

1 **Use of Biosurfactants in Oil Recovery**

2

3 Guoqiang Li

4 Department of Microbiology

5 Nankai University

6 94 Weijin Road

7 Tianjin, 3000071

8 P. R. China

9 Email: gqli@nankai.edu.cn

10

11 Michael J. McInerney

12 Department of Microbiology and Plant Biology

13 University of Oklahoma

14 770 Van Vleet Oval

15 Norman, OK, USA

16 Email: mcinerney@ou.edu

17 Phone: 1-405-325-6050

18 Fax: 1-405-325-7619

19

20 **Abstract**

21 Biosurfactant-mediated oil recovery has the potential to recover large amounts of
22 crude oil that remain entrapped in oil reservoirs after current oil recovery technologies
23 reach their economic limit. Lipopeptides (surfactins and lichenysins), rhamnolipids,
24 and other glycolipids generate the low interfacial tensions and the appropriate rock
25 wettabilities needed to mobilize entrapped oil. Biosurfactants are active over a wide
26 range of temperatures, pH values, and salinities found in many oil reservoirs and are
27 effective at low concentrations. A number of laboratory experiments show that
28 biosurfactant-mediated oil recovery is effective in recovering large amounts of
29 entrapped oil. Several field trials show that in situ biosurfactant production is possible
30 and recovers additional oil. Biosurfactant-mediated oil recovery has been difficult to
31 scale-up to a reservoir-wide technology due to the lack of understanding of how best
32 to stimulate biosurfactant production in the reservoir. In addition, the relationship
33 between biosurfactant concentration and oil recovery is still unclear. Ex-situ
34 biosurfactant-mediated oil recovery where the biosurfactant is added to the injection
35 fluids has not been implemented on a large scale, most likely due to the high
36 production costs of biosurfactants. Multidisciplinary approaches are needed to move
37 biosurfactant-mediated oil recovery from the laboratory to the reservoir.

38

39 **Introduction**

40 World economic growth will continue to be strong in the upcoming decades, and

41 thus, the demand for energy will also be strong (Doman 2016). Total world energy
42 consumption will rise from 580 ExaJoules (EJ) in 2012 to 860 EJ in 2040. An
43 important question is how will we meet the future demand for more energy. Although
44 renewable energy and nuclear power are predicted to be the world's fastest-growing
45 energy sources, it is likely that liquid fuels—mainly petroleum—will remain the
46 largest source of world energy (Doman 2016). Most of the growth in liquid fuel
47 consumption will be in the transportation and industrial sectors where liquid fuels will
48 continue to provide most of the energy consumed (Doman 2016). The demand for
49 liquid fuels by the transportation sector is expected to increase by 62% by 2040. Thus,
50 finding and producing sufficient amounts of petroleum in the future will be critical to
51 sustaining world economic growth.

52 Petroleum is a non-renewable fossil resource derived from organic matter
53 deposited eons ago in the lithosphere. When a well is drilled into an oil reservoir, oil
54 and water are pushed to the surface by the natural pressure within the reservoir. As
55 reservoir pressure dissipates, pumps are placed on the well to assist in bringing the
56 fluids to the surface. This stage of oil production is called primary production
57 (Youssef et al. 2009). Eventually, additional pressure must be added to the reservoir
58 to continue to recover oil. Often surface water, seawater, or brine from a subterranean
59 formation is injected into the reservoir to push the oil to production wells. This stage
60 of oil production is called waterflooding or secondary oil production (Youssef et al.
61 2009). When the above exploration strategies reach their economic limits, only about
62 one-third to one-half of the oil originally in place in the reservoir has been extracted,

63 leaving behind a large amount of oil (known as residual oil) in the reservoir (Hall et
64 al. 2003). The amount of residual oil in reservoirs worldwide ranges from 2 to 4
65 trillion barrels (0.3 to 0.6 Tm³). Thus, there is a large resource of petroleum that could
66 potentially supply future energy needs if technologies can be developed to recover
67 entrapped oil.

68 Technologies to recover residual oil are called enhanced oil recovery (EOR)
69 technologies. EOR includes three primary techniques: thermal recovery (hot water,
70 steam, combustion), gas injection (N₂, CO₂, flue gas), and chemical injection
71 (surfactants, polymers, solvents) (Alvarado and Manrique 2010; Sheng 2010). Over
72 one-half of the EOR-recovered crude oil in the USA is the result of gas injection with
73 CO₂ injection being the most important. The remainder is the result of thermal oil
74 recovery technologies. Chemical-based EOR technologies have been marginally
75 economic due to high chemical costs (Alvarado and Manrique 2010; Sheng, 2010).
76 Another EOR approach is to use microbial technologies to enhance oil recovery
77 (MEOR). Numerous laboratory and field studies have shown that microorganisms
78 produce useful products such as biosurfactants that allow recovery of residual oil
79 (Youssef et al., 2009). Microorganisms can produce these products from inexpensive
80 and renewable nutrients injected into the reservoir. Thus, MEOR technologies have an
81 economic advantage in that they do not consume large amounts of energy as do
82 thermal processes, nor do they depend on expensive chemicals as many chemical
83 processes do (Youssef et al. 2009). In addition, MEOR provides an ecofriendly
84 approach to oil recovery compared to chemical EOR as the products of microbial

85 metabolism are readily degradable (de Cássia et al. 2014).

86 MEOR has been investigated extensively in the laboratory and in the field and a
87 number of excellent reviews are available (McInerney et al 2009; Youssef et al. 2009;
88 Harner et al. 2011; Shibulal et al. 2014; Siegert et al. 2014; Patel et al. 2015). In this
89 chapter, we will discuss the use of biosurfactants for oil recovery. A recent book on
90 biosurfactants provides an excellent overall resource (Sen, 2010).

91

92 **How can biosurfactants help mobilize oil?**

93 Over eighty percent of the production oil wells in the U. S. A. have low
94 production rates (less than 1.6 m^3 of crude oil per day) and are at risk of abandonment
95 due to their marginal economic returns (Youssef et al. 2009). However, oil production
96 from marginal wells accounts for about 19% of USA domestic production. Thus,
97 maintaining production in marginal wells will be important to meet future energy
98 needs. To keep marginal wells economic, one must slow the rate of oil production
99 decline or increase the rate of oil production in a cost competitive manner. Mobile oil
100 may be present a short distance from the production well but cannot flow to the well
101 because drainage channels have been blocked by particulates such as paraffin deposits
102 or by areas of high water saturation (Youssef et al. 2009) (Figure 1A). Removal of
103 paraffin deposits and/or changing wettability in the near wellbore region through
104 biosurfactant production would reconnect regions of high oil saturation, providing
105 channels for the oil to drain into the well (Figure 1A). There are a number of

Fig 1

106 commercial microbial technologies where hydrocarbon-degrading bacteria and
107 nutrients are injected into production wells to degrade paraffins and/or produce
108 biosurfactants, which could change near wellbore conditions to allow better oil
109 drainage. In fact, many commercial microbial paraffin removal technologies have
110 been shown to slow the rate of decline in oil production and extend the operational
111 life of marginal oil fields (Youssef et al. 2009). Injection of biosurfactants or their in
112 situ biosurfactant production may also be effective in changing wettability in the near
113 wellbore region (Al-Sulaimani et al. 2012). In fact, the injection of two biosurfactant-
114 producing microorganisms and nutrients into two production wells improved oil
115 production (Youssef et al. 2013).

116 With larger, more productive oil fields, increasing the ultimate recovery factor is
117 an important consideration. Large amounts of oil remain entrapped by capillary forces
118 in reservoirs after waterflooding. In water-wet regions of the reservoir, oil will be found
119 as spherical globules in the center of the large pores and as ganglia of oil spanning
120 multiple pores surrounded by water (Armstrong and Wildenschild, 2012a) (Figure
121 1B). In strongly oil-wet regions of the reservoir, oil will be found in small pores and
122 in large pockets of oil surrounded by water. In both cases, mobilization of the
123 entrapped oil will require an increase in viscous forces, and/or a reduction of
124 capillary forces in the reservoir. The viscous and capillary forces that entrap oil are
125 expressed as a dimensionless ratio called capillary number (N_{ca}) (equation 1):

126

$$127 N_{ca} = (\mu_w \cdot V_w) / (\gamma) \quad (1)$$

128

129 where μ_w is the viscosity of the recovery fluid (aqueous phase), V_w is the velocity of
130 the recovery fluid (aqueous phase), and γ is the interfacial tension (IFT) between the
131 oil and aqueous phases (Gray et al. 2008). Capillary numbers for a mature water-
132 flooded reservoir are in the order of 10^{-7} - 10^{-6} (Gray et al. 2008). Capillary number
133 needs to be increased 100- to 1000-fold in order to mobilize substantial amounts of
134 entrapped oil. Typically, capillary number is increased by adding a polymer to
135 increase the viscosity of the recovery fluid and/or by adding a surfactant or
136 biosurfactant to reduce the interfacial tension between the oil and aqueous phases.
137 Biosurfactant activity will mobilize entrapped oil in water-wet pores and will allow
138 oil to drain from oil-wet regions (Figure 1B) (Armstrong and Wildenschild, 2012a, b).
139 Many microorganisms produce biopolymers, which will increase capillary number by
140 increasing the viscous forces. The combination of biopolymer and biosurfactant
141 production could increase capillary number sufficiently for substantial oil recovery
142 (Fernandes et al. 2016).

143 Armstrong and Wildenschild (2012a, b) used X-ray computed microtomography
144 (CMT) to understand the mechanisms of MEOR operative at the pore-scale. Analysis
145 of CMT images showed that biosurfactant-mediated MEOR altered the oil
146 morphology, gave more oil-wet curvatures, and decreased the interfacial curvatures.
147 As a consequence, large oil recoveries ranging from 44 to 80% were observed as a
148 result of wettability and IFT changes (Armstrong and Wildenschild, 2012a, b).
149 Sarafzadeh et al. (2013) also found interfacial tension reduction and wettability

150 alteration by biosurfactants important for oil recovery from carbonate cores. The
151 change in capillary number due to interfacial tension reduction by the biosurfactant
152 explained the observed oil recoveries. However, much lower residual oil saturations
153 than predicted by changes in capillary number alone were observed, when both cells
154 and the biosurfactant were used (Armstrong and Wildenschild, 2012b). Thus, the
155 clogging of pores with cells, which altered flow patterns, has a significant effect on oil
156 recovery beyond that predicted by capillary number (Armstrong and Wildenschild,
157 2012a, b).

158

159 **Types of biosurfactants**

160 Diverse microorganisms produce surface-active agents (Youssef et al., 2009; Sen,
161 2010; Santos et al. 2016). Biosurfactants are classified into five major categories
162 based on their chemical structures: lipopeptides, glycolipids, phospholipids, neutral
163 lipids, and fatty acids (de Cássia et al. 2014; Santos et al. 2016). The most common
164 biosurfactants used in MEOR are lipopeptides (surfactin and lichenysin) and
165 glycolipids (rhamnolipids, sophorolipids and trehalolipids) (McInerney et al 2009;
166 Youssef et al. 2009; Liu et al. 2015; Santos et al. 2016) (Figure 2). The interfacial
167 tension between oil and aqueous phases varies from 20 to 40 mN/m (Gray et al.
168 2008). A number of biosurfactants reduce oil-water interfacial tension to < 1 mN/m
169 (Table 1), which provides a 100-fold or greater increase in capillary number needed
170 for substantial oil recovery. Some biosurfactant producers are also able to produce

Fig. 2

171 biopolymers that increase the viscosity of the aqueous phase, which further increases
172 capillary number and oil recovery (Fernandes et al. 2016).

173 Many biosurfactants, in particular, surfactins and lichenysins, have low critical
174 micelle concentrations (CMC), 10 to 30 mg/L (Table 1). CMC is the concentration at
175 which the biosurfactants form micelles and is the minimum concentration needed to
176 mobilize entrapped oil (Youssef et al. 2009; Sen 2010). Many synthetic surfactants
177 have higher CMC (>100 mg/L) than biosurfactants (Youssef et al. 2007a). Thus, low
178 biosurfactant concentrations can be effective in mobilizing entrapped oil. In fact,
179 microbial cultures where the biosurfactant concentration is at or slightly above the
180 CMC recover large amounts of entrapped oil (Table 1).

181 Commercial of biosurfactant production is costly due to the low productivity of
182 many biosurfactant-producing strains (Table 1), the use of expensive media
183 components, and high downstream processing costs (Helmy et al. 2011; Banat et al.
184 2014; Geys et al. 2014). The use of low cost agro-industrial by-products such as
185 whey, molasses, waste oils helps reduce nutrient costs (Banat et al. 2010; Makkar et
186 al. 2011); however, complex substrates may have undesirable components that inhibit
187 production or make downstream processing difficult. A number of investigators have
188 used statistical approaches such as surface response methodology to optimize nutrient
189 composition and operating conditions to improve biosurfactant productivity (Banat et
190 al., 2010; Liu et al. 2015). Rotating disk, biofilm reactors (Chitoui et al., 2012),
191 bubble less, membrane-aerated bioreactors (Coutte et al., 2010), and three-phase,
192 inverse fluidized bed reactors (Nikolov et al., 2000) have been developed to provide

193 adequate aeration without foaming and solid-state fermentation, where the
194 biosurfactant producer is grown on a solid surface such as rice straw, reduces capital
195 costs (Zhu et al., 2013). The combination of ultrafiltration with adsorption and ion
196 exchange chromatography increased the recovery of biosurfactants from fermentation
197 broths (Chen et al., 2010). It should be noted that there are some biosurfactant
198 producers that produce very high concentrations of biosurfactants (Geys et al. 2014).
199 For example, *Pseudomonas aeruginosa* produces 70-120 g/L of rhamnolipids when
200 cultivated on vegetable oil (Giani et al. 1997) and *Starmerella bombicola*, the best
201 studied sophorolipid producer, and produces 400 g/L sophorolipid when grown in a
202 two-stage cultivation process (Daniel et al. 1998).
203

Table 1. Efficacy of biosurfactants commonly used for microbial oil recovery ^a

Biosurfactant	Microorganism	Lowest surface tension (mM/m)	Lowest interfacial tension (mN/m)	Critical micelle concentration (mg/L)	Additional oil recovery (%)	Yield (g/L)	Reference
Surfactin	<i>Bacillus</i> <i>subtilis</i> or <i>B. mojavensis</i>	28-30	0.006-0.3	10-35	40-80	0.5-1	Lin et al. 1994; Youssef et al. 2007a
Lichenysins	<i>Bacillus licheniformis</i>	28	0.3-0.5	10-19	37	1.1	Joshi et al 2015; Yakimov et al 1999
Lipopeptide	<i>Acinetobacter baylyi</i>	35	15	90	28		Zou et al., 2014
Rhamnolipid	<i>Pseudomonas</i>	25-27	0.2-2	11-120	10-27	0.7-50	Amani et al. 2013; Xia et al. 2012

<i>aeruginosa</i>							
Glycolipids	<i>Rhodococcus</i>	27-30	1	57	65-86	0.5-	Shavandi et al., 2011; Zheng et
	sp.					12.9	al., 2012
Glycolipids	<i>Enterobacter</i>	31	0.6-3.2		27-48	1.5-1.7	Darvishi et al. 2011; Rabiei et al.
	<i>cloacae</i> and <i>E.</i>						2013; Sarafzadeh et al. 2013
	<i>hormaechei</i>						
Lipopolysach- aride	<i>Alcaligenes</i>	20	<1		9	1.2 ±	Salehizadeh and
	<i>faecalis</i>					0.05	Mohammadizad 2009
Sucrose lipid	<i>Serratia</i>				90		Pruthi and Cameotra 2000
	<i>marcescens</i>						
Sophorolipid	<i>Candida</i>	33 ±	1.6 ± 0.3		27		Elshafie et al. 2015
	<i>bombycina</i>	0.05					

205 ^a The values differ depending on the strains, growth conditions, oils and porous media used in different experiments.

206 **Strategies for biosurfactant-mediated oil recovery**

207 Oil recovery occurs by the activity of microorganisms and/or their metabolites,
208 such as biosurfactants, biomass, biopolymers, solvents, acids, gases, etc., which can
209 be generated ex situ or in situ (Youssef et al. 2009). In ex situ MEOR approaches,
210 microbes are cultivated in a fermentor on inexpensive nutrients and the microbes
211 and/or their metabolites are injected into oil reservoir. In situ approaches involve the
212 growth and metabolism of the indigenous or injected microbes in the reservoir to
213 produce cells, metabolites, or a particular activity such as hydrocarbon degradation.

214 Thus, there are three main strategies for using biosurfactants for oil recovery (Banat et
215 al. 2000):

216 (1) Production of biosurfactants in batch or continuous culture under
217 industrial conditions, followed by their addition to the reservoir.

218 (2) Production of biosurfactant-producing microorganisms in batch or
219 continuous culture under industrial conditions, followed by the injection of cells
220 and nutrients into the reservoir.

221 (3) Injection of nutrients into a reservoir to stimulate the growth of indigenous
222 biosurfactant-producing microorganisms.

223 ***Injection of ex situ-produced biosurfactants***

224 In addition to generating low interfacial tensions, biosurfactants must maintain
225 activity under the environmental conditions present in oil reservoirs (Siegert et al.
226 2014). A number of studies have shown that lipopeptides biosurfactants and

227 rhamnolipids are effective over a wide range of environmental conditions such as
228 temperatures up to 80°C, NaCl concentrations up to 15% and pH values from 5 to 10
229 (Youssef et al., 2009; Amani et al., 2013; Al-Wahaibi et al., 2014; Joshi et al., 2015).

230 Although many biosurfactants exhibit extraordinary interfacial properties,
231 commercialization of biosurfactant-mediated oil recovery remains difficult and costly
232 (Banat et al. 2014). The maximum concentrations produced during cultivation tend to
233 be low (<2 g/L) (Table 1) although higher concentrations have been reported (Joshi et
234 al. 2008; Xia et al. 2012). To our knowledge, there are still not any reports of ex situ
235 field trial applications of biosurfactants. A promising approach is the use
236 biosurfactants in conjunction with synthetic surfactants to reduce the amount of
237 synthetic surfactants needed, providing cost savings (Youssef et al. 2007a; Al-
238 Sulaimani et al. 2012).

239 ***Injection biosurfactant-producing microorganisms and nutrients***

240 If the biosurfactant-producing microorganisms or their activities are absent, then
241 inoculation of the reservoir with exogenous biosurfactant-producing microorganism is
242 needed. The use of large concentrations of exogenous microorganisms may also be an
243 effective way to establish the appropriate activity quickly in the reservoir. The
244 foremost consideration would be whether the exogenous biosurfactant-producing
245 microorganism would grow under the environmental conditions present in the
246 reservoir in presence of competing indigenous population. However, many known
247 biosurfactant-producing microorganisms grow under the environmental conditions

248 present in many oil reservoirs (Youssef et al. 2009).

249 Another important critical factor is the transport abilities of the exogenous
250 microorganism. Ideally, the injected microorganisms should migrate freely in the
251 reservoir formation and have minimal adsorption to reservoir rock material. A field
252 pilot conducted at Guan 69 Unit in Dagang Oilfield indicated that exogenous
253 biosurfactant-producing bacteria migrated through the reservoir matrix at a speed
254 about 1.7 to 4.2 meters per day (Liu et al. 2005). The use of starved cells or spores
255 could facilitate the migration of exogenous microorganisms (Youssef et al. 2009;
256 Shibulal et al. 2014). While it may be problematic to inject microorganism large
257 distances into the reservoir, it is possible to treat the near wellbore region with
258 exogenous biosurfactant-producing *Bacillus* species (Youssef et al. 2007b, 2013).

259 ***Injection of nutrients to stimulate indigenous biosurfactant-producing***
260 ***microorganisms***

261 To choose this strategy, one must first determine if the biosurfactant-producing
262 microorganisms or their activities are present and then decide on how to stimulate
263 these microbes and their activities. Often, this decision is based on the analysis 16S
264 ribosomal RNA gene sequences or other genes with phylogenetic information
265 (Kryachko et al. 2016; Li et al. 2014). In one field trial, phylotypes related to known
266 biosurfactant producers in genera such as *Pseudomonas*, *Alcaligenes*, and
267 *Rhodococcus*, were detected and their concentration in production liquids was closely
268 related to the increase oil production and oil emulsification (Li et al. 2014). While

269 phylogenetic analysis shows the types of microorganisms present, it can be difficult to
270 infer metabolic function from phylogeny. The use target genes involved in
271 biosurfactant synthesis such as *srfA* for surfactin, *licA* for lichenysin, *rhLR* for
272 rhamnolipid production would provide direct information on the potential for
273 biosurfactant production in an oil reservoir. Such an approach showed that lipopeptide
274 biosurfactant-producing *Bacillus* species, but not rhamnolipid-producing
275 microorganisms, were present in Oklahoma reservoirs with a wide range of salinities
276 (Simpson et al. 2011). Whether it can be concluded that biosurfactant producers are
277 routinely present in oil reservoirs worldwide remains to be determined.

278 Once it is known that the indigenous biosurfactant-producing microorganisms are
279 present, further tests are needed to confirm biosurfactant production and to develop a
280 nutrient mixture to stimulate biosurfactant production selectively. The use of complex
281 substrates such as molasses may provide a cost advantage over using more refined
282 ingredients. However, the use of complex substrates makes it hard to control the
283 process *in situ*. Systematic adjustment of C, N and P ratios and concentrations of other
284 nutrients is a proven approach to stimulate biosurfactant production (Sen, 2010). A
285 simple, direct approach to stimulate *in situ* biosurfactant production in oil reservoirs
286 has yet to be developed.

287

288 **Success of field trials**

289 Although a number of laboratory studies show the efficacy of biosurfactant

290 production on oil recovery (Table 1) (Youssef et al. 2009), large-scale applications of
291 biosurfactant-mediated oil recovery are rare due to the high cost of the biosurfactant
292 or difficulties in controlling biosurfactant production within the reservoir. Sporadic
293 reports of biosurfactant-mediated oil recovery have appeared in the literature. Earlier
294 field trials have been extensively reviewed (Youssef et al. 2009); here, we summarize
295 more recent field trials results (Table 2).

296 In the past two decades, a number of field trials of MEOR have been
297 implemented in Chinese oil fields, including Dagang Oilfield, Daqing Oilfield,
298 Huabei Oilfield, Shengli Oilfield, and Xinjiang Oilfield, (Liu et al. 2005; Huang et al.
299 2014; Li et al. 2014; Chai et al. 2015; Le et al. 2015; Li et al. 2015). A well-
300 documented trial involving hydrocarbon-degrading and biosurfactant-producing
301 bacteria was implemented in a sandstone oil reservoir (Guan 69 Unit of the Dagang
302 Oilfield in Hebei Province, China) (Liu et al. 2005). The injected, exogenous bacteria
303 were detected in 4 of 7 production wells after several months of injection. A slight
304 decrease in the surface tension of the production liquids was observed and oil
305 production increased over a six months period following the microbial treatment.
306 About 9120 m³ of additional oil was produced (Table 2). In another trial, a
307 biosurfactant-producing, *Pseudomonas aeruginosa* P-1, and its metabolic products
308 were injected into more than 60 oil-producing wells in Daqing oilfield, China (Li et
309 al. 2002). About 80% of injected wells showed a significant decrease in the amount of
310 water produced with a corresponding increase in oil produced.

Table 2. Recent field trials involving biosurfactant-producing microorganisms.

Mechanism	Microorganisms	Approach	Oil recovery (m ³)	Comments	Reference
Stimulate in situ hydrocarbon production	Indigenous <i>Pseudomonas</i> sp.	Treat injection wells with air and nutrients	2200	Emulsification	Chai et al. 2015
	Indigenous hydrocarbon degraders	Treat injection wells with H ₂ O ₂ or oxygenated water with N and P	4420	Emulsification; interfacial tension reduction	Nazina et al. 2008
	Indigenous hydrocarbon degraders	Treat injection wells with air-saturated brine and minerals	16,200	Reduction in interfacial tension	Nazina et al. 2007

Oil-degrading and biosurfactant-producing microorganisms	Repetitive treatment of injection wells with nutrients and inoculum	9122	All seven wells had increased oil production	Liu et al. 2005
<i>Pseudomonas aeruginosa</i> and its metabolic products	Not disclosed	7-14 m ³ per well	80 % of wells had increased production	Li et al. 2002
Stimulate biosurfactant production	<i>Bacillus</i> sp. RS-1 and <i>Bacillus subtilis</i> subsp. <i>spizizenii</i>	Treat producing wells with glucose-nitrate-metals and inoculum	20-28 mg/L of biosurfactant	Youssef et al. 2013

313 We implemented two successful tests of biosurfactant-mediated oil recovery in a
314 Viola limestone oil formation in Oklahoma (Youssef et al., 2007b, 2013). The first
315 test showed that inoculation of oil wells with exogenous, biosurfactant-producing
316 microorganisms is possible and in situ biosurfactant production was detected (Youssef
317 et al. 2007b). The second test involved larger volumes of materials (10-fold greater
318 quantities than the first test) to determine if in situ biosurfactant production simulated
319 oil production (Youssef et al. 2013). Lipopeptide biosurfactants were detected in
320 produced fluids of the two inoculated wells (20 and 28 mg/L, respectively) and the
321 increase in microbial products in the production fluids corresponded directly with an
322 increase in oil recovery. About 52.5 m³ of additional oil (net cumulative increase)
323 occurred during the first 60 days.

324 One of the more common approaches to MEOR is to stimulate hydrocarbon
325 degradation by the controlled injection of air or H₂O₂ along with other nutrients (Liu
326 et al. 2005; Nazina et al. 2007, 2008; Huang et al. 2014; Li et al. 2014; Chai et al.
327 2015; Le et al. 2015; Li et al., 2015). Hydrocarbon metabolism often results in
328 biosurfactant production. After the microbial process was initiated, products of
329 microbial metabolism including and biosurfactants and hydrocarbon-degrading
330 microorganisms were detected in production fluids (Nazina et al, 2007 and 2008). The
331 water content of production liquids decreased and the oil content increased, resulting
332 in large amounts of additional oil (Table 2).

333

334 **Research Needs**

335 Research to date shows that biosurfactant-mediated oil recovery is technically
336 feasible. That is, microorganisms produce biosurfactants that generate low interfacial
337 tensions and recover large amounts of oils. Limited studies indicate that biosurfactant
338 producers are likely present in oil reservoirs. Much more work is needed to
339 understand how to control biosurfactant production in the reservoir in order for
340 biosurfactant-mediated oil recovery to become a successful commercial approach to
341 oil recovery.

342 (1) More work is needed in media design and fermentation approaches to
343 reduce nutrient costs and increase final biosurfactant concentrations. Very little
344 work has been done to increase biosurfactant concentration or activity by genetic
345 manipulation.

346 (2) A greater understanding of the pore-level processes that occur during
347 biosurfactant-mediated oil recovery is needed to understand how biosurfactants
348 influence capillary forces and wettability and how multiple microbial mechanisms
349 operate to enhance oil recovery.

350 (3) More work is needed to develop nutrient and injection regimes to
351 stimulate in situ biosurfactant production reproducibly. Fundamental information
352 on the ecology of biosurfactant-producing microorganisms in oil reservoirs is
353 critically needed as are the tools needed to monitor changes of biosurfactant
354 concentration and metabolic activity of biosurfactant producers.

355

356 **Acknowledgements**

357 MJM was supported by contract DE-FG02-96ER20214 from Physical
358 Biosciences Division, Office of Science, U. S. Department of Energy. GL was
359 supported by a scholarship from China Scholarship Council.

360

361 **References**

362 Al-Sulaimani H, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi
363 S, Ayatollahi S (2012) Residual-oil recovery through injection of biosurfactant
364 chemical surfactant, and mixtures of both under reservoir temperatures: Induced-
365 wettability and interfacial-tension effects. *SPE Reservoir Eval Eng* 15:210–217

366 Alvarado V, Manrique E (2010) Enhanced oil recovery: An Update Review.
367 *Energies* 3:1529-1575

368 Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B
369 (2014) Biosurfactant production by *Bacillus subtilis* B30 and its application in
370 enhancing oil recovery. *Colloids Surf B Biointerfaces* 114:324–333

371 Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of
372 microbial rhamnolipid by *Pseudomonas aeruginosa* MM1011 for ex situ
373 enhanced oil recovery. *Appl Biochem Biotechnol* 170: 1080-1093.

374 Armstrong RT, Wildenschild D (2012a) Microbial enhanced oil recovery in
375 fractional-wet systems: A pore-scale investigation. *Transport Porous Med* 92:819-
376 835

377 Armstrong RT, Wildenschild D (2012b) Investigating the pore-scale
378 mechanisms of microbial enhanced oil recovery. *J Petr Sci Engin* 94-95:155-164

379 Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial
380 applications of microbial surfactants. *Appl Microbiol Biotechnol* 53:495–508

381 Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L,
382 Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications
383 and future potential. *App Microbiol Biotechnol* 87: 427-444

384 Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost
385 effective technologies and renewable substrates for biosurfactants' production.
386 *Front Microbiol* 5:697. doi: 10.3389/fmicb.2014.00697

387 Chai L, Zhang F, She Y, Banat IM, Hou D (2015) Impact of a microbial-
388 enhanced oil recovery field trial on microbial communities in a low-temperature
389 heavy oil reservoir. *Nat Environ Pollut Technol* 14:455-462

390 Chitoui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs
391 bioreactor, a new tool for lipopeptides production. *Proc Biochem* 47: 2020-2024

392 Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from
393 fermentation broths by a hydrid salting-out and membrane filtration process. *Sep
394 Puri Technol* 59: 244-252

395 Coutte F, Lecouturier D, Yahia, Leclère V, Béchet M, Jacques P, Dhulster P,
396 (2010) Production of surfactin and fengycin by *Bacillus subtilis* in a bubbleless
397 membrane bioreactor. *Appl Microbiol Biotechnol* 87: 499-507

398 Daniel HJ, Reuss M, Syldatk C (1998) Production of sophorolipids in high

399 concentration from deproteinized whey and rapeseed oil in a two stage fed batch
400 process using *Candida bombicola* ATCC 22214 and *Cryptococcus curvatus*
401 ATCC 20509. *Biotechnol Lett* 20:1153-1156

402 Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production
403 under extreme environmental conditions by an efficient microbial consortium,
404 *ERCPPI-2. Colloids Surf B Biointerfaces* 84:292-300

405 de Cássia FSSR, Darne G, Almeida DG, Rufino RD, Luna JM, Santos VA,
406 Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and
407 the remediation of oil spills. *Int J Mol Sci* 15:12523-12542

408 Doman LE (2016) International energy outlook 2016, DOE/EIA-0484, U. S.
409 Energy Information Administration. Washington, DC

410 Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-
411 Maqbali D and Banat IM (2015) Sophorolipids production by *Candida bombicola*
412 ATCC 22214 and its potential application in microbial enhanced oil recovery. *Front*
413 *Microbiol* 6:1324. doi: 10.3389/fmicb.2015.01324

414 Fernandes PL, Rodriques EM, Paiva FR, Ayupe BAL, McInerney MJ, Tótola
415 MR (2016) Biosurfactant, solvents, and polymer production by *Bacillus subtilis*
416 RI4914 and their applications for enhanced oil recovery. *Fuel* 180:551-567

417 Geys R, Soetaert W, Van Bogaert I (2014) Biotechnological opportunities in
418 biosurfactant production. *Curr Opin Biotech* 30: 66-72

419 Giani C, Meiws J, Rothert R, Wullbrandt D (1996) *Pseudomonas aeruginosa*
420 and its use in a process for the biotechnological preparation of L-rhamnose. US

421 Patent 5,501,966

422 Gray M, Yeung A, Foght J, Yarranton, HW (2008) Potential microbial
423 enhanced oil recovery processes: a critical analysis. In: Proceeding of the SPE
424 Annual Technical Conference and Exhibition, Denver, Colorado, USA. SPE-
425 114676-MS.

426 Hall, C., Tharakan, P., Hallock, J., Cleveland, C., and Jefferson, M. (2003).
427 Hydrocarbons and the evolution of human culture. *Nature* 426:318-322

428 Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT
429 (2011) Microbial processes in the Athabasca Oil Sands and their potential
430 applications in microbial enhanced oil recovery. *J Ind Microbiol Biotechnol*
431 38:1761-1775

432 Helmy Q, Kardena E, Funamizu N, Wisjnuprapto (2011) Strategies toward
433 commercial scale of biosurfactant production as potential substitute for it's
434 chemically counterparts. *Inter J Biotechnol* 12: 66-86

435 Huang L, Yu L, Luo Z, Song S, Bo H, Zheng C (2014) A microbial-enhanced
436 oil recovery trial in Huabei Oilfield in China. *Petrol Sci Technol* 32:584-592

437 Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008)
438 Biosurfactant production using molasses and whey under thermophilic conditions.
439 *Bioresour Technol* 99: 195-199.

440 Joshi SJ, Geetha SJ, Desai AJ (2015) Characterization and application of
441 biosurfactant produced by *Bacillus licheniformis* R2. *Appl Biochem Biotechnol*
442 177: 346-361

443 Kryachko Y, Semler D, Vogrinetz J, Lemke M, Links MG, McCarthy EL,

444 Haung B, Hemmingsen SM (2016) Enrichment and identification of biosurfactant-

445 producing oil field microbiota utilizing electron acceptors other than oxygen and

446 nitrate. *J Biotechnol* 231:9-15

447 Le JJ, Wu XL, Wang R, Zhang JY, Bai LL, Hou ZW (2015) Progress in pilot

448 testing of microbial-enhanced oil recovery in the Daqing oilfield of north China.

449 *Int Biodeter Biodegr* 97:188-194

450 Li CF, Li Y, Li XM, Cao YB, Song YT (2015) The application of microbial

451 enhanced oil recovery technology in Shengli Oilfield. *Petrol Sci Technol* 33: 556-

452 560

453 Li G, Gao P, Wu Y, Tian H, Dai X, Wang Y, Cui Q, Zhang H, Pan X, Dong

454 H, Ma T (2014) Microbial abundance and community composition influence

455 production performance in a low-temperature petroleum reservoir. *Environ Sci*

456 *Technol* 48:5336-5344.

457 Li Q, Kang C, Wang H, Liu C, Zhang C (2002) Application of microbial

458 enhanced oil recovery technique to Daqing Oilfield. *Biochem Eng J* 11:197-199

459 Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and

460 immunological characterization of a biosurfactant produced by *Bacillus*

461 *licheniformis* JF-2. *Appl Environ Microbiol* 60:31-38

462 Liu, J, Lijun M, Mu B, Liu R, Ni F, Zhou J (2005) The field pilot of microbial

463 enhanced oil recovery in a high temperature petroleum reservoir. *J Petrol Sci Eng*

464 48:265-271

465 Liu JH, Chen YT, Li H, Jia YP, Xu RD, Wang J (2015) Optimization of
466 fermentation conditions for biosurfactant production by *Bacillus subtilis* strains
467 CTCC M201163 from oilfield wastewater. Environ Prog Sust Energy 34: 548-554

468 Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of
469 renewable substrates for biosurfactant production. AMB Express, 1: 5

470 McInerney MJ, Youssef N, Nagle DP (2009) Lipopeptide biosurfactants and
471 their use in oil recovery. In: Ashby R, Solaiman D, Kitamoto D (eds), Bio-based
472 surfactants and detergents: synthesis, properties, and applications, American Oil
473 Chemists Society, Urbana, IL, pp 129-153

474 Nazina TN, Pavlova NK, Ni F, Shestakova NM, Ivoilov VS, Feng Q.,
475 Dongyun Z, Prusakova TS, Belyaev SS, Ivanov MV (2008) Regulation of
476 geochemical activity of microorganisms in a petroleum reservoir by injection of
477 H₂O₂ or water-air mixture. Microbiology 77:324-333

478 Nazina TN, Grigor'yan AA, Feng Q, Shestakova NM, Babich TL, Pavlova
479 NK, Ivoilov VS, Ni F, Wang J, She Y, Xiang T, Mei B, Luo Z, Belyaev SS,
480 Ivanov MV (2007) Microbiological and production characteristics of the high-
481 temperature Kongdian petroleum reservoir revealed during field trial of
482 biotechnology for the enhancement of oil recovery. Microbiology 76:297-309

483 Nikolov V, Farag I, Nikov I (2000) Gas-liquid mass transfer in bioreactor
484 with TPIFB. Bioprocess Eng 23 (427-429

485 Patel J, Borgohain S, Kumar M, Rangarajan V, Somasundaran P, Sen R
486 (2015) Recent developments in microbial enhanced oil recovery. Renew Sust

487 Energy Rev 52:1539-1558

488 Pruthi V, Cameotra SS (2000) Novel sucrose lipid produced by *Serratia*
489 *marcescens* and its application in enhanced oil recovery. J Surf Deter 3:533-537

490 Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core
491 flooding tests to investigate the effects of IFT reduction and wettability alteration
492 on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol
493 Biotechnol 97: 5979-5991

494 Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery
495 using biosurfactant produced by *Alcaligenes faecalis*. Iranian J Biotechnol 7:216-
496 223

497 Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016)
498 Biosurfactants: multifunctional biomolecules of the 21st Century. Int J Mol Sci
499 17: 401. doi:10.3390/ijms17030401

500 Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013)
501 *Enterobacter cloacae* as biosurfactant producing bacterium: Differentiating its
502 effects on interfacial tension and wettability alteration mechanisms for oil
503 recovery during MEOR process. Colloids Surf B Biointerfaces 105:223–229

504 Sen, R. (ed.) Biosurfactants. Landes Bioscience and Springer
505 Science+Business Media. New York.

506 Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011)
507 Emulsification potential of a newly isolated biosurfactant-producing bacterium,
508 *Rhodococcus* sp. strain TA6. Colloids Surf B Biointerfaces 82:477-482

509 Sheng J (2010) Modern chemical enhanced oil recovery: theory and practice.
510 Gulf Professional Publishing, Burlington, MA

511 Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi
512 SJ (2014) Microbial enhanced heavy oil recovery by the aid of inhabitant spore-
513 forming bacteria: an insight review. *The Scientific World J*, 2014. Article ID
514 309159, 12 pages. doi:10.1155/2014/309159

515 Siegert M, Sitte J, Galushko A, Krüger M (2014) Starting up microbial
516 enhanced oil recovery. *Adv Biochem Eng Biotechnol* 142:1-94

517 Simpson DR, N. Natraj, M. J. McInerney, K. E. Duncan. 2011. Biosurfactant-
518 producing *Bacillus* spp. are present in produced brines from Oklahoma oil
519 reservoirs with a wide range of salinities. *Appl Microbiol Biotechnol* 91:1083-
520 1093

521 Xia WJ, Luo ZB, Dong HP, Yu L, Cui QF, Bi YQ (2012) Synthesis,
522 characterization, and oil recovery application of biosurfactant produced by
523 indigenous *Pseudomonas aeruginosa* WJ-1 using waste vegetable oils. *Appl
524 Biochem Biotechnol* 166:1148-1166

525 Yakimov MM, Abraham WR, Meyer H, Giuliano L, Golyshin PN (1999)
526 Structural characterization of lichenysin A components by fast atom bombardment
527 tandem mass spectrometry. *Biochim Biophys Acta* 1438:273-280

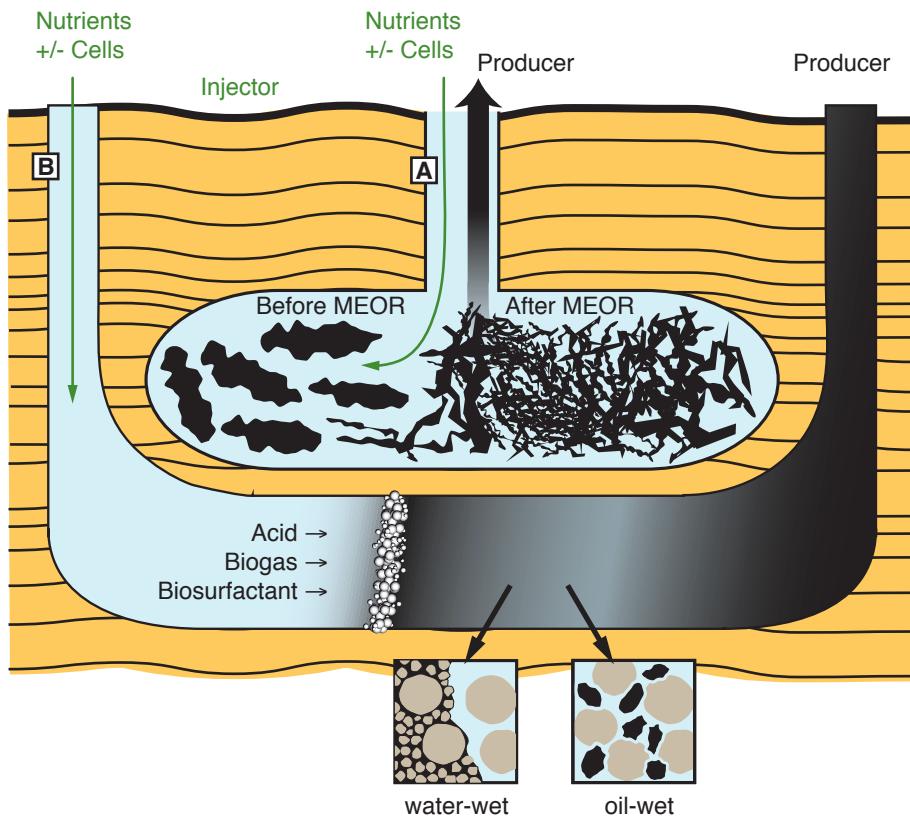
528 Youssef N, Simpson DR, McInerney MJ, Duncan KE (2013) In-situ
529 lipopeptide biosurfactant production by *Bacillus* strains correlates with improved
530 oil recovery in two oil wells approaching their economic limit of production. *Int*

531 Biodeter Biodegr 81:127-132.

532 Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil
533 fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141-251

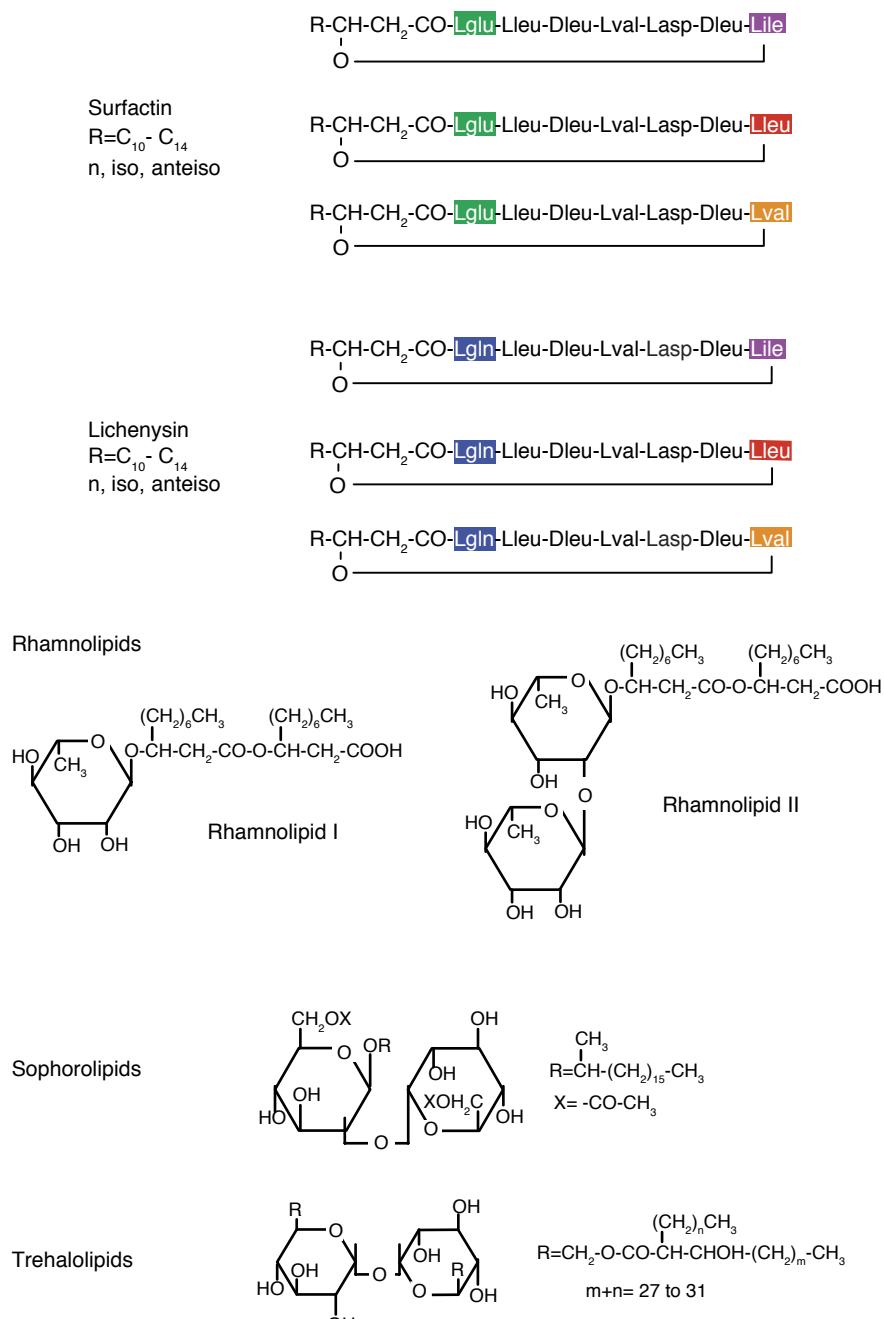
534 Youssef N, Nguyen T, Sabatini DA, McInerney MJ (2007a). Basis for
535 formulating biosurfactant mixtures to achieve ultra low interfacial tension values
536 against hydrocarbons. J Ind Microbiol Biotechnol 34:497–507

537 Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher
538 T, Knapp RM. (2007b) In situ biosurfactant production by *Bacillus* strains injected
539 into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239-1247


540 Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a
541 hydrocarbon-degrading strain, *Rhodococcus ruber* Z25, for the potential of
542 microbial enhanced oil recovery. J Petrol Sci Eng 81:49-56

543 Zhu Z, Zhang F, Wei Z, Ran W, Shen Q (2013) The usage of rice straw as a
544 major substrate for the production of surfactin by *Bacillus amyloliquefaciens* XZ-
545 173 in solid-state fermentation. J Environ Manage 127: 96-102

546 Zou C, Wang M, Xing Y, Lan G, Ge T, Yan X, Gu T (2014) Characterization
547 and optimization of biosurfactants produced by *Acinetobacter baylyi* ZJ2 isolated
548 from crude oil-contaminated soil sample toward microbial enhanced oil recovery
549 applications. Biochem Eng J 90:49-58


550 **Figures**

551 Figure 1. Biosurfactant-mediated oil recovery. A. The change in wettability by
552 biosurfactants near the production well reconnects oil ganglia and increases oil drainage.
553 B. Biosurfactant production during waterflooding mobilizes entrapped oil. Insets: After
554 waterflooding, large globules of oil exist large pores in water-wet regions and oil is
555 found in small pores or in large pockets surrounded by water in oil-wet regions.

556
557

558 Figure 2. Structures of lipopeptide, rhamnolipid, sophorolipid, and trehalolipid
 559 biosurfactants. Boxes highlight variations in amino acid sequence of lipopeptides.

560

Table 1. Efficacy of biosurfactants commonly used for microbial oil recovery ^a

Biosurfactant	Microorganism	Lowest surface tension (mM/m)	Lowest interfacial tension (mN/m)	Critical micelle concentration (mg/L)	Additional oil recovery (%)	Yield (g/L)	Reference
Surfactin	<i>Bacillus</i> <i>subtilis</i> or <i>B. mojavensis</i>	28-30	0.006-0.3	10-35	40-80	0.5-1	Lin et al. 1993; Youssef et al. 2007a
Lichenysins	<i>Bacillus licheniformis</i>	28	0.3-0.5	10-19	37	1.1	Joshi et al 2015; Yakimov et al 1999
Lipopeptide	<i>Acinetobacter baylyi</i>	35	15	90	28	ND	Zou et al., 2014
Rhamnolipid	<i>Pseudomonas aeruginosa</i>	25-27	0.2-2	11-120	10-27	0.7-50	Amani et al. 2013; Xia et al. 2012
Glycolipids	<i>Rhodococcus</i>	27-30	1	57	65-86	0.5-	Shavandia et al., 2011; Zheng et

	sp.			12.9	al., 2012
Glycolipids	<i>Enterobacter</i>	31	0.6-3.2	27-48	1.5-1.7 Darvishi et al. 2011; Rabiei et al.
	<i>cloacae</i> and <i>E.</i>				2013; Sarafzadeh et al. 2013
	<i>hormaechei</i>				
Lipo-	<i>Alcaligenes</i>	20	<1	9	1.2 ± Salehizadeh and
polysacharide	<i>faecalis</i>				0.05 Mohammadizad 2009
Sucrose lipid	<i>Serratia</i>			90	Pruthi and Cameotra 2000
	<i>marcescens</i>				
Sophorolipid	<i>Candida</i>	33	± 1.6 ± 0.3	27	Elshafie et al. 2015
	<i>bombicola</i>	0.05			

^aThe values differ depending on the strains, growth conditions, oils and porous media used in different experiments.

Table 2. Recent field trials involving biosurfactant-producing microorganisms.

Mechanism	Microorganisms	Approach	Oil recovery (m ³)	Comments	Reference
Stimulate in situ hydrocarbon production	Indigenous <i>Pseudomonas</i> sp.	Treat injection wells with air and nutrients	2200	Emulsification	Chai et al. 2015
	Indigenous hydrocarbon degraders	Treat injection wells with H ₂ O ₂ or oxygenated water with N and P	4420	Emulsification; interfacial tension reduction	Nazina et al. 2008
	Indigenous hydrocarbon degraders	Treat injection wells with air-saturated brine and minerals	16,200	Reduction in interfacial tension	Nazina et al. 2007
Oil-degrading and biosurfactant-producing		Repetitive treatment of injection wells with	9122	All seven wells had increased oil	Liu et al. 2005

microorganisms	nutrients and inoculum	production
<i>Pseudomonas</i>	Not disclosed	7-14 m ³ 80 % of wells had Li et al. 2002
<i>aeruginosa</i> and its metabolic products		per well increased production
Stimulate biosurfactant production	<i>Bacillus</i> sp. RS-1 and <i>Bacillus subtilis</i> subsp. <i>spizizenii</i>	Treat producing wells 53 20-28 mg/L of Youssef et al. 2013 biosurfactant metals and inoculum
