related; the stresses can be related through the compressive 

force acting on the structure and the angle of the structure, which generally does not vary 

significantly.  In a shearing material, these chains are dynamic structures that may collapse and 

form new ones.  Stresses in the kinetic regime are considered the result of collisional and 

streaming momentum transfer of particles wherein it is generally assumed that particle contacts 

occur instantaneously.  Therefore, constitutive equations for particle-particle interactions must 

consider the fundamentally different modes of force transmission across flow regimes.   

 
Figure 3-1: Schematic of the transition between the quasi-static/frictional regime and the kinetic regime [51]. 

 

 

24 The term frictional may be somewhat misleading as these relations refer to the internal behavior of a collection of 

particles, that is, the behavior of the internal structure of the granular material [46]. It is not a simple function of 

friction between grains (e.g., consider deformation).  In other words, stresses are not necessarily simply the result of 

particles sliding over one another (classic frictional picture)  Nevertheless, this terminology is used here. 
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A general continuum mechanics theory for computational purposes that is capable of 

simultaneously capturing these different rheological behaviors is lacking.  However, constitutive 

equations describing all flow regimes are needed, since all may exist at any time at various 

locations in a granular flow system.  Moreover, the transition between the two limiting regimes, 

where particle-particle contacts are of intermediate duration is difficult to describe [48, 52].  

Therefore, the results taken from both limiting regimes are typically stitched together to describe 

all flow situations.  That is, the frictional and kinetic regime contributions to the solids pressure 

and solids stress tensor are combined through addition [53, 52, 48]  While this superposition 

principle is ad hoc, it has been used to investigate a wide range of slow and rapid granular flows 

[54].  For further discussion see section 3.4.2.1.1. 

Since the rheological behavior of the granular phase varies depending on the regime, the form of 

the constitutive equations may also be expected to differ.  Nevertheless, the stresses are cast in 

the same general form for computational purposes.  For context in the following, refer back to 

the governing 𝑚𝑡ℎ phase momentum equation: equation 3-4 or equivalently equation 3-9.  The 

general formulation for the total 𝑚𝑡ℎ phase solids stress tensor is given by 

𝜏𝑚𝑖𝑗 = 2𝜇𝑚𝐷𝑚𝑖𝑗 + 𝜆𝑚𝐷𝑚𝑘𝑘𝛿𝑖𝑗 (3-16) 

where 𝜇𝑚 is the viscosity, 𝜆𝑚 is referred to as the second viscosity25 and 𝐷𝑚𝑖𝑗 is the rate-of-

strain tensor.  The latter two quantities are defined as 

𝐷𝑚𝑖𝑗 =
1

2
(
𝜕𝑈𝑚𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑚𝑗

𝜕𝑥𝑖
) (3-17) 

𝜆𝑚 = 𝜇𝑏𝑚 −
2

3
𝜇𝑚 (3-18) 

where 𝜇𝑏𝑚 is the bulk viscosity of the 𝑚𝑡ℎ phase.  For completeness, it should also be noted that 

some publications present the solids stress tensor in terms of the deviatoric rate-of-strain tensor, 

𝑆𝑚𝑖𝑗. 

𝜏𝑚𝑖𝑗 = 2𝜇𝑚𝑆𝑚𝑖𝑗 + 𝜇𝑏𝑚𝐷𝑚𝑘𝑘𝛿𝑖𝑗 (3-19) 

𝑆𝑚𝑖𝑗 =
1

2
(
𝜕𝑈𝑚𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑚𝑗

𝜕𝑥𝑖
) −

1

3

𝜕𝑈𝑚𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 (3-20) 

This representation illustrates that the bulk viscosity is the proportionality constant relating pure 

volumetric-rate-of-strain to the normal stress. The two definitions of the stress tensor, (3-16) and 

 

 

25 The second viscosity is employed to facilitate computations and is a composite parameter representing the 

combination of all the viscous effects associated with the volumetric-rate-of-strain.   
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(3-19), are identical.  The motivation in providing both definitions is to establish a connection 

between the equations modeled in MFIX and common variants found in literature. 

Using the superposition principle, the solids stress tensor is obtained by summing solids stress 

contributions from frictional and kinetic models for granular material: 

𝜏𝑚𝑖𝑗 = 𝜏𝑚𝑖𝑗
𝑓𝑟𝑖𝑐

+ 𝜏𝑚𝑖𝑗
𝑘𝑖𝑛  (3-21) 

This may also be accomplished through its components.  That is, the 𝑚𝑡ℎ phase solids viscosity 

and solids second viscosity are obtained by summing the viscosity and second viscosity 

contributions from the frictional and kinetic models. 

𝜇𝑚 = 𝜇𝑚
𝑓𝑟𝑖𝑐

+ 𝜇𝑚
𝑘𝑖𝑛 (3-22) 

𝜆𝑚 = 𝜆𝑚
𝑓𝑟𝑖𝑐

+ 𝜆𝑚
𝑘𝑖𝑛 (3-23) 

Specific models for the frictional and kinetic contributions are provided in the subsequent 

sections.  Like solids stress, the total 𝑚𝑡ℎ phase solids pressure is obtained by summing solids 

pressure contributions from frictional, 𝑃𝑚
𝑓𝑟𝑖𝑐

, and kinetic, 𝑃𝑚
𝑘𝑖𝑛, models for granular material.  

𝑃𝑚 = 𝑃𝑚
𝑓𝑟𝑖𝑐

+ 𝑃𝑚
𝑘𝑖𝑛 (3-24) 

Specific models for the frictional and kinetic contributions are provided in the subsequent 

sections 3.4.2 and 3.4.3, respectively.   

Under the assumption that the stresses can be treated in an additive manner, each contribution is 

evaluated independently as if it acted alone.  This ad hoc formulation provides a mechanism to 

describe each regime within the same framework.  A well-established quantitative methodology 

for characterizing the two limiting flow conditions (kinetic and frictional) or their transition is 

not available [55].26   In early efforts [48, 53], the stresses from each regime were simply 

summed regardless of the flow conditions.  Alternatively, Syamlal et al. [56] introduced a switch 

function where the frictional stresses are included only when a critical solids volume fraction is 

reached.  This approach is followed here.  Namely, the frictional models only contribute to the 

solids pressure and solids viscosity when the gas phase volume fraction falls below some value 

representative of close pack or frictional conditions (section 3.4.2 equations 3-25 and 3-28 or 

 

 

26 More recently, simulations (e.g., [184, 208, 210, 209]) based on Discrete Element Methods have been used to 

investigate the rheology of granular materials.  Using these tools flow regime maps have been described, however, 

they rely on material properties (e.g., elasticity), which are not found in the typical frictional and kinetic models 

employed in the Eulerian Method (current Chapter).  Therefore, their usefulness for specifying a transition criteria in 

the context of these continuum approaches remains uncertain.  
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3-32 and 3-34) as shown in Figure 3-2.  Under the currently implemented frictional models 

(section 3.4.2), this approach also results in a step transition or discontinuity in the solids 

pressure and viscosity.  

 
Figure 3-2: Schematic illustrating the instantaneous onset of frictional stresses when the solids packing 

surpasses a close pack condition. 

3.4.2 Frictional Stress Models 

When particles undergo long enduring contacts in which the bulk material exhibits a solid-like 

behavior (e.g. soil mechanics, silos), the system is considered to be in the quasi-static or slow-

flow regime.  A few options are available in MFIX to describe the motion of particles in this 

flow regime, which are discussed in the following.  The condition under which these physics are 

functioning depends on the invoked model (see below for the specific criteria), but generally the 

fluid volume (void) fraction must be lower than some specified void fraction representing close-

pack (𝜀𝑔 < 𝜀
∗) or frictional conditions (𝜀𝑔 < 1 − 𝜀𝑓

𝑚𝑖𝑛).  The theories used here for the frictional 

contribution are largely based on the critical state theory of soil mechanics (e.g., [57]), but as 

indicated by Johnson and Jackson [48] such efforts are largely empirical. 

3.4.2.1 Schaeffer Model [56] 

Syamlal et al. [56] developed a constitutive model for the quasi-static flow regime where the 

shear viscosity is adapted from Schaeffer [58] and Pitman and Schaeffer [59] who examined the 

equations for compressible and incompressible granular flow, respectively.  Originally written 

for a single phase, here it adapted for 𝑀 phases:  

𝜇𝑚
𝑓𝑟𝑖𝑐

= {
min {

𝑃𝑐 sin(𝜙)

√4𝐼𝑚2𝐷

𝜀𝑚
𝜀𝑠
, 𝜇𝑠
𝑚𝑎𝑥} 𝜀𝑔 < 𝜀

∗

   0 𝜀𝑔 ≥ 𝜀
∗

 (3-25) 

where 𝜙 is the angle of internal friction, 𝜇𝑠
𝑚𝑎𝑥 is a specified maximum granular viscosity27, 𝑃𝑐 

represents the solids pressure in the quasi-static flow regime, 𝜀𝑚 is the 𝑚𝑡ℎ phase volume 

 

 

27 An upper limit is specified to help stabilize the calculation as the calculated values are large and become 

unbounded as 𝐼𝑚2𝐷 → 0. 
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fraction, 𝜀𝑠 represents the total volume fraction of 𝑀 dispersed phases, that is, the total solids 

volume fraction (𝜀𝑠 = ∑ 𝜀𝑚
𝑀
𝑚=1 ), and 𝜀∗ is the void fraction at close packing [60, 51] described 

below.28  The quantity 𝐼𝑚2𝐷 is the magnitude of the second invariant of the deviatoric rate-of-

strain tensor:29 

𝐼𝑚2𝐷 =
1

2
(𝑆𝑚𝑖𝑗𝑆𝑚𝑗𝑖). (3-26) 

This quantity may be expressed in terms of components of the rate-of-strain tensor as follows: 

𝐼𝑚2𝐷 =
1

6
[(𝐷𝑚11 − 𝐷𝑚22)

2 + (𝐷𝑚22 − 𝐷𝑚33)
2 + (𝐷𝑚33 − 𝐷𝑚11)

2] + 𝐷12
2 +𝐷23

2 + 𝐷33
2  (3-27) 

As indicated by [48, 54], the pressure in this quasi-static regime is expected to increase rapidly 

with volume fraction and diverge on approaching some close packed value.  This critical or 

close-pack pressure is given here by an arbitrary expression related to the void fraction that 

allows some compressibility in the solids phase [56]:  

𝑃𝑐 = {
𝐴𝑝𝑐(𝜀

∗ − 𝜀𝑔)
𝑛𝑝𝑐 𝜀𝑔 < 𝜀

∗

   0 𝜀𝑔 ≥ 𝜀
∗
 (3-28) 

The model constants are given in Table 3-1.  As before 𝜀∗ is the void fraction at close packing.30  

As shown, the critical pressure only has value when the void fraction falls below a critical void 

fraction (the void fraction at close packing).   

For uniformly sized particles the close-pack void fraction is a specified constant, whereas for 

polydisperse mixtures it can estimated from correlations or also simply specified as a constant.  

Note the void fraction at close packing is related to the maximum volume fraction at close 

packing 𝜀𝑠
𝑚𝑎𝑥 as: 

𝜀∗ = 1 − 𝜀𝑠
𝑚𝑎𝑥 (3-29) 

Correlations available in MFIX for the maximum volume fraction at close packing are presented 

in Appendix D.  

The close-pack solids pressure, 𝑃𝑐, contributes to the total solids phase pressure (3-24) through 

the frictional solids pressure term by taking 𝑃𝑚
𝑓𝑟𝑖𝑐

= 𝑃𝑐 in this case.  While the frictional flow 

 

 

28 If stress blending is used (section 3.4.2.1.1) then 𝜀∗ is replaced with 𝜀𝑢
∗ .  

29 The second invariant of a general second order tensor (𝑇𝑖𝑗) is given by 
1

2
(𝑇𝑖𝑖𝑇𝑗𝑗 − 𝑇𝑖𝑗𝑇𝑗𝑖).  In regard to the 

deviatoric rate-of strain tensor, however, 𝑆𝑚𝑖𝑖 = 0.  So the magnitude of the second invariant of 𝑆𝑚𝑖𝑗  reduces as 

shown.   
30 If stress blending is used (section 3.4.2.1.1) then 𝜀∗ is replaced with 𝜀𝑢

∗ .  
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shear viscosity, 𝜇𝑚
𝑓𝑟𝑖𝑐

, is added to the total solids viscosity in equation (3-22).  Note that, this 

model does not contribute to the solids second viscosity in equation (3-23).31 

 

Table 3-1: Default values for Schaeffer model [56] 

Constant 𝑛𝑝𝑐 𝐴𝑝𝑐 [barye] 

MFIX Default 10 1025 

3.4.2.1.1 Stress Blending 

While rapid transition between these two regimes may be expected in many gas-solid flow 

applications (i.e. bubbling bed, spouted bed), the physics of this transition is not well understood 

[48].  The current step transitioning (see section 3.4.1 Figure 3-2) leads to slow convergence due 

to numerical instabilities [61, 62].  To circumvent this issue, a blending function is introduced to 

obtain a smooth but rapid transition between the frictional and kinetic regimes depending on the 

void fraction as indicated here [61, 63]. 

𝑃𝑚 = 𝑓(𝜀𝑔)𝑃𝑚
𝑘𝑖𝑛 + (1 − 𝑓(𝜀𝑔))𝑃𝑚

𝑓𝑟𝑖𝑐
 (3-30) 

𝜏𝑚𝑖𝑗 = 𝑓(𝜀𝑔)𝜏 𝑚𝑖𝑗
𝑘𝑖𝑛 + (1 − 𝑓(𝜀𝑔)) 𝜏𝑚𝑖𝑗

𝑓𝑟𝑖𝑐
 (3-31) 

More precisely, blending of solids stress is achieved by blending the kinetic and frictional 

contributions to solids viscosity as indicated in section 3.4.1; the model based on Schaeffer [58] 

does not contribute to solids second viscosity.  Two options for the blending function are 

available as shown in Table 3-2 and illustrated in Figure 3-3. 

 
Figure 3-3: Schematic illustrating the blending function around the critical void fraction (void fraction at 

maximum packing). 

 

 

31The stress model of Schaeffer does not match the total stress formula given by 3-16 and so not all terms in the 

latter are represented.  Recall, it was re-written and cast in this form for computational reasons. 
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Table 3-2: Blending functions available in MFIX1 

Type Function 𝜺𝒍
∗ 𝜺𝒖

∗  

Hyperbolic 

Tangent 
𝑓(𝜀𝑔) =

{
 
 

 
 1

2
[tanh(2𝜋

𝜀𝑔 − 0.5(𝜀𝑢
∗ + 𝜀𝑙

∗)

𝜀𝑢
∗ − 𝜀𝑙

∗ ) + 1.0] 𝜀𝑙
∗ < 𝜀𝑔 < 𝜀𝑢

∗

1.0  𝜀𝑢
∗ ≤ 𝜀𝑔

0.0 𝜀𝑔 ≤ 𝜀𝑙
∗

 0.99𝜀∗ 1.01𝜀∗ 

Truncated 

Sigmoidal 

𝑓(𝜀𝑔) = {

𝜑(𝜀𝑔)

𝜑(𝜀𝑢
∗)

𝜀𝑔 < 𝜀𝑢
∗

1.0 𝜀𝑢
∗ ≤ 𝜀𝑔

 

where 

𝜑(𝛼) = [1.0 + 0.01
𝛼−𝜀∗

𝜀𝑢
∗−𝜀𝑙

∗
]

−1

 

0.99𝜀∗ 1.01𝜀∗ 

1) As indicated earlier, 𝜀∗ is the void fraction at close packing [60, 51] (see 3.4.2.1 for more detail).   

  

3.4.2.2 Srivastava Friction Model [54] 

Srivastava et al. [54, 64] proposed a constitutive model for the frictional regime that follows a 

rigid-plastic rheological model based on the works of Schaeffer [58], Tardos [65], and Prakash 

and Rao [66].   

𝜇𝑚
𝑓𝑟𝑖𝑐

=

{
 
 

 
 √2𝑃𝑓 sin𝜙

√Θ𝑚/𝑑𝑚
2 + 𝑆𝑚𝑖𝑗𝑆𝑚𝑗𝑖

(𝑛 − (𝑛 − 1) (
𝑃𝑓

𝑃𝑐
)

1
𝑛−1
)(
𝜀𝑚
𝜀𝑠
) 𝜀𝑔 < 1 − 𝜀𝑓

𝑚𝑖𝑛

   0 𝜀𝑔 ≥ 1 − 𝜀𝑓
𝑚𝑖𝑛

 (3-32) 

Here 𝜙 is the angle of internal friction, 𝑑𝑚 represents the diameter of particles in the 𝑚𝑡ℎ phase, 

and Θ𝑚 is the 𝑚𝑡ℎ phase granular temperature (see section 3.4.3).  Based on arguments of 

Savage [52], Srivastava introduced the term Θ𝑚/𝑑𝑚
2  in the denominator to eliminate a numerical 

singularity appearing in regions of little to no flow.  Here Θ𝑚 has dimensions of square of 

velocity (see section 3.4.3.3.2). The conditional criteria is based on 𝜀𝑓
𝑚𝑖𝑛 which represents the 

minimum total solids volume fraction required for the onset of frictional stresses.  The last term 

in 3-32, (𝜀𝑚/𝜀𝑠), is an ad-hoc extension of the original model for polydisperse mixtures where 

𝜀𝑚 is the 𝑚𝑡ℎ phase volume fraction and 𝜀𝑠 represents the total volume fraction of 𝑀 dispersed 

phases, that is, the total solids volume fraction (𝜀𝑠 = ∑ 𝜀𝑚
𝑀
𝑚=1 ).   

The exponent (𝑛) is determined on whether the granular assembly is dilating or compacting. 

𝑛 = {
√3

2 sin𝜙
𝐷𝑚𝑘𝑘 ≥ 0;   dilation

1.03 𝐷𝑚𝑘𝑘 < 0;   compaction

 (3-33) 

𝑃𝑐 and 𝑃𝑓 are the critical state and frictional pressures:  
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𝑃𝑐 =

{
 
 

 
 

0 (1 − 𝜀𝑓
𝑚𝑖𝑛) ≤ 𝜀𝑔

Fr
((1 − 𝜀𝑔) − 𝜀𝑓

𝑚𝑖𝑛)
𝑟

(𝜀𝑔 − 𝜀∗)
𝑠 𝜀∗ + 𝛿 ≤ 𝜀𝑔 < (1 − 𝜀𝑓

𝑚𝑖𝑛)

𝐿𝜀𝑔∗+𝛿(𝜀𝑔) 𝜀𝑔 < 𝜀
∗ + 𝛿

 (3-34) 

𝑃𝑓

𝑃𝑐
= (1 −

𝐷𝑚𝑘𝑘

𝑛√2 sin 𝜙√𝑆𝑚𝑖𝑗𝑆𝑚𝑗𝑖 + Θ𝑚/𝑑𝑚2
)

𝑛−1

(
𝜀𝑚
𝜀𝑠
) (3-35) 

As communicated in [67], the expression for 𝑃𝑓/𝑃𝑐 is correctly expressed with an exponent as 

𝑛 − 1 rather than as 1/(𝑛 − 1) shown in [54].  Here the expression for 𝑃𝐶 is based on that 

proposed in Johnson et al. [68], who also provides values for the model constants, Fr, 𝑟, and 𝑠, 

as they are cited in [54] and listed here in Table 3-3.  𝐷𝑚𝑘𝑘 and 𝑆𝑚𝑖𝑗 are given by equations 

(3-17) and (3-20), respectively.  As in the Schaeffer Model (section 3.4.2.1), 𝜀𝑔
∗ is the void 

fraction at close packing.  Similar to the viscosity term in 3-32, the last term in 3-35 (𝜀𝑚/𝜀𝑠) 

represents an ad-hoc extension of the original model for polydisperse mixtures.  To avoid a 

discontinuity in 𝑃𝑐 when 𝜀𝑔 equals that of 𝜀∗, while also providing a stable and continuous 

function, the third conditional criteria is introduced.  Here, 𝐿𝜀𝑔∗+𝛿(𝜀𝑔) is the linearization of 

𝑃𝑐(𝜀𝑔) at void fraction approaching that of close packing, that is, for 𝜀𝑔 = 𝜀
∗ + 𝛿 where and 𝛿 

represents a small constant deviation whose value is also listed in Table 3-3. 

𝐿𝜀𝑔∗+𝛿(𝜀𝑔) =  Fr {
(1 − 𝜀∗ − 𝛿 − 𝜀𝑓

𝑚𝑖𝑛)
𝑟

𝛿𝑠
+
𝑟 ∙ [1 − 𝜀∗ − 𝛿 − 𝜀𝑓

𝑚𝑖𝑛 ]
𝑟−1

𝛿𝑠

+
𝑠 ∙ [1 − 𝜀∗ − 𝛿 − 𝜀𝑓

𝑚𝑖𝑛]
𝑟

𝛿𝑠−1
} ∙ (𝜀∗ + 𝛿 − 𝜀𝑔) 

(3-36) 

 

Table 3-3: Default values for Princeton Model constants [54, 68] 

Constant 𝜀𝑓
𝑚𝑖𝑛 

Fr 
[barye] 

𝑟 𝑠 𝛿 

MFIX Default 0.5 0.5 2.0 5.0 0.01 

 

The frictional solids pressure, 𝑃𝑚
𝑓𝑟𝑖𝑐

, contributes to the total solids phase pressure in equation 

(3-24).  Similarly, the frictional flow shear viscosity, 𝜇𝑚
𝑓𝑟𝑖𝑐

, is added to the total solids viscosity 

in equation (3-22), while the frictional second viscosity, 𝜆𝑚
𝑓𝑟𝑖𝑐

, contributes to the total second 

viscosity in equation (3.25) through its definition given in equation (3-18). 
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3.4.3 Viscous Stresses 

When the particles move freely and interact via nearly instantaneous collisions, then the system 

is considered in the rapid-flow regime and is commonly referred to as either collision-dominated 

flow, a rapid flow or a granular gas.  Several kinetic theory based options are available in MFIX 

to describe the motion of particles in this flow regime, which are discussed in the following. 

For reference, granular flows generally refer to systems where the interstitial fluid does not play 

a significant role in determining the overall mechanics and therefore can be ignored (also 

referred to as dry granular gas).  In such a case, the physical picture of a granular gas is viewed 

analogously to that of a molecular gas; both are composed of many individual entities interacting 

through collisions.  The key difference is that particles undergo dissipative collisions.  Thus to 

maintain the motion, kinetic energy must be continually added (e.g., shaking, vibrating, 

shearing).  Nevertheless, the fluctuating velocity in a granular gas (corresponding to the random 

motion of the particles) is viewed similarly to the thermal velocity in a molecular gas.  Thus, the 

kinetic energy in a granular system is referred to as granular temperature (Θ).  A complete 

thermodynamic analogy, however, is not applicable as granular ‘gases’ are inherently non-

equilibrium systems.  Still, this parallel has provided a useful framework for discussing the 

behavior of granular systems.  In particular, dense-gas kinetic theory [69] modified to account 

for grain inelasticity provides one of the more sophisticated methods for modeling such systems.  

The hydrodynamic equations, including constitutive relations, can be derived from a 

fundamental basis in kinetic theory.  In this approach, the closures follow as mathematical 

consequence of the theory, and not phenomenologically as from experiment or intuitive 

argument (see section 3.1).  Generally, this analyses involves some constraints although 

development in the area of kinetic-theory based models for granular flows has evolved over time.  

Savage & Jeffrey [70] were the first to place the problem of developing a model for granular 

gases in the more formal context of dense-gas kinetic theory.  However, Lun [71] was the first to 

incorporate the kinetic contribution to momentum transport (previously only collisional transfer 

was considered).  Each subsequent iteration has generally incorporated more representative 

physics and/or less assumptions.  Such inclusions, however, give rise to greater complexity of 

the calculations in the derivation.  The remainder of this section is intended to provide a short 

introduction to the various kinetic theory based models that are currently available in MFIX and 

highlight their essential differences.  For further details on various kinetic theory based 

treatments and their implications, see references [10, 72]. 

Briefly, kinetic theory based models for granular flows may be differentiated from one another 

based on a number of conditions that may restrict their application or expected accuracy.  Some 

of these are listed here for convenience and are discussed below in more detail: number of 

components or phases (i.e., monodisperse vs polydisperse systems); the specific starting kinetic 

equation; the solution method and assumptions/technicalities used in the subsequent derivation 

process.  Table 3-4 lists the current kinetic theory based models available in MFIX along with 
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some of their various limitations and differences in derivation.  Of the kinetic theory based 

models available in MFIX, several standard simplifying assumptions are used: 1) particles are 

smooth, frictionless spheres; and 2) particle collisions are instantaneous, binary and 

characterized by a constant coefficient of restitution.  In addition, the Knudsen numbers of the 

continuum variables are also small (i.e., the theory is of Navier-Stokes-order).  

Essentially the hydrodynamic equations derived from kinetic theory for the granular material are 

combined with those that describe the fluid phase resulting in the two-fluid equations and closure 

relations for the solids-phase stresses [48, 73, 56, 74, 75, 39, 76].  At a basic level, interaction 

forces, such as drag, were then typically included to account for transfer of momentum between 

the phases.  However, incorporating the role of a fluid phase on a more fundamental level has 

also received more recent attention.  Generally speaking, two things happen when the equations 

are combined: (1) the solids stress 𝜏 𝑚𝑖𝑗
𝑘𝑖𝑛  in two-fluid model is taken as the granular stress in the 

kinetic theory of granular gases; (2) a granular energy equation(s) is added to the two-fluid 

model.  The precise details, however, depend on the kinetic theory model.  
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Table 3-4: Comparison of kinetic theory models available in MFIX 

       

Reference Year 
Number of 

Phases1 

Restitution 

Ceofficient2 

Velocity 

Distribution 

Hydro-

dynamic 

Variables3 

Fluid Effects4 

Lun et al. [71] 1984 1
𝑚𝑜𝑑
⇒   𝑀 𝑒~1 non-Maxwellian 𝑛1, 𝑈1𝑖,Θ1 not inherently 

Cao and Ahmadi 

[77] 

1995 1
𝑚𝑜𝑑
⇒   𝑀 𝑒~1 non-Maxwellian 𝑛1, 𝑈1𝑖, Θ1 influence of gas velocity fluctuations due to 

turbulence considered in solids phase 

description through a heuristic approach 

Simonin [78] and 

Balzer [79] 

1996 1
𝑚𝑜𝑑
⇒   𝑀 𝑒~1 non-Maxwellian 𝑛1, 𝑈1𝑖, Θ1 influence of gas velocity fluctuations due to 

turbulence considered in solids phase 

description through a heuristic approach 

Garzo and        

Dufty [7] 

1999 1 inelastic non-Maxwellian 𝑛1, 𝑈1𝑖, Θ1 not inherently 

Iddir and 

Arastoopour [8] 

2005 𝑀 𝑒𝑚𝑙~1 Maxwellian (unlike) 

non-Maxwellian (like) 
𝑛𝑚, 𝑈𝑚𝑖 , Θ𝑚,𝐼𝐴 not inherently 

Garzo et al. [9, 10]  2007 𝑀 inelastic non-Maxwellian 𝑛𝑚, 𝑈𝑀𝑖 , Θ𝑀 not inherently 

Garzo et al. [11] 2012 1 inelastic non-Maxwellian 𝑛1, 𝑈1𝑖,Θ1 influence of gas phase effects in solids phase 

description are incorporated on a fundamental 

level 
1) The number of phases considered in the original derivation is given along with an indication of whether any ad hoc modifications have been included to extend the theory in 

the MFIX implementation. 

2) Here, 𝑒~1 refers to theory based on an expansion about a nearly-elastic state and “inelastic” to one based on expansion about a homogenous cooling system. While no formal 

restriction on dissipation may exist in the latter, strong dissipation may lead to breakdown of the Enskog equation with regard to the assumption of molecular chaos. 

3) While no subscripts are generally necessary in the monodisperse case, here the subscript 1 is kept for consistency with MFIX notation. It refers to the case 𝑀 = 1 so 𝑚 = 1.  

For Garzo et al. (2007) the subscript 𝑀 refers to the mixture value as opposed to an 𝑚𝑡ℎ phase value.  For Iddir and Arastoopour (2005) the subscript 𝐼𝐴 on granular 

temperature refers to 𝑚𝑡ℎ phase temperature defined in terms of velocity fluctuations relative to the mean phase velocity instead of a mixture velocity as is often used by 

polydisperse kinetic theories. 

4) For reference see discussion of incorporating an interstitial fluid in section 3.4.3.3.8.  While fluid effects may not be inherent to the indicated kinetic theory, the influence of a 

fluid phase has been incorporated at various levels depending on the kinetic theory model.  Such details are reserved for the discussion for each available kinetic theory based 

model.  Otherwise, a mean drag force is added into the momentum balance that effectively results in the basic two fluid model formulation.   
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3.4.3.1 Kinetic Theory in Brief 

Kinetic-theory-based models for granular gases generally starts with a kinetic equation which 

describes the evolution of the single particle velocity distribution function (𝑓).  Models based on 

the Boltzmann kinetic equation are limited to dilute systems (e.g., [80, 81]).  However, 

extensions to moderately dense systems are possible by employing the Enskog(-Boltzmann) 

kinetic equation (e.g., [71, 7, 8, 9, 10]).  In the latter, the collisional term involves finite-volume 

effects (which are important in dense systems), whereas the former treats the particles as points.  

More precisely, the difference between these equations essentially stems from the treatment of 

the two particle distribution function (𝑓2) which appears in the collisional integral.  The theories 

available in MFIX employ the Enskog equation (either revised or standard Enskog Theories; see 

next), and none are based on the Boltzmann equation. 

In the Boltzmann equation, the two particle distribution function is assumed equal to the product 

of two single-particle distribution functions evaluated at the same location.  In contrast, the 

Enskog equation (or Enskog kinetic theory), incorporates the pair correlation function (i.e., a 

quantity related to the radial distribution function or RDF) as a factor and the single particle 

distribution functions are evaluated at different locations (accounting for the finite distance 

between touching particles).  The difference between the revised Enskog Theory (RET) and 

Standard Enskog Theory (SET) concerns the treatment of the radial distribution function during 

the derivation.  In the latter, the RDF is taken as a function of the component densities, while in 

RET, it is taken as functionals [82]32.  SET is found to be inconsistent with irreversible 

thermodynamics [82].  Generally speaking, using RET is more important for mixtures and states 

far from equilibrium.33  It is worth noting that in either case, the Enskog equation neglects 

velocity correlations between particles that are about to collide (molecular chaos assumption).  

So that, strictly speaking, multiparticle collisions, including recollision events (“ring” collisions) 

are not described.   

3.4.3.2 Solution Method 

The hydrodynamic (continuum) equations may be obtained by taking moments of the kinetic 

equation (i.e., they follow from the corresponding moments of the kinetic equation and the 

definition of the hydrodynamic fields in terms of integrals of the distribution function).  This 

 

 

32 In a nonuniform equilibrium state the local RDF may involve gradients in the local density, higher powers of 

those gradients and higher order space derivatives than the first.  This cannot be properly expressed based on a local 

value only (SET) but can be expressed as a functional of the local density (RET), that is, as a function of local 

density and its gradients (non-local dependence on the field at all points). 
33 For monodisperse systems (𝑀 = 1), SET and RET yield the same Navier-Stokes equations [79].  However, 

Burnett and high-order hydrodynamic equations will not be properly described based on SET.  For polydisperse 

systems (𝑀 > 1), different Navier-Stokes transport coefficients are obtained. 
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leads to the constitutive terms as functionals of the single particle velocity distribution function 

(see [83]).  An exact analytic solution for the single particle distribution function is itself not 

practical [9], however, finding even an approximation for the single particle distribution function 

is nontrivial.  While exact balance equations for the hydrodynamic fields can be obtained, they 

are not closed until the constitutive equations are also expressed as functions of the 

hydrodynamic fields and their gradients34.  Ultimately a solution for the single particle velocity 

distribution function as a functional of the hydrodynamic fields is sought, and this is referred to 

as the “normal” solution.35   

Generally speaking, two different approaches have been used to solve the kinetic equation for the 

single particle velocity distribution function: Grad’s method of moments and its generalizations 

[71, 84, 85] or the Chapman-Enskog (CE) expansion [7, 8, 9, 10, 86].  Alternatively, a form of 

the single particle velocity distribution may simply be conjectured and then substituted into the 

balance equations.  Such studies do not involve a direct or systematic analysis of the starting 

kinetic equation.  Several of the theories available in MFIX are based on the CE expansion, and 

so, the following short discussion focuses on this method.  The CE expansion involves a 

perturbative expansion about the zeroth order solution to the kinetic equation (e.g., Boltzmann-

Enskog equation).  Approximate methods are used to obtain a solution and different simplifying 

assumptions can further distinguish the various kinetic theories models available.  The solution is 

then used to obtain explicit expressions for the constitutive equations in terms of the 

hydrodynamic variables.   

3.4.3.2.1 Order of Expansion (CE) 

As noted above, CE expansion is a method for solution to the Enskog equation (RET) and it 

involves a perturbative expansion.  More specifically, this expansion is about low Knudsen (Kn ) 

numbers which is defined as the ratio of the mean free path to the characteristic length scale of 

mean-flow gradients (spatial variation in hydrodynamic variable).  A low Knudsen number 

generally corresponds to small variation in the flow on a scale of the mean free path.  Granular 

flows are often characterized by lack of separation of length and time scales.  In particular, 

clusters can produce regions of high mean free paths and large Knudsen number based on 

velocity gradients.  As a result the appropriateness of a continuum description based on such an 

assumption is a topic of debate (e.g., [87, 88, 89] ref).  Mitrano et al. [89] demonstrated that 

kinetic-theory-based continuum models are accurate even at large Knudsen-numbers.  The 

expansion order refers to how many terms are used in the perturbative expansion.  For reference, 

a first order expansion yields the Navier-Stokes equation and the next are the Burnett and super-

 

 

34 All space and time dependence of the single particle distribution function is made to occur through functionals of 

the hydrodynamic fields. 
35 For polydisperse systems, the solution for each component, or phase in MFIX terms, is needed. 
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Burnett orders.  As indicated, the Navier-Stokes equations can, in principle, be refined by 

expanding to high order in Kn, however, the approach is non-trivial (e.g. [81]).36  As noted 

earlier, the theories available in MFIX are of Navier-Stokes order. 

3.4.3.2.2 Base State (CE) 

Several theories a priori assume a form of the zeroth order distribution function in an effort to 

simplify the analysis (e.g., [81]).  However, this base state should be determined as a solution to 

the kinetic equation to zeroth order gradient expansion.  For classic molecular systems (i.e., 

purely elastic), the zeroth order corresponds to a state of local equilibrium (Maxwellian 

distribution).  That is, it is a solution of the pertinent kinetic equation.  In contrast, granular 

systems are inherently dissipative so that no such “equilibrium” state exists (i.e. energy must be 

added to maintain motion).  Nonetheless, this same zeroth order solution has been used to derive 

theories for granular systems (e.g., [8, 81, 90]).  Strictly speaking, such theories are restricted to 

nearly elastic systems; they should not only involve an expansion about small Kn, but also about 

small degree of inelasticity (1 − 𝑒2; where 𝑒 is the restitution coefficient). 37  The zeroth order 

solution for inelastic systems is found to correspond to the local homogenous cooling state.  

Theories based on the homogenous cooling system as the zeroth-order solution (e.g., [7, 9, 10, 

80]), do not have such formal restrictions on inelasticity (see Table 3-4).  

3.4.3.2.3 Order of Sonine Polynomial Expansion (CE)   

A truncated Sonine polynomial expansion is employed to allow analytic evaluation of the 

collision integrals.  Generally speaking all applicable theories available in MFIX employ the 

lowest, nonzero order, (1st) order of the polynomial expansion.  The interested reader is referred 

to Dufty and Baskaran [83] for further details and additional references on the topic.   

3.4.3.3 Additional Comments and Considerations 

3.4.3.3.1 Number of Phases 

The earliest theoretical models for granular gases were limited to monodisperse systems (i.e. 

systems composed of identical particles) (e.g., [71, 7]).  However, most industrially relevant 

systems will be polydisperse wherein particles may differ by size, density and/or some other 

factor.  More recently, kinetic theory based models for polydisperse systems have been 

developed with varying degrees of sophistication and rigor.  Jenkins and Mancini [86] were one 

 

 

36Burnett equations also require higher-order boundary conditions, which is an active area of research (see Hrenya 

[69]). 
37 Many early kinetic theories failed to perform a systematic expansion about both parameters; they assume the 

single particle distribution function to be Maxwellian with an added perturbation about small Kn but not about (1 −
𝑒) (for further clarification see Sela and Goldhirsch [78]).   
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of the first to develop a complete kinetic-theory based model for a binary granular mixture in a 

general flow field.  Some recent theories have been derived for a more general system of 𝑀 

distinct phases (e.g., [8, 9, 10]).  A polydisperse kinetic theory is generally largely analogous to a 

monodisperse theory, however, several items are worth discussing.   

While a monodisperse theory is insufficient for most realistic systems, polydisperse theories 

were not available at first. Thus, some monodisperse theories were generalized in an ad hoc 

manner so that they can be used for polydisperse systems (e.g., [91]).  In MFIX, such a technique 

was used to extend the monodisperse theory of Lun et al. [71] to polydisperse systems; the 

details of which are discussed in the corresponding 3.4.3.5.  As indicated by Mathiesen et al. 

[91] the generalized multiphase model should be consistent, that is, the model description for an 

arbitrary number of identical phases reduces to the model description for a single phase 

(discussed in more detail below).  That said, such a generalized monodisperse theory will miss 

contributions found in a polydisperse theory that has been systematically developed. 

Polydisperse theories are expected to reduce to a monodisperse theory under equivalent limiting 

conditions.  For example, one expects the same results if the number of phases is equal to one 

(𝑀 = 1) or if multiple identical phases are used (𝑀 > 1 with 𝑑𝑚 = 𝑑1 = 𝑑2 = ⋯, 𝑚𝑚 = 𝑚1 =

𝑚2 = ⋯) and compared to a monodisperse system of the same total solids volume fraction (𝜀1 =

𝜀𝑠 ≡ ∑ 𝜀𝑚
𝑀
𝑚=1 ).  Some polydisperse theories have been found to fail this monodisperse limit 

[92].  For example, in the theory of Iddir and Arastoopour [8] the sum of the kinetic stresses of 

two identical phases (or components) do not add to that of an equivalent monodisperse system.  

To ensure the monodisperse limit is correctly reached an ad hoc modification to this theory was 

proposed [92]. 

3.4.3.3.2 Granular Temperature Definition 

Generally speaking the definition of the 𝑚𝑡ℎ solids phase granular temperature is given as 

follows: 

Θ𝑚 =
1

3
𝑚𝑚 < 𝑉𝑚𝑖

2 > (3-37) 

Here, 𝑚𝑚 is the mass of a particle from the 𝑚𝑡ℎ solids phase and 𝑉𝑚𝑖 is the peculiar or 

fluctuating velocity.  The latter is defined as 𝑉𝑚𝑖 = 𝑣𝑚𝑖 −𝑈𝑀𝑖, where 𝑣𝑚𝑖 is the instantaneous 

velocity of the 𝑚𝑡ℎ solids phase, and 𝑈𝑀𝑖 is the mass-averaged mixture velocity.  

𝑈𝑀𝑖 =
∑ 𝜌𝑚𝜀𝑚𝑈𝑚𝑖
𝑀
𝑚=1

∑ 𝜌𝑚𝜀𝑚
𝑀
𝑚=1

 (3-38) 

Here it is worth noting that 𝜌𝑚𝜀𝑚 = 𝑚𝑚𝑛𝑚, where 𝑛𝑚 is the 𝑚𝑡ℎ  phase number density. The 

other quantities are as before.  For monodisperse theories mass is often not included in the 

definition of granular temperature (e.g., [71]), in which case, granular temperature has 
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dimensions of velocity squared.  Furthermore, not all polydisperse kinetic theories employ this 

definition of granular temperature.  For example, Iddir and Arastoopour [8] define the peculiar 

velocity relative to the average phase velocity (𝑈𝑚𝑖) instead of the mass-averaged mixture 

velocity (𝑈𝑀𝑖).  For reference see Table 3-4. 

3.4.3.3.3 Equipartition of Energy 

Equipartition of energy assumes the granular temperature of each phase is equal (Θ = Θ1 =

Θ2 = ⋯).  While this assumption has been used in the derivation of several early polydisperse 

kinetic theories [86, 85], it is not used by either of the polydisperse theories available in MFIX.38  

Such an assumption would restrict the validity of the theory to nearly elastic systems and 

systems without mass disparities (i.e., unlike particles have equal masses).39 

3.4.3.3.4 Single Particle Velocity Distribution Function 

Evaluation of the collision integrals is challenging.  To ease the calculations, the form of the 

single particle velocity distribution has often been assumed to be Maxwellian.  This assumption 

is only valid for perfectly elastic systems in equilibrium.  Most of the theories available in MFIX 

incorporate a non-Maxwellian distribution.  However, the polydisperse theory of Iddir and 

Arastoopour [8] assumes a Maxwellian distribution when evaluating the collision integrals 

between unlike particles and a non-Maxwellian distribution to evaluate collision integrals 

between like particles.   

3.4.3.3.5 Hydrodynamic Variables 

In developing a hydrodynamic description, the relevant hydrodynamic fields are first identified 

and the subsequent balance equations are then derived.  These equations reflect the macroscopic 

description corresponding to the behavior on the microscopic scale.  The selection of these fields 

is not necessarily clear and their choice will impact that resulting set of balance equations.  

Ideally, these fields have long time and length scales that exceed those of the transient 

microscopic dynamics [83, 10].  A locally conserved quantity will demonstrate this property; it 

will approach a constant as the system becomes uniform.  Thus, for an elastic gas, species 

number densities (mass), total momentum (velocity) and total energy density (temperature) are 

selected as the hydrodynamic fields.  Note that the number density is related to the solids volume 

fraction as follows: 𝑛𝑚 = 𝜀𝑚/𝒱𝑚 where 𝒱𝑚 is the volume of a particle from the 𝑚𝑡ℎ solids 

 

 

38 The notion of equipartition of energy is not relevant when considering the ad-hoc modifications to extend the 

monodisperse kinetic theory of Lun et al. [68] to polydisperse systems. 
39 The theory of Garzo et al. [9, 10] use Θ𝑀 as a hydrodynamic variable but allows for a non-equipartition of energy.  

The granular temperature of each phase (Θ𝑚) are obtained through solution of the cooling rate as opposed to solving 

a conservation balance equation. 
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phase (i.e., 𝒱𝑚 = 𝜋𝑑𝑚
3 /6 or equivalently 𝑛𝑚𝑚𝑚 = 𝜀𝑚𝜌𝑚 where 𝑚𝑚 is the mass of a particle 

from the 𝑚𝑡ℎ solids phase).  In a granular gas, the granular energy is not conserved (recall 

section 3.4.3).  However, the cooling rate may be slow compared to the microscale dynamics and 

therefore granular energy may be considered a relevant slow variable.   

For monodisperse systems, number density, average velocity and granular temperature (𝑛1, 𝑈1𝑖 , 

Θ1, respectively, here 𝑚 = 1 for 𝑀 = 1) become the set of hydrodynamic variables.  For 

polydisperse kinetic systems, however, various sets of hydrodynamic variables have been used as 

indicated in Table 3-4.  Namely, Iddir and Arastoopour [8] utilize the number density, average 

velocity and granular temperature associated with each phase present (𝑛𝑚, 𝑈𝑚𝑖, and Θ𝑚, 

respectively), whereas Garzo et al. [10] use the phasic number density, mixture average velocity, 

and mixture granular temperature (𝑛𝑚, 𝑈𝑀, Θ𝑀, respectively, where the subscript 𝑀 refers to a 

mixture quantity as opposed to that associated with a specific phase).  This choice of a mixture 

granular temperature (Θ𝑀) is observed to be the more appropriate [10, 72]. 

In regard to polydisperse theories, the choice of hydrodynamic variables will not only influence 

the form of the resulting balance equations but also dictate the total number of balance equations 

that are required to describe the system (see [72] for details). Namely, a theory using 𝑛𝑚, 𝑈𝑚𝑖, 

and Θ𝑚, will have 3𝑀 differential balances (𝑀 mass balances, 𝑀 momentum balances and 𝑀 

granular energy balances), whereas a theory using 𝑛𝑚, 𝑈𝑀𝑖, and Θ𝑀 will have 𝑀+2 balances (𝑀 

mass balances, a mixture momentum balance and a mixture granular energy balance).  That said, 

the one polydisperse theory available in MFIX which uses this latter set of hydrodynamic 

variables [10] involves closures which are largely implicit in form as opposed to explicit.  That 

is, for a given values of the hydrodynamic variables a set of algebraic equations must be solved 

to find the constitutive quantity.  Thus, while the number of balance equations may be less, 

additional computational effort is required to determine the corresponding constitutive quantities. 

3.4.3.3.6 Radial Distribution Function at Contact 

Recall that the Enskog equation employs a factor that encompasses the spatial correlations 

arising from volume exclusion effects (i.e. finite volume) which can be related to the radial 

distribution function at contact [82, 93].  In the revised Enksog theory (RET), this factor is 

treated as a functional of species densities, while in the “standard” Enskog theory (SET), this 

factor is treated as a function of species densities at a single position (i.e., a constant value) [83].  

The latter results in equations that are inconsistent with irreversible thermodynamics (see section 

3.4.3.1 for more detail).    
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In the dilute limit, the radial distribution function (RDF) at contact has a value of one since no 

spatial correlations exist.40  The value of the RDF then increases with increases in concentration 

to reflect the development of spatial correlations due to volume exclusion effects.   

A number of different RDF at contact have been proposed and several area available in MFIX as 

listed in Table 3-5.  The radial distribution function can be obtained experimentally, numerically 

from computer simulation techniques, or theoretically based on an appropriate intermolecular 

potential [94, 95]. 41  Of those listed, Lebowitz [96] provides the earliest contribution and it is 

based on a generalization of the Percus-Yevick integral equation for the radial distribution 

function of a hard sphere fluid to that of a general mixture.  An explicit relation for the radial 

distribution function is given.  Carnahan and Starling [97] provided an equation of state (EOS) 

for a hard sphere fluid (monodisperse), which can be used to construct an expression for the 

hard-sphere radial distribution function [98, 99].  The radial distribution function has been 

employed in numerous works describing the behavior of hard spheres (e.g., [70, 71])  The 

equation of state was also generalized to mixtures [99, 100], the latter whom also presents the 

corresponding radial distribution function.   

The RDF/EOS cited above [96, 97, 99, 100] yield a finite value as the solids volume fraction 

approaches that of maximum close packing diverging only when the solids volume fraction 

approaches one.  However, from the molecular dynamic simulation data reported by Alder and 

Wainright [101] the RDF should diverge as the solids volume approaches close packing because 

particles are in close contact [46, 102, 103].  Alternative expressions have been proposed that 

tend to infinity at close packing, such as, those proposed by Iddir and Arstoopour [8] and van 

Wachem et al. [46].  These authors modify the expressions of Lebowitz and Mansoori/Boublick, 

respectively, by incorporating a maximum volume fraction at close packing (𝜀𝑠
𝑚𝑎𝑥). 

A few additional items are worth noting.  Estimating the value of 𝜀𝑠
𝑚𝑎𝑥 used in several of the 

above referenced expressions is an important problem.  As discussed in section 3.4.2.1, 𝜀𝑠
𝑚𝑎𝑥 

may be specified as a constant or estimated using correlations that are available to describe the 

packing of polydisperse systems.  As evident, for polydisperse systems the radial distribution 

functions depends on the volume fraction and diameter of each phase (𝜀𝑚 and 𝑑𝑚 respectively), 

while for monodisperse systems the radial distribution function depends only on the volume 

 

 

40 Note that simply replacing the RDF with a value of 1 in the kinetic equation does not result in the Boltzmann 

equation; the Enskog equation also evaluates the distribution functions at different locations.  The latter results in 

non-zero collisional transfer of quantities that are conserved during collision (e.g., momentum) ( [80, 69]). 
41 Principles from statistical mechanics may be used to estimate the equation of state from a suitable intermolecular 

potential model but the calculations quickly become complex.  A different approach to developing the equation of 

state involves the introduction of the radial distribution function.  The radial distribution function is directly related 

to the interaction potential, but computing the former from the latter is still a non-trivial task.  Nevertheless, the 

equation of state and the radial distribution function are related.  Knowing the RDF, the equation of state can be 

derived in two different ways, that is, one can obtain the corresponding equation of state through the virial equation 

or through the use of the isothermal compressibility relation [93, 91, 92].  
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fraction.  Finally, simply swapping one RDF expression for another in a given polydisperse 

kinetic theory may not be appropriate.  Instead, the diffusion force should be re-evaluated as it is 

derived from the expression used for the RDF at contact (greater see Hrenya [72]).  Here it is 

worth noting that SET and RET result in different expressions for the diffusion force due to their 

different treatment for the RDF at contact (i.e., as a function or functional) (e.g., [104, 105]).   

Table 3-5. Radial distribution functions at contact available in MFIX 

Reference Expression1 

Carnahan & Starling [97]2 
𝑔𝑚𝑚 =

2 − 𝜀𝑚
2(1 − 𝜀𝑠)3

 

or equivalently 

𝑔𝑚𝑚 =
1

(1 − 𝜀𝑠)
+
3

2

𝜀𝑚
(1 − 𝜀𝑠)2

+
1

2

𝜀𝑚
2

(1 − 𝜀𝑠)3
 

Lebowitz [96]  
𝑔𝑚𝑙 =

1

(1 − 𝜀𝑠)
+
3

2

𝜉

(1 − 𝜀𝑠)2
𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

 

where 

𝑑𝑚𝑙 =
𝑑𝑚 + 𝑑𝑙
2

 

𝜉 = ∑
𝜀𝑝

𝑑𝑝

𝑀

𝑝=1

 

Mansoori et al [100] and 

Boublick [99] 
𝑔𝑚𝑙 =

1

(1 − 𝜀𝑠)
+
3

2

𝜉

(1 − 𝜀𝑠)2
𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

               

+
1

2

𝜉2

(1 − 𝜀𝑠)3
 (
𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

)
2

 

Iddir and Arastoopour [8] 

(modified Lebowitz [96]) 
𝑔𝑚𝑙 =

1

(1 −
𝜀𝑠
𝜀𝑠
𝑚𝑎𝑥)

+
3

2

𝜉

(1 −
𝜀𝑠
𝜀𝑠
𝑚𝑎𝑥)

2

𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

 

van Wachem et al. [46] 

(modified Mansoori et al. 

[100]) 

𝑔𝑚𝑙 =
1

(1 −
𝜀𝑠
𝜀𝑠
𝑚𝑎𝑥)

+
3

2

𝜉

(1 −
𝜀𝑠
𝜀𝑠
𝑚𝑎𝑥)

2

𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

+
1

2

𝜉2

(1 −
𝜀𝑠
𝜀𝑠
𝑚𝑎𝑥)

3  (
𝑑𝑚𝑑𝑙
𝑑𝑚𝑙

)
2

 

1)  Here it is convenient to introduce the notation 𝜀𝑠, which represents the total volume fraction of all dispersed 𝑀 phases, or 

total solids volume fraction: 𝜀𝑠 = ∑ 𝜀𝑚
𝑀
𝑚=1 .  

2) While this expression is presented in terms of the 𝑚𝑡ℎ phase, it is intended for a monodisperse fluid of hard spheres so that 

𝜀𝑠 = 𝜀𝑚. 

3.4.3.3.7 Corrections In Dilute Limit 

Early research on an infinite shearing system of particles (i.e., unbounded) observed the shear 

stress asymptotes to infinity as the solids volume fraction approaches zero [106, 107].  This was 
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observed in computer simulation data and in those theoretical predictions based on a kinetic 

theory treatment which included collisional and kinetic contributions.42  The physical reasoning 

for this behavior is described by Campbell [107]; in short, temperature dissipation decays faster 

than temperature production resulting in infinite temperature and therefore infinite stress..  

Nevertheless, the author questions the plausibility of the 𝜀𝑠 → 0 asymptote in any realistic 

application and that unaccounted dissipation mechanisms may forestall such behavior as these 

works only accommodate dissipation due to particle-particle collisions.  In reality, particle-wall 

collisions and/or aerodynamic forces on the particles should also act to dampen the granular 

temperature independently of the inter-particle collision rate. 

Sinclair and Jackson [73] and Louge et al. [108] proposed a heuristic correction to shear stress to 

ensure it vanishes as the volume fraction approaches zero.  More specifically, the modification 

involved an adjustment to the calculation of shear viscosity and thermal conductivity.  They 

attributed the problem to the calculation of the mean free path of the particle which tended 

toward infinity as 𝜀𝑠 → 0.  The modification constrained the mean free path by a characteristic 

dimension of the physical system.  Namely as the solids volume fraction becomes small, particle-

wall collisions begin to play an increasing role.  This is consistent with the idea that all wall-

bounded flows contain a Knudsen layer adjacent to the wall where particle-wall collisions as 

opposed to particle-particle collisions dictate the behavior [109, 110].  That said, particle-particle 

collisions are still important to consider in these dilute systems and may not necessarily be 

ignored [111, 112].  The applied correction is a rough attempt to capture a transition to Knudsen 

flow.  If the Knudsen layer is small then the effects of the Knudsen layer need not be 

incorporated (a continuum regime can be expected; see section 3.4.3.2.1).  However, at higher 

Knudsen numbers a more rigorous mathematical description may become necessary. 

In the context of gas-solid flows, as is discussed in more depth below, Balzar et al. [113] 

provides insight using through three characteristic time scales: inter-particle collision time, 

particle relaxation time due to drag, and time scale of fluid turbulence as viewed by the particle.  

For a granular system without an interstitial fluid phase the characteristic time scale is that of the 

inter-particle collision time (as discussed above).  However,  the fluid introduces the latter two 

time scales.  When the interparticle collision time is large (as can be expected in dilute flows), 

the gas may be expected to play a dominate role in the fluctuating motion of particles and may 

shorten the particle mean free path.   

3.4.3.3.8 Interstitial Fluid Effects 

Up to now the discussion has focused on developing a hydrodynamic description for a fluid of 

particles.  Other important effects, such as, an interstitial fluid phase (e.g., gas) were not 

 

 

42 If the kinetic contribution is ignored then the predictions would tend to zero as solids volume fraction goes to zero 

[43]. 
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included.  When the fluid phase does impact the movement of the particles, then the systems are 

referred to as fluid-solids (or multiphase or two-phase) flows.  Efforts to incorporate the effects 

of the fluid into the solids phase hydrodynamic description have advanced over time.  Some of 

these advancements are discussed briefly here given their relevance to several options available 

in MFIX-TFM.  The interested reader is referred to Hrenya [72] and Garzo et al. [11] for 

additional discussion, and to the original sources for greater detail. 

In early efforts to describe two phase flows the effects of the fluid were simply described through 

the addition of a mean drag force (given simply by a mean drag coefficient times a mean relative 

velocity difference)43 into the momentum balance (see sections 3.3.3.1 and 3.4.4.2) (e.g., [73]).  

A refinement of this implementation considered the fluctuation in particle velocity in the 

interaction (drag) force [114].  This treatment leads to an additional sink term in the granular 

energy balance that has been referred to as dissipation due to viscous drag (i.e., viscous 

dampening).   Incorporation of the effects of the local fluid fluctuation on the particle velocity in 

the interaction force, a further refinement, was also considered during the derivation of the 

granular energy balance.  This disturbance results in an additional source that has been referred 

to as production due to slip.  These terms are also found in the granular energy equations 

presented by Louge [108] and Gidaspow [74].  Sangani et al. [115] proposed a more 

comprehensive expression for the additional sink due to viscous effects of the interstitial gas, and 

similarly, Koch and Sangani [116] for the additional source. 

While these aforementioned treatments lead to modification of the balance equation they did not 

consider how the incorporating such effects might influence the constitutive relations for the 

solids phases.  Efforts in this regard have also been undertaken with varying levels of rigor.  For 

example, Ma & Ahamdi  [117] and Balzer, Boelle & Simonin [113] accounted for the effects of 

velocity fluctuations in the gas phase arising from fluid-phase turbulence into the solids phase 

description. 

One of the limitations of these earlier works to incorporate gas and/or solids phase fluctuations is 

that they tend to maintain that the same basic form of the fluid interaction force (drag coefficient 

times a relative velocity difference) in terms of mean hydrodynamic fields also holds in terms of 

local fluctuating (instantaneous) quantities.  In contrast, Garzo et al. [11] employ a more 

generalized model for the interaction force to cover a wide range of conditions.  This model is 

then used to derive the solids phase balance equations and constitutive relations.  Thus, gas-

phase effects are incorporated more systematically on the most fundamental level through its 

incorporation in the starting kinetic equation (see section 3.4.3.1) 

 

 

43 Here mean refers to the value associated with the faraway fluid field as opposed to the instantaneous or fluctuating 

value. 
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3.4.3.4 Summary 

As discussed earlier and summarized in Table 3-4, there are several kinetic theory options 

available in MFIX-TFM.  Monodisperse kinetic theory models include those of Lun et al. [71], 

Garzo and Dufty [7], Garzo et al. [11].  In MFIX-TFM, the theory of Lun et al. [71] has been 

extended to describe polydisperse systems.  Also available are the theory of Simonin [78] and 

Balzer et al. [113] and the theory of Cao and Ahmadi [77].  Both of these treatments include 

kinetic theory stresses as well as gas-phase turbulence models that account for the exchange of 

turbulence energy between the gas and solids phases (see section 3.4.6).  Similar to the 

implementation of Lun et al. [71] these theories have been extended for polydisperse systems.   

Two kinetic theories developed specifically for describing poly-dispersed systems have been 

implemented in MFIX-TFM (Iddir and Arastoopour [8]; and Garzo et al, [9, 10]).  See Hrenya 

[72] for a critical comparison of kinetic theories for poly-dispersed systems.  Benyahia [92] also 

compared four different kinetic theories for poly-dispersed systems in a simple shear flow setup, 

and of those, found Iddir and Arastoopour [8] theory to provide the most accurate predictions.  

An examination of the MFIX implementation of the Lun et al. [71] kinetic theory follows.  A 

similar analysis of each kinetic theory model available in MFIX is not included here at this time.  

3.4.3.5 Lun et al. (1984) [71] 

In this section the monodisperse kinetic theory of Lun et al. [71] as implemented into MFIX-

TFM is described.  It is worth noting that the implementation of this theory in MFIX includes a 

number of ad hoc modifications to extend the theory beyond its original scope.  The 

modifications target generalizing the monodisperse description for polydispersity and including 

effects of the fluid phase.  

The monodisperse model is generalized and made consistent for M number of solids phases to 

enable description of realistic industrial systems characterized by particle size/density 

distributions (see section 3.4.3.3.1).  To accommodate polydispersity, solids specific quantities 

(e.g., diameter, density, volume fraction) in the theory of Lun et al. are now denoted with 

subscript 𝑚 to indicate the specific 𝑚𝑡ℎ solids phase.  And occurrences of 𝜀𝑚𝑔0 are generally 

replaced with ∑ 𝜀𝑙𝑔𝑚𝑙
𝑀
𝑙=1  to maintain consistency. 

Incorporating the effects of the fluid phases is accomplished in two ways (see section 3.4.3.3.8).  

First, the viscosity and granular conductivity are modified as indicated in Agrawal et al. [76].  

Second, two additional terms are included in the granular energy balance, discussed below, that 

describes the effects of velocity fluctuations of the gas and those of the individual particles.  The 

result is a term that describes production due to gas-particle slip and another to describe 

dissipation due to viscous damping.  These modifications will be highlighted as they are 

introduced below. 
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The solids pressure contribution from the kinetic theory is described as follows: 

𝑃𝑚
𝑘𝑖𝑛 = 𝜀𝑚𝜌𝑚Θ𝑚 [1 + 4𝜂∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

] (3-39) 

For convenience the total stress tensor introduced earlier in equation 3-19 is re-written here in 

terms of its kinetic contribution: 

𝜏𝑚𝑖𝑗
𝑘𝑖𝑛 = 2𝜇𝑚

𝑘𝑖𝑛𝑆𝑚𝑖𝑗 + 𝜇𝑏𝑚
𝑘𝑖𝑛𝐷𝑚𝑘𝑘𝛿𝑖𝑗 

(3-40) 

As before, 𝜇𝑚
𝑘𝑖𝑛 is the kinetic contribution to viscosity, 𝜇𝑏𝑚

𝑘𝑖𝑛 is the kinetic contribution to bulk 

viscosity, 𝑆𝑚𝑖𝑗 is the deviatoric rate-of-strain tensor, and 𝐷𝑚𝑖𝑗 is the rate-of-strain tensor.  The 

solids viscosities arising from kinetic theory are represented by the equations below: 

𝜇𝑚
𝑘𝑖𝑛 = (

2 + 𝛼

3
) [

𝜇𝑚
∗

(2 − 𝜂)𝑔𝑚𝑚𝜂
(1 +

8

5
𝜂∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

)(1 +
8

5
𝜂(3𝜂 − 2)∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

) +
3

5
𝜇𝑏𝑚
𝑘𝑖𝑛] (3-41) 

where 

𝜇𝑚
∗ =

𝜌𝑚𝜀𝑚𝑔𝑚𝑚Θ𝑚𝜇𝑚
∗∗

𝜌𝑚 ∑ 𝜀𝑙𝑔𝑚𝑙
𝑀
𝑙=1 Θ𝑚 + (

2𝛽𝑔𝑚𝜇𝑚
∗∗

𝜌𝑚𝜀𝑚
)
 (3-42) 

𝜇𝑚
∗∗ =

5

96
𝜌𝑚𝑑𝑚√𝜋Θ𝑚 (3-43) 

𝜇𝑏𝑚
𝑘𝑖𝑛 = 𝜂

256

5𝜋
𝜇𝑚
∗∗𝜀𝑚∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

 (3-44) 

𝜂 =
1 + 𝑒𝑚𝑚
2

 
(3-45) 

The leading multiplicative factor, 
1

3
(2 + 𝛼), that appears in the kinetic contribution to the 𝑚𝑡ℎ 

solids phase viscosity is not in the work of Lun et al.  As described by Johnson and Jackson [48] 

it is effectively an adjustable parameter in which 𝛼 is a constant of order unity.  The quantity 𝑢𝑚
∗  

also represents a modification to that of Lun et al. and incorporates the role of the interstitial 

fluid into the granular viscosity as indicated by Agrawal [76].  Here, the term 𝛽𝑔𝑚 represents the 

drag coefficient as discussed in section 3.4.4.2.  Inelasticity is introduced through the coefficient 

of restitution 𝑒𝑚𝑚.  Finally, Θ𝑚 is the granular temperature or pseudo-thermal energy of the 𝑚𝑡ℎ 

phase, which has dimensions of the square of velocity (see section 3.4.3.3.2 and for additional 

discussion see section 3.4.3 along with Table 3-4).  Like traditional thermal energy this quantity 

has its own balance equation (see sections 3.4.3.3.5). 
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In MFIX-TFM, the monodisperse theory of Lun et al. is re-written in terms of each solids phase.  

So, instead of a single granular energy equation describing the system, a granular energy 

associated with each solids phase emerges.  Here, the 𝑚𝑡ℎ phase granular temperature is 

calculated from the following granular energy balance equation: 

3

2
𝜀𝑚𝜌𝑚 [

𝜕Θ𝑚
𝜕𝑡

+ 𝑈𝑚𝑗
𝜕Θ𝑚
𝜕𝑥𝑗

] =
𝜕

𝜕𝑥𝑗
(𝜅𝑚

𝜕Θ𝑚
𝜕𝑥𝑗

) + 𝜏𝑚𝑖𝑗
𝜕U𝑚𝑖
𝜕𝑥𝑗

− 𝐽𝑚 + Π𝑚 (3-46) 

The first term on the right-hand side stands for the granular temperature diffusion or conduction, 

the second term represents production by shear, the third term denotes the collisional dissipation 

and the final term encompasses the effects of gas-particle slip and viscous dissipation. Closures 

for these are presented below. 

The granular conductivity, associated with the conduction of granular temperature, is  

𝜅𝑚 = (
𝜅𝑚
∗

𝑔𝑚𝑚
) [(1 +

12

5
𝜂∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

)(1 +
12

5
𝜂2(4𝜂 − 3)∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

)

+
64

25𝜋
(41 − 33𝜂)𝜂2 (∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

)

2

] 

(3-47) 

where 

𝜅𝑚
∗ =

𝜌𝑚𝜀𝑚𝑔𝑚𝑚Θ𝑚𝜅𝑚
∗∗

𝜌𝑚 ∑ 𝜀𝑙𝑔𝑚𝑙
𝑀
𝑙=1 Θ𝑚 + (

6𝛽𝑔𝑚𝜅𝑚∗∗

5𝜌𝑚𝜀𝑚
)

 
(3-48) 

𝜅𝑚
∗∗ =

75𝜌𝑚𝑑𝑚√𝜋Θ𝑚
48𝜂(41 − 33𝜂)

 (3-49) 

Like 𝑢𝑚
∗  above, 𝜅𝑚

∗  represents a modification to that of Lun et al. for the effects of the interstitial 

fluid [76].  Note that the original expression for the granular heat flux also contains an additional 

term proportional to the gradient in the number density of the solids phase (the Dufour effect).  

This quantity is, by default, ignored in the MFIX-TFM implementation of this theory.  

The expression for the collisional dissipation term is 

𝐽𝑚 =
48

√𝜋𝑑𝑚
𝜂(1 − 𝜂)𝜀𝑚𝜌𝑚 (∑𝜀𝑙𝑔𝑚𝑙

𝑀

𝑙=1

)Θ𝑚
3/2

 (3-50) 

The final term in equation (3-46) incorporates the effects of the interstitial fluid and includes 

production of granular energy due to gas-particle slip and dissipation by viscous damping.  These 
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two terms are not present in purely granular systems and they serve as a modification to that of 

Lun et al.   Koch [114] developed expressions for both viscous dissipation and production due to 

gas particle slip for dilute systems.  Louge et al. [108], and later Gidaspow [74], present 

equivalent versions of the former, which is given here by the first term of equation (3-51). This 

model for viscous dissipation is extended in a later work [115].  The second term in equation (3-

50) is also effectively given by Koch [114], but without the quantity 𝑔𝑚𝑚 appearing in the 

denominator [76].  Koch and Sangani [116] later extend their source term due to gas particle 

interactions.  For further discussion see section 3.4.3.3.8. 

𝛱𝑚 = −3𝛽𝑔𝑚𝛩𝑚 +
81𝜀𝑚𝜇𝑔

2|𝑈𝑔 − 𝑈𝑚|
2

𝑔𝑚𝑚𝑑𝑚
3 𝜌𝑚√𝜋𝛩𝑚

. (3-51) 

As indicated previously, in MFIX-TFM the monodisperse theory of Lun et al. is generalized as a 

polydisperse theory.  In addition to assuring consistency (see section 3.4.3.3.1), an additional 

term is also included to describe the momentum transfer between particles of different phases.  

Here it should be noted that when two particles of a given phase collide, no overall momentum 

change occurs for that phase (overall momentum is conserved during a collision).  In this case, 

however, the single momentum balance has been generalized and written for each distinct phase. 

So a gain in momentum for one phase and a loss in that of the other may occur, while the net 

momentum change for both combined is zero.  This new term, and how it is closed, is described 

in more detail in section 3.4.5. 

3.4.3.5.1 Algebraic  

Rather than solving the complete granular energy balance given in equation (3-46), a simplified 

algebraic expression for the granular energy has also been proposed (see [55] and later in [56]).  

In this approach, granular energy is assumed to dissipate locally, hence convection and diffusion 

are neglected.  Assuming steady state, the rate of production is balanced by dissipation and an 

algebraic form of the energy equation is obtained:  

Θ𝑚 =

{
 

 

−
𝐾1𝑚𝜀𝑚𝐷𝑚𝑖𝑖
2𝜀𝑚𝐾4𝑚

+

√𝐾1𝑚
2 (𝐷𝑚𝑖𝑖)2𝜀𝑚2 + 4𝐾4𝑚𝜀𝑚[𝐾2𝑚(𝐷𝑚𝑖𝑖)2 + 2𝐾3𝑚(𝐷𝑚𝑖𝑗𝐷𝑚𝑗𝑖)]

2𝜀𝑚𝐾4𝑚
}
 

 
2

 

(3-52) 

𝐾1𝑚 = 2(1 + 𝑒𝑚𝑚)𝜌𝑚𝑔0𝑚𝑚 (3-53) 



Theoretical Review of the MFIX Fluid and Two-Fluid Models 

 

  47 

 

𝐾2𝑚 =
4𝑑𝑚𝜌𝑚(1 + 𝑒𝑚𝑚)𝜀𝑚𝑔𝑚𝑚

3√𝜋
−
2

3
𝐾3𝑚 (3-54) 

𝐾3𝑚 =
𝑑𝑚𝜌𝑚
2

{
√𝜋

3(3 − 𝑒𝑚𝑚)
[0.5(3𝑒𝑚𝑚 + 1)

+ 0.4(1 + 𝑒𝑚𝑚)(3𝑒𝑚𝑚 − 1)𝜀𝑚𝑔𝑚𝑚] +
8𝜀𝑚𝑔𝑚𝑚(1 + 𝑒𝑚𝑚)

5√𝜋
} 

(3-55) 

𝐾4𝑚 =
12(1 − 𝑒𝑚𝑚

2 )𝜌𝑚𝑔𝑚𝑚

𝑑𝑚√𝜋
 (3-56) 

This approach is considered reasonable in dense flow regions wherein granular energy is 

expected to be generated and dissipated locally (transport is negligible).  For example, 

researchers have used this in their simulation of bubbling beds (e.g., [118, 119]).  The algebraic 

form may reduce the computational cost of simulations as faster convergence is obtained [119, 

46].  

3.4.4 Momentum Transfer Between the Fluid and 𝒎𝒕𝒉 Phase 

As indicated in section 3.3.3.1, 𝒮𝑔𝑖 and 𝒮𝑚𝑖 are redefined for convenience and to distinguish the 

contribution due to interphase momentum transfer between the gas and 𝑚𝑡ℎ phase: 

𝒮𝑔𝑖 = −∑𝐼𝑔𝑚𝑖

𝑀

𝑚

+ 𝒮𝑔𝑖′ (3-5) 

𝒮𝑚𝑖 = 𝐼𝑔𝑚𝑖 + 𝒮𝑚𝑖′ (3-6) 

Here 𝐼𝑔𝑚𝑖 represents the contribution due to interphase momentum transfer between the gas and 

𝑚𝑡ℎ phase, 𝑀 represents the number of additional phases beyond the fluid phase and 𝒮𝑔𝑖′ and 

𝒮𝑚𝑖′ are general gas and 𝑚𝑡ℎ phase momentum source terms excluding that due to the interphase 

momentum transfer between the gas and 𝑚𝑡ℎ phase, respectively. 

Several different mechanisms for gas-solids interphase momentum transfer have been identified 

from studies of the motion of a single particle in a fluid [120]: drag force, caused by velocity 

differences between the phases; buoyancy, caused by the fluid pressure gradient; virtual or added 

mass effect, caused by relative acceleration between phases; Saffman lift force, caused by fluid-

velocity gradients; Magnus force, caused by particle spin; Basset force, originating from the 

history of the particle’s motion through the fluid; Faxen force, a correction applied to the virtual 
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mass effect; and forces caused by temperature and density gradients. The mechanisms and 

formulation of momentum transfer have been reviewed in detail [121, 122]. 

3.4.4.1 Buoyancy 

The buoyancy force is the result of the fluid stress acting on the 𝑚𝑡ℎ phase [19].  This force is 

generally considered as the result of the vertical pressure gradient that is induced by the 

gravitational body force although other contributions to the pressure gradient may occur.  

Accordingly, different mathematical interpretations of the buoyancy force are possible [19, 39].  

In MFIX the default form of the buoyancy force is defined as  

𝐼𝑔𝑚𝑖,𝐵𝑜𝑢𝑦 = −𝜀𝑚
𝜕𝑃𝑔 

𝜕𝑥𝑖
 (3-57) 

This form leads to the multiphase momentum equations presented in 3-8 and 3-9.  It has been 

termed Model A [123], and it leads to an ill-posed set of equations in a canonical problem 

involving simplified two-phase flow.  In particular, 1D incompressible, inviscid-flow equations 

without virtual-mass effects are ill-posed as an initial value problem [36].  The ill-posed nature 

prompted researchers to develop modifications to the momentum equations that ensure a well-

posed model for this simplified case.  One approach has been to simply remove the gas pressure 

gradient term in the 𝑚𝑡ℎ phase momentum equation [123], which those authors refer to as Model 

B.  However, such a formulation ignores buoyancy.  Alternatively, buoyancy may be accounted 

for as 

𝐼𝑔𝑚𝑖,𝐵𝑜𝑢𝑦 = −𝜀𝑚𝜌𝑔𝑔𝑖 (3-58) 

which results in the body force terms appearing as 𝜌𝑔𝑔𝑖 and 𝜀𝑚(𝜌𝑚 − 𝜌𝑔)𝑔𝑖 in the gas and 𝑚𝑡ℎ 

phase momentum equations, respectively.  This form of the momentum equations is referred to 

as Model B in MFIX, but it has its own limitations [124].  While the Model B formulation is 

available in MFIX, the Model A formulation is generally used in practice and is seen as a good 

approximation of the well-posed model.  

Jackson [39] presents different definitions of the buoyancy force along with a discussion on the 

remaining contributions in the interphase interaction term and the corresponding form of the 

governing equations for gas solids systems.  Two of those definitions are discussed here for 

context and comparison with the above formulations.  The first formulation was presented earlier 

(see equation 3-10) but is repeated here for convenience:  

𝐼𝑔𝑚𝑖,𝐵𝑜𝑢𝑦 = −𝜀𝑚 (
𝜕𝑃𝑔 

𝜕𝑥𝑖
−
𝜕𝜏𝑔𝑖𝑗  

𝜕𝑥𝑗
) (3-59) 

This form leads to the multiphase momentum equations presented in 3-11 and 3-12, which are 

available in MFIX.  As evident, this definition is similar to the MFIX default shown in equation 

3-57 that led to the momentum equations designated Model A.  The primary difference is the 
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appearance of the gas phase stress tensor in Jackson’s definition (see [19, 39] for details).  The 

second formulation [39] is given as 

𝐼𝑔𝑚𝑖,𝐵𝑜𝑢𝑦 = −𝜌𝑔𝜀𝑚 (𝑔𝑖 − (
𝜕𝑈𝑔𝑖

𝜕𝑡
+ 𝑈𝑔𝑗

𝜕𝑈𝑔𝑖

𝜕𝑥𝑗
)) (3-60) 

This second formulation is not currently available in MFIX.  However, it is worth noting that this 

definition is similar to MFIX’s alternative definition shown in equation 3-58 that led to the 

momentum equations designated Model B.  The difference is that Jackson’s form is re-written to 

accommodate acceleration.   

Regardless of the formulation for the buoyancy force, the value of the total interaction force 

(𝐼𝑔𝑚𝑖) should remain the same.  That is, if one is to consider decomposing the interface 

interaction force into the sum of a buoyancy force and all remaining contributions, then when 

different interpretations of the buoyancy force are used the latter terms should be formulated 

such that the total interface interaction force remains the same.  Using the two different 

interpretations of buoyancy discussed above, Jackson shows that the remaining interaction terms 

must be related by a factor of void fraction (𝜀𝑔).  For example, consider decomposing the 

interphase transfer term into buoyancy and drag due to relative velocity differences (see below).  

To ensure that the total interaction force is the same, then the drag force coefficients are related 

as: 𝛽𝑔𝑚,𝐵 = 𝛽𝑔𝑚,𝐴/𝜀𝑔.  Here 𝛽𝑔𝑚,𝐴 corresponds to the drag coefficient in the total interaction 

force when the first formulation for buoyancy is used (equation 3-59), while 𝛽𝑔𝑚,𝐵 corresponds 

to the drag coefficient when the second formulation for buoyancy is used (equation 3-60).  This 

same practice is used in the MFIX implementation of Model A and Model B.  These different 

definitions and their relation are also discussed by Van der Hoef [125]. 

The buoyancy force is added to the gas and 𝑚𝑡ℎ phase momentum balances (equation 3-3 and 

3-4, respectively) through their corresponding general source terms 𝑆𝑔𝑖 and 𝑆𝑚𝑖 as a component 

of the interphase momentum transfer term (see equations 3-5 and 3-6). 

3.4.4.2 Drag Force 

The drag force results from relative motion between the phases.  The gas-solids drag force 

encompasses skin friction and form drag arising from small scale distortions of the fluid 

streamlines in the neighborhood of the particle [19]. In MFIX, the gas-solids drag force is 

assumed to be a function of the difference in velocities, 

𝐼𝑔𝑚𝑖,𝐷𝑟𝑎𝑔 = 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) (3-61) 

where 𝛽𝑔𝑚is the drag coefficient.  Drag coefficients available in MFIX are presented in 

Appendix B.  Their presented form assumes Model A form of the momentum equations, 
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otherwise division by void fraction is necessary for Model B (for further detail see section 

3.4.4.1). 

The drag force is added to the gas and solids phase momentum balances (equation 3-3 and 3-4, 

respectively) through their corresponding general source terms 𝑆𝑔𝑖 and 𝑆𝑚𝑖 as a component of 

the gas-solids interphase momentum transfer term (see equations 3-5 and 3-6).   

3.4.4.3 Virtual (Added) Mass Effect 

The added (virtual) mass force results from relative acceleration and is the force required to 

displace the fluid surrounding the accelerating body (e.g. particle) [122].  As noted by Anderson 

and Jackson [19], the relative acceleration term, like the buoyancy force, is not necessarily a 

well-defined quantity.  As a result, different but acceptable definitions are possible.  In MFIX, 

the virtual mass force is defined as follows.  

𝐼𝑔𝑚𝑖,𝑉𝑀 = 𝐶𝑣𝑚𝜀𝑚𝜀𝑔𝜌𝑔 [(
𝜕𝑈𝑔𝑖

𝜕𝑡
+ 𝑈𝑔𝑗

𝜕𝑈𝑔𝑖

𝜕𝑥𝑗
) − (

𝜕𝑈𝑚𝑖
𝜕𝑡

+ 𝑈𝑚𝑗
𝜕𝑈𝑚𝑖
𝜕𝑥𝑗

)]. (3-62) 

where 𝐶𝑣𝑚 is the virtual mass coefficient defined with a constant value 𝐶𝑣𝑚 =
1

2
.44  When the 

particle has a lower density compared to the fluid, the virtual mass force generally becomes 

relatively important to the corresponding solids momentum balance [122]. In MFIX, it acts to 

increase the inertia of the dispersed phase, which generally stabilizes numerical simulation of 

bubbly flows.45  For gas-solids flows, however, the added mass term is generally negligible. 

The virtual mass force is added to the gas and 𝑚𝑡ℎ phase momentum balances (equation 3-3 and 

3-4, respectively) through their corresponding general source terms 𝑆𝑔𝑖 and 𝑆𝑚𝑖 as a component 

of the gas-solids interphase momentum transfer term (see equations 3-5 and 3-6, respectively).  

In MFIX, the added mass force may only be invoked between the gas phase and a single user-

designated dispersed phase 𝑀.  No additional phases are involved in the calculation. 

3.4.5 Momentum Transfer Between the 𝒎𝒕𝒉 and 𝒍𝒕𝒉 Dispersed Phases 

In section 3.3.3.1, 𝒮𝑔𝑖 and 𝒮𝑚𝑖 are redefined to distinguish the contribution(s) due to interphase 

momentum transfer between the gas and 𝑚𝑡ℎ phase (see equations 3-5 and 3-6).  For systems 

containing more than one dispersed phase (i.e. 𝑀 > 1), interphase momentum transfer between 

𝑀 dispersed phase may also arise.  This contribution is included in the term 𝒮𝑚𝑖 and, like 

interphase momentum transfer between the gas and 𝑚𝑡ℎ phase, a constitutive closure is needed. 

 

 

44 For a single perfect sphere accelerating through a fluid medium a virtual mass coefficient of 1/2 can be derived. 
45 In this scenario, the fluid phase is treated as liquid while the solids phase (dispersed phase) becomes a gaseous 

phase. 
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As with interphase momentum transfer between the gas and 𝑚𝑡ℎ phase, different mechanisms 

may contribute to the interphase momentum transfer between the dispersed phases.  For 

example, drag arises due to relative motion between the 𝑚𝑡ℎ and 𝑙𝑡ℎ dispersed phases and is 

represented in MFIX-TFM as 

𝑆𝑚𝑖,𝐷𝑟𝑎𝑔 = ∑ 𝐹𝑚𝑙(𝑈𝑙𝑖 − 𝑈𝑚𝑖)

𝑀

𝑚=1,𝑚≠𝑙

 (3-63) 

where 𝐹𝑚𝑙 is the drag coefficient.  The force is added to the 𝑚𝑡ℎ phase momentum equation 

(equation 3-4) through the general source term, 𝑆𝑚𝑖.  

This term acts to hinder relative motion between phases (e.g. inhibit segregation) and has been 

found important for modeling solids-solids segregation [126].  Recall granular flows are often 

classified into frictional and kinetic regimes as discussed in section 3.4.1.  In terms of the kinetic 

regime, this term arises due to particle-particle collisions and so is referred to as the collisional 

momentum source.  Note that when two particles of a given phase collide, no momentum change 

occurs for that phase since total momentum is conserved during a collision.  However, when 

particles of different phases collide, a gain in momentum for one phase and a loss in that of the 

other may occur such that the net momentum change (for both combined) is zero.  Kinetic theory 

based models for polydisperse solids provide for this term inherently, and so, such descriptions 

are not discussed here, but are instead included in context of the individual kinetic theory as 

appropriate.  In the case of a generalized multiphase model based on monodisperse theory, 

however, such a term must be provided.   

Expressions for solids-solids drag have been determined experimentally and theoretically  [127, 

128, 129, 130, 131].  Syamlal [129] used a simplified version of kinetic theory to derive an 

expression for the drag coefficient 𝐹𝑚𝑙: 

𝐹𝑚𝑙 = 3(1 + 𝑒𝑚𝑚) (
𝜋

2
+ 𝐶𝑓

𝜋2

8
)

(𝑑𝑚 + 𝑑𝑙)
2

2𝜋(𝜌𝑚𝑑𝑚
3 + 𝜌𝑙𝑑𝑙

3)
𝜌𝑚𝜌𝑙𝑔𝑚𝑙|𝑈𝑚𝑖 − 𝑈𝑙𝑖| (3-64) 

Here 𝐶𝑓 represents the coefficient of friction between particles of phase 𝑚 and 𝑙.  

Gera et al. [132] later modified this expression by incorporating  a “hindrance effect” caused by 

particles in enduring contact, where 𝑆𝑐𝑜𝑒𝑓 is an adjustable parameter and 𝑃𝑐 represents the close-

packed solids pressure (see section 3.4.2): 

𝐹𝑚𝑙 = 3(1 + 𝑒𝑚𝑚) (
𝜋

2
+ 𝐶𝑓

𝜋2

8
)

(𝑑𝑚 + 𝑑𝑙)
2

2𝜋(𝜌𝑚𝑑𝑚
3 + 𝜌𝑙𝑑𝑙

3)
𝜌𝑚𝜌𝑙𝑔𝑚𝑙|𝑈𝑚𝑖 − 𝑈𝑙𝑖| + 𝑆𝑐𝑜𝑒𝑓𝑃𝑐 (3-65) 

Owoyemi et al. [126] examined the influence of several different models for the solids-solids 

drag relation on mixing and segregation in a bi-disperse fluidized bed.  For the different models 

examined they observed similar results in regard to overall mixing, overall segregation, bubbling 
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dynamics and bulk properties (average bed height and bed voidage).  However, removal of the 

term resulted in excessive segregation in contrast to experiment observation. 

MFIX-TFM also has several polydisperse kinetic theory based models with their own solids-

solids interphase momentum transfer term that includes solids-solids drag due to relative velocity 

(e.g., Iddir and Arastoopour [8]).  If one of the polydisperse theories is invoked then the above 

formula is changed accordingly.  

3.4.6 Turbulence Effects 

As mentioned in section 2.5.4 on turbulence, a modified 𝑘-𝜖 theory [4] is available in MFIX to 

model the influence of gas phase turbulence in multiphase gas-solids flow.  This modified theory 

is based on the formulations of Simonin [78] and Balzer [79].  Similarly, another modified 𝑘-𝜖 

theory description is available based on the work of Cao and Ahmadi [77].  Both efforts involve 

some kinetic theory formalism in their derivation, but as indicated in [4], they generally do not 

distinguish kinetic theory contributions (see sections 3.4.3.3.7 and 3.4.3.3.8 in section 3.4.3) 

from those of turbulence.  As discussed in [133] the lack of distinction between turbulent kinetic 

energy and granular energy is erroneous and will lead to an incorrect or incomplete formulation 

for multiphase turbulence.   

In general, the modified version(s) in MFIX-TFM involve the same 𝑘-𝜖 equations as those for 

single phase except for the inclusion of additional exchange terms.  In particular, the Simonin-

based implementation incorporates a new source term to both the kinetic energy and dissipation 

transport equations, whereas the Ahmadi based implementation only includes new source term to 

the kinetic energy transport equation.  For greater detail on the development of either of these 

theories the reader is referred back to the original sources as well as those of Ma & Ahamdi  

[117, 134, 135] and Balzer et al. [113].  

3.4.7 Diffusive Mass Transfer 

Species mass flux through the 𝑚𝑡ℎ solids phase is based on a form of Fick’s first law of diffusion 

[27] (§17.1, pp 514-520): 

𝒿𝑚𝑗 = 𝜌𝑚𝒟𝑚𝑛
𝜕𝑋𝑚𝑛
𝜕𝑥𝑗

 (3-66) 

where 𝒟𝑚𝑛 is the 𝑛𝑡ℎ solids phase species diffusion coefficient described in section 3.5.7 and the 

other quantities are defined as before.  

3.4.8 Conductive Heat Transfer 

Similar to that of the fluid phase (section 2.5.6), the conductive heat flux in the 𝑚𝑡ℎ phase (first 

term on the RHS of equation (3-15) is assumed to follow a standard Fourier Law [27] form: 
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𝑞𝑚𝑗 = −𝜅𝑚
𝜕𝑇𝑚
𝜕𝑥𝑗

 (3-67) 

where 𝜅𝑚 is the 𝑚𝑡ℎ phase thermal conductivity described in section 3.5.6.  For a solids phase 

representing a collection of particles, 𝜅𝑚 cannot simply be considered the material conductivity 

of the particle itself, but instead represents an effective 𝑚𝑡ℎ phase solids conductivity [136, 137] 

as described in section 3.5.6. 

3.4.9 Radiative Heat Transfer 

Radiative heat transfer is modeled by the simple relation, 

𝒮𝑚,𝑟𝑎𝑑 = 𝛾𝑅𝑚(𝑇𝑅𝑚
4 − 𝑇𝑚

4), (3-68) 

where 𝑇𝑅𝑚 and 𝛾𝑅𝑚 are the radiative temperature and heat transfer coefficient.  By default radiative 

heat transfer is not considered, that is, 𝑇𝑅𝑚 and 𝛾𝑅𝑚 are taken as zero. The radiation source term 

is added in the 𝑚𝑡ℎ phase internal energy equation (3-15) through the general source term, 𝑆𝑚. 

3.4.10 Convective Heat Transfer 

Interphase convective heat transfer in MFIX 46 is assumed to be a function of the temperature 

difference, 

𝒮𝑚,𝑐𝑜𝑛𝑣 = 𝛾𝑔𝑚(𝑇𝑚 − 𝑇𝑔) 
(3-69) 

where 𝛾𝑔𝑚is the coefficient of heat transfer between the gas phase and the 𝑚𝑡ℎ phase. 

Convective heat transfer is added to the gas phase internal energy equation (2-6) through the 

general source term, 𝑆𝑔, and subtracted from the 𝑚𝑡ℎ phase internal energy equation (3-15) 

through the general source term, 𝑆𝑚. 

The interphase heat transfer coefficient, 𝛾𝑔𝑚, includes a correction in the heat transfer caused by 

interphase mass transfer.  This correction follows from a film theory analysis presented in reference 

(See §21.5 Transfer Coefficients at High Mass-Transfer Rates: Film Theory, p658-668 [31]): 

𝛾𝑔𝑚 =
𝐶𝑝𝑔𝑅𝑔𝑚

[exp (
𝐶𝑝𝑔𝑅𝑔𝑚
𝛾𝑔𝑚
0 ) − 1]

 (3-70) 

 

 

46 Interphase convective heat transfer refers strictly to heat transfer between the gas phase and 𝑚 disperse phases. 

MFIX-TFM does not contain any sub-models that account for the direct transfer of heat between separate 

continuous solids phases. 
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Here, 𝛾𝑔𝑚
0  represents an intrinsic, or uncorrected, heat transfer coefficient.  As is frequently done 

in more complex heat transfer problems, 𝛾𝑔𝑚
0  is determined using a suitable correlation for the 

Nusselt number, Nu:   

𝛾𝑔𝑚
0 =

6𝜀𝑚𝜅𝑔

𝑑𝑚2
Nu 

(3-71) 

Here, the dimensionless Nusselt number is defined as Nu =
𝛾𝑔𝑚
0 𝑑𝑚

𝜅𝑔
.47  Nusselt number 

correlations available in MFIX are presented in Appendix C.  By default the correlation of Gunn 

[138] is used in equation (3-71).  This correlation was developed to describe heat transfer to 

particles in fixed and fluidized beds over varying Reynolds number and void fraction.  Finally, it 

is worth pointing out that in the limit of zero interphase mass transfer (𝑅𝑔𝑚 → 0) equation (3-71) 

reduces to intrinsic heat transfer (𝛾𝑔𝑚 = 𝛾𝑔𝑚
0 ). 

3.4.11 Chemical Reaction Source Terms  

Source terms associated with chemical reactions are zero by default in MFIX. To incorporate 

chemical reactions, users must define chemical equations (stoichiometry) in the input deck in 

addition to specifying reaction rates via user-defined functions48. Subsequent subsections present 

how user-provided information is used to calculate source terms that contribute to the species 

mass and internal energy conservation equations.  

3.4.11.1 Production and Consumption of Species Mass  

Change in species mass is evaluated identically for homogeneous and heterogeneous chemical 

reactions. Specifically, for the 𝑝𝑡ℎ reaction, let ℛ𝑝 be the user-defined reaction rate,49 and 𝛼𝑚𝑛,𝑝 

be the signed stoichiometric coefficient of the 𝑚𝑡ℎ phase’s 𝑛𝑡ℎ species. The sign of the 

stoichiometric coefficient is positive for products (i.e., the 𝑝𝑡ℎ reaction produces the 𝑚𝑡ℎ phase’s 

𝑛𝑡ℎ species) and negative for reactants (the 𝑚𝑡ℎ phase’s 𝑛𝑡ℎ species is consumed by the 𝑝𝑡ℎ 

reaction). Then, the total rate of change of species mass per unit volume for the 𝑝𝑡ℎ reaction is 

given by 

 

 

47 The additional factor of 6𝜀𝑚/𝑑𝑚 corresponds to the specific area or surface area per unit volume for a bed of 

uniform spheres. It provides the conversion from heat flux to the heat transfer rate per unit volume.  Therefore, the 

implementation implies a system wherein the 𝑚𝑡ℎ phase is comprised of dispersed spheres. 
48 Details on how to specify chemical equations and reaction rates is provided in the MFIX User Guide available 

online at https://mfix.netl.doe.gov/doc/mfix/latest 
49 The unit systems adopted in MFIX are not consistent with the general definitions, and as such, MFIX uses units of 

𝑘𝑚𝑜𝑙𝑒/𝑘𝑔 for molecular weight in SI and 𝑚𝑜𝑙𝑒/𝑔𝑟𝑎𝑚 in CGS units. A consequence of these units is that user-

defined reaction rates have units of 𝑘𝑚𝑜𝑙𝑒/𝑐𝑚3𝑠𝑒𝑐 in SI and 𝑚𝑜𝑙𝑒/𝑚3𝑠𝑒𝑐 in CGS units.  
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[𝑅𝑚𝑛]𝑝 =
𝛼𝑚𝑛,𝑝ℛ𝑝

MW𝑚𝑛
 (3-72) 

where MW𝑚𝑛 is the molecular weight of the 𝑚𝑡ℎ phase 𝑛𝑡ℎ species. Here, the phase index 𝑚 

ranges from zero to the total number of additional phases (𝑀) beyond the fluid phase (𝑚 = 0), 

that is, 𝑚 = 0 represents the fluid (or gas) phase (i.e., 𝑅0𝑛 = 𝑅𝑔𝑛)50. The total rate of production 

(or consumption), 

𝑅𝑚𝑛 =∑[𝑅𝑚𝑛]𝑝
𝑝

 (3-73) 

is substituted into equations (2-3) and (2-4) for 𝑚 = 0, and (3-1) and (3-2) otherwise to account 

for changes in species mass. 

3.4.11.2 Energy Change Due to Mass Production and/or Consumption 

The 𝑝𝑡ℎ chemical reactions contributes to the general source term in the 𝑚𝑡ℎ phase internal 

energy equation due to the production or consumption of 𝑚𝑡ℎ phase species.  This contribution 

may be specified51 or computed as 

[𝒮𝑚,𝐼]𝑝 = −∑ℎ𝑚𝑛[𝑅𝑚𝑛]𝑝

𝑁𝑚

𝑛=1

 (3-74) 

𝑁𝑚 is the total number of species comprising the 𝑚𝑡ℎ phase mixture, and ℎ𝑚𝑛 is the specific 

enthalpy of the 𝑛𝑡ℎ species of the 𝑚𝑡ℎ phase, , defined in section 3.5.5. The total source term 

arising from mass production and/or consumption is added in the 𝑚𝑡ℎ phase internal energy 

equation (3-15) through the general source term, 𝒮𝑚: 

𝒮𝑚,𝐼 =∑[𝒮𝑚,𝐼]𝑝
𝑝

 (3-75) 

3.4.11.3 Energy Change Accompanying Interphase Mass Transfer 

The energy transfer accompanying interphase mass transfer, specifically transfer between the gas 

and 𝑚𝑡ℎ phase (i.e., a heterogeneous reaction between the gas and 𝑚𝑡ℎ phase), is given by [139]: 

 

 

50 Observe that equations (3-72) and (3-72) are consistent with equations (2-20) and (2-21) provided in section 

2.5.8.1 for gas phase reactions. Specifically, these are the same equations with (2-20) and (2-21) having the index 

𝑚 = 0 = 𝑔. 
51 If a constant heat of reaction is specified, then the evaluation of enthalpy defined in equation (3-83) is not 

performed so that the sensible heat contribution is not incorporated. Additionally, the partitioning of the specified 

heat of reaction between phases must also be provided. 
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𝒮𝑚,𝑟𝑥𝑛 =∑(∑(ℎ𝑔𝑛(𝑇𝑔𝑚)[𝑅𝑔𝑛]𝑝)

𝑁𝑔

𝑛=1

)

𝑝

. (3-76) 

Here, [𝑅𝑔𝑛]𝑝 represents the rate of production (or consumption) of the 𝑛𝑡ℎ gas phase species 

attributed to the 𝑝𝑡ℎ reaction between the gas phase and the 𝑚𝑡ℎ phase and is given by equation 

(2-20).  The quantity ℎ𝑔𝑛(𝑇𝑔𝑚) is the specific enthalpy of the 𝑛𝑡ℎ gas phase species at 

temperature, 𝑇𝑔𝑚, identified by 

𝑇𝑔𝑚 = {
𝑇𝑔 for  [𝑅𝑔𝑛]𝑝 ≤ 0 (i.e., consumption of  𝑛𝑡ℎ gas species)

𝑇𝑚 for [𝑅𝑔𝑛]𝑝
> 0 (i.e., production of  𝑛𝑡ℎ gas species)      

. (3-77) 

where 𝑇𝑔 and 𝑇𝑚 and the gas and 𝑚𝑡ℎ phase temperatures, respectively. Energy transfer 

accompanying interphase mass transfer is added to the gas phase internal energy equation (2-6) 

through the general source term, 𝒮𝑔, and subtracted from the 𝑚𝑡ℎ phase internal energy equation 

(3-15) through the general source term, 𝒮𝑚. 

3.5 Solids Phase Physical Properties 

This section defines the 𝑚𝑡ℎ phase physical properties. 

3.5.1 Mixture Solids Density 

The 𝑚𝑡ℎ phase (solids) density is either specified as constant, calculated using a user-defined 

function, or calculated as a function of the chemical species mass fractions.  In case of the latter, 

a variable solids phase density is calculated from a baseline solids density, 𝜌𝑚
𝐵 , defined as 

1

𝜌𝑚𝐵
= ∑

𝑋𝑚𝑛
𝐵

𝜌𝑚𝑛𝐵

𝑁𝑚

𝑛=1

, (3-78) 

where 𝑋𝑚𝑛
𝐵  and 𝜌𝑚

𝐵  are the 𝑚𝑡ℎ solids phase baseline 𝑛𝑡ℎ chemical species mass fraction and 

material density. The term baseline is used to assert that these values are specific to the solids 

phase description and may differ from the initial conditions used in setting up a simulation. For 

example, consider a solids phase defined to represent coal particles and taken to be composed of 

four pseudo-species; char, ash, volatiles and moisture. The baseline mass fractions would likely 

reflect the proximate analysis of the coal and the material densities would reflect the densities of 

the four components; char, coal-ash, volatile matter, and liquid water. 

Equation (3-78) is only valid when calculating the baseline solids density because its derivation 

uses the assumption that the volume of a particle is equivalent to the total mass of the particle 

divided by the material density; however, as mass is lost or gained, this assumption no longer 

holds. Xue et al. [6] observed this phenomenon and suggested that the apparent solids density 
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should be related to the baseline density by a multiplier accounting for increased porosity. This 

can be avoided by exploiting the notion that the mass of an inert chemical species is constant so 

that the mass of the 𝑚𝑡ℎ solids phase, 𝑚𝑚, is given by  

𝑚𝑚 = (𝜌𝑚
𝐵𝑉𝑚

𝐵)
𝑋𝑚𝐼
𝐵

𝑋𝑚𝐼
, (3-79) 

where the subscript 𝐼 is the index of the inert solids phase species. Given that the solids phase 

volume is constant, 𝑉𝑚 = 𝑉𝑚
𝐵 = 𝑚𝑚

𝐵 /𝜌𝑚
𝐵 , the apparent 𝑚𝑡ℎ solids phase density is 

𝜌𝑚 = 𝜌𝑚
𝐵
𝑋𝑚𝐼
𝐵

𝑋𝑚𝐼
. (3-80) 

This model requires users identify one solids phase chemical species as inert. This is a 

reasonable approach given that the solids diameter is invariant to mass loss and therefore an inert 

material is needed to provide a rigid matrix to support reactants and/or products. 

3.5.2 Viscosity, Bulk Viscosity, and Pressure  

As discussed previously, the 𝑚𝑡ℎ phase stress, 𝜏𝑚𝑖𝑗, is cast in the form provided in equations 

(3-16)-(3-18).  This model requires two transport coefficients for closure: viscosity, 𝜇𝑚, and bulk 

viscosity, 𝜇𝑏𝑚.  Three options are available for defining these quantities.  1) The 𝑚𝑡ℎ phase 

viscosity, 𝜇𝑚, may be specified as a constant at which point the 𝑚𝑡ℎ phase bulk viscosity, 𝜇𝑏𝑚, 

and the 𝑚𝑡ℎ phase stress, 𝑃𝑚, are set to zero.  2) It may be calculated using a user-defined 

function, which also allows for specification of the bulk viscosity and pressure.  3) It may be 

calculated based on a selected solids model, wherein the bulk viscosity and pressure are defined 

accordingly.  The latter is the default approach as discussed in section 3.4.1 along with sections 

3.4.2 and 3.4.3. 

3.5.3 Mixture Molecular Weight  

The 𝑚𝑡ℎ phase mixture molecular weight, MW𝑚, is either specified as constant or calculated as 

1

MW𝑚
= ∑

𝑋𝑚𝑛
MW𝑚𝑛

𝑁𝑚

𝑛=1

 (3-81) 

where 𝑋𝑚𝑛 and MW𝑚𝑛 are the mass fraction and elemental molecular weight of the 𝑚𝑡ℎ phase 

𝑛𝑡ℎ chemical species. 

3.5.4 Mixture Specific Heat  

The 𝑚𝑡ℎ phase mixture specific heat, 𝐶𝑝𝑚, is either specified as constant52 or calculated as 

 

 

52 Specifying a constant specific heat for the 𝑚𝑡ℎ phase is only permissible for non-reacting flows. 
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𝐶𝑝𝑚 =∑𝑋𝑚𝑛𝐶𝑝𝑚𝑛

𝑁𝑚

𝑛=1

 (3-82) 

where 𝐶𝑝𝑚𝑛is the specific heat of the 𝑚𝑡ℎ phase 𝑛𝑡ℎ chemical species. The species specific heat 

is obtained from either the BURCAT database [30] or from a user provided entry following the 

same format. 

 

3.5.5 Species Specific Enthalpy 

The specific enthalpy each species is calculated by combining the heat of formation, 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓), 

and integrating the specific heat of that species from the reference temperature, 𝑇𝑟𝑒𝑓, to the gas 

phase temperature. 

ℎ𝑚𝑛 = 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓) + ∫ 𝐶𝑝𝑚𝑛(𝑇)

𝑇𝑔

(𝑇𝑟𝑒𝑓)

𝑑𝑇 (3-83) 

The species heat of formation is obtained from either the BURCAT database [30] or as a user 

provided entry following the same format. 

3.5.6 Thermal Conductivity  

The 𝑚𝑡ℎ phase thermal conductivity, 𝜅𝑚, is either specified as constant, calculated using a user-

defined function, or calculated using a thermal resistance model that is based on heat transfer in a 

dispersed medium.  The latter model is described here. 

Formulating the conductive heat transfer between particles is a challenging problem and various 

approaches have been used.  For particles dispersed in a continuous medium, heat transfer is 

commonly considered through a mixture, or effective bed, conductivity approach, wherein 

different mechanisms [140, 141] are considered simultaneously.  Such mechanisms may include 

heat transfer between particles in contact, through the fluid (gas) gap between particles and 

radiation between particles.  An effective thermal conductivity is then used to simultaneously 

describe the influence of these distinct mechanisms.    

In MFIX-TFM, the model of Bauer and Schlunder [140] is used to approximate the 𝑚𝑡ℎ phase 

thermal conductivity [136, 56].  Their model examines the total heat transfer through a unit cell 

separated into two contributions: 1) heat transfer only through the surrounding fluid phase and 2) 

heat transfer through both the fluid and solids.  These are considered to act in parallel or as 

additive fluxes [140, 142] and several mechanisms of heat transfer are considered including 
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conduction, radiation between particles and the contribution to gas conductivity due to the 

Smoluchowski or Knudsen effect.53 

As discussed, this model [140] considers the total effective thermal conductivity of the system as 

the sum of two contributions.  Since MFIX considers heat transfer through the fluid phase 

separately (section 2.6.5), it is only the second contribution54 that is used to formulate an 

approximate 𝑚𝑡ℎ phase thermal conductivity.  This contribution is further simplified by 1) 

neglecting the influence of the Smoluchowski effect to the gas phase conductivity55, and 2) 

dropping radiation56 since radiative heat transfer is also treated separately (section 3.4.9) [136].  

Finally, the original model of Bauer & Schlunder also provides for a modified or mean particle 

conductivity that incorporates the influence of an oxidation layer on the thermal conductivity of 

the particle.  This aspect57 is not incorporated.  The resulting simplified equation effectively 

encompasses direct conduction through a factional contact area and indirect conduction through 

the gas wedge between contacting particles.  As in Kuipers et al [137], a solids phase thermal 

conductivity is obtained from Bauer and Schlunders’ model for effective bed conductivity via the 

following relation: 

𝜅𝑠 =
𝜅𝑏

(1 − 𝜀𝑔)
 (3-84) 

where in MFIX, the quantity 𝜅𝑏 is defined as 

𝜅𝑏 = 𝜅𝑔√1 − 𝜀𝑔 (𝜑𝑅 + (1 − 𝜑)Γ) (3-85) 

and 

Γ =
−2

1 −
𝐵
𝑅

[
𝐵(𝑅 − 1)

𝑅 (1 −
𝐵
𝑅)

2 ln (
𝐵

𝑅
) +

𝐵 − 1

1 −
𝐵
𝑅

+
1

2
(𝐵 + 1)] (3-86) 

Here, 𝜅𝑔 is the fluid phase conductivity defined in Equation (2-28).  The quantity 𝜑 represents 

the fraction of the heat transfer surface area that is in contact (compared to the remaining surface 

 

 

53 The thermal conductivity of an unconfined gas is independent of pressure.  When the mean free path approaches 

or exceeds the distance between bounding solid surfaces (Kn>0.001), then heat transfer depends on pressure which 

reflects the number of molecules participating in heat transfer with the mean free path inversely proportional to 

pressure.  For more details see [214, 215]. 
54 Expression 3 in Bauer and Schlunder [138] is assumed to contain a typo.  The first term in the parenthesis on the 

right-hand-side should reflect the quantity 𝜆/𝜆𝐷 but the expression is missing the numerator 𝜆 – only the 

denominator 𝜆𝐷 is written.  
55 The term 

𝜆

𝜆𝐷
= 1 in the expressions of Bauer and Schlunder [138]. 

56 The term 
𝜆𝑅

𝜆
= 0 in the expressions of Bauer and Schlunder [138]. 

57 The term 𝜆𝑆
∗ = 𝜆𝑆 in the expressions of Bauer and Schlunder [138]. 
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area through the two particles that are the gas wedges).  A value for 𝜑 is found from a 

combination of theoretical computation and fitting of experimental data: 

𝜑 =
23𝜌𝐾

2

1 + 22𝜌𝐾

4
3

= 7.26𝑥10−3 (3-87) 

Here 𝜌𝑘
2 was determined experimentally.  Specifically, a value of 𝜌𝑘

2 = 3.5𝑥10−4 was found to 

work equally well for several different instances of uniformly sized spherical packings of 

ceramic particles, in which values of diameter ranged from 0.05mm to 2mm.  The quantity 𝐵 is 

described as a deformation factor that is determined on the basis of geometric considerations and 

for uniform spherical particles it is written as: 

𝐵 = 1.25 (
1 − 𝜀𝑔

𝜀𝑔
)

10
9

 (3-88) 

Finally, the quantity 𝑅 is the ratio of the microscopic, or material, thermal conductivity of the 

solids particle to that of the gas: 

𝑅 =
𝑘𝑝

𝜅𝑔
 (3-89) 

For the default model, 𝑘𝑝 is assigned a constant value of 1.0 𝑊/(𝑚 ∙ 𝐾) taken from Mills [143], 

Table A.3, dry-soil, p912.    

While the model of Bauer and Schlunder allows for incorporating the influence of a particle size 

distribution through the quantity 𝐵 (see Bauer and Schlunder equation 6), a uniform spherical 

distribution is assumed in the expression shown here.  For systems with more than one solids 

phase (differing in size, density or other material property), MFIX employs an ad-hoc extension 

by replacing 𝜅𝑠 with 𝜅𝑚 for the 𝑚𝑡ℎ solids phase in Equation (3-84) and 𝑘𝑝 with 𝑘𝑚 in Equation 

(3-89): 

𝜅𝑚 =
𝜅𝑏𝑚

(1 − 𝜀𝑔)
=

𝜅𝑔

√1 − 𝜀𝑔
 (𝜑𝑅𝑚 + (1 − 𝜑)Γm) (3-90) 

𝑅𝑚 = 
𝑘𝑚
𝜅𝑔

 (3-91) 

As evident, the same model is applied separately to each 𝑚𝑡ℎ phase.  Conduction between 

different solids phases is not considered. 

Finally, this conductivity model was developed based on the depiction of particles in a packed 

configuration.  However, this is the default model regardless of the flow regime (i.e., fluidized or 
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packed). For the default values given here, the bed conductivity, 𝜅𝑏, is plotted in Figure 3-4 

where the gas phase thermal conductivity is calculated using equation (2-28) with temperatures 

ranging from 300K to 2100K. The bed thermal conductivity is bounded above by the solids 

material (microscopic) thermal conductivity for physical fluid volume fractions (𝜀𝑔 > 0.25), and 

decreases with increasing 𝜀𝑔 becoming comparable to 𝜅𝑔 for dilute flows. 

 
Figure 3-4: Bed thermal conductivity, 𝜿𝒃 given by equation (3-85), is shown as a function of gas phase volume 

fraction. The gas phase thermal conductivity, 𝒌𝒈 is evaluated at several temperatures (300K – 2100K) using 

equation (2-28) and with all values shown as a single gray line. The constant solids material conductivity, 𝒌𝒑 =

𝟏. 𝟎 𝑾/(𝒎.𝑲), is plotted as a dashed line. The bed conductivity is bounded above by 𝒌𝒑, for physical volume 

fractions (𝜺𝒈 > 𝟎. 𝟐𝟓), and decreases with increasing gas volume fraction. 

3.5.7  Diffusivity  

The 𝑚𝑡ℎ phase species diffusivity, 𝒟𝑚𝑛, is either specified as constant, calculated using a user-

defined function, or taken as zero.  
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Appendix A: Internal Energy Equations Derivation 

Simplifying assumptions have been made in the formulation of internal energy equations:  

(1) The irreversible rate of increase of internal energy due to viscous dissipation and 

interphase momentum transfer has been neglected. Such terms are negligible except in 

the case of very large relative velocities; 

(2) Interfacial work terms are negligible; 

(3) Energy transfer accompanying species diffusion is negligible. 

A.1 Gas Phase Energy Equation.  

The gas phase internal energy equation is [20, 21] 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔𝐼𝑔) +

𝜕

𝜕𝑥𝑖
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖𝐼𝑔) = −

𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) − 𝑝𝑔 (

𝜕𝜀𝑔

𝜕𝑡
+
𝜕𝜀𝑔𝑈𝑔𝑖

𝜕𝑥𝑖
) + 𝒮𝑔

′  (A-1) 

where 𝐼𝑔 is the specific internal energy of the gas phase. The terms on the left hand side are the 

rate of internal energy accumulation and the net rate of convective internal energy flux. The three 

terms on the right hand side are the conductive heat flux, work done by the gas to change the 

volume fraction, and a generalized source term whereby contributions from additional models 

are incorporated.58  

The gas phase enthalpy is defined as 

𝐻𝑔 = 𝐼𝑔 + (
𝑝𝑔

𝜌𝑔
) (A-2) 

which is used to recast (A-1) as 

𝜀𝑔𝜌𝑔 (
𝜕𝐻𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝐻𝑔

𝜕𝑥𝑖
) + 𝐻𝑔 (

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔) +

𝜕

𝜕𝑥𝑖
(𝜀𝑔𝜌𝑔𝑈𝑔𝑖))

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) + 𝜀𝑔 (

𝜕𝑝𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑝𝑔

𝜕𝑥𝑖
) + 𝒮𝑔

′  

(A-3) 

Here we can see the left hand side of the continuity equation (2-3) multiplied by 𝐻𝑔  such that 

(A-3) can be written as 

 

 

58 Several terms defined in the referenced works (i.e., equation 2.3 in [21]) are omitted. Specifically, equation (A-1) 

does not include changes in internal energy due to interphase momentum and mass transfer, nor does it include 

changes in internal energy due to viscous dissipation. The remaining omitted terms, such as interphase convective 

heat transfer and changes in internal energy arising from phase change and/or chemical reactions, are covered in 

section 3.4. 
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𝜀𝑔𝜌𝑔 (
𝜕𝐻𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝐻𝑔

𝜕𝑥𝑖
)  

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) + 𝜀𝑔 (

𝜕𝑝𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑝𝑔

𝜕𝑥𝑖
) − 𝐻𝑔∑𝑅𝑔𝑛

𝑁𝑔

𝑛=1

+ 𝒮𝑔
′

 

(A-4) 

The enthalpy of the gas mixture is defined as the sum of the enthalpies of the individual species,  

𝐻𝑔 = ∑ℎ𝑔𝑛

𝑁𝑔

𝑛=1

𝑋𝑔𝑛 
(A-5) 

The specific enthalpy each species is calculated by combining the heat of formation and 

integrating the specific heat of that species from the reference temperature to the gas phase 

temperature, 

ℎ𝑔𝑛 = 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓) + ∫ 𝐶𝑝𝑔𝑛(𝑇)

𝑇𝑔

(𝑇𝑟𝑒𝑓)

𝑑𝑇 (A-6) 

Differentiating (A-5) and (A-6) yields 

𝑑𝐻𝑔 = ∑(𝑑ℎ𝑔𝑛𝑋𝑔𝑛 + ℎ𝑔𝑛𝑑𝑋𝑔𝑛)

𝑁𝑔

𝑛=1

 
(A-7) 

and 

𝑑ℎ𝑔𝑛 = 𝐶𝑝𝑔𝑛𝑑𝑇𝑔 (A-8) 

Substituting (A-8) into (A-7) gives 

𝑑𝐻𝑔 = ∑(𝑋𝑔𝑛𝐶𝑝𝑔𝑛𝑑𝑇𝑔 + ℎ𝑔𝑛𝑑𝑋𝑔𝑛)

𝑁𝑔

𝑛=1

 
(A-9) 

Substituting the definition of the gas phase mixture specific heat (2-26) into (A-9) 

𝑑𝐻𝑔 = 𝐶𝑝𝑔𝑑𝑇𝑔  +∑ℎ𝑔𝑛𝑑𝑋𝑔𝑛

𝑁𝑔

𝑛=1

 
(A-10) 

Substituting (A-10) into (A-4) and expanding the derivatives results in the energy equation in 

terms of temperatures and enthalpies, 
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𝜀𝑔𝜌𝑔𝐶𝑝𝑔 (
𝜕𝑇𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑇𝑔

𝜕𝑥𝑖
)  

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) + 𝜀𝑔 (

𝜕𝑝𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑝𝑔

𝜕𝑥𝑖
)

−∑ℎ𝑔𝑛

𝑁𝑔

𝑛=1

(𝜀𝑔𝜌𝑔 [
𝜕𝑋𝑔𝑛

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑋𝑔𝑛

𝜕𝑥𝑖
] + 𝑋𝑔𝑛 ∑ 𝑅𝑔𝑛′

𝑁𝑔

𝑛′=1

) + 𝒮𝑔
′  

(A-11) 

Combining the gas phase continuity and 𝑛𝑡ℎ gas phase species equations gives (to obtain the 

non-conservative form of the species equation),  

𝜀𝑔𝜌𝑔 (
𝜕𝑋𝑔𝑛

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑋𝑔𝑛

𝜕𝑥𝑖
) =

𝜕

𝜕𝑥𝑗
(𝒟𝑔𝑛

𝜕𝑋𝑔𝑛

𝜕𝑥𝑗
) + 𝑅𝑔𝑛 − 𝑋𝑔𝑛∑𝑅𝑔𝑛

𝑁𝑔

𝑛=1

 
(A-12) 

Substituting (A-12) into (A-11),  

𝜀𝑔𝜌𝑔𝐶𝑝𝑔 (
𝜕𝑇

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖
)  

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖)  + 𝜀𝑔 (

𝜕𝑝𝑔

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑝𝑔

𝜕𝑥𝑖
)

− (∑ℎ𝑔𝑛

𝑁𝑔

𝑛=1

(
𝜕

𝜕𝑥𝑗
(𝒟𝑔𝑛

𝜕𝑋𝑔𝑛

𝜕𝑥𝑗
) + 𝑅𝑔𝑛)) + 𝒮𝑔

′  

(A-13) 

Neglecting expansion effects and diffusive enthalpy transfer yields, 

𝜀𝑔𝜌𝑔𝐶𝑝𝑔 (
𝜕𝑇

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖
)  = −

𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) −∑ℎ𝑔𝑛

𝑁𝑔

𝑛=1

𝑅𝑔𝑛 + 𝒮𝑔
′ . (A-14) 

Finally, we obtain the gas phase energy equation, shown below as well as equation (2-6), by 

combining the change in enthalpy due to the production and/or consumption of species mass59 

with the general source term.  

𝜀𝑔𝜌𝑔𝐶𝑝𝑔 (
𝜕𝑇

𝜕𝑡
+ 𝑈𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖
)  = −

𝜕

𝜕𝑥𝑖
(𝜀𝑔𝑞𝑔𝑖) + 𝒮𝑔 (A-15) 

 

 

59 The source term for change in enthalpy due to the production and/or consumption of species mass is defined 

separately from the energy equation (see section 2.5.8.2).  
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Note that the prime superscript is removed from the source term to indicate that the final source 

term is not identical to the source term identified initially in equation (A-1). Although this last 

modification to the energy equation is not necessary, it casts the final equation into the same 

form as the other conservation equations whereby specific models and sub-models are presented 

separately from the conservation equation. 

A.2 Continuum Solids Phase Energy Equation.  

The 𝑚𝑡ℎ phase internal energy equation is [20, 21] 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝐼𝑚) +

𝜕

𝜕𝑥𝑖
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖𝐼𝑚) = −

𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖) + 𝒮𝑚

′  (A-16) 

where 𝐼𝑚 is the specific internal energy of the 𝑚𝑡ℎ solids phase. The terms on the left hand side 

are the rate of internal energy accumulation and the net rate of convective internal energy flux. 

The terms on the right hand side include the conductive heat flux described by Fourier’s Law and 

a general source term 𝑆𝑚. 

The 𝑚𝑡ℎ solids phase enthalpy is defined as 

𝐻𝑚 = 𝐼𝑚 
(A-17) 

is used to recast(A-17) as 

𝜀𝑚𝜌𝑚 (
𝜕𝐻𝑚
𝜕𝑡

+ 𝑈𝑚𝑖
𝜕𝐻𝑚
𝜕𝑥𝑖

) + 𝐻𝑚 (
𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚) +

𝜕

𝜕𝑥𝑖
(𝜀𝑚𝜌𝑚𝑈𝑚𝑖))

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖) + 𝒮𝑚

′  

(A-18) 

Here we can see the left hand side of the continuity equation (3-1) multiplied by 𝐻𝑚  such that 

(A-18) can be written as 

𝜀𝑚𝜌𝑚 (
𝜕𝐻𝑚
𝜕𝑡

+ 𝑈𝑚𝑖
𝜕𝐻𝑚
𝜕𝑥𝑖

) = −
𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖) − 𝐻𝑚∑𝑅𝑚𝑛

𝑁𝑚

𝑛=1

+ 𝒮𝑚
′  (A-19) 

The enthalpy of the solids is defined as the sum of the enthalpies of the individual species,  

𝐻𝑚 =∑ℎ𝑚𝑛

𝑁𝑚

𝑛=1

𝑋𝑚𝑛 (A-20) 

The specific enthalpy of each species is calculated by combining the heat of formation and 

integrating the specific heat of that species from the reference temperature to the gas phase 

temperature, 
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ℎ𝑚𝑛 = 𝐻𝑓𝑛
° (𝑇𝑟𝑒𝑓) + ∫ 𝐶𝑝𝑚𝑛(𝑇)

𝑇𝑚

(𝑇𝑟𝑒𝑓)

𝑑𝑇 (A-21) 

Differentiating (A-20) and (A-21) yields 

𝑑𝐻𝑚 = ∑(𝑑ℎ𝑚𝑛𝑋𝑚𝑛 + ℎ𝑚𝑛𝑑𝑋𝑚𝑛)

𝑁𝑚

𝑛=1

 (A-22) 

and 

𝑑ℎ𝑚𝑛 = 𝐶𝑝𝑚𝑛𝑑𝑇𝑚 (A-23) 

Substituting (A-23) into (A-22) gives 

𝑑𝐻𝑚 =∑(𝑋𝑚𝑛𝐶𝑝𝑚𝑛𝑑𝑇𝑚 + ℎ𝑚𝑛𝑑𝑋𝑚𝑛)

𝑁𝑚

𝑛=1

 (A-24) 

Substituting the definition of the solids phase mixture specific heat (3-82) into (A-24) 

𝑑𝐻𝑚 = 𝐶𝑝𝑚𝑑𝑇𝑚 +∑ℎ𝑚𝑛𝑑𝑋𝑚𝑛

𝑁𝑚

𝑛=1

 (A-25) 

Substituting (A-25) into (A-19) and expanding the derivatives results in the energy equation in 

terms of temperatures and enthalpies, 

𝜀𝑚𝜌𝑚𝐶𝑝𝑚 (
𝜕𝑇𝑚
𝜕𝑡
+ 𝑈𝑚𝑖

𝜕𝑇𝑚
𝜕𝑥𝑖
)

= −
𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖)

−∑ℎ𝑚𝑛 (𝜀𝑚𝜌𝑚 [
𝜕𝑋𝑚𝑛
𝜕𝑡

+ 𝑈𝑚𝑖
𝜕𝑋𝑚𝑛
𝜕𝑥𝑖

] + 𝑋𝑚𝑛 ∑ 𝑅𝑚𝑛′

𝑁𝑚

𝑛′=1

)

𝑁𝑚

𝑛=1

+ 𝒮𝑚
′  

(A-26) 

Combining the 𝑚𝑡ℎ solids phase continuity and species mass equations gives,  

𝜀𝑚𝜌𝑚 (
𝜕𝑋𝑚𝑛
𝜕𝑡

+ 𝑈𝑚𝑗
𝜕𝑋𝑚𝑛
𝜕𝑥𝑗

) = 𝑅𝑚𝑛 − 𝑋𝑚𝑛 ∑ 𝑅𝑚𝑛′

𝑁𝑚

𝑛′=1

 (A-27) 

Substituting (A-27) into (A-26) gives the solids energy equation in terms of temperature. 

𝜀𝑚𝜌𝑚𝐶𝑝𝑚 (
𝜕𝑇𝑚
𝜕𝑡
+ 𝑈𝑚𝑖

𝜕𝑇𝑚
𝜕𝑥𝑖
) = −

𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖) −∑ℎ𝑚𝑛𝑅𝑚𝑛

𝑁𝑚

𝑛=1

+ 𝒮𝑚
′  (A-28) 
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Finally, we obtain the gas phase energy equation, shown below as well as equation (2-6), by 

combining the change in enthalpy due to the production and/or consumption of species mass60  

with the general source term.  

𝜀𝑚𝜌𝑚𝐶𝑝𝑚 (
𝜕𝑇𝑚
𝜕𝑡
+ 𝑈𝑚𝑖

𝜕𝑇𝑚
𝜕𝑥𝑖
) = −

𝜕

𝜕𝑥𝑖
(𝜀𝑚𝑞𝑚𝑖) − 𝒮𝑚 (A-29) 

As in the previous section, the prime superscript is removed from the source term to indicate that 

the final source term is not identical to the source term identified initially in equation 

(A-16)(A-1). Although this last modification to the energy equation is not necessary, it casts the 

final equation into the same form as the other conservation equations whereby specific models 

and sub-models are presented separately from the conservation equation. 

 

 

  

 

 

60 The source term for change in enthalpy due to the production and/or consumption of species mass is defined 

separately from the energy equation (see section 3.4.11.2).  
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Appendix B: Drag coefficients 

An expression for the interaction force is necessary to close the averaged equation of motion 

(Section 3.3.3).  While providing closure models for the interaction force is an active area of 

research, it is a complex problem and precise evaluation is possibly in only certain very limited 

circumstances.  As discussed in Section 3.4.4 several different physical mechanisms responsible 

for gas-solids interphase momentum transfer have been identified.  By default, MFIX accounts 

for buoyancy and drag in its formulation for this term.   

Several well-known formulas accurately represent the drag force on a single-sphere as a function 

of the Reynolds number [144].  In a multi-particle system, the nearness of other particles makes 

the drag force on each particle significantly greater than that given by the single-particle drag 

formula.  Thus, the formula for multi-particle drag force must include the gas volume fraction as 

an additional parameter to account for the effect of neighboring particles.  For practical purposes 

an expression(s) that describes the phenomena of interest over the whole range of Reynolds and 

Stokes numbers and up to high solids volume fraction [39] is desirable.   

Traditionally, experimental information has been used to derive empirical correlations for the 

drag force.  One type, valid for high values of the solids volume fraction, is the packed-bed 

pressure drop correlation, such as the Ergun equation [145].  Another type of experimental data 

is the terminal velocity in fluidized or settling beds, given as correlations for the ratio of the 

terminal velocity of a multi-particle system to that of a single particle [146].  Deducing a drag 

model capable of spanning the whole range of Reynolds numbers from this approach, however, 

is also not clear-cut [39].  To this end, the ratio of the drag force in a multi-particle system to that 

on a single particle was used to encompass the entire regions of flow [147].  In recent years, 

models for the drag force have been derived from accurate numerical experiments. Several of 

these models have been incorporated into MFIX over the years [148, 149, 150, 151, 152, 148, 

149, 153, 154], however a detailed analysis of their formulation and implementation are not 

included here at this time. 

Since the drag force arises due to relative motion between the phases, its general form is often 

represented in terms of a drag coefficient and relative velocity difference.  MFIX follows this 

approach, and the expression given in Chapter 3 is repeated here for convenience:  

𝐼𝑔𝑚𝑖,𝐷𝑟𝑎𝑔 = 𝛽𝑔𝑚(𝑈𝑔𝑖 − 𝑈𝑚𝑖) (3-61) 

𝛽𝑔𝑚 is referred to as the drag coefficient and is generally taken as a scalar function that depends 

on a number of factors, such as, size and shape of the particle, properties of the fluid, the solids 

volume fraction and magnitude of the relative velocity difference.   
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The traditional drag force correlations (Ergun [145], Wen and Yu [147]) are effectively limited 

to describing a monodisperse system.  However, systems found in nature or in industry are 

typically characterized by nonuniform solids.  As a result, these monodisperse drag force models 

are generalized in an ad hoc manner for application to polydisperse systems.  Namely, the 

particle diameter is replaced with the 𝑚𝑡ℎ phase particle diameter (𝑑𝑚) and the solids velocity is 

replaced with the 𝑚𝑡ℎ phase solids velocity.  Finally, in the multi-fluid model (MFIX-TFM), the 

monodisperse drag coefficient expression is also scaled by the ratio of the 𝑚𝑡ℎ phase solids 

volume fraction to total solids volume fraction, or equivalently, by 𝜀𝑚/(1 − 𝜀𝑔)  as: 

𝛽𝑔𝑚 =
𝜀𝑚
1 − 𝜀𝑔

𝛽𝑔𝑚
′  

(B-1) 

In the discrete element model (MFIX-DEM), these same expressions for the drag coefficient are 

used to find the drag force on the particle: 

𝛽𝑔
(𝑖) =

𝒱(𝑖)

1 − 𝜀𝑔
𝛽𝑔𝑚
′  

(B-2) 

Finally, as noted in Section 3.4.4.1, some ambiguity can also occur in regard to the definition of 

the different interaction terms and how they are carried through into the averaged equations.  

Thus sufficient care must be taken to ensure the total interaction force remains the same 

regardless of the decomposition.  Since MFIX has two definitions for the buoyancy force 

(pressure gradient versus Archimedean form), the definition of the drag force must reflect those 

changes.  The drag coefficients presented in this Appendix assume that buoyancy is given by the 

pressure gradient (i.e., equation 3-59).  Thus, the drag coefficient does not include the effect of 

relative motion on the local pressure gradient. Otherwise, if the Archimedean formulation for 

buoyancy is used (equation 3-60), then MFIX automatically divides the expressions given here 

for 𝛽𝑔𝑚 by the void fraction to ensure equivalency of the total interaction force [39]. 

B.1 Wen-Yu [147] 

Wen and Yu [147] extend the work of Richardson and Zaki [146] to derive an expression for the 

drag force in a particulate system to encompass a wide range of Reynolds number.  They 

measured pressure drop and void fraction data in single sized particle fluidization experiments 

starting at high flow rates and decreasing until fixed bed conditions were achieved.  Their 

tabulated data, along with additional literature data, was used to correlate a voidage function 

defined as the ratio of force on a particle in a multiparticle system to that in single particle 

system.  The force in a single particle system was expressed using Schiller and Naumann [155] 

correlation for the single particle drag coefficient, which is valid for Reynolds numbers ranging 

from 0.001 to 1000.  Following some manipulation their correlation for the average drag force 
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exerted on a particle in a multiparticle system by the fluid can be expressed in terms of a drag 

coefficient as: 

𝛽𝑔𝑚
′𝑊𝑒𝑛𝑌𝑢 =

3

4
𝐶𝐷𝑠
𝜌𝑔𝜀𝑔(1 − 𝜀𝑔)|𝑈𝑔𝑖 − 𝑈𝑚𝑖|

𝑑𝑝𝑚
𝜀𝑔
−2.65 (B-3) 

where 

𝐶𝐷𝑠 = {

24

Re
(1 + 0.15Re0.687) Re ≤ 1000 

0.44 Re > 1000

 (B-4) 

Re =
𝜌𝑔𝜀𝑔|𝑈𝑔 −𝑈𝑚|𝑑𝑝𝑚

𝜇𝑔
 (B-5) 

Here, as done elsewhere (e.g., [156, 157]), the expression for the single particle drag coefficient 

is extended for Reynold numbers greater than 1000. 61  Specifically, in the range of Reynold 

numbers between about 1000 to 2𝑥105, the drag coefficient for a smooth sphere remains 

relatively constant (c.f. [158, 159] and Chapter 5 and Figure 5.12 in [160]).  Here it is held at a 

constant value of 0.44.  At even higher Re a transition to turbulent flow occurs resulting in 

immediately lower values of 𝐶𝐷𝑠 followed by increasing 𝐶𝐷𝑠 with Re.  This behavior is not 

captured here. 

B.2 Gidaspow [74] 

A drag model is formulated that is a combination of Ergun [145] and Wen and Yu [147] 

correlations stitched together based on void fraction.  Here it is referred to as the Gidaspow [2, 

161] drag model.  Ergun proposed a comprehensive correlation for pressure drop through a 

packed bed of granular solids using data from the literature and his own experimental data which 

recognized the importance of simultaneous consideration of viscous and inertial energy loss.  

More specifically, he measured pressure drop through packed beds involving crushed solids 

materials (e.g., sand, pulverized coke) with different void fractions and over different gas flows.  

The drag force is then related to the pressure drop over the system so that the drag coefficient is 

written as: 

 

 

61 In determining their correlation the particle Reynold number was defined as a function of the superficial fluid 

velocity.  Here it is replaced with the relative velocity difference of the fluid and solids phases. 
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𝛽𝑔𝑚
′𝐸𝑟𝑔𝑢𝑛

=
150(1 − 𝜀𝑔)

2
𝜇𝑔

𝜀𝑔𝑑𝑚2
+
1.75𝜌𝑔(1 − 𝜀𝑔)|𝑈𝑔𝑖 − 𝑈𝑚𝑖|

𝑑𝑚
 (B-6) 

As has been well-noted (e.g., §2.4 in [39]), Ergun’s expression is intended for dense flow 

conditions.  To ensure representative behavior is predicted in the dilute limit it is replaced with a 

new expression.  Wen and Yu (see section B.1 of this appendix) derived an expression for the 

drag force over a wide range of Reynolds number using literature data and their own data from a 

series of de-fluidization experiments (starting at fluidized state and decreasing the flow rate until 

a fixed bed condition).  In the limit of a single particle (𝜀𝑔 → 1), Wen and Yu’s expression will 

reduce to Schiller and Naumann [155] drag relation. 

In this combined model, the correlation of Ergun is used for a void fraction less than 0.8 (or 

solids volume fraction greater than 0.2) otherwise the correlation of Wen and Yu is used:62 

𝛽𝑔𝑚
′ = {

𝛽𝑔𝑚
′  𝑊𝑒𝑛𝑌𝑢 𝜀𝑔 ≥ 0.8

𝛽𝑔𝑚
′  𝐸𝑟𝑔𝑢𝑛

𝜀𝑔 < 0.8

 (B-7) 

B.3 Gidaspow Blend [162] 

The drag model correlation referred to as the Gidaspow model [161, 2] (Appendix B.2) produces 

a discontinuity in the drag force at a void fraction of 0.8 (e.g., see discussion in [163]). To avoid 

numerical convergence problems, various approaches have been used to eliminate this 

discontinuity (e.g., [162, 164, 165, 166]).  Lathouwers and Bellan [162, 164] use an inverse 

tangent function with a stitch point of 𝜀𝑔 = 0.8, that is, the function passes through the point 0.5 

at void fraction of 0.8.  For void fractions below this point the function becomes zero, and above 

this point the function becomes one.  Later Huilin and Gidapow [166] essentially employ the 

same continuous function with the only difference between an additional multiplying factor of 

1.75 is included within the arctan function.  It is this latter version of the continuous stitching 

function that is implemented in MFIX: 

𝛽𝑔𝑚
′ = 𝜙𝑔𝑠𝛽𝑔𝑚

′ 𝑊𝑒𝑛𝑌𝑢 + (1 − 𝜙𝑔𝑠)𝛽𝑔𝑚
′ 𝐸𝑟𝑔𝑢𝑛

 (B-8) 

where 

 

 

62 Selection of 𝜀𝑔 = 0.8 as the switch point between these two models, likely stems back to discussion in [222] 

concerning a comparison of the Kozeny-Carman equation to reported experimental data and its inability to capture 

flow behavior in liquid-fluidized beds for 𝜀𝑔 > 0.8. 
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𝜙𝑔𝑠 = tan
−1 (150 ∗ 1.75(𝜀𝑔 − 0.8)) /𝜋 +

1

2
 (B-9) 

And the drag coefficients 𝛽𝑔𝑚
′ 𝑊𝑒𝑛𝑌𝑢  and 𝛽𝑔𝑚

′ 𝐸𝑟𝑔𝑢𝑛
 are presented in expressions (B-3) (along with 

(B-4) and (B-5)) and (B-6), respectively.  Leboreiro et al. [167] explored the impact of the value 

of the transition point (given here by 𝜀𝑔 = 0.8) as well as the stitching function on injected-

bubble and freely bubbling beds.  They found the transition point itself had more influence in the 

former system then the latter.  For further details see [167]. 

B.4 Syamlal-O’Brien [168] 

Syamlal & O’Brien [168] propose a model for the drag force in multiparticle systems using the 

correspondence of the force balance relationships found under terminal settling conditions for 

single and multiple particle systems combined with a velocity-voidage correlation and an 

expression for the single particle drag coefficient.  The applicability of the derived relationship 

beyond the terminal settling condition is then reasoned.  The velocity voidage equation (𝑉𝑟) 

expresses the ratio of the terminal settling velocity of a multiparticle system (𝑉𝑡) to that of a 

single particle (𝑉𝑡𝑠) as a function of the void fraction.  A well-known example is based on the 

sedimentation work of Richardson-Zaki [146].  Rather than use their expression for determining 

the drag force, which requires an iterative procedure, the velocity-voidage correlation proposed 

by Garside and Al-Dibouni [169] is used for which an analytic solution can be obtained. The 

resulting expression implemented in MFIX is shown below.63 

 

𝛽𝑔𝑚 =
3

4

(1 − 𝜀𝑔)𝜀𝑔𝜌𝑔

𝑉𝑟𝑚2 𝑑𝑝𝑚
(0.63 + 4.8√

𝑉𝑟𝑚
Re
)

2

|𝑈𝑔𝑖 − 𝑈𝑚𝑖| (B-10) 

where 

𝑉𝑟𝑚 = 0.5 [𝐴 − 0.06Re + √(0.06Re)2 + 0.12Re(2𝐵 − 𝐴) + 𝐴2] (B-11) 

𝐴 = 𝜀𝑔
4.14 (B-12) 

 

 

63 It is worth noting that the velocity-voidage correlation proposed by Garside and Al-Dibouni [166] was defined as 

a function of the particle Reynolds number based on the terminal velocity of a single particle.  In the derivation of 

Syamlal and O’Brien [165] the Reynolds number is expressed a function of the relative velocity difference of the 

phases. 
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𝐵 = {
0.8𝜀𝑔

1.28 𝜀𝑔 ≤ 0.85

𝜀𝑔
2.65 𝜀𝑔 > 0.85

 (B-13) 

Re =
𝜌𝑔|𝑈𝑔 − 𝑈𝑚|𝑑𝑚

𝜇𝑔
 (B-14) 
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Appendix C: Nusselt Number Correlations 

Nusselt number correlations reported in the literature span from single-particle correlations [170] 

to packed or fluidized beds [171, 137, 172]. The Nusselt number correlations available in MFIX 

are presented in the following sections. Table C-1 outlines the availability of each correlation 

with respect to each solids model. 

 

Table C-1: Nusselt number heat transfer correlation availability in MFIX. 

Correlation 
Availability 

MFIX-TFM MFIX-DEM MFIX-PIC 

Gunn, 1978 [137] (default)   

Ranz and Marshall, 1952 [170]  (default) (default) 

 

C.1 Gunn [137] 

The Nusselt number correlation of Gunn [137], 

Nu𝑚 = (7 − 10𝜀𝑔 + 5𝜀𝑔
2)(1 + 0.7Re𝑚

0.2Pr1/3)

+ (1.33 − 2.4𝜀𝑔 + 1.2𝜀𝑔
2)Re𝑚

0.7Pr1/3 

(C-1) 

is applicable for a porosity range of 0.35–1.0 and a Reynolds numbers up to 105. Here, where Re 

and Pr are the dimensionless Reynolds and Prandtl numbers given by 

Re𝑚 =
𝜌𝑔𝜀𝑔|𝑈𝑔 − 𝑈𝑚|𝑑𝑝𝑚

𝜇𝑔
 (C-2) 

Pr =
𝐶𝑝𝑔𝜇𝑔

𝜅𝑔
 (C-3) 

C.2 Ranz and Marshall [170] 

The Nusselt number correlation of Ranz and Marshall [170], 

Nu = 2.0 + 0.6Re1/2Pr1/3 
(C-4) 

was developed for single, isolated particles where Re and Pr are the Reynolds and Prandtl 

numbers. 
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Appendix D: Maximum Packing Correlations 

This section provides the empirical correlations for computing the solids maximum packing in 

polydisperse systems. 

D.1 Yu and Standish [173] 

The Yu and Standish [173] correlation is used to calculate the solids volume fraction at 

maximum packing for a solids mixture containing two or more components. 

𝜀𝑠,𝑚𝑖𝑥
𝑚𝑎𝑥 = min

𝑚∈[1,𝑀]

{
 
 

 
 

𝜀𝑚
𝑚𝑎𝑥

(1 − ∑ (1 −
𝜀𝑚
𝑚𝑎𝑥

𝑝𝑖𝑗
)
𝑐𝑥𝑖
𝑋𝑖𝑗

𝑀
𝑗=1
𝑗≠𝑚

)
}
 
 

 
 

 (D-1) 

where 𝜀𝑚
𝑚𝑎𝑥 is the maximum packing of the 𝑚𝑡ℎ solids phase. The remaining terms are defined 

as follows: 

𝑐𝑥𝑖 =
𝜀𝑖

∑ 𝜀𝑗
𝑀
𝑗=1

 (D-2) 

𝑋𝑖𝑗 =

{
 
 

 
 

1 − 𝑟𝑖𝑗
2

2 − 𝜀𝑖
𝑚𝑎𝑥 𝑗 < 𝑖

1 −
1 − 𝑟𝑖𝑗

2

2 − 𝜀𝑖
𝑚𝑎𝑥 𝑗 ≥ 𝑖

 (D-3) 

𝑝𝑖𝑗 = {
𝜀𝑖
𝑚𝑎𝑥 + 𝜀𝑖

𝑚𝑎𝑥(1 − 𝜀𝑖
𝑚𝑎𝑥)(1 − 2.35𝑟𝑖𝑗 + 1.35𝑟𝑖𝑗

2) 𝑟𝑖𝑗 ≤ 0.741

𝜀𝑖
𝑚𝑎𝑥 𝑟𝑖𝑗 > 0.741

 (D-4) 

𝑟𝑖𝑗 = {

𝑑𝑝,𝑖/𝑑𝑝,𝑗 𝑖 ≥ 𝑗

𝑑𝑝,𝑗/𝑑𝑝,𝑖 𝑖 < 𝑗
 (D-5) 

 

D.2 Fedors and Landel [174] 

The Fedors and Landel [174] correlation is used to calculate the solids volume fraction at 

maximum packing for a binary mixture of solids.  
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For 𝑐𝑥1 <
𝜀1
𝑚𝑎𝑥

𝜀1
𝑚𝑎𝑥+(1−𝜀1

𝑚𝑎𝑥)𝜀2
𝑚𝑎𝑥, 

𝜀𝑠,𝑚𝑖𝑥
𝑚𝑎𝑥 = [(𝜀1

𝑚𝑎𝑥 − 𝜀2
𝑚𝑎𝑥) + (1 − √𝑟2,1)(1 − 𝜀1

𝑚𝑎𝑥)𝜀2
𝑚𝑎𝑥]

∗ [𝜀1
𝑚𝑎𝑥 + (1 − 𝜀1

𝑚𝑎𝑥)𝜀2
𝑚𝑎𝑥]

𝑐𝑥1
𝜀2
𝑚𝑎𝑥 + 𝜀2

𝑚𝑎𝑥 

(D-6) 

otherwise, 

𝜀𝑠,𝑚𝑖𝑥
𝑚𝑎𝑥 = (1 − √𝑟2,1)[𝜀1

𝑚𝑎𝑥 + (1 − 𝜀1
𝑚𝑎𝑥)𝜀2

𝑚𝑎𝑥]𝑐𝑥2 + 𝜀2
𝑚𝑎𝑥. (D-7) 

where 𝑐𝑥1 and 𝑐𝑥2 are given by Equation (D-2) and 𝑟2,1 is obtained from Equation (D-5). 
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