

Shape and flow fluctuations in ultracentral Pb + Pb collisions at the energies available at the CERN Large Hadron Collider

Chun Shen,^{1,2,*} Zhi Qiu,¹ and Ulrich Heinz¹

¹Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117, USA

²Department of Physics, McGill University, 3600 University Street, Montreal, Québec, H3A 2T8, Canada

(Received 17 February 2015; revised manuscript received 7 May 2015; published xxxxxx)

In ultracentral heavy-ion collisions, anisotropic hydrodynamic flow is generated by density fluctuations in the initial state rather than by geometric overlap effects. For a given centrality class, the initial fluctuation spectrum is sensitive to the method chosen for binning the events into centrality classes. We show that sorting events by total *initial* entropy or by total *final* multiplicity yields event classes with equivalent statistical fluctuation properties, in spite of viscous entropy production during the fireball evolution. With this initial entropy-based centrality definition we generate several classes of ultracentral Pb + Pb collisions at Cern Large Hadron Collider energies and evolve the events using viscous hydrodynamics with nonzero shear but vanishing bulk viscosity. Comparing the predicted anisotropic flow coefficients for charged hadrons with CMS data we find that both the Monte Carlo Glauber (MC-Glb) and Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) models produce initial fluctuation spectra that are incompatible with the measured final anisotropic flow power spectrum, for any choice of the specific shear viscosity. In spite of this failure, we show that the hydrodynamic model can qualitatively explain, in terms of event-by-event fluctuations of the anisotropic flow coefficients and flow angles, the breaking of flow factorization for elliptic, triangular, and quadrangular flow measured by the CMS experiment. For elliptic flow, this factorization breaking is large in ultracentral collisions. We conclude that the bulk of the experimentally observed flow factorization breaking effects are qualitatively explained by hydrodynamic evolution of initial-state fluctuations, but that their quantitative description requires a better understanding of the initial fluctuation spectrum.

DOI: 10.1103/PhysRevC.00.004900

PACS number(s): 12.38.Mh, 24.10.Nz, 25.75.Ld

I. INTRODUCTION

Heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) offer a unique window to study the physics of strongly interacting matter in the quark-gluon plasma (QGP) phase. An interesting fundamental property of the QGP is its viscosity which, in combination with the expansion rate of the fireball created in the heavy-ion collision, controls its fluidity. Specifically, the shear viscosity to entropy density ratio η/s controls the efficiency with which spatial inhomogeneities and anisotropies of the initial pressure gradients in the fireball are converted to anisotropies in the final collective flow pattern [1]. Spatial anisotropies in the initial pressure distribution [related to the initial energy density profile through the equation of state (EOS)] are typically characterized in terms of a set of initial eccentricity coefficients ε_n (defined below as Fourier coefficients of the initial energy density distribution in the plane transverse to the beam direction), while the final flow anisotropies are quantified through coefficients v_n obtained from a Fourier decomposition of the final transverse momentum distribution of the emitted hadrons. Large shear viscosity tends to smooth out flow anisotropies and thus suppress the conversion efficiency v_n/ε_n [2,3].

The experimental observation of large flow anisotropies at both RHIC [4] and LHC [5] indicates that the QGP has very low specific shear viscosity η/s [1] close to its quantum limit [6,7].

However, since the extraction of η/s from experimental data goes through the conversion efficiency v_n/ε_n [8], it requires, in addition to a measurement of v_n , a knowledge of the initial eccentricity spectrum ε_n . As the initial density profile of the fireball created in the collision fluctuates from event to event, so do its initial eccentricity and final flow power spectra, ε_n and v_n . At finite impact parameter the eccentricity spectrum ε_n receives contributions from both collision geometry and event-by-event density fluctuations. In ultracentral collisions, on the other hand, overlap geometry and associated model uncertainties can be largely eliminated as a contributing factor [9], focusing attention on the initial spectrum of quantum fluctuations of the strongly interacting quantum fields within the colliding nuclear wave functions. These are notoriously difficult to compute theoretically, making experimental studies of ultracentral heavy-ion collisions [10–12] particularly valuable for improving our quantitative understanding of heavy-ion collision dynamics.

It bears pointing out that a measurement of the final flow power spectrum v_n in ultracentral collisions between equal-size nuclei provides access to both this initial fluctuation spectrum [13,14] (the “Little Bang temperature power spectrum” [15]) and the QGP transport coefficients, especially its shear viscosity [1,16–19]. Since the specific shear viscosity η/s controls the anisotropic flow response of the expanding liquid to the initial density fluctuations, and neither the specific shear viscosity nor the initial fluctuation spectrum are theoretically known with any precision, a phenomenological analysis of anisotropic flow fluctuations must be sufficiently comprehensive to be able to constrain both simultaneously.

*Corresponding author: chunshen@physics.mcgill.ca

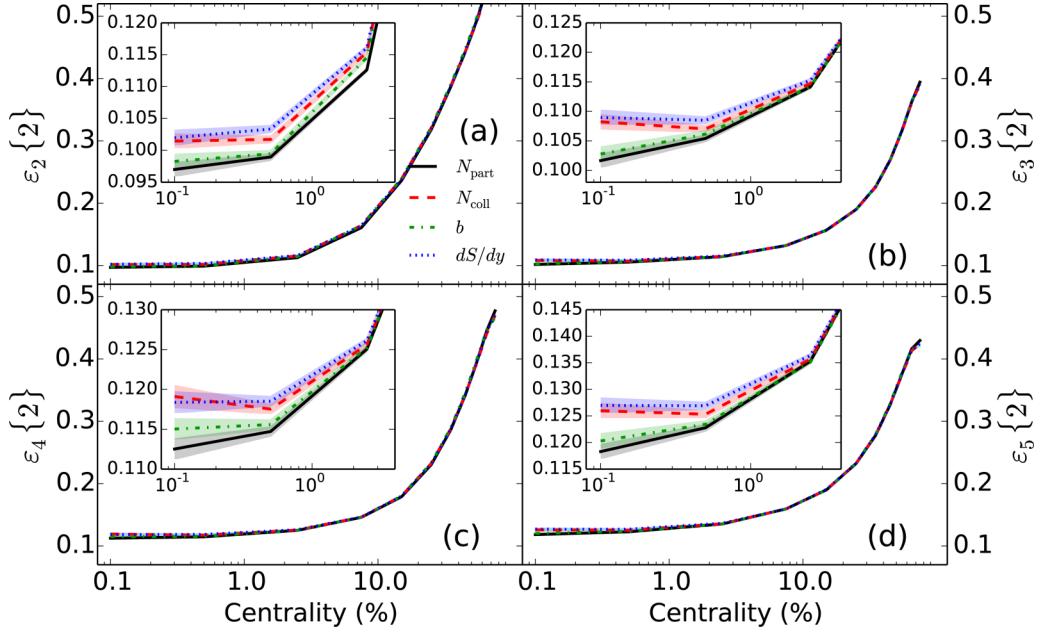


FIG. 1. (Color online) The root mean square (rms) initial eccentricity $\epsilon_n\{2\}$ for $n = 2-5$, as a function of centrality, for different centrality selection criteria: using the number of participant nucleons N_{part} (solid black), the number of binary collisions N_{coll} (red dashed), impact parameter b (green dotted), or initial total entropy dS/dy (dotted blue). For this figure 10^6 events were generated from the MC-Glauber model with minimum internucleon distance (“hard core radius”) $r_{\min} = 0.9$ fm [20,21], for Pb + Pb collisions at $\sqrt{s} = 2.76$ A TeV, with binary collision to wounded nucleon ratio $\alpha = 0.118$.

82 The CMS Collaborations at the LHC has measured [12] the
 83 anisotropic flow coefficients of charged hadrons in ultracentral
 84 Pb + Pb collisions at $\sqrt{s} = 2.76$ A TeV, using events from
 85 the tail of the charged multiplicity distribution corresponding
 86 to 0–0.2% centrality. Implementing such tight multiplicity
 87 cuts is a challenge for theoretical simulations which have
 88 typically much smaller event samples than the experimental
 89 measurements. In Sec. II of this work, we investigate how
 90 different ways of cutting centrality bins can affect the initial-
 91 state eccentricity spectrum, and show how to faithfully mimic
 92 the experimental centrality selection procedure without the
 93 need for evolving astronomically large numbers of initial
 94 configurations. In Sec. III, we show the charged hadron particle
 95 spectrum and its anisotropic flow coefficients. In Sec. IV we
 96 check the flow factorization ratios in ultracentral Pb + Pb
 97 collisions at the LHC. We summarize our findings in Sec. V.

98 II. INITIAL STATE FLUCTUATIONS AND EVENT 99 SELECTION IN ULTRACENTRAL NUCLEUS-NUCLEUS 100 COLLISIONS

101 Experimentally, the ultracentral collision events are defined
 102 as those with the highest measured final charged multiplicities.
 103 However, in theoretical calculations, using final charged
 104 multiplicities to determine the event centrality is numerically
 105 very expensive. Especially for the narrow 0–0.2% centrality
 106 bin, the numerical effort spent on evolving the remaining
 107 99.8% of the simulated events is wasted. So we would like to
 108 determine (at least estimate) the event centrality of each initial
 109 profile before evolving them through viscous hydrodynamics.

110 We begin by showing that for ultracentral collisions the
 111 initial fluctuation spectrum $\{\epsilon_n\{2\}|n=1,2,\dots\}$ (whose pre-
 112 cise definition is given further below) can depend strongly on
 113 the method for determining centrality. We study four popular
 114 choices of the collision parameters (N_{part} , N_{coll} , b , dS/dy) to
 115 categorize the event centrality of every initial density profile
 116 generated from the Monte Carlo Glauber (MC-Glb) model
 117 [23]. The produced initial entropy density at τ_0 in the transverse
 118 plane is calculated as

$$119 s(\mathbf{r}_\perp; \tau_0) = \frac{\kappa}{\tau_0} \left(\frac{1-\alpha}{2} n_{\text{WN}}(\mathbf{r}_\perp) + \alpha n_{\text{BC}}(\mathbf{r}_\perp) \right), \quad (1)$$

120 where κ is an overall normalization factor, tuned to reproduce
 121 the final charged hadron multiplicity $dN^{\text{ch}}/d\eta$ at midrapidity,
 122 and α is the mixing ratio between the wounded nucleon
 123 [$n_{\text{WN}}(\mathbf{r})$] and binary collision [$n_{\text{BC}}(\mathbf{r})$] profiles [23]. We
 124 choose $\alpha = 0.118$ [24] to reproduce the measured centrality
 125 dependence of $dN^{\text{ch}}/d\eta$ in 2.76 A TeV Pb + Pb collisions.

126 In Fig. 1, the initial eccentricities $\epsilon_n\{2\}$ ($n = 2-5$) are shown
 127 as functions of centrality. For semiperipheral and peripheral
 128 collisions, the $\epsilon_n\{2\}$ spectrum is insensitive to the method used
 129 to determine the centrality bins. However, differences become
 130 noticeable when we select events within the top 1% centrality
 131 range. We notice that using the initial total entropy to determine
 132 the centrality bin gives the largest initial eccentricities $\{\epsilon_n\{2\}\}$,
 133 about 10% larger than if we use the number of participant
 134 nucleons. So for a narrow bin of very central collisions, extra
 135 care is needed in the event selection.

136 Experience based on the hydrodynamic evolution of
 137 smooth, ensemble-averaged initial conditions has shown
 138 that the observed charged multiplicity in the final state,

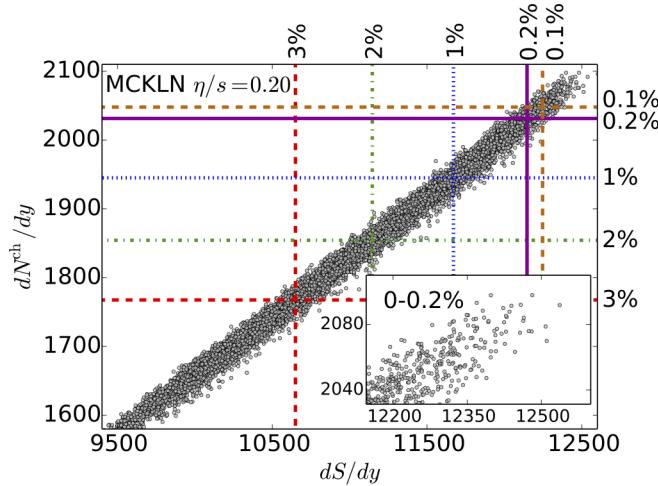


FIG. 2. (Color online) Correlation between the initial total entropy dS/dy and final charged multiplicity dN_{ch}/dy for (ultra)central $Pb + Pb$ collisions at the LHC (0–5 % centrality). The plot is based on 10 000 previously generated viscous hydrodynamic events with fluctuating MC-KLN initial conditions using a minimum internucleon distance $r_{min} = 0.4$ fm [22,26] and evolved with $\eta/s = 0.2$. The lines separate different centrality classes (as indicated), defined by ordering the events according to dN_{ch}/dy (horizontal lines) or dS/dy (vertical lines). The normalized variance of the distribution is about 0.6% in both vertical and horizontal directions.

138 $dN_{ch}/d\eta$, used by the experiments for cutting on centrality,
139 is monotonically related to the initial entropy density dS/dy .
140 Figure 2 demonstrates that this remains true on average,
141 within a narrow variance caused by fluctuations of the viscous
142 entropy production in fireballs with particularly rough initial
143 conditions (examples are shown in Fig. 3), when one evolves
144 bumpy initial conditions that fluctuate from event to event.¹
145 Note that the events plotted in Fig. 2 are all within the 0–5%
146 centrality bin where variations in dS/dy are caused almost
147 entirely by fluctuations, and variations in overlap geometry
148 play only a small role.

149 Table I shows that, within the statistical uncertainties
150 imposed by our limited number of fully evolved events,
151 the eccentricity coefficients $\varepsilon_{2,3,4,5}$ defined in Eq. (2) below
152 for events in a given centrality bin agree for bins defined
153 by ordering the events according to initial dS/dy or final

¹Figure 2 is based on events with Monte Carlo Kharzeev-Levin-Nardi (MC-KLN) initial conditions that were evolved with $\eta/s = 0.20$, the largest value for the specific shear viscosity studied in this work. For MC-Glb initial conditions evolved with $\eta/s = 0.08$ the viscous entropy production is smaller, and we correspondingly found a reduced normalized variance of 0.2% for the analogous dS/dy vs. dN_{ch}/dy distribution. Both sets of hydrodynamic events were previously generated for an earlier study [24] and do not include pp -multiplicity fluctuations which, as discussed below, tend to increase the “bumpiness” of the initial density profiles and are therefore expected to somewhat increase the normalized variance of the distribution shown in Fig. 2.

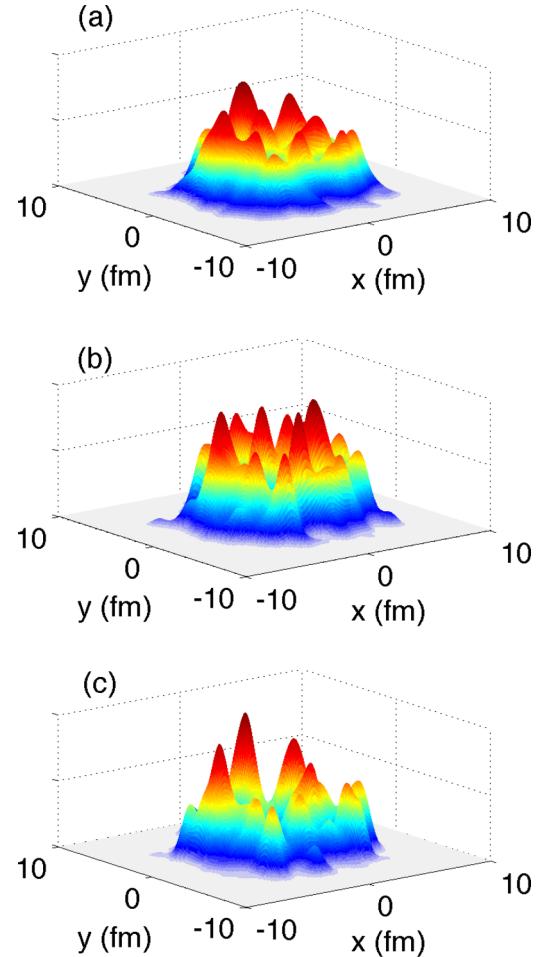


FIG. 3. (Color online) Initial entropy density profiles in the transverse plane from the MC-Glauber model, for one selected sampling of the nucleon positions inside the colliding nuclei. (a) does not contain pp multiplicity fluctuations. (b) and (c) correspond to two different samplings of the entropy production associated with each nucleon-nucleon collision when pp multiplicity fluctuations are included as described in the text.

154 dN_{ch}/dy . We also checked and confirmed that the distributions
155 of these coefficients within the bins agree for both centrality
156 definitions. Based on all these observations, we proceeded to
157 generate 10^6 minimum bias $Pb + Pb$ events as described next,
158 ordered them by their initial total entropy dS/dy , divided them
159 into centrality classes (as shown in Fig. 2) and then took the
160 0.2% of them with the largest dS/dy values to represent the
161 0–0.2 % centrality class of ultracentral $Pb + Pb$ collisions
162 studied by the CMS Collaboration. These events are then used
163 in the rest of the paper.

164 In order to capture the bias in ultracentral collisions towards
165 events whose entropy production fluctuates upward from
166 the mean, we implement pp multiplicity fluctuations in the
167 MC-Glb model in a way that allows us to reproduce the
168 experimentally observed KNO scaling of the pp multiplicity
169 distributions. Our implementation is described in detail in [23]
170 (see earlier work in [27–29] for related but slightly different

TABLE I. Comparison of the initial eccentricities $\varepsilon_n\{2\}$ ($n = 2-5$), computed with the MC-KLN model with a minimum distance (“hard core”) $r_{\min} = 0.4$ fm between nucleons [22,26], in central and ultracentral centrality bins that are determined by initial total entropy or final charged hadron multiplicity, respectively.

	$(0-0.2\%)_{dN/dy}$	$(0-0.2\%)_{dS/dy}$	$(0-1\%)_{dN/dy}$	$(0-1\%)_{dS/dy}$	$(1-2\%)_{dN/dy}$	$(1-2\%)_{dS/dy}$	$(2-3\%)_{dN/dy}$	$(2-3\%)_{dS/dy}$
$\varepsilon_2\{2\}$	0.082 ± 0.002	0.081 ± 0.002	0.085 ± 0.001	0.086 ± 0.001	0.096 ± 0.001	0.096 ± 0.001	0.114 ± 0.001	0.114 ± 0.001
$\varepsilon_3\{2\}$	0.084 ± 0.002	0.085 ± 0.002	0.088 ± 0.001	0.088 ± 0.001	0.092 ± 0.001	0.092 ± 0.001	0.097 ± 0.001	0.096 ± 0.001
$\varepsilon_4\{2\}$	0.095 ± 0.002	0.096 ± 0.002	0.095 ± 0.001	0.095 ± 0.001	0.097 ± 0.001	0.097 ± 0.001	0.102 ± 0.001	0.103 ± 0.001
$\varepsilon_5\{2\}$	0.089 ± 0.002	0.092 ± 0.002	0.097 ± 0.001	0.097 ± 0.001	0.104 ± 0.001	0.104 ± 0.001	0.110 ± 0.001	0.110 ± 0.001

approaches).² Figure 3 illustrates the effect of pp multiplicity fluctuations on the shape of initial entropy density profile in Pb + Pb collisions. They tend to increase the variance of the density fluctuations in the initial state, amplifying the magnitude of hot spots and deepening the valleys between them. Overall the initial density distributions become more bumpy without, however, changing the characteristic radius of the hot spots (which is still given by the nucleon size). In Fig. 4(a), we show the initial total entropy distribution for MC-Glb and MC-KLN initial conditions, for Pb + Pb collisions in the 0–0.2 % centrality bin at LHC energies. Even in the absence of pp multiplicity fluctuations, the MC-Glb model yields a significantly broader multiplicity distribution in Pb + Pb collisions than the MC-KLN model. By adding pp multiplicity fluctuations to the MC-Glauber model, the chances for upward fluctuations in the multiplicity for ultracentral Pb + Pb collisions are strongly increased. For a correct simulation of ultracentral Pb + Pb initial conditions, proper inclusion of pp multiplicity fluctuations is therefore mandatory.

The shape fluctuations of the initial conditions can be characterized by a series of complex eccentricity coefficients. For a single event and for $n \geq 2$, the n th order eccentricity of the initial condition is defined as the modulus of the complex quantity

$$\varepsilon_n e^{in\Phi_n} = -\frac{\int d^2r r^n e^{in\phi} e(r, \phi)}{\int d^2r r^n e(r, \phi)}, \quad (2)$$

in which we use the transverse local rest frame energy density $e(r, \phi)$ as a weight function. The phase Φ_n of the complex quantity in Eq. (2) defines the n th order participant plane angle. Since the energy density is centered at the origin, Eq. (2) gives zero for $n = 1$. Hence, one defines ε_1 using the next order in the cumulant expansion [31],

$$\varepsilon_1 e^{i\Phi_1} = -\frac{\int d^2r r^3 e^{i\phi} e(r, \phi)}{\int d^2r r^3 e(r, \phi)}. \quad (3)$$

$\varepsilon_n\{2\} \equiv \sqrt{\langle \varepsilon_n^2 \rangle}$ is the root mean square value of these eccentricity coefficients for an ensemble of fluctuating events (where $\langle \dots \rangle$ denotes an ensemble average).

In Fig. 4(b) we plot the initial fluctuation power spectrum $\varepsilon_n\{2\}$ for the MC-Glb and MC-KLN models in 0–0.2 %

ultracentral collisions at the LHC. At this centrality, the $\varepsilon_n\{2\}$ are entirely dominated by fluctuations in the initial density profile, with no contributions from geometric overlap effects. With the r^n weighting factor in Eq. (2), the magnitudes of $\varepsilon_n\{2\}$ are all similar (except for $\varepsilon_1\{2\}$ which is $\sim 40\%$ smaller),

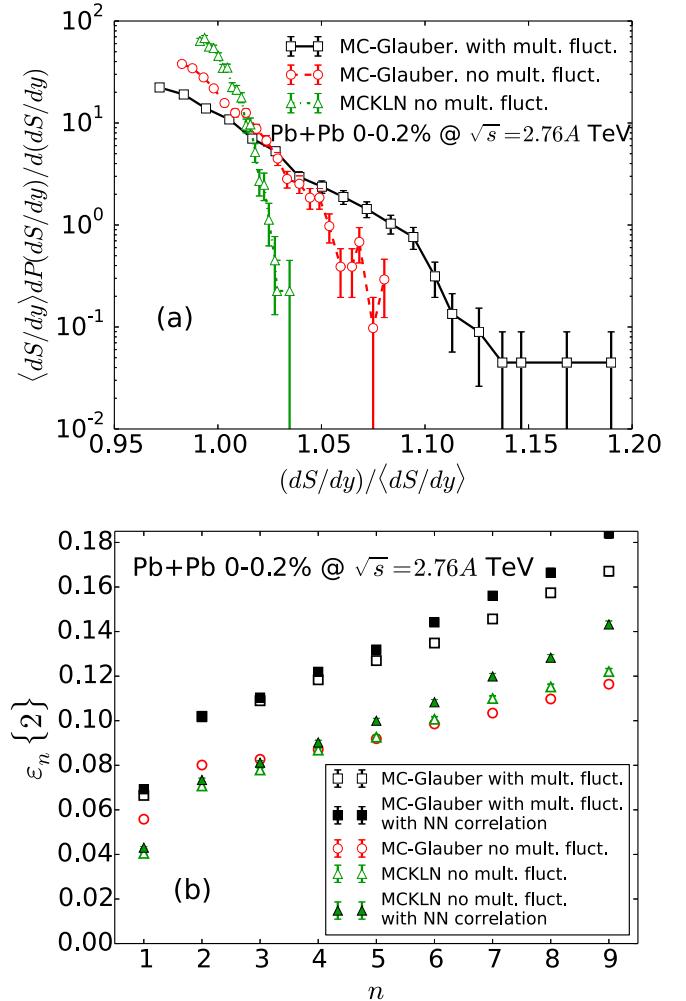


FIG. 4. (Color online) The initial total entropy distribution (a) and the initial rms eccentricity $\varepsilon_n\{2\}$ as a function of harmonic order n (b) from the MC-Glb and MC-KLN models for 0–0.2 % ultracentral Pb + Pb collisions at 2.76 A TeV. The results shown with open symbols are calculated requiring a minimum internucleon distance (“hard core radius”) $r_{\min} = 0.9$ fm [20,21,23]. The filled symbols in (b) are obtained by sampling nucleon configurations that incorporate a realistic repulsive two-body nucleon-nucleon correlation [25].

²For the MC-KLN model we currently do not implement any collision-by-collision multiplicity fluctuations. An implementation in the MC-KLN model of KNO scaling in pp collisions can be found in Ref. [30].

for both initial condition models. Without pp fluctuations, the $\varepsilon_n\{2\}$ from the MC-KLN model are close to those from the MC-Glb model for $n \geq 3$ and about 10–30 % smaller than the MC-Glauber eccentricities for $n = 1$ and 2. Inclusion of pp fluctuations in the MC-Glb model leads to a significant increase of $\varepsilon_n\{2\}$ for all harmonics, ranging from 15% for $n = 1$ to almost 50% for $n = 9$. We also include results (shown by filled symbols) which sample realistic nucleon configurations of a lead nucleus in the presence of repulsive two-nucleon correlations [25]. For both the MC-Glb and MC-KLN models, realistic two-body nucleon-nucleon correlations result in low-order eccentricities that are very close to those obtained when simply imposing (as suggested in [20,21]) a minimum internucleon distance (“hard core radius”) $r_{\min} = 0.9$ fm in the Monte Carlo sampling of the nucleon positions from nuclear density distribution. Higher-order ε_n with $n \gtrsim 6$ are about 10% larger for samples containing realistic nucleon-nucleon correlations.

In the next section, we will evolve these initial conditions using viscous hydrodynamics with four different specific shear viscosities, $\eta/s = 0, 0.08, 0.12, 0.20$. For each set of runs we generate 1000 events which is sufficient for a statistical analysis of anisotropic flows.

III. PARTICLE SPECTRA AND THEIR FLOW ANISOTROPIES

In Fig. 5 we show the transverse momentum spectra of charged hadrons from the MC-Glb and the MC-KLN models, hydrodynamically evolved with different η/s values. In ultracentral collisions, we find that the shear viscosity has only minor effects on the slope of the charged hadron spectra.

The MC-Glb initial conditions, which include pp multiplicity fluctuations, result in slightly flatter (harder) charged particle spectra compared to the MC-KLN model. This is because the additional collision-by-collision multiplicity fluctuations increase the bumpiness of the initial density profiles

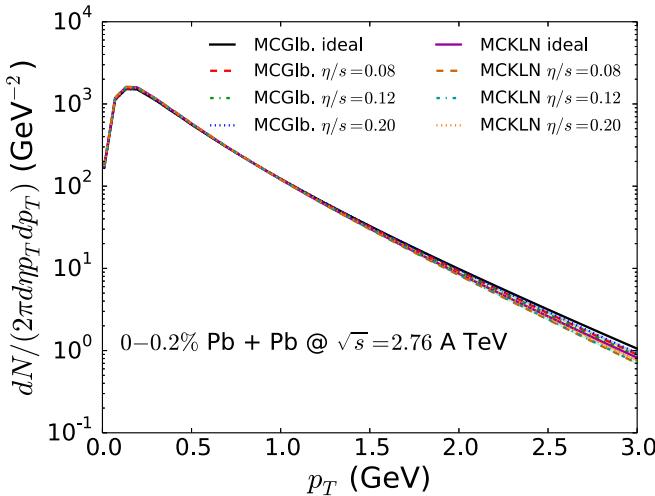


FIG. 5. (Color online) Charged hadron p_T -spectra from the MC-Glb and MC-KLN models, for different specific shear viscosities as indicated, for Pb + Pb collisions of 0–0.2 % centrality at $\sqrt{s} = 2.76$ A TeV.

TABLE II. The total yield of charged hadrons and their mean p_T in 0–0.2 % in Pb + Pb collisions at the LHC. In each set of runs we fixed the overall normalization factor to the experimentally measured charged hadron multiplicity at 0–5 % centrality.

Model	$dN/d\eta _{ \eta <0.5}$	$\langle p_T \rangle$ (GeV)
MC-Glb ideal	1793.85 ± 1.02	0.715 ± 0.001
MC-Glb $\eta/s = 0.08$	1799.96 ± 1.07	0.705 ± 0.001
MC-Glb $\eta/s = 0.12$	1780.44 ± 1.03	0.704 ± 0.001
MC-Glb $\eta/s = 0.20$	1797.76 ± 1.68	0.711 ± 0.001
MC-KLN ideal	1809.78 ± 0.60	0.688 ± 0.001
MC-KLN $\eta/s = 0.08$	1807.66 ± 0.43	0.682 ± 0.001
MC-KLN $\eta/s = 0.12$	1807.81 ± 0.43	0.685 ± 0.001
MC-KLN $\eta/s = 0.20$	1811.03 ± 0.53	0.692 ± 0.001

and thereby the initial pressure gradients, which drives the system to develop more radial flow. In Table II we summarize for the eight cases shown in Fig. 5 the total charged hadron yields and their mean p_T in 0–0.2 % ultracentral Pb + Pb collisions at the LHC. Ideal hydrodynamic simulations result in a larger mean p_T than the viscous ones. Due to the lack of viscous entropy production in an ideal fluid, the system needs to start with a higher peak temperature in order to produce the same final multiplicity. This results a larger pressure gradient and a $\sim 10\%$ longer fireball lifetime, which both lead to the development of stronger radial hydrodynamic flow compared to viscous evolution. Because of the large system size in Pb + Pb collisions, viscous effects on the fireball expansion are not as pronounced as in smaller collision systems. A growth of η/s by a factor 2.5 is seen to increase the charged hadron mean p_T by just over 1%.

Due to fluctuations, the p_T distributions of individual events are azimuthally anisotropic even for zero impact parameter. These anisotropies can be characterized by a series of (p_T and rapidity dependent) harmonic flow coefficients v_n and associated flow angles Ψ_n :

$$\frac{dN}{dy p_T dp_T d\phi_p} = \frac{dN}{dy p_T dp_T} \times \left(1 + 2 \sum_{n=1}^{\infty} v_n(p_T, y) \cos(\phi_p - \Psi_n(p_T, y)) \right). \quad (4)$$

In the absence of nonflow effects, the “two-particle cumulant flow” $v_n\{2\}$ is the root mean square of the fluctuating flow v_n in an event ensemble: $v_n\{2\} = \sqrt{\langle v_n^2 \rangle}$.

In Fig. 6 we show the charged particle p_T -integrated $v_n\{2\}$ as a function of its harmonic order n for both the MC-Glb and the MC-KLN models, for 0–0.2 % ultracentral Pb + Pb collisions at the LHC. The MC-Glb initial conditions account for pp multiplicity fluctuations. The top and bottom panels compare calculations based on two different approaches for including repulsive two-nucleon correlations within the nuclei, as described in the figure caption. The differences between them are seen to be small and within the experimental uncertainties of the measured p_T -integrated $v_n\{2\}$ values.

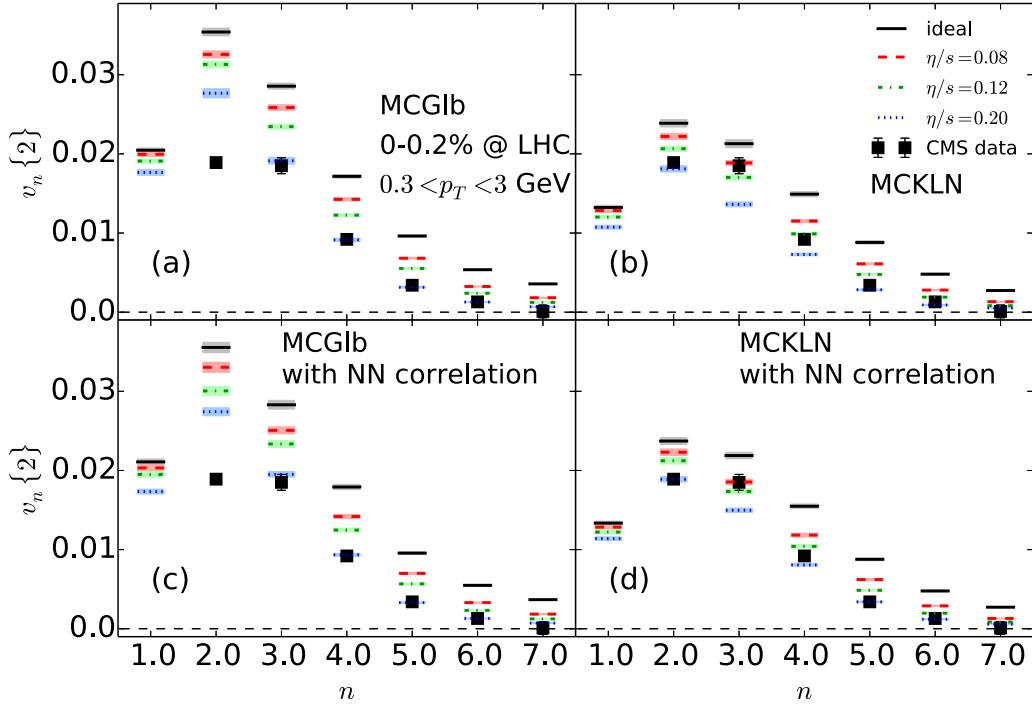


FIG. 6. (Color online) p_T -integrated $v_n\{2\}$ of charged hadrons in $2.76 A$ TeV $Pb + Pb$ collisions at 0–0.2 % centrality, from the MC-Glb (a,c) and the MC-KLN models (b,d) models. In (a,b) repulsive hard core correlations among nucleons are implemented by simply requiring a minimum internucleon distance $r_{\min} = 0.9$ fm when sampling the nucleon positions, in (c,d) realistic two-nucleon correlations [25] are included in the sampling routine. The solid squares show the CMS measurements [12] for comparison. As in the CMS measurements, $v_n\{2\}$ is integrated over p_T from 0.3 to 3 GeV.

For the p_T -differential flow observables discussed below, the corresponding differences are typically less than the line widths in the plots. In the rest of the paper we therefore show only calculations based on the more realistic modeling of repulsive NN correlations described in [25].

Since the initial eccentricities are small on average ($\varepsilon_n\{2\} \sim 0.07$ –0.12 for MC-KLN and $\varepsilon_n\{2\} \sim 0.12$ –0.17 for the MC-Glb model), nonlinear mode couplings [32] in the higher order ($n > 3$) anisotropic flow coefficients v_n , involving the product of multiple ε_n [33,34], are suppressed. We expect a dominantly linear response between the initial $\varepsilon_n\{2\}$ and the final $v_n\{2\}$.³ The conversion efficiency $v_n\{2\}/\varepsilon_n\{2\}$ is controlled by the specific shear viscosity of the medium, as seen in Fig. 6. Whereas all simulations capture the general trend of increasingly strong suppression of v_n for higher harmonics n , which is caused by the nonzero shear viscosity of the medium, both initial condition models fail to quantitatively reproduce the measured $v_n\{2\}$ spectrum ($v_n\{2\}$ as a function of n). This statement holds for all the η/s values explored in the simulations.

In the CMS data, the magnitude of $v_2\{2\}$ is very close to $v_3\{2\}$, which can not be reproduced, neither with MC-Glb nor

with MC-KLN initial conditions.⁴ In hydrodynamic simulations, the conversion efficiency from initial $\varepsilon_n\{2\}$ to final $v_n\{2\}$ is expected to decrease with increasing order n [2,3], roughly as $\ln[v_n\{2\}/\varepsilon_n\{2\}] \propto -\frac{\eta}{s}n^2$ [19]. Given this expectation and the hydrodynamic results shown in Fig. 9 of Ref. [3] and Fig. 6 here, an observed ratio of $v_2\{2\}/v_3\{2\} \approx 1$ in ultracentral $Pb + Pb$ events would require a ratio of the corresponding initial eccentricities $\varepsilon_2\{2\}/\varepsilon_3\{2\} \sim 0.5$ –0.7, depending on η/s . This is clearly inconsistent with the predictions from the MC-Glb and MC-KLN models shown in Fig. 4(b). Starting with an initial fluctuation spectrum featuring $\varepsilon_2\{2\} \simeq \varepsilon_3\{2\}$, as shown in Fig. 4(b), for reasonable values of η/s the final $v_2\{2\}$ from hydrodynamic simulations will always be about 30% larger than $v_3\{2\}$. Any theoretical calculation using such initial conditions will therefore overestimate the measured v_2/v_3 ratio (at least as long as only shear viscous effect are included). Within the current hydrodynamic framework, to reproduce a v_n hierarchy similar to the one observed by CMS, we need an initial condition model that provides a triangular deformation $\varepsilon_3\{2\}$

³A recent analysis [35] shows that even in central collisions there is a subleading contribution to the triangular flow v_3 that is driven by a different radial moment $\varepsilon_{3,5}$ of the initial triangularity. Still, the response to the linear superposition of these two dominant drivers is linear [35].

⁴The authors of Refs. [29,36] argue that accounting for short-range correlations between nucleons in the Monte Carlo sampling of the nucleon positions within the colliding nuclei and for bulk viscous effects somewhat alleviates this problem. However, the experimentally observed rapid change of the ratio $v_2\{2\}/v_3\{2\}$ in ultracentral multiplicity bins of increasing width, from a value ≈ 1.0 at 0–0.2 % centrality to ≈ 1.15 at 0–2.5 % centrality, rising to almost 1.5 at 2.5–5 % centrality [12], remains unexplained.

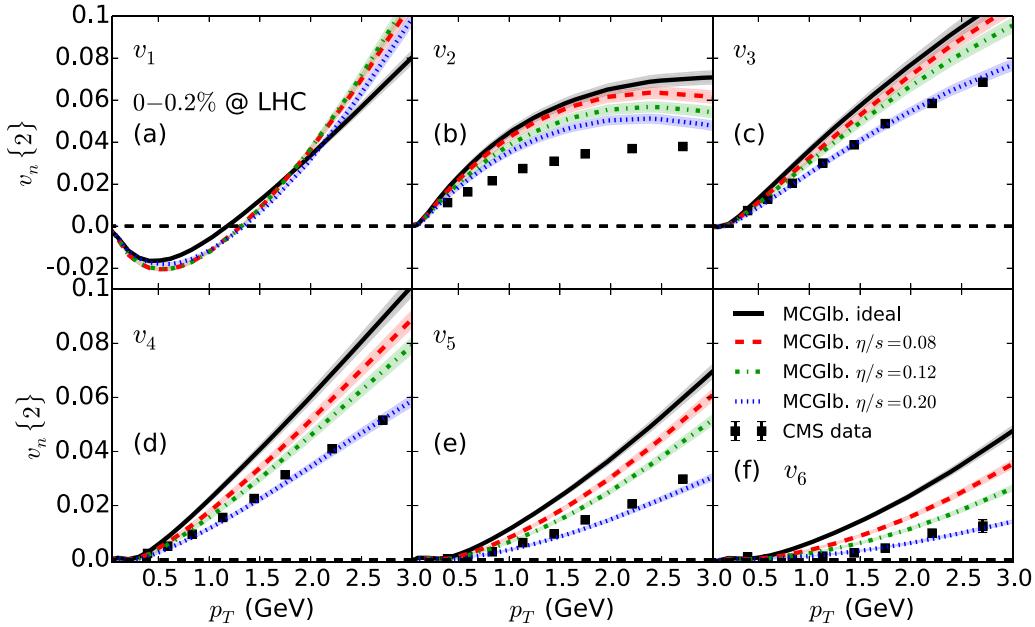


FIG. 7. (Color online) MC-Glb model calculations, including realistic NN correlations in the initial state, of the p_T -differential two-particle cumulant $v_n\{2\}$ ($n \in [1,6]$) of charged hadrons, compared with CMS measurements for 2.76 A TeV Pb + Pb collisions at 0–0.2% centrality [12].

321 that is significantly larger than $\varepsilon_2\{2\}$ in these ultracentral
322 collisions.

323 Comparing the overall magnitudes of the predicted $v_n\{2\}$
324 values with the CMS data [12] in Fig. 6 we find that the data
325 prefer a relatively large specific shear viscosity, for both MC-
326 Glb ($\eta/s \simeq 0.3$) and MC-KLN ($\eta/s \simeq 0.2$) initial conditions. In
327 the MC-Glb case, this conclusion differs from that drawn from
328 earlier studies that did not include pp multiplicity fluctuations.
329 The increased initial rms eccentricities caused by multiplicity
330 fluctuations generate larger rms flow anisotropies unless
331 tempered by a larger shear viscosity. Since our MC-KLN
332 initial conditions currently do not yet include the effects of pp
333 multiplicity fluctuations, the η/s values required by that model
334 may further increase once this model deficiency is repaired.

335 Next, we study the p_T -differential anisotropic flows,
336 $v_n(p_T)$. Since for ultracentral collisions the anisotropic flow
337 coefficients are dominated by the fluctuating bumpiness of
338 the initial energy density distributions, the associated flow
339 angles are randomly oriented relative to the (very small)
340 impact parameter and correlated with each other only through
341 the density fluctuations and not by overlap geometry. In
342 such fluctuation-dominated situations, the flow angles $\Psi_n(p_T)$
343 feature particularly strong p_T dependence, oscillating around
344 their p_T -averaged values in patterns that strongly fluctuate
345 from event to event [37]. Different flow observables corre-
346 spond, in general, to different moments of the probability
347 distribution that governs the event-by-event fluctuations of
348 v_n and Ψ_n . The specific flow extraction method used in the
349 CMS measurements determines the following p_T -differential
350 analog of the two-particle cumulant flow of charged hadrons:

$$v_n\{2\}(p_T) = \frac{\langle v_n(p_T)v_n^{\text{ref}} \cos[n(\Psi_n(p_T) - \Psi_n^{\text{ref}})] \rangle}{v_n^{\text{ref}}\{2\}}. \quad (5)$$

351 Here $v_n^{\text{ref}}\{2\}$ and Ψ_n^{ref} are the p_T -integrated n th order flows 351
352 obtained from a set of reference particles, taken from a 352
353 different subevent (usually a neighboring rapidity bin) to 353
354 eliminate nonflow and self-correlations. As done in the CMS 354
355 analysis, we choose all charged hadrons with transverse 355
356 momenta between 1 and 3 GeV as the reference particles; 356
357 in the experiment, this choice optimizes the sensitivity for 357
358 the measurement of higher order v_n . Since the theoretically 358
359 calculated momentum distributions are free of nonflow effects 359
360 and continuous, corresponding to effectively infinite statistics 360
361 in a single event, self correlations can be neglected, avoiding 361
362 the need for different subevents for signal and reference 362
363 particles.

364 In Figs. 7 and 8 we show the p_T -differential flows $v_n\{2\}(p_T)$ 364
365 at 0–0.2 % centrality from the MC-Glb and MC-KLN 365
366 models, compared with the CMS data. We find that the 366
367 direct flow $v_1\{2\}$ is insensitive to the η/s value used in the 367
368 simulations. It flips from negative to positive at $p_T \sim 1.2$ GeV 368
369 due to global momentum conservation. Comparing $v_2\{2\}(p_T)$ 369
370 through $v_6\{2\}(p_T)$ with the CMS data [12], our results using 370
371 the MC-Glb model with $\eta/s = 0.20$ provide a fairly good 371
372 description, except for the differential elliptic flow $v_2\{2\}(p_T)$ 372
373 which is overestimated by the calculation. The MC-KLN initial 373
374 conditions with $\eta/s = 0.20$ can describe $v_2\{2\}(p_T)$ better but 374
375 underestimate $v_3\{2\}(p_T)$. Although neither model describes 375
376 all the data equally well, the overall picture seems to favor a 376
377 QGP shear viscosity in the hydrodynamic simulations that lies 377
378 at the upper end of the explored range, $(\eta/s)_{\text{QGP}} \sim 0.20$. 378

IV. FLOW FACTORIZATION

379 In a single event, hydrodynamic flow effects on two-particle 379
380 correlations factorize into a product of single-particle flow 380
381

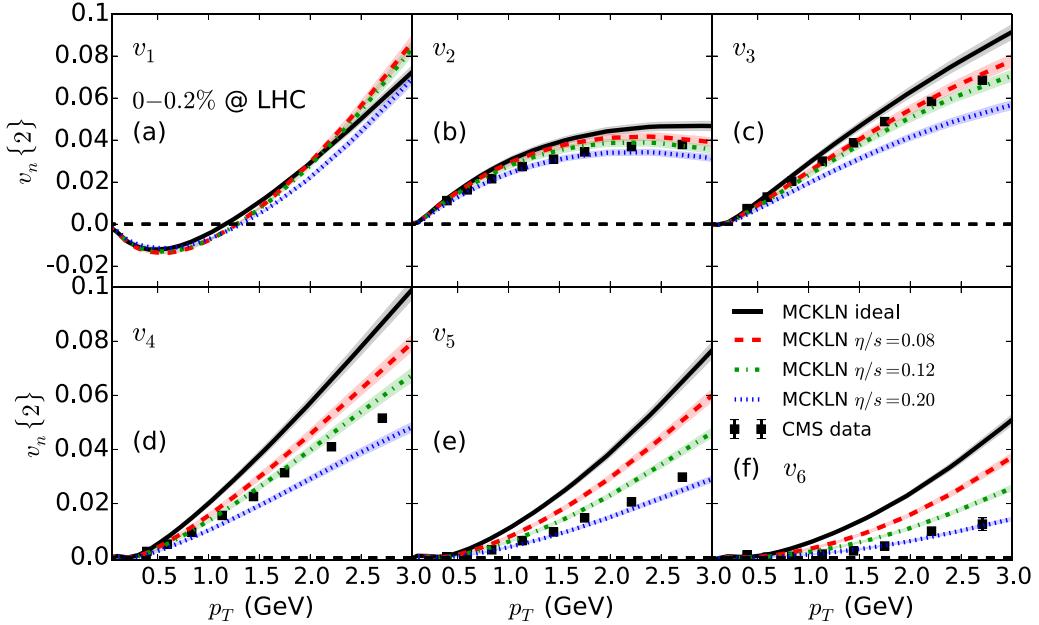
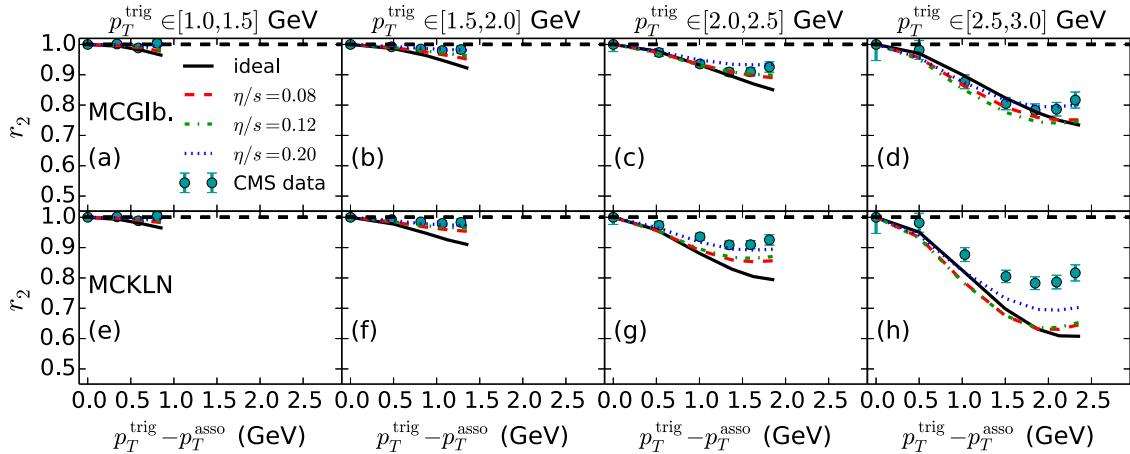
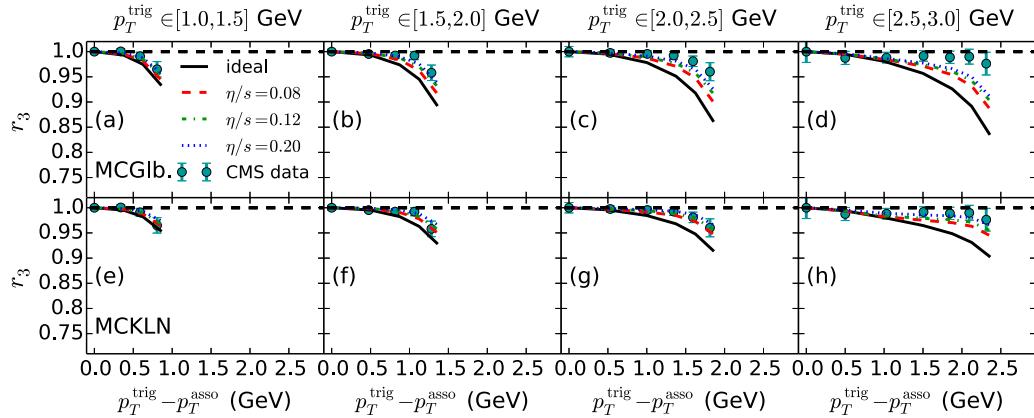


FIG. 8. (Color online) Similar to Fig. 7, but for MC-KLN initial conditions.

coefficients [38,39]. Due to event-by-event flow fluctuations this factorization is broken in measurements that are based on event averaged observables [37,39]. The factorization breaking effects can be quantified by the “flow factorization ratios”


$$r_n(p_{T1}, p_{T2}) := \frac{V_{n\Delta}(p_{T1}, p_{T2})}{\sqrt{V_{n\Delta}(p_{T1}, p_{T1})V_{n\Delta}(p_{T2}, p_{T2})}} = \frac{\langle v_n(p_{T1})v_n(p_{T2}) \cos[n(\Psi_n(p_{T1}) - \Psi_n(p_{T2}))] \rangle}{\sqrt{\langle v_n^2(p_{T1}) \rangle \langle v_n^2(p_{T2}) \rangle}}, \quad (6)$$

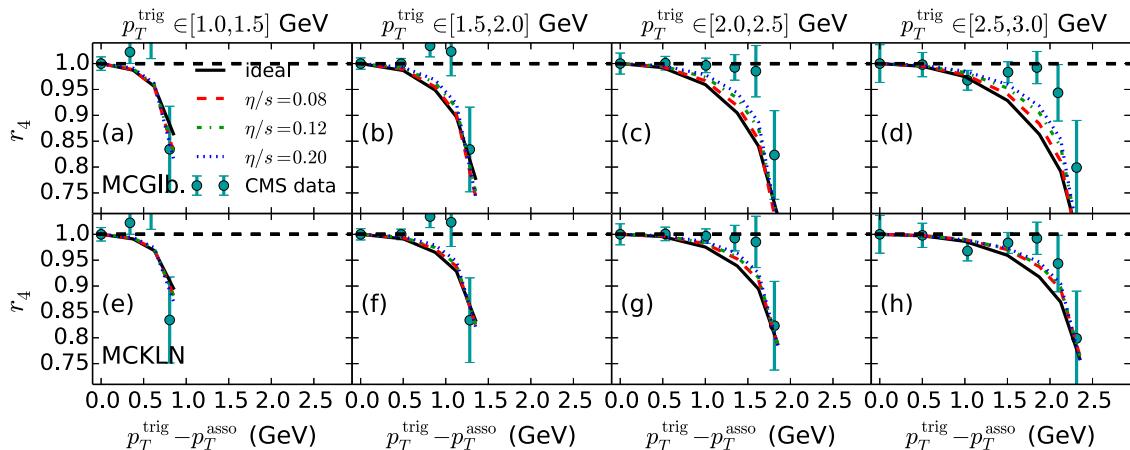

where $V_{n\Delta}(p_{T1}, p_{T2})$ are the two-particle differential flow coefficients [37,39] characterizing the correlation between a “trigger particle” at transverse momentum $p_T^{\text{trig}} = p_{T1}$ and an “associated particle” from the same event at $p_T^{\text{asso}} = p_{T2}$. A

deviation of this ratio from one indicates that flow factorization is broken. In fact, if r_n is larger than one, factorization must be broken by nonflow effects—hydrodynamic flow fluctuations always lead to $r_n \leq 1$ [39].

In Figs. 9–11 we show the flow factorization ratios $r_{2,3,4}$ at 0–0.2 % centrality, for different values of η/s . For the given ranges of trigger particle transverse momentum, these ratios are shown as a function of $p_T^{\text{trig}} - p_T^{\text{asso}}$ and compared with the CMS measurements [12].

Figure 9 reveals that in ultracentral Pb + Pb collisions the ratio r_2 exhibits a large breaking of flow factorization at large $p_T^{\text{trig}} - p_T^{\text{asso}}$. This breaking is not due to the onset of nonflow effects at large p_T as originally suspected [38], but due to flow fluctuations caused by initial-state fluctuations and very well described by hydrodynamic evolution of the latter. We have checked that about half of the factorization breaking arises

FIG. 9. (Color online) Flow factorization ratio $r_n(p_T^{\text{trig}}, p_T^{\text{asso}})$ ($n = 2, 3, 4$) from model calculations with MC-Glb (a–d) and MC-KLN (e–h) initial conditions, ultracentral 2.76 A TeV Pb + Pb collisions at 0–0.2 % centrality. Four values of η/s were explored in each case, as indicated. Theoretical results are compared with measurements by the CMS collaboration [12].


FIG. 10. (Color online) Similar to Fig. 9, but for $n = 3$.

from the flow angle fluctuations [37] while the other half comes from fluctuations of the magnitudes the anisotropic flows. The figure shows that η/s affects the ratio r_2 nonmonotonically, and we found that this is associated with a change in the relative contribution of v_n and Ψ_n fluctuations to the breaking of flow factorization. This may indicate a nontrivial interplay of viscous damping effects on the fluctuations in flow magnitude and flow angle. Indeed, our studies showed that increasing the shear viscosity suppresses v_n fluctuations but strengthens flow-angle correlations [26].

Comparing the upper panels with the lower ones in Fig. 9, we find that, irrespective of the choice of η/s , the ratio r_2 deviates from 1 more strongly when we use MC-KLN initial conditions than for MC-Glb profiles. Similar statements, but with the opposite sign, hold for r_3 and r_4 , shown in Figs. 10 and 11: in their case, the factorization breaking effects are weaker for MC-KLN initial conditions than for MC-Glb ones, again with little sensitivity to η/s . This implies that r_n actually responds more strongly to changes in the initial fluctuation spectrum than to variations of the shear viscosity. The CMS v_2 factorization breaking data in ultracentral collisions, shown in Fig. 9, favor MC-Gb-like initial-state fluctuations over the MC-KLN ones, but Figs. 10 and 11 lead to the opposite conclusion: while the flow factorization

breaking effects for triangular (r_3) and quadrangular flow (r_4) are smaller than for elliptic flow (r_2), and therefore harder to measure, they seem to be slightly better described by hydrodynamics with MC-KLN initial conditions than for MC-Glb initial profiles. While the sensitivity to η/s is small, r_3 and r_4 appear to give a slight preference to larger η/s values, consistent with the qualitative conclusion drawn in the preceding section from the overall trend of the v_n power spectrum.

In summary, flow factorization breaking effects appear to open a window on the initial fluctuation spectrum that is only slightly blurred by uncertainties in the shear viscosity during the dynamical evolution from initial to final state. This observable therefore complements the n dependence of the magnitudes of the p_T -integrated flow coefficients $v_n\{2\}$ for which shear viscosity effects dominate over variations in the initial-state fluctuation spectrum. While neither the MC-Glb nor the MC-KLN initial fluctuation spectrum allows to quantitatively reproduce all available data simultaneously, this observation suggests that, by using the full complement of experimentally accessible flow and fluctuation observables, it will in the future be possible to identify the correct initial-state model *and, at the same time, quantify the quark-gluon plasma transport properties.*

FIG. 11. (Color online) Similar to Fig. 9, but for $n = 4$.

V. CONCLUSIONS

455 In this paper, we presented anisotropic flow studies
 456 for 0–0.2 % ultracentral $\text{Pb} + \text{Pb}$ collisions at the LHC,
 457 using the MC-Glb and the MC-KLN initial condition
 458 models and evolving the system hydrodynamically with
 459 $\eta/s = 0, 0.08, 0.12$, and 0.20. In the MC-Glb model, we
 460 implement multiplicity fluctuations in the initial state, which
 461 boost the initial eccentricities $\varepsilon_n\{2\}$ for $n \leq 9$ by 15–45 %.
 462 A comparison with CMS data reveals that both MC-Glb
 463 and MC-KLN models fail to reproduce the p_T -integrated
 464 v_n hierarchy, especially the $v_2\{2\}/v_3\{2\}$ ratio. Further
 465 comparisons with the p_T -differential v_n tend to favor a
 466 relatively large average value of $\eta/s \gtrsim 0.2$ for the medium.

467 We found a large breaking of flow factorization for the
 468 elliptic flow coefficient in ultra-central collisions. Both the
 469 fluctuations of the flow magnitude and of the flow angle
 470 are important contributors to this breaking. Although our

471 simulations can not fully reproduce the measured v_n spectrum,
 472 calculations of the r_n agree overall quite well with the CMS
 473 measurements. All qualitative features and trends of the CMS
 474 data are correctly reproduced by the hydrodynamic model.
 475 Consistent with the conclusion from the v_n comparison, the
 476 CMS r_n data again slightly favor $\eta/s \sim 0.2$ over smaller values
 477 of the average specific shear viscosity during the dynamical
 478 evolution.

ACKNOWLEDGMENTS

479 We acknowledge fruitful and stimulating discussion with
 480 Wei Li. This work was supported by the U.S. Department of
 481 Energy, Office of Science, Office of Nuclear Physics under
 482 Awards No. DE-SC0004286 and (within the framework of the
 483 JET Collaboration) DE-SC0004104, and in part by the Natural
 484 Sciences and Engineering Research Council of Canada.

[1] U. Heinz and R. Snellings, *Annu. Rev. Nucl. Part. Sci.* **63**, 123 (2013).

[2] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, *Phys. Rev. C* **82**, 034913 (2010).

[3] B. Schenke, S. Jeon, and C. Gale, *Phys. Rev. C* **85**, 024901 (2012).

[4] B. Müller and J. L. Nagle, *Ann. Rev. Nucl. Part. Sci.* **56**, 93 (2006).

[5] B. Müller, J. Schukraft, and B. Wyslouch, *Ann. Rev. Nucl. Part. Sci.* **62**, 361 (2012).

[6] P. Danielewicz and M. Gyulassy, *Phys. Rev. D* **31**, 53 (1985).

[7] G. Policastro, D. T. Son, and A. O. Starinets, *Phys. Rev. Lett.* **87**, 081601 (2001); P. K. Kovtun, D. T. Son, and A. O. Starinets, *ibid.* **94**, 111601 (2005).

[8] H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, *Phys. Rev. Lett.* **106**, 192301 (2011); **109**, 139904(E) (2012).

[9] M. Luzum and J.-Y. Ollitrault, *Nucl. Phys. A* **904–905**, 377c (2013).

[10] K. Aamodt *et al.* (ALICE Collaboration), *Phys. Rev. Lett.* **107**, 032301 (2011).

[11] G. Aad *et al.* (ATLAS Collaboration), *Phys. Rev. C* **86**, 014907 (2012).

[12] S. Chatrchyan *et al.* (CMS Collaboration), *J. High Energy Phys.* 02 (2014) 088, additional details can be found in Physics Analysis Summary CMS-HIN-12-011, <http://cdsweb.cern.ch/record/1472724/files/HIN-12-011-pas.pdf>.

[13] A. P. Mishra, R. K. Mohapatra, P. S. Saumia, and A. M. Srivastava, *Phys. Rev. C* **77**, 064902 (2008); **81**, 034903 (2010).

[14] A. Mocsy and P. Sorensen, *Nucl. Phys. A* **855**, 241 (2011); P. Sorensen, B. Bolliet, A. Mocsy, Y. Pandit, and N. Pruthi, *Phys. Lett. B* **705**, 71 (2011).

[15] U. Heinz, *J. Phys. Conf. Ser.* **455**, 012044 (2013).

[16] P. Staig and E. Shuryak, *Phys. Rev. C* **84**, 034908 (2011); **84**, 044912 (2011).

[17] E. Shuryak and P. Staig, *Phys. Rev. C* **88**, 064905 (2013).

[18] R. A. Lacey, Y. Gu, X. Gong, D. Reynolds, N. N. Ajitanand, J. M. Alexander, A. Mwai, and A. Taranenko, <arXiv:1301.0165> [nucl-ex]; R. A. Lacey, D. Reynolds, A. Taranenko, N. N. Ajitanand, J. M. Alexander, F.-H. Liu, Y. Gu, and A. Mwai, <arXiv:1311.1728> [nucl-ex].

[19] R. A. Lacey, A. Taranenko, J. Jia, D. Reynolds, N. N. Ajitanand, J. M. Alexander, Y. Gu, and A. Mwai *et al.*, *Phys. Rev. Lett.* **112**, 082302 (2014).

[20] W. Broniowski and M. Rybczynski, *Phys. Rev. C* **81**, 064909 (2010).

[21] M. Luzum and H. Petersen, *J. Phys. G* **41**, 063102 (2014).

[22] T. Hirano and Y. Nara, *Phys. Rev. C* **79**, 064904 (2009).

[23] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, <arXiv:1409.8164> [nucl-th].

[24] Z. Qiu and U. Heinz, *Phys. Lett. B* **717**, 261 (2012).

[25] Z. Qiu, C. Shen, and U. Heinz, *Phys. Lett. B* **707**, 151 (2012).

[26] M. Alvioli, H.-J. Drescher, and M. Strikman, *Phys. Lett. B* **680**, 225 (2009).

[27] W. Broniowski, M. Rybczynski, and P. Bozek, *Comput. Phys. Commun.* **180**, 69 (2009).

[28] G. Y. Qin, H. Petersen, S. A. Bass, and B. Müller, *Phys. Rev. C* **82**, 064903 (2010); G. Y. Qin and B. Müller, *ibid.* **89**, 044902 (2014).

[29] G. S. Denicol, C. Gale, S. Jeon, J.-F. Paquet, and B. Schenke, <arXiv:1406.7792> [nucl-th].

[30] A. Dumitru and Y. Nara, *Phys. Rev. C* **85**, 034907 (2012).

[31] D. Teaney and L. Yan, *Phys. Rev. C* **83**, 064904 (2011).

[32] Z. Qiu and U. Heinz, *Phys. Rev. C* **84**, 024911 (2011).

[33] F. G. Gardim, F. Grassi, M. Luzum, and J. Y. Ollitrault, *Phys. Rev. C* **85**, 024908 (2012).

[34] D. Teaney and L. Yan, *Phys. Rev. C* **86**, 044908 (2012).

[35] A. Mazeliauskas and D. Teaney, *Phys. Rev. C* **91**, 044902 (2015).

[36] J. B. Rose, J. F. Paquet, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, and C. Gale, *Nucl. Phys. A* **931**, 926 (2014).

[37] U. Heinz, Z. Qiu, and C. Shen, *Phys. Rev. C* **87**, 034913 (2013).

[38] K. Aamodt *et al.* (ALICE Collaboration), *Phys. Lett. B* **708**, 249 (2012).

[39] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, *Phys. Rev. C* **87**, 031901(R) (2013).