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MHD Energy Conversion

MHD (Magnetohydrodynamics) is a branch of physics
which studies the interaction of an electrically
conductive fluid with a magnetic field.

Lorentz Force Carnot Limit
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MHD technology better utilizes oxy-fuel (for carbon capture)
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This technology does not yet exist commercially;
NETL's research is at a TRL level of 2-3.
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Today, nearly all of our power plants (coal, natural gas, hydroelectric,
wind, concentrated solar, nuclear, bio-mass) use mechanical turbines
to generate electrical power.

In the future, if developed, we may use a more efficient generator
which operates without moving parts. This is called a MHD generator.
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NETL's MHD Laboratory in Albany, Oregon =

Lab became operational late Fall 2015

Superconducting Magnet

MHD Lab goal: To safely conduct MHD experiments
in order to enable future MHD engineering
applications which can be beneficial to the public. b

Fuel
+

* Validate developed simulation tools oxygen
* Test materials in realistic service conditions

Current Collectors

Plasma

Cartoon of Open Cycle MHD topping Unit

Oxy-fuel combustor testing is underway. The
gasses exit the nozzle at near Mach 2,
resulting in shock diamond formation.
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High Velocity Oxy-fuel (HVOF) Set-up

Atomizing Combustion
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* Initial test campaign focuses on establishing steady-state “global” heat balance

Combustion Free Jet Flue
Inputs

Heat loss to water
cooled walls

* Obtain test data varying fuel & oxygen inputs within an envelop of stable operation
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HVOF Operating Conditions
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Discretization and Algorithm

Customized version of reactingFoam in OpenFOAM
Equations
— conservation of mass, momentum, energy and species
— Multicomponent calorically perfect ideal gas
— k-o-SST turbulence model w/ Mach correction
— Radiative transfer equation
* Discretization
— Unstructured Polyhedral
— 1%t-order upwind and 2-order flux-limited
— “Rhie-Chow” pressure dissipation
Algorithm
— Segregated solver
— PIMPLE pressure correction algorithm with chemical reactions
— Operating splitting for stiff chemical reaction
— P1 grey-gas
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Combustor + CD Nozzle + Channel

Boundary Conditions

Outlet condition
- Wave transmissive
with P = 0.5 bar

Wall conditions

- Fixedwall T

- VP = 0 along the wall

- Turbulence wall functions

[T

[T

il

=TI ] Mlﬁ{ﬂﬂﬁﬁ!ﬁ

5° slice

\ \‘\ U.S. DEPARTMENT OF

Inlet condition - small hole for gas injection
Mass flow inlet with fixed composition, T and VP=0

- Combustion(comb) :
- Inject low temperature premixed fuel (Kerosene, C12H26) & oxygen

- Combustion occurs inside of combustor

- Combustion Product(combProd) :
- Inject hot (~3000K) equilibrium products {CO,CO2,H20, 02, ...}

- More stable simulation
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Exhaust Boundary Conditions

Exhaust Wall conditions
- inletOutlet T ~ 300 K
- VP=0

- U~(0,0,0)

Outlet condition

- inletOutlet T~ 300 K

- Wave transmissive with P~1 atm
- U <- pressurelnletOutletVelocity
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Sensitivity to Turbulence Model
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Turbulence models with compressibility
correction

* Compressible turbulent kinetic energy equation with compressibility correction

for shear layers
dpk . 0pUik d

~ o T axil =axi[(”+ﬂt)axl]+pp" ple+e) +p'd”

* Turbulent dissipation correction &, = f(M;)e with M; = /2k/yRT
— Sarkar f(M,) = 0.5M}
— Zeman f(M,) =0.75(1— e‘((Mt‘o'l)/°'6)2)H(Mt —0.1)
— Wilcox f(M,) = 1.5(M? — 0.25%)H(M, — 0.25)
* Pressure dilatation with recommended constant values
— p"d" = —a,pPyM? + azpeM? where a; = 1.0, a, = 0.4, a3 = 0.2

2 }” mnt . snwg | National Energy R. H. Nichols, Turbulence Models and Their Application to Complex Flows, Revision 4.01 )

ENERGY Technology Laboratory D. Guézengar et al., Variations on a k-¢ turbulence model for supersonic boundary layer computation, 1999
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Heat Balance: Measurements

Atomizing  Combustion CcDh
Injector Chamber Nozzle

o,—»
2 —» -

Cooling H,0in ————» ‘/)
Cooling H,0 out™

Barrel Air

Heat Balance

Heat of Heat in
combustion Ql HVOF Gun combustion
& in inputs products

.

Heat to cooling Heat to radiant
Water energy

* Q1: From Inputs: T, P, mdot + off-line HHV test on fuel
* Q2: From cooling water: mdot*C *dT where dT =T_-T;,
* Q3: Use a Total Radiometer

* Q4: From the balance
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Wall heat loss methodology N=TL

* Water volume flow, temperature, and pressure are measured
* Temperature and water flow used to measure thermal power

absorbed by water | & ‘
. '

Comb.

. (# Chamber

QTherm, water = AT - m - Cp I,

* Surface area (SA) inside the combustor, C/D nozzle, and
barrel measured

* Heat flux is computed from power transfer into water across

all internal SA

* Uncertainties:

e TC differential 3.5%
 flow meter 1% Cold in Hot out
* Cp_water 1%
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Heat Flux Distribution (kW)

RO R A T

0.016 0.103 0.259 0.379 27.29
2 0.018 0.127 0.304 0.449 32.33 34.8
3 0.016 0.139 0.293 0.448 32.26 34.0
4 0.016 0.096 0.240 0.352 25.34 31.0
5 0.019 0.131 0.333 0.483 34.78 37.0
6 0.018 0.147 0.340 0.505 36.36 37.7
7 0.014 0.091 0.220 0.325 23.40 29.8
8 0.020 0.131 0.335 0.486 34.99 39.3
9 0.019 0.163 0.373 0.555 39.96 41.1
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Heat Flux Comparison
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Wall temperature estimate

Atomizing Combustion \ CDI
Injector Chamber ozzle

Kerosene ——p
0, —>-

Cooling H,0 in
Cooling H,0 out  «

Barrel
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v

11.3cm
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Surface area = (3.811cm)m(3.703cm) + (2cm)n(14cm) = 1.323 X 107 2m?
Total heat flux experiment =~ 40 x 103W
, total heat flux 40 x10°W 2023 X 1061 /12
17 total surface area 1323 x 1072m2 /m
k(Twg = Twe) _ (400 W/mK)(T,,4 — 300K)

tw 0.005m
Twg = 337.79 K

3.023 X 105W /m? ~ § =
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Heat flux sensitivity with T,

all

Combustion with T_inlet = 400K and T_wall variation

340K 0.021 0.133 0.333 0.487 35.06
320K 0.053 0.131 0.316 0.500 36.00
300K 0.047 0.134 0.337 0.518 37.30

Combustion with T_inlet variation and T_wall = 340K

| Tinet | Combustor | Noazle | Barel | Siicetotal | Total (kW)

400K 0.021 0.133 0.333 0.487 35.06
350K 0.047 0.096 0.320 0.463 33.34
300K 0.046 0.083 0.316 0.445 32.04
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Radiant Flux Measurement methodology N=TL

Thermally stabilized thermopile detector

A, P, A, Apoy -

N
o

e Utilize a “narrow field” radiometer to profile heat flux

e Establishes FOV looking into the flame measuring radiative intensity

— Expect some downstream peak due to gas T increasing with less velocity \

— Expect radiance to taper off when ambient air is entrained into exhaust plume

Two aperture narrow field radiometer
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N\ T ¢ == Watts]*
Extended source radiance, L,
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Radiant Flux Results

— case 5.5 (Exp.) & 5 (Sim)

1068) = 3= (6 + 3,9

where § - propagation direction
X - position vector
q, - radiant energy flux

1

=——7VG
3(a+ o)

dr

where a (1/m) - absorption coeff.

o (1/m) - scattering coeff.
T (K)

3373,
-

—2607.

1842,
— 1076

l 309.8
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Shock Chain at Exhaust (1) N=TL

Experiment HD Camera

100 mm

Experiment Simulation
IR (infrared) image (P, T, CO2, ...) pPTM

National Energy
Technology Laboratory
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Shock Chain at Exhaust (2)

P, T, CO2 variation along centerline

* These values will be used in post-
processing to mimic IR image.
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Conclusions and Future Work

« MHD Power generation Laboratory is operational
— Several datasets have been produced of the HVOF oxy-fuel combustor

 Completed an initial comparisons of model with experimental
data

— Simulation over-predict the dissipation of the exhaust waves

— Prediction of the spreading rate appear to be much better radiation
predictions

* In the Future,

— More quantitative comparison of predictions and measurements
* Further analysis and processing of experimental data
* Improvements to computational model

— Add “MHD channel” to experiment and simulations
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Disclaimer

* This presentation was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference therein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of
authors expressed therein do not necessarily state or reflect those
of the United States Government or any agency thereof.
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