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HoTCoffeeh (Hanbury Brown-Twiss Correlation functions and radii from event-by-event
hydrodynamics) is a new computational tool which determines Hanbury Brown-Twiss (HBT)
charged pion (π+) correlation functions and radii for event-by-event (EBE) hydrodynamics with
fluctuating initial conditions in terms of Cooper-Frye integrals, including resonance decay contribu-
tions. In this paper, we review the basic formalism for computing the HBT correlation functions and
radii with resonance decay contributions included, and discuss our implementation of this formal-
ism in the form of HoTCoffeeh. This tool may be easily integrated with other numerical packages
(e.g., [1]) for the purpose of simulating the evolution of heavy-ion collisions and thereby extracting
predictions for heavy-ion observables.

PACS numbers: 25.75.-q, 12.38.Mh, 25.75.Ld, 24.10.Nz

I. INTRODUCTION

Hanbury Brown-Twiss (HBT) interferometry (also
known as femtoscopy) is a technique which has been
used successfully over the past several decades of heavy-
ion physics to probe the spatio-temporal and dynamical
properties of freeze-out surfaces in relativistic heavy-ion
collisions. The observables derived from HBT interfer-
ometry, known as the HBT radii, thus provide a window
into the shapes and sizes of these collisions. Recently,
the notion of studying the HBT radii on a collision-by-
collision (or event-by-event) basis has been raised [2–4].
This has motivated two distinct questions: (1), whether
event-by-event distributions of HBT radii (or HBT dis-
tributions) are even experimentally accessible, and (2),
if they are, what information they might contain about
the properties of heavy-ion collisions. The studies pre-
sented in Refs. [2–4] have answered the first question
in the affirmative, and have addressed the second ques-
tion by demonstrating that experimental measurements
of the statistical moments of HBT distributions could
potentially yield sensitivity to other interesting quanti-
ties, such as the value (and temperature dependence) of
the specific shear viscosity η/s in the quark-gluon plasma
(QGP). Probing HBT distributions experimentally may
therefore yield valuable insights into the properties of rel-
ativistic heavy-ion collisions.

One of the most successful theoretical and phenomeno-
logical approaches to date for understanding the proper-
ties of heavy-ion collisions involves numerically simulat-
ing the various stages of their evolution on an event-by-
event basis, and using these simulations to make predic-
tions which can be compared with experimental measure-
ments of event-by-event heavy-ion observables. In partic-
ular, a great deal of attention has been paid in this regard
to event-by-event fluctuations of observables related to
radial flow (

〈
pT
〉
) [5, 6], anisotropic flow (vn) [7–9], total

multiplicity (N ch) [10–12], and so on. To extend the suc-
cesses of this event-by-event hydrodynamic paradigm to

include the HBT radii, then, clearly requires the ability
to simulate HBT analyses on an event-by-event basis.

An essential component of any HBT analysis, whether
experimental or theoretical, involves properly account-
ing for the presence of resonance decay contributions to
the final pion yields. In the case of experimental HBT,
these resonance decay contributions are a contaminating
factor which can never be completely eliminated. Theo-
retically, on the other hand, the resonance decay contri-
butions must be computed separately, in addition to the
thermally produced (or “directly emitted”) pions of inter-
est. Since the effects of resonances cannot be completely
separated experimentally from the effects of direct pion
emission, an apples-to-apples comparison between theory
and experiment therefore requires theoretical analyses to
compute the HBT radii with the resonance decay con-
tributions included. Thus, before the experimental ac-
cessibility of HBT distributions (and their connections
to other aspects of heavy-ion physics) can be systemat-
ically explored from the perspective of hydrodynamics,
one must first be able to compute the HBT radii on an
event-by-event basis, with all relevant resonance decay
contributions included.

In the context of numerical simulations of heavy-ion
collisions, such as those considered here, there are at least
two different possible approaches to accomplishing this
[13]. The first involves terminating the hydrodynamic
evolution prior to kinetic freeze-out, converting the en-
tire system to a collection of interacting hadrons whose
initial distributions (at the point of conversion) are sam-
pled from Cooper-Frye distributions [14], and allowing
those hadrons to scatter microscopically until all inter-
actions cease because the matter has become too dilute.
Such an approach is typically called a “hybrid” approach
[15]. The second approach involves applying a hydrody-
namic description of the system all the way until the en-
tire system has reached kinetic freeze-out, implemented
as a sharp transition to free-streaming particles on the
so-called freeze-out hypersurface Σf . This approach is
often termed a “purely hydrodynamic” approach. The
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hybrid approach has the advantage of describing the ac-
tual physical situation in heavy-ion collisions more re-
alistically: two-particle correlations are always probed
experimentally with only a finite number of particles per
event. This means that, in order to obtain good statis-
tical precision, the hadronic “afterburner” must be run
multiple times on a single hydrodynamic event. In the
purely hydrodynamic approach the two-particle correla-
tions (and therefore the associated HBT radii) are com-
puted as Cooper-Frye integrals [14] of the phase-space-
distribution function over the freeze-out surface which
provides results without statistical uncertainties (in ef-
fect implementing the assumption that each event emits
an infinite number of particles). In this paper, we adopt
the purely hydrodynamic approach.

As we discuss below, this problem is computation-
ally complex, especially when the ∼ 1700 pion producing
decay channels of the ∼ 340 species of resonances with
masses below 2 GeV created in the collision are included,
as discussed in Ref. [16]. In fact, this complexity is the
primary reason that the studies [2–4] omitted the reso-
nance decay contributions from their analyses. In this
paper, we introduce a code designed to address the chal-
lenge of efficiently computing HBT correlation functions
and radii (with all resonance decay effects included) from
pure hydrodynamics on an event-by-event basis, thereby
allowing a systematic exploration of HBT distributions in
heavy-ion collisions to be performed within a reasonable
timeframe.

This paper is organized as follows. In Sec. II B, we will
define the two-particle correlation function, and Sec. II C
will show how the HBT radii are extracted from the corre-
lation function. In order to interpret these radii in terms
of spatio-temporal structure of the emitting source, we
will show in Sec. II E how they may be computed directly
from the emission function which defines the emission
probability along the freeze-out surface. In particular, we
will show that the HBT radii may be determined from
the Fourier-transform of the emission function, and will
use this feature to show how they can be related directly
to the emission function. The emission function, in turn,
will generally receive contributions from particles emit-
ted directly by the source, as well as from particles which
are decay products of other directly emitted particles. In
Sec. II F, we will show how to include resonance decay
effects in the definition of the emission function, thus al-
lowing us to explore the corresponding effects induced
by these resonance decay contributions to the extracted
HBT radii. Finally, in Sec. III, we will present some of
the numerical results obtained using our code, and show
how these results compare with the results of previous
theoretical HBT analyses.

II. HBT FORMALISM

The formalism needed for the application of HBT in-
terferometry [17–19] to relativistic heavy-ion collisions

(a.k.a. femtoscopy) is well established, and the reader is
referred to Refs. [20–25] for reviews. For a self-contained
presentation we review here briefly only the most essen-
tial definitions and relations.

A. Correlation functions

The fundamental object of HBT interferometry is the
two-particle momentum correlation function among pairs
of particles from a single collision event,

C(~p1, ~p2) ≡
Ep1Ep2

d6N
d3p1d3p2(

Ep1
d3N
d3p1

)(
Ep2

d3N
d3p2

) . (1)

Even at Large Hadron Collider (LHC) energies the num-
ber of particle pairs emitted from a single collision is,
however, not large enough to measure this correlation
function as a function of all six momentum components
with adequate statistical precision. Instead of Eq. (1) ex-
periments therefore measure the ensemble-averaged cor-
relation function

Cavg(~p1, ~p2) ≡

〈
Ep1Ep2

d6N
d3p1d3p2

〉
ev〈

Ep1
d3N
d3p1

〉
ev

〈
Ep2

d3N
d3p2

〉
ev

(2)

where the signal pairs in the numerator and the prod-
uct of single-particle distributions in the denominator
(obtained from collecting uncorrelated pairs from mixed
events [24]1) are averaged over sufficiently large sets of
collision events with identical event characteristics:

〈· · ·〉ev ≡
1

Nev

Nev∑
k=1

(· · ·)k . (3)

B. HBT radii

The correlation function (2), after being corrected
for final-state interactions, exhibits an enhancement for
bosons (or a depletion for fermions) near ~q = 0 which,
for spatially Gaussian source functions, can be fitted to

1 In practice a much larger number of mixed-event pairs than signal
pairs are generated, to minimize the statistical uncertainty of
the denominator of (1). For simplicity, we ignore this and the
associated normalization factor of the mixed-event pairs.
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a Gaussian in q:2

Cfit(~q, ~K) ≡ 1 +λ( ~K) exp

− ∑
i,j=o,s,l

R2
ij(
~K)qiqj

 . (4)

Here we introduced the relative momentum qµ = pµ1−p
µ
2

between the two particles and their pair momentum
Kµ = 1

2 (pµ1 +pµ2 ), where pµi are on-shell four-momenta

with p2
1 = p2

2 = m2 (m being the mass of the (identical)
particles whose correlation is measured). Due to this on-
shell constraint the four-vectors q and K are orthogonal:

q ·K = 0. (5)

The set of parameters R2
ij(
~K) in the exponent of Eq. (4)

are known as the HBT radius parameters (or “HBT
radii” in short). They may be thought of as length scales
characterizing the “homogeneity regions” within the
emitting source from which particle pairs with pair mo-

mentum ~K [27] are emitted. The Gaussian parametriza-
tion (4) is exact for emission functions with a Gaus-
sian space-time structure. It is adequate even for non-
Gaussian sources as long as their deviations from Gaus-
sian structure are generated by additional length scales
that are very different from the source radii. Such addi-
tional length scales may be generated, for instance, by ex-
tremely long-lived resonances (e.g., the η′ meson) whose
decays contribute to the final pion yield but are spread
over a much larger region than the directly emitted pi-
ons. These long-lived resonances lead to a sharp peak in
the correlation function near ~q = 0 which is unresolvably
narrow from an experimental standpoint. The experi-
mental correlation function thus features only the much
wider (in q) structure associated with directly emitted pi-
ons and those from short-lived resonance decays [22, 28],
while the contribution from long-lived resonances is in-
visible in the correlation function and thereby apparently
reduces its value at ~q = 0. This reduction effect is ac-

counted for by the “intercept parameter” λ( ~K) in the
functional form (4).

We refer to the extraction of HBT radii by a fit of the
data with Eq. (4) as the Gaussian fit (or GF) method.
In the sum in the exponent, o, s, l denote the outward,
sideward and longitudinal directions, respectively. These
form a Cartesian coordinate system, with l pointing along
the beam (or z-) direction and (o, s) spanning the trans-
verse plane. The outward direction points along the

2 The form of Eq. (4) neglects the effects of final-state interactions
such as the long-range Coulomb repulsion which is inevitably
present between electrically charged pairs of identical particles
(e.g., π+). These interactions lead to a reduction of particle
pairs at small ~q. Fortunately, it is possible to account for these
interactions in the experimental construction of the correlation
function [26]. We here assume that the ensemble-averaged cor-
relation function (2) represents such a Coulomb-corrected cor-
relation function, and focus on the correlation effects caused by
quantum statistics.

transverse pair momentum ~KT and forms an azimuthal

angle ΦK with the impact parameter~b defining the x-axis
(see Fig. 1).

FIG. 1: (Color online) The out-side-long (osl) coordinate sys-

tem used for defining the HBT radii. Here, ~r, ~p1,2, ~q and ~K
are seen projected into the transverse plane, so that the trans-
verse component of ~K makes an angle ΦK with the x-axis,

defined to point in the direction of the impact parameter ~b
( or a proxy for it, such as the elliptic flow angle Ψ2). The
longitudinal direction (i.e., the z-direction) is defined to point
out of the page.

C. The emission function

Particle emission is characterized by the emission func-
tion S(x, p), a single-particle Wigner function describ-
ing the phase-space distribution of the emitted particles.
If averaged over phase-space volumes � h3 it is posi-
tive definite and describes the probability for emitting a
particle with momentum p from point x. The emission
function corresponding to the sudden freeze-out of a hy-
drodynamic fluid on a freeze-out surface Σf is a classical
phase-space distribution and given by the Cooper-Frye
prescription [14, 29, 30]

S(x, p) =
1

(2π)3

∫
Σf

p · d3σ(y) δ4(x−y) f(y, p) , (6)

f(x, p) = f0 (x, p) + δf (x, p)

=
1

e(p·u−µ)/T−1
+
χ(p2)pµpνπµν

2T 2(E+P)
f0(1+f0).(7)

Here the distribution function on Σf is written as the
sum of a local equilibrium distribution f0 and a viscous
correction δf . f0 is a function of the (space-time depen-
dent) temperature T , chemical potential µ, and hydrody-
namic flow velocity uµ(x) on Σf . The viscous correction
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δf [31, 32] depends on the shear stress tensor πµν on Σ,
normalized by the enthalpy density E+P (where E(T, µ)
and P(T, µ) are the energy density and thermal pressure
of the fluid, respectively) and contracted with the particle
momentum p, as well as on a scalar function χ(p2) whose
specific form varies with the properties of the interactions
among the constituents at freeze-out and which we take
as χ(p2) ≡ 1 [32].

If the two identical particles are emitted independently,
their quantum-statistical correlations can be expressed
through this single-particle emission function as

C(~q, ~K) ≈ 1 +

∣∣∣∣∫ d4xS(x,K)eiq·x∫
d4xS(x,K)

∣∣∣∣2 . (8)

The nature of the approximations indicated by the “≈”
sign is explained in the many available reviews of the for-
malism [21–25]; for high-energy collisions between heavy
ions they are quite accurate.

For a spatially Gaussian emission function the q-

dependence of C(~q, ~K) is Gaussian, and the (inverse)
width parameters of this Gaussian (i.e. the HBT radii)
can be directly extracted from its curvature at the ori-
gin q = 0, giving the following relations [33] between
the HBT radii and the space-time variances of the source
function S(x,K):

R2
ij =

〈
(xi−βit)(xj−βjt)

〉
S
−
〈
xi−βit

〉
S

〈
xj−βjt

〉
S
. (9)

Here the average
〈
. . .
〉
S

denotes the space-time average
over the emission function,

〈
f(x)

〉
S
≡
∫
d4x f(x)S(x,K)∫
d4xS(x,K)

, (10)

which depends on the pair momentum K. This method
for computing the HBT radii is called the source-
variances (SV) method.

Both the SV method and the Gaussian Fit (GF)
method described in the preceding subsection become
unreliable if the q-dependence of the correlation function

C(~q, ~K) exhibits strong deviations from a simple Gaus-
sian shape. As we discuss in detail below, the latter is the
case when decay products from a large set of resonances
with a range of lifetimes contribute to the particles used
for the HBT measurement.

D. Resonance decay contributions

For sudden freeze-out on a surface Σ, particles (say,
pions) are produced in two ways:

1. direct thermal emission from Σ according to
Eq. (6),

2. indirect emission through decays r → π of unstable
resonances which themselves are emitted according
to Eq. (6).

The full emission function is given as the sum of all these
contributions:3

S(x, p) ≡ Sπ(x, p) = Sdir
π (x, p) +

∑
r

Sr→π(x, p). (11)

The efficient calculation of the resonance decay con-
tributions to the two-pion correlation function, and the
study of their effect on its shape, are the main goals of
this work. We therefore briefly outline the calculation
of Sr→π(x, p) in the rest of this subsection, following the
notation of Ref. [28]. The components of the momentum
P of the parent resonance is denoted by capital letters
while those of the momentum p of the daughter pion are
labeled by lower-case letters.4

We work in the o, s, l coordinate system defined by the
momentum ~p of the daughter pion. For the calculation
of the two-particle correlation function we need Sπ(x, p)

at the pair momentum ~K, p 7→ K. In order to avoid con-
fusion between capital and lower-case letters (the capital
letter K is not associated with the resonance, but with
its decay products), we will make this substitution only
at the very end.

In this coordinate system the four-vectors describing
the parent resonance and daughter pion are given by

Pµ ≡ (E
P
, Po, Ps, Pl) (12)

=
(
M⊥ coshY, P⊥ cos Φ, P⊥ sin Φ, M⊥ sinhY

)
,

pµ ≡ (E, po, ps, pl) (13)

≡
(
m⊥ cosh y, p⊥, 0, m⊥ sinh y

)
.

The angle Φ in Eq. (12) is the azimuthal angle between
the transverse momenta of the parent resonance and
daughter pion.

In the parent resonance rest frame (with variables de-
noted by a ∗), the daughter particle has energy and mo-
mentum

E∗ =

√
m2 + p∗2 ,

p∗ =

√
[(M +m)2 − s][(M −m)2 − s]

2M
, (14)

3 Note that the sum over resonances r includes sums over all in-
termediate resonance states which can decay to, say, π+s: e.g.,
r → r1 → π+, r → r2 → r3 → π+, and so on. Below, Sr→π+

is calculated explicitly for the case when the resonance r is pro-
duced thermally. The generalization to resonances with other
phase-space distributions is straightforward, by substituting the
latter for Sdir

r (x, p) under the integral over the decay phase-space.
The interested reader will find a more thorough discussion of our
procedure in Ref. [16].

4 All particle information for the resonances included in our calcu-
lation is derived from the Particle Data Group (PDG) Review of
Particle Physics [34]. We have tabulated the necessary particle
data (e.g., branching ratios) in a form which was originally de-
veloped as a part of the Azhydro calculation [35]. This tabulated
data is included as part of the Github account where the entire
code used in the present work is available for download [36].
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where s = (
∑n
i=2 pi)

2
is the squared invariant mass of

the remaining n−1 daughter particles produced in the
(assumed) n-body decay. It can vary between s− =

(
∑n
i=2mi)

2
and s+ = (M −m)2. g(s) is the decay phase

space for the (n−1) unobserved particles. For two- and
three-body decays, the latter reads

• for two-body decays:

g(s) =
b

4πp∗
δ
(
s−m2

2

)
, (15)

• for three-body decays (s− = (m2 + m3)2, s+ =
(M −m)2):

g(s) =
Mb

2πs

√
[s− (m2+m3)2][s− (m2−m3)2]

Q(M,m,m2,m3)
. (16)

To obtain the daughter pion emission function at mo-
mentum p we must integrate the decay phase space over
all contributing momenta P of the parent resonance. We
introduce integration variables v ∈ [−1, 1], ζ ∈ [−π, π]
by writing

M⊥ = M⊥ + ∆M⊥ cos ζ , (17)

Y = y + v∆Y , (18)

where ∆M⊥ and ∆Y are obtained from the kinematic
limits associated with the decay through the following
relations [28]

M⊥,± = M⊥ ±∆M⊥ ≡
E∗Mm⊥ cosh(Y−y)

m2
⊥ cosh2(Y−y)− p2

⊥

±
Mp⊥

√
E∗2 + p2

⊥ −m2
⊥ cosh2(Y−y)

m2
⊥ cosh2(Y−y)− p2

⊥
,(19)

Y± = y ±∆Y ≡ y ± ln

(
p∗

m⊥
+

√
1 +

p∗2

m2
⊥

)
.(20)

With these definitions the contribution to Eq. (11) from
the decay of resonance r can be written as [28]

Sr→π(x, p) =
∑
k=±

∫
R

∫ ∞
0

Γ dτ e−Γτ Sdir
r

(
x− P kτ

M
,P k

)
,

(21)
where Γ is the width of the resonance r and∫

R

≡ M

∫ s+

s−

ds g(s)

∫ +1

−1

∆Y dv√
m2
⊥ cosh2(v∆Y )− p2

⊥

×
∫ π

0

dζ
(
M⊥ + ∆M⊥ cos ζ

)
. (22)

The sum over k = ± in Eq. (21) corresponds to the
following two solutions of the energy-momentum con-
straints between the parent and daughter momenta [28]:

P±≡ (M⊥ coshY, P⊥ cos Φ±, P⊥ sin Φ±,M⊥ sinhY ) ,
(23)

where

Φ± ≡ ±Φ̃ with cos Φ̃ ≡ m⊥M⊥ cosh(Y−y)− E∗M
p⊥P⊥

.

(24)

E. Resonance decay effects on the HBT radii from
the SV method

In this and the following subsection we describe the
effects of resonance decays on the HBT radii when us-
ing the source-variances (SV) and Gaussian fitting (GF)
methods for their computation.

In the SV method, Eqs. (9) and (10) show that com-
puting the HBT radii involves evaluating the following
integrals:

∫
x

S(x, p),

∫
x

xµS(x, p),

∫
x

xµxνS(x, p). (25)

In this and the following subsection, we return to
the standard Cartesian coordinate system with x ≡(
x0, x1, x2, x3

)
≡ (t, x, y,z). We use roman letters for

the coordinates x and y, to distinguish the coordinate y
from the momentum rapidity y. In this coordinate sys-
tem, the transverse momentum of the daughter pion has
momentum ~p⊥ = (px, py) = p⊥(cosφp, sinφp). We also
introduce the shorthand notation

∫
x
· · · ≡

∫
d4x . . . .

Substituting Eq. (11) for the full emission function
S(x, p) into, say, the last expression one finds

∫
x

xµxνS(x, p) =

∫
x

xµxνSdir
π (x, p)

+
∑
r

∫
x

xµxνSr→π(x, p), (26)

with similar expressions for the other integrals above.
The direct contribution in the first term is a stan-
dard Cooper-Frye integral and straightforwardly evalu-
ated with existing tools. We now show how to simplify
the sum over resonance contributions in the second term.

Substituting Eqs. (6), (21) and (22) into Eq. (26) and using the integration over x to eliminate the δ-function in
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(6) we find

∫
x

xµxνSr→π(x, p) =
1

(2π)
3

∑
k=±

∫
R

∫ ∞
0

Γdτ e−Γτ

∫
Σ

P k·d3σ(x̃)

(
x̃µ+

(
P k

M

)µ
τ

)(
x̃ν+

(
P k

M

)ν
τ

)
fr(x̃, P

k). (27)

The τ -integral can be done analytically leading to

∫
x

xµxνSr→π(x, p) =
∑
k=±

∫
R

[
{x̃µx̃ν}kr + αµk {x̃

ν}kr + ανk {x̃µ}
k
r + 2αµkα

ν
k {1}

k
r

]
, (28)

where we introduced the shorthands

αµk ≡
(
P k
)µ
/(ΓM), (29)

{. . .}kr ≡
1

(2π)
3

∫
Σ

P k · d3σ(x̃) {. . . } fr(x̃, P k) =

∫
x

{. . . }Sdir
r (x, P k). (30)

Similarly∫
x

xµSr→π(x, p) =
∑
k=±

∫
R

[
{x̃µ}kr + αµk {1}

k
r

]
,(31)∫

x

Sr→π(x, p) =
∑
k=±

∫
R

{1}kr . (32)

We refer to {1}kr , {x̃µ}kr , and {x̃µx̃ν}kr as space-time mo-
ments of the single-particle distribution for the resonance
r, evaluated at momentum P k. In general, each space-
time moment possesses a three-dimensional dependence
on the momentum P k, including the two-dimensional

transverse momentum ~P k⊥ and the rapidity Y characteriz-
ing the longitudinal motion. The additional assumption
of boost-invariance, however, allows us to simplify the
problem somewhat further, by enabling us to separate
out the dependence on Y .

Let us illustrate this with a few examples. Boost invari-
ance requires that all spatial observables (e.g., Tµν(x))
be independent of the space-time rapidity

ηs ≡
1

2
ln

(
t+ z

t− z

)
(33)

and that all momentum-space observables (e.g.,
Ep
(
dN/d3p

)
) are independent of the longitudinal

momentum-space rapidity

y ≡ 1

2
ln

(
Ep + pz
Ep − pz

)
. (34)

Distribution functions such as f(x, p) and S(x, p) are al-
lowed to depend only on the difference ηs−y. Then

Ep
dN

d3p
=

∫
x

S(x, p)

=

∫
d2r⊥

∫ ∞
0

τdτ

∫ ∞
−∞

dηs S(~r⊥, τ, ~p⊥, ηs−y)

=

∫
d2r⊥

∫ ∞
0

τdτ

∫ ∞
−∞

dη̃s S(~r⊥, τ, ~p⊥, η̃s)(35)

is automatically y-independent.

For source variances that depend on space-time rapid-
ity, however, eliminating the y-independence by a shift-
ing the space-time rapidity under the integral is no longer
possible. For instance

〈
t
〉
≡
〈
τ cosh ηs

〉
(~p⊥, y) ≡

∫
d2r⊥

∫ ∞
0

τ2dτ

∫ ∞
−∞

dηs cosh ηs S(~r⊥, τ, ~p⊥, ηs−y)/{1}

=

∫
d2r⊥

∫ ∞
0

τ2dτ

∫ ∞
−∞

dη̃s cosh (η̃s + y) S(~r⊥, τ, ~p⊥, η̃s)/{1}

= cosh y
〈
t
〉
y=0

+ sinh y
〈
z
〉
y=0

, (36)

where {1} ≡ {1}(p) ≡
∫
x
S(x, p) is y-independent. Similar identities hold for the other source variances which depend
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on t or z. Explicitly, they are:〈
z
〉
≡ cosh y

〈
z
〉
y=0

+ sinh y
〈
t
〉
y=0

, (37)〈
t2
〉
≡ cosh2 y

〈
t2
〉
y=0

+ sinh(2y)
〈
zt
〉
y=0

+ sinh2 y
〈
z2
〉
y=0

, (38)〈
z2
〉
≡ cosh2 y

〈
z2
〉
y=0

+ sinh(2y)
〈
zt
〉
y=0

+ sinh2 y
〈
t2
〉
y=0

, (39)〈
zt
〉
≡ cosh(2y)

〈
zt
〉
y=0

+ sinh(2y)
1

2

(〈
z2
〉

+
〈
t2
〉)

y=0
, (40)〈

yz
〉
≡ cosh y

〈
yz
〉
y=0

+ sinh y
〈
yt
〉
y=0

, (41)〈
xz
〉
≡ cosh y

〈
xz
〉
y=0

+ sinh y
〈
xt
〉
y=0

, (42)〈
yt
〉
≡ cosh y

〈
yt
〉
y=0

+ sinh y
〈
yz
〉
yp=0

, (43)〈
xt
〉
≡ cosh y

〈
xt
〉
y=0

+ sinh y
〈
xz
〉
y=0

. (44)

The remaining source variances do not depend on either
t or z and are thus (according to Eq. (35)) independent
of y. These equations show that the y-dependence of the
source variances can be calculated trivially from their
values at midrapitity y= 0. Hence, for boost-invariant

sources, we need to compute the space-time moments of
the source only on a two-dimensional grid at y = 0.

The source variances including resonance decay contri-
butions can now be written as

〈xµxν〉(p) =

∫
x

xµxνS(x, p)/{1}(p) (45)

=

[∫
x

xµxνSdir
π (x, p) +

∑
r

∑
k=±

∫
R

∫
x

(
xµxν+αµkx

ν+ανkx
µ+2αµkα

ν
k

)
Sdir
r

(
x, P k

)]/
{1}(p)

where αµk is defined in Eq. (29) and

{1}(p) =

∫
x

Sdir
π (x, p) +

∑
r

∑
k=±

∫
R

∫
x

Sdir
r (x, P k) = {1}dir +

∑
r

∑
k=±

∫
R

{1}kr . (46)

Equation (45) exposes most clearly the optimal way of
structuring the calculation of the source variances with
resonances, since each term under the sum of decay

phase-space integrals over resonance emission functions
has the generic form given in Eq. (30). We outline this
approach in Algorithm 1.

Since the source variances are here computed in the laboratory-fixed Cartesian coordinate system (t, x, y,z) while
the HBT radii are defined and measured in the osl-coordinate system, the last step in Algorithm 1 contains an
implicit transformation between these two coordinate systems. For this step we substitute for ~p the pair momentum
~K = (K⊥ cos ΦK ,K⊥ sin ΦK ,Kl). The necessary transformation rules are then (see Fig. 1)

xo = r cos(φ−ΦK) = x cos ΦK + y sin ΦK , (47)

xs = r sin(φ−ΦK) = −x sin ΦK + y cos ΦK , (48)

xl = z. (49)

Thus we find, for instance,〈
xoxl

〉
S

= cos ΦK〈xz〉+ sin ΦK〈yz〉

= cos ΦK

∫
x

xz S(x;KT ,ΦK)∫
x
S(x;KT ,ΦK)

+ sin ΦK

∫
x

yz S(x;KT ,ΦK)∫
x
S(x;KT ,ΦK)

, (50)
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Algorithm 1 Efficiently compute source variances with resonance decay contributions

1: for all resonance r and π+ do
2: Compute the set of quantities

∫
x
Sdir
r (x, p),

∫
x
xµ Sdir

r (x, p),
∫
x
xµxν Sdir

r (x, p) on a two-dimensional grid in ~p⊥ (e.g., p⊥
and φp), and use Eqs. (36)-(44) to obtain the dependence on the rapidity y

3: Use these grids to evaluate the various terms in the quantities (25) as described in Eq. (45)
4: end for
5: Sum the thermal and resonance decay contributions to obtain the full set of quantities

∫
x
S(x, p),

∫
x
xµ S(x, p), and∫

x
xµxν S(x, p)

6: Use these quantities to construct the full source variances, e.g.,

〈
xz
〉
S

=

∫
x
x z S(x, p)∫
x
S(x, p)

7: Compute the HBT radii from the complete set of the full source variances

and similarly for the other source variances in the osl-
coordinates. The HBT radii are then determined by in-
serting this set of quantities into the expression (9).

F. Resonance decay effects on the HBT radii from
the GF method

To apply the Gaussian Fit method we must first com-
pute the correlation function (8), by Fourier transforming
the full emission function (11). Starting from Eq. (21) we
find

S̃r→π(q, p) =

∫
x

eiq·x Sr→π(x, p)

=
∑
±

∫
R

∫ ∞
0

d(Γτ) exp

[
−Γτ

(
1− i q·P

±

MΓ

)]
×
∫
x

eiq·x Sdir
r (x, P±)

=
∑
±

∫
R

1

1− i q·P±MΓ

S̃dir
r (q, P±) , (51)

where in the first step we shifted the x-integration vari-
able before performing the τ -integration.

As noted in Eq. (5), the four components of q are not
independent, but constrained by orthogonality to the pair
momentum K:

q0 = ~β · ~q, ~β = ~K/K0 ≈ ~K/EK =
~K√

m2
π + ~K2

. (52)

Writing

~p1 = ~K +
~q

2
, ~p2 = ~K − ~q

2
, (53)

we obtain the useful relation

q0 ≡ E1 − E2 =
√
m2
π + ~p2

1 −
√
m2
π + ~p2

2

=

√
m2
π + ~K2 +

1

4
~q2 + ~q · ~K

−
√
m2
π + ~K2 +

1

4
~q2 − ~q · ~K. (54)

(55)

The Fourier transform is therefore not fully four-
dimensional since q0 is not an independent degree of free-
dom.5 Using Eq. (52) to eliminate q0 from Eq. (51), the
correlation function (8) can be written in terms of the
on-shell Fourier transform of the emission function as

C(~q, ~K) = 1 +
N(~q, ~K)

N(0, ~K)
, (56)

where6

N(~q, ~K) ≡
∣∣∣S̃dir
π (~q, ~K)

∣∣∣2 +

∣∣∣∣∣∑
r

S̃r→π(~q, ~K)

∣∣∣∣∣
2

+2
∑
r

Re
[
S̃dir
π (~q, ~K)S̃∗r→π(~q, ~K)

]
. (57)

After Eq. (56) has been computed the GF HBT radii are
obtained by fitting to the functional form (4). To com-

5 This is the underlying reason why a three-dimensional set of HBT
radii in the osl-coordinate system requires a set of source vari-
ances characterizing the source function in a four-dimensional
Cartesian coordinate system: since the Fourier transform is only
three-dimensional, thanks to the constraint on q0, it can only
relay three-dimensional information regarding the source struc-
ture. This means that the R2

ij , in general, necessarily represent
non-trivial convolutions of the spatial and temporal structure of
the freeze-out surface [22], so that an exclusively geometric inter-
pretation of the HBT radii will almost always produce insights
which are either misleading or simply incorrect.

6 We note that this expression corrects a typographical error in
[28] which omitted the complex conjugation from the last term
in Eq. (57).
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pute the thermal pion GF HBT radii one keeps only the
first term in the numerator and denominator of Eq. (56).

The on-shell constraint on q0 entails a subtlety for the
numerical evaluation of the decay phase-space integrals
in Eq. (51) that requires discussion. As described in the
Appendix, these integrals are computed by interpolat-
ing a precomputed momentum-space array of Fourier-
transformed emission functions S̃dir

r (q, P±). If we use
the on-shell constraint for q0 before computing this array,
it will be 8-dimensional, labeled by qx, qy, qz;P

k
T ,ΦP , YP

as well as additionally by KT and ΦK through the con-
straint (52)7. It is more economical to instead leave q0

initially unconstrained and evaluate S̃dir
r (q, P±) on a 7-

dimensional grid (qx, qy, qz, q
0;P kT ,ΦP , YP ), interpolating

q0 to the desired value q0 = ~q· ~K/EK only at the end of
the calculation. Details of the algorithm for computing
Eq. (56) are found in the Appendix.

G. Gaussian Fit procedure

By definition, the GF HBT radii must be determine by
fitting the correlation function (8) to the functional form
(4). The challenges of performing such fits are already
well-documented [37], and should be matched as closely
as possible to the experimental procedure. This proce-
dure comprises several key ingredients, including the fol-
lowing:

1. Distinguishing between one-dimensional and three-
dimensional Gaussian fits. In principle, there are
different ways of fitting of the correlation function.
One-dimensional fits are performed along a slice
of the correlation function along some axis in q-
space. By construction, such a fit optimally rep-
resents just this slice in a Gaussian form, without
constraints from other directions in q-space. By
contrast, a three-dimensional fit must represent not
just the correlation function slices along each axis
in q-space, but must also fit as closely as possible
points which lie off-axis as well. One-dimensional
and three-dimensional fits therefore yield some-
what different results, and it is crucial to recognize
that only the latter correspond to the most gen-
eral, three-dimensional HBT analyses which exper-
imentalists perform [26]. It is easy to appreciate
how these differences originate. Consider a correla-
tion function evaluated in N3

q bins in q-space, with
Nq bins along each axis, each spaced from −qmax

to +qmax, for simplicity. Now, consider separat-
ing the q-bins into those with |q| ≥ qmax/2 and
|q| < qmax/2 along each q-axis. Clearly, for the

7 Although our code can compute the HBT radii at any longitu-
dinal pair momentum KL, for simplicity we consider only mid-
rapidity pions (KL = 0) in this paper.

one-dimensional fits along each axis, assuming the
q-bins are equally spaced and have identical er-
ror bars, these fits will be equally weighted be-
tween the q-bins at |q| ≤ qmax/2 and those with
|q| < qmax/2, i.e., there will be an equal num-
ber Nq/2 of q-bins to fit in each interval. For
a simultaneous three-dimensional fit, on the other
hand, the same separation of the q-bins now yields
(Nq/2)3 = N3

q /8 q-bins with |q| < qmax/2 in each

direction, andN3
q−N3

q /8 = 7N3
q /8 q-bins which are

outside this region. The three-dimensional fit must
therefore fit a proportionately much larger num-
ber of q-bins at large, off-axis values of q than at
small, on-axis values of q. Thus, as we will see be-
low, three-dimensional fits will tend to better rep-
resent large-q structure of the correlation function,
while one-dimensional fits will tend to represent the
correlation function more closely near the origin
in q-space. Since the smallest lengthscales in the
system generate the widest structures in q-space,
this implies that three-dimensional fits will tend to
yield smaller estimates for the HBT radii than one-
dimensional fits.

2. Performing fit-range studies. One method com-
monly used for testing the convergence of a fit to a
correlation function involves varying the qmax of the
bins which are used in the fit [37]. Varying qmax in
this way constitutes a fit-range study. Conducting
such a study allows one to explore how the qual-
ity of the fit is affected by where the q-bins are
cut off. If qmax is too small, then the fit will over-
represent the shape of the correlation function at
the q-origin, and under-represent its shape at large-
q. An adequate fit to the entire correlation function
must therefore be stable with respect to choice of
qmax. Because of the difficulty of computing the
correlation function at the large number of points
required to reliably perform fit-range studies, we
currently have not implemented this feature in our
analysis.

3. Including experimental uncertainties. Estimation
and incorporation of systematic and statistical un-
certainties form an extremely intricate and involved
component of experimental HBT analyses. In gen-
eral, different q-bins are subject to different levels
of uncertainty, and this uncertainty directly affects
the quality of the fit which one extracts from the
correlation function. In order to provide a mean-
ingful comparison between the theoretically com-
puted correlation functions and those measured ex-
perimentally, it is essential to correctly account for
the presence of statistical uncertainties, especially
when the measured correlation function deviates
significantly from a Gaussian form.

After computing the correlation function (56), we extract
the GF HBT radii from it by performing a least-squares



10

fit to the form (4). To do this we minimize the χ2-
function for the correlation function, which we define by

χ2 ≡
N∑
k=1

[
C(~q(k), ~K)− Cfit(~q

(k), ~K)

σk

]2

, (58)

where C(~q(k), ~K) is the computed value of the correlation
function in the kth ~q-bin, the index k ranges over the

N total points (i.e., bins) for which C(~q, ~K) has been
computed.

For the results presented in this paper, we take σk =
10−3 for all k.8 This means that deviations of the fit
from the data points in the small-q region (where the

correlation function C(~q(k), ~K) is the largest) will make
larger contributions to the total χ2 of the fit than points
in the large-q region (with the exception that we omit the
point ~q = 0 from the fit, since it is not experimentally
accessible, and its omission has a negligible effect on the
fit radii). Our approach here differs from that adopted
in most experimental analyses, which fit the quantity

ln
(
C(~q(k), ~K)− 1

)
instead of C(~q(k), ~K). If we were to

compute HBT radii to be compared to experimental data
we would have to follow the experimental procedure.

The minimization itself is implemented numerically in
terms of standard GSL routines designed for this purpose.

As we have already observed, the fitting of the cor-
relation function is highly sensitive to the distribution
of points in ~q-space. In this paper, we choose the grid
of points to have a uniform spacing along the qx, qy,
and qz axes (the corresponding osl coordinates of any ~q-
point are then obtained with a positive rotation around
the z axis by angle ΦK according to Eqs. (49)). Af-
ter computing the correlation function for each of the N
~q-bins, we perform a full, three-dimensional fit of (56)
to (4) by minimizing the χ2-function (58). Here we do
not attempt to perform fit-range studies or mimic ex-
perimental error bars in our fitting procedure. This is
mostly because we find that resonance decays introduce
strong non-Gaussianity in the correlation function such
that the HBT radii extracted from a Gaussian fit depend
sensitively on the binning of the correlation function in
~q-space which must therefore be closely matched between
theory and experiment for meaningful comparisons.

III. RESULTS

Using the iEBE-VISHNU package [1] we generated an
ensemble of Nev = 1000 central (0-10%) Au+Au events
at
√
s = 200AGeV, and then used the HoTCoffeeh code

presented in this paper to compute the HBT correlation

8 σk is a placeholder for the uncertainty of the “data” (which in
our case are obtained from a calculation which, ideally, should
have zero uncertainty) to which the functional form (4) is fitted.

functions and radii for pion pairs, using both the SV and
GF methods for comparison. The hydrodynamic event
sample is identical with the one described and studied
in Ref. [4]; it assumes viscous fluid dynamic evolution of
the hot matter created in the collision with a constant
specific shear viscosity η/s = 0.08. In this section we
study in detail all systematic features of the HBT radii
associated with this hydrodynamic event ensemble and
compare our results qualitatively with those from earlier
studies of more schematic model sources [28] and of ideal
fluid dynamical simulations of smooth initial conditions
[37].

A. Correlation functions with and without
resonance decays

To build intuition for the qualitative influence of reso-
nance decay contributions on the shape of the two-pion
correlation function and the HBT radii associated with
it, we compare in Fig. 2 the correlation functions for di-
rectly emitted pions (dashed lines) with those obtained
from the full emission function including all resonance
decay contributions (solid lines).

While the correlation functions for directly emitted pi-
ons look pretty Gaussian (although a more quantitative
analysis exposes that this not really true along the ql di-
rection [28, 37]), adding the contributions from resonance
decays clearly distorts the shape of correlation function
in all three directions, making it much sharper than a
Gaussian near q = 0. In addition, the peak of the corre-
lation function at q = 0 never reaches the value 2 once
resonance decay pions are included, on account of the
long-lived resonances such as the η meson which con-
tribute to the pion yield in the denominator of the corre-
lation function but whose contribution to the numerator
is almost a δ-function at q = 0 and cannot be resolved ex-
perimentally, due to finite momentum resolution.9 Both
effects, the depression of the correlation peak at q = 0
and the non-Gaussian distortion of the ~q-dependence, are
stronger for pion pairs with small pair momentum K
and slowly die out at large pair momentum. For the
intercept λ, extracted as an additional fit parameter in
(4), this is shown in Fig. 3 (see also [28]). This reflects
the fact [42] that the decay phase-space favors low trans-
verse momenta for decay pions from heavy resonances
while at large transverse momenta the directly emitted
pions dominate. Radial flow reduces this bias [28] but
does not fully eliminate it. Furthermore, as noted in

[37], λ( ~K) may continue to deviate from unity even if
resonances decays are excluded, due to the inability of a

9 Another reason for suppressing the peak of experimentally mea-
sured correlation functions below the value of 2, not studied in
the present paper, could be a violation of the assumption of inde-
pendent particle emission, e.g. through phase coherence among
the emitted pions [38–41].
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FIG. 2: (Color online) Slices of the full ensemble-averaged correlation function Cavg (2) including all resonance decays (solid
lines) along the qo, qs and ql axes (from left to right), compared with the analogous results for directly emitted (“thermal”)
pions only (dashed lines), for three choices of the pair momentum, KT = 0, 0.4, and 1.0 GeV (from top to bottom). The

pair momentum ~KT was chosen to point in x-direction (ΦK = 0) such that qx = qo and qy = qs. The ensemble consists of
Nev = 1000 hydrodynamically evolved central (0-10% centrality) Au-Au collisions with η/s = 0.08 at

√
s = 200AGeV.

three-dimensional Gaussian fit to fully capture the non-
Gaussian ql dependence that survives even for thermally
emitted pions due to the boost-invariant longitudinal ex-
pansion of the source [28].

B. HBT radii including resonance decays: SV
method

In this subsection we study the HBT radii extracted
via the SV methods, their event-by-event distributions,
means and variances, for the same ensemble of 1000

events discussed above.

Figures 4 – 6 show the event-by-event distributions of
the ΦK-averaged sideward, outward and longitudinal ra-
dius parameters, respectively, normalized by their mean
values, for six different values of the pair momentum KT .
The left panels (a) show the full result, the right panels
(b) are obtained by removing the viscous δf correction
from Eq. (7). We see that δf has no obvious visible ef-
fect on these distributions. In the rest of this paper we
therefore always include the δf correction.

The shapes of these distributions show very little KT -
dependence for the sideward and longitudinal radii, with
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FIG. 3: (Color online) The intercept parameter λ( ~K) (defined

in Eq. (4)) as a function of ~K, for a three-dimensional Gaus-
sian fit to the full correlation function including resonances
shown in Fig. 2.

a∼ 10% width over the entire range ofKT values studied.
As seen in Fig. 7 below, the mean values of both R2

s and
R2
l decrease with increasing pair momentum; Figs. 4 and

6 imply that the widths of their distributions decrease in
sync with their mean values.

The similarly normalized width of the outward radius
parameter R2

o, shown in Fig. 5, strongly increases with
increasing pair momentum, doubling from about 15% at
small KT to more than 30% at KT = 1 GeV. As dis-
cussed in Refs. [2, 4], this increased variance at higher
KT can be attributed to the contribution to R2

o from the
emission duration, β2

T

(
〈t2〉−〈t〉2

)
, which strongly fluctu-

ates at large KT . These increasing fluctuations of the
emission duration are generic and occur whether or not
resonance decay contributions are included. We will see
below that the GF HBT radii exhibit the same feature.

We next consider the result of ensemble averaging the
SV HBT radii, including all resonance decay contribu-
tions. We present these results in Fig. 7. As discussed in
Ref. [3], the HBT radii corresponding to the ensemble-
averaged correlation function (2) do not agree with the
direct arithmetic average of HBT radii from the individ-
ual fluctuating events, but differ by an event multiplicity
weight. We checked that for the ensemble of events stud-
ied here multiplicity fluctuations are small and the dif-
ference between the two definitions of the average HBT
radius parameters is less than 1%. We therefore present
only the arithmetically averaged HBT radius parameters

〈R2
i 〉 =

∑Nev

k=1(R2
i )

(k)/Nev.
Figure 7a shows as solid lines the azimuthally and en-

semble averaged sideward, outward and longitudinal radii
from the SV method, including all resonance decays, as
a function of pair momentum KT . They are very much
larger than those obtained from the emission function for
just the directly emitted pions (dashed lines, see also [3]).

For the squared transverse radii at KT = 0 the difference
is a factor 15, corresponding to radii that are almost a
factor 4 larger. This is an artifact of the SV method
which measures the curvature of the two-pion correla-
tion function at q = 0 rather than its inverse width. For
small KT this curvature is large, as seen in the top row
of Fig. 2, being dominated by the very large emission
regions and emission durations of pions from the longest-
lived resonances in the mix. For larger KT values pions
from resonance decays play a less important role, and
the difference between the curvature of the correlation
function at q = 0 and its inverse width becomes less pro-
nounced. Generally speaking we see, however, that SV
HBT radii (which measure the curvature of the correla-
tion function at q = 0) are a poor way of characterizing
its shape (in particular, its inverse width) once resonance
decays are taken into account, especially for pion pairs
with small to moderate pair momentum.

Figure 7b shows the normalized variances (relative
widths) of the event-by-event distribution of the SV HBT
radii. By comparing with Refs. [3, 4] (c.f. Fig. 1 in [4],
for instance) we observe that resonance decay contribu-
tions lead to a slight reduction of these normalized vari-
ances. This is easily understood: the variances of the
HBT radii associated with the emission regions of decay
pions (which reflect the fluctuations in the emission re-
gions of their thermally emitted parent resonances) are
expected to be similar to those of the thermally emit-
ted pions and not to increase at the same rate as their
mean values as the resonance lifetimes increase. Indeed,
we observe that the fluctuations of the source variances
including resonance decay contributions shown in Fig. 7b
show qualitative similarity with the same fluctuations
when resonances are excluded [3, 4]. Most notably, while
the widths of R2

s and R2
l stay relatively constant when

increasing KT , the normalized variance of Ro strongly
grows with increasing KT ; this reflects the broadening of
the R2

o distribution seen in Fig. 5.

C. HBT radii including resonance decays: GF
method

We now contrast these results for the correspond-
ing ones with the GF method of computing the HBT
radii. The results shown in this subsection were ob-
tained by minimizing the χ2 of a three-dimensional Gaus-
sian fit, calculated over a grid of 73 points (qo, qs, ql),
with qs, qo ∈ {0,±25.0,±50.0,±75.0}MeV and ql ∈
{0,±12.5,±25.0,±37.5}MeV, which was subsequently
interpolated (“fleshed out” - see the Appendix) to a
denser grid of N = 513 points, spaced uniformly over the
same region in ~q-space. In the following subsection we
discuss the sensitivity of the HBT radii extracted from
the Gaussian fit to the details of the fit procedure, in-
cluding fit range and grid point spacing.

The event-by-event distributions of the GF HBT radii
are presented in Fig. 8. We note that the shape of all
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resonance decay contributions while dashed lines show the
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three distributions shows less variability with KT than
seen in Figs. 4–6 for the SV HBT radii. The relative
widths of all three probability distributions is larger than
in the SV case and, in particular, the R2

o distribution
shows much less of a width difference between small and
large pair momenta.

The main reason for this can be seen in Fig. 9a which
shows that the GF HBT radii (by which the relative
widths are normalized) are much smaller than the SV
radii. A closer view, taking into account the information
on the normalized variances shown in Fig. 9b, reveals
that also the variances of the GF HBT radii are smaller
than those of the SV radii, but the larger reduction is
seen by the radii themselves: a factor 6 for the squared
transverse radii and a factor 3 for the squared longitu-
dinal radius at KT = 0. The Gaussian widths of the
correlation function are seen to be much less sensitive to
the relatively small contribution of very long-lived reso-

nances than the curvature at q = 0 and are instead dom-
inated by the bulk of pions being emitted either directly
or from short-lived resonances. Still, these short-lived
resonances significantly increase the GF squared radii of
the full emission function (solid lines) over those of the
directly emitted pions (dashed lines), by factors 2.5 and 2
for the transverse and longitudinal squared radii, respec-
tively, at KT = 0. For the hydrodynamic sources studied
here this resonance decay effect on the HBT radii is larger
than what was observed in [28] for a hydrodynamically
motivated Gaussian model emission function.

The pair momentum dependence of the relative widths
of the HBT radii distributions are shown in Fig. 9b. As
for the SV method we see outward radii fluctuations that
strongly increase with KT , for the same reason as ex-
plained earlier, whereas the normalized variances of the
sideward and longitudinal HBT radii show little variation
with KT .

Finally we show in Fig. 10 slices of the ensemble-
averaged correlation function (2) along the qx, qy, and
qz axes, for three values of KT (KT = 0, 0.4, and 1
GeV), together with the best three-dimensional Gaussian
fit. We observe (as previously noted [28]) that the res-
onance decay effects which are most prominent at small
KT (the top row) and small q are not well described by
the Gaussian fit function. This problem becomes less se-
vere at larger KT . The result of the poor fit near q = 0 is
a significantly reduced intercept parameter λ extracted
from the Gaussian fit than would be appropriate for de-
scribing the true value of the correlation function near
q = 0. Comparison of the solid and dashed lines allows
to separate the correlation function into two contribu-
tions [44]: one from the “core” of the emission function,
describing the distribution of the directly emitted pions
and those from the decay of very short-lived resonances,
which dominates the large-q behavior of the correlation
function, and a second contribution from a “halo” of pi-
ons emitted by decays of long-lived resonances whose in-
terference with “core” pions and with each other generate
the excess of the correlation function over the Gaussian
fit at small q values (with q components of magnitudes
below 20 MeV in our case here, corresponding to homo-
geneity radii of order 10 fm).

D. Sensitivity of the GF HBT radii to the fit
method

We conclude this section by making an observation
about the points chosen in the fitting process: in fit-
ting a computed correlation function (with strongly non-
Gaussian features such as those shown in Fig. 10 at small
~K), the distribution of points used in this fit plays a sig-
nificant role. To illustrate this point, we consider in Fig.
11 several one-dimensional fits to the qx slice of the cor-
relation function plotted in the left, uppermost panel in
Fig. 10, for different choices of fit-range. Specifically, we
plot the fit curves obtained using the following sets of
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FIG. 8: Event-by-event distributions of GF HBT radii, for several different values of KT .
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points:

1. All qx-points with |qx| ≤ 20 MeV
(red, dashed curve)

2. All qx-points with |qx| ≥ 20 MeV
(green, dash-dotted curve)

3. All qx-points in the range shown
(blue, dotted curve)

We observe that these different fits vary dramatically,
depending on the range and distribution of points used.
Fig. 11 therefore illustrates the crucial point that theo-
retical HBT analyses which compute the correlation func-
tion must fit this function with the same distribution
of points used by experimentalists; otherwise, the HBT
radii extracted from these Gaussian fits will not agree
between theory and experiment even if the correlation
functions have the same shape.

IV. CONCLUSIONS

In this paper, we have presented the first calculations
of the HBT radii (with resonance decay contributions)
directly from Cooper-Frye integrals, for event-by-event
hydrodynamics.

We are certainly not the first authors to extract the
HBT radii theoretically by fitting the two-particle corre-
lation function, although previous work in this area has
generally differed from the approach adopted here. Some
authors (e.g., [45]) formulate the correlation function in
terms of Cooper-Frye integrals, as we have done here, in-
cluding all relevant resonance decays, but do not perform
their analysis on an event-by-event basis, meaning that
they are unable to define event-by-event distributions
of HBT radii. On the other hand, some other authors
[46] do compute the two-particle correlation function on
an event-by-event basis, but use a statistical hadroniza-
tion code and after-burner such as THERMINATOR [47]
to self-consistently implement resonance decay contribu-
tions, instead of relying on the Cooper-Frye formulation
to compute the resonance feeddown exactly. What has
so far not been attempted, to the authors’ knowledge,
is the simultaneous incorporation of the fitted-correlator
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FIG. 10: (Color online) Slices of the ensemble-averaged (Nev = 1000 events) correlation function Cev (solid lines), including all
resonance decays, for (from top to bottom) KT = 0, 0.4, and 1 GeV, compared with the same slices of the best-fit 3-d Gaussian
correlation function (dashed lines). These best-fit curves clearly reproduce the shape of the true correlation function better at
large q than at small q.

approach together with a purely hydrodynamic, Cooper-
Frye formulation, with all resonances included, on an
event-by-event basis. Moreover, the resulting ensemble
of correlation functions and HBT radii has never before
been studied directly, as has been done here, using both
the SV and GF methods for computing the HBT radii
discussed in this paper.

In the case of the SV HBT radii, we find that the en-
semble averaged radii with resonances are an order of
magnitude larger than in the purely thermal case which
has been investigated extensively elsewhere (cf. Fig. 4
of [2]). This is a consequence of the way in which the
SV radii represent the curvature of the correlator at
~q = 0, thanks to the sharp peak the correlator acquires

at this point from long-lived resonances. Once all such
resonance effects are included, the qualitative features
of the R2

ij and their KT -dependence remain essentially
unchanged, but the quantitative effects are drastic. We
also compared the event-by-event distributions of the GF
HBT radii with those of the SV radii. Interestingly, the
broadening of the R2

o distribution with increasing KT

appears to be a robust feature of both the SV and GF
methods. Quantitatively, the GF radii are in general
smaller than their SV counterparts, once resonances are
included, since the two methods differ in their represen-
tation of the global structure of the correlation function:
while the SV radii represent the curvature of the corre-
lation function at ~q = 0, the GF radii represent a best
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FIG. 11: One-dimensional fits to qx-slice of the correlation
function shown in the uppermost, lefthand panel of Fig. 10,
for different ranges of qx: |qx| ≤ 20 MeV (red, dashed curve);
|qx| ≥ 20 MeV (green, dash-dotted curve); all qx-points in the
range shown (blue, dotted curve). We see that the Gaussian
best-fits depend strongly on the precise distribution of points
used.

fit to the full correlation function, and therefore do not
tend to overestimate the effects of long-lived resonances
as severely as the SV radii do.

We finally note a number of similarities and differ-
ences between our results and those presented in pre-
vious works [28, 37]. In particular, we note that the dif-
ferences between the shapes of the correlation functions
with and without resonance decays in Fig. 2 are much
larger in a genuine hydrodynamic simulation than in the
hydro-motivated Gaussian source model parametrization
studied in [28], and that these differences manifest them-
selves in significant quantitative effects on the extracted
HBT radii (most notably, a factor of 2-3 discrepancy be-
tween the transverse radii with and without resonances,
seen by contrasting the thermal radii in Refs. [2–4] with
those shown in Fig. 9, which was not observed in [28]).
Nevertheless, we find rough quantitative agreement with
both [28] and [37] in the fit radii themselves once reso-
nance contributions are included, despite the substantial
differences in the computed correlation functions.
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APPENDIX A: ALGORITHMS AND
APPROXIMATIONS FOR EFFICIENTLY

COMPUTING HBT CORRELATION
FUNCTIONS WITH FULL RESONANCE

CONTRIBUTIONS

In this Appendix we describe the numerical code for
evaluating the Fourier transformed full emission function
(51) and the integration (22) over the decay phase-space
in particular. We have checked that the code produces
correlation functions which are in agreement with those
obtained from a separate code which samples the Cooper-
Frye spectra and then uses an HBT afterburner on the re-
sulting particle pair distributions [48]. Using the simplifi-
cations and symmetries described below, the events pro-
cessed in this paper required approximately 35-40 hours
of CPU time each on a Intel(R) Xeon(R) X5650 2.67 GHz
processor. The grid sizes used are given below.

1. Numerical scaling

We begin by discussing how the full correlation func-
tion itself scales with the number of points at which the

various quantities (~q, ~K, xµ, etc.) in the calculation are
evaluated. In general, the resonance spectra are of the
form ∫

d4x eiq·xS(x, P ), (A1)

where is defined q0 = ~q · ~β ~K in terms of the pair momen-
tum K, while the weight S is evaluated at some other mo-
mentum P (one would obtain the thermal pion spectra
by simply setting P = K). In general, this requires a 9-
dimensional grid for the evaluation of each set of weighted
parent resonance spectra, with independent dimensions
corresponding to differing choices of KT , ΦK , YK , PT ,
ΦP , YP , qx, qy, and qz. Fortunately, however, this di-
mensionality can be reduced by instead treating q0 as
a free dimension, eliminating the dependences on KT ,
ΦK , and YK , and only reintroducing these dependences
at the end of the calculation by interpolating q0 to the
point that satisfies the on-shell condition (5). For midra-
pidity (YK = 0) pions, which we consider exclusively in
this work, this means that the Fourier-transformed spec-
tra of each relevant particle species must be evaluated on
a 7-dimensional grid, consisting of PT , ΦP , YP , q0 ≡ qt,
qx, qy, and qz.

For the numerical results presented in this paper, we
chose the following grid sizes, unless stated otherwise:

NpT = 15, NΦp = 36, Nqt = 51, Nqx = Nqy = Nqz = 7
(A2)

2. Truncated and extrapolated resonance sums

One technique which has proven useful for event-by-
event analyses of heavy-ion collisions in the past [16] re-
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quires one to sort the parent resonances by their total
contributions to the (momentum-integrated) final pion
yield, computing those resonances with the largest con-
tributions first, and terminating the calculation when
a fixed percentage of the total pion yield has been
reached. The authors of [16] showed that using lin-
ear extrapolation to approximate the contribution to the
yield from the remaining resonances offered an efficient
method for obtaining estimates of the true pT spectra
and anisotropic flow coefficients with all resonance con-
tributions included. Since the vast majority of final state
resonance decay pions come from a relatively small num-
ber of parent resonances, this approach offered a signifi-
cantly faster way of numerically evaluating heavy-ion ob-
servables in the context of event-by-event hydrodynamic
simulations.

In this paper, we have adopted this same tactic for
truncating and estimating the sum over parent reso-
nances r in Eq. (11), assuming that the rate of conver-
gence of the Fourier-transformed decay pion spectra (as
a function of resonances included) can be approximated
as linear. In Fig. 12, we see that this approximation
works quite well: we compare the correlation function
with and without extrapolation (respectively, solid and
dashed colored curves) with the full result (solid black
curves) which includes all resonances (and hence does
not require extrapolation). The fact that the solid black
curves are mostly obscured by the solid colored curves
reflects two important facts: first, that the extrapolation
over the omitted resonances is necessary to capture the
full correlation function using the truncated resonance
sum, and second, that once this extrapolation is included,
the agreement between the 60% and 100% curves is ex-
tremely good. We observe that this approach works quite
well for all three radii (R2

s, R
2
o, R

2
l ): for one-dimensional

fits to the correlation functions in Fig. 12 (with the in-
accessible central point omitted), the the largest varia-
tion in the radii extracted the projected 60% and 100%
curves was a 2.5% change in R2

l . We conclude that res-
onance extrapolation provides an extremely reliable way
of estimating the correlation functions and radii for all
resonances relevant in heavy-ion collisions, using only a
finite subset thereof.

3. Fleshing out the correlation function

As we have pointed out in Sec. III C, the quality of
the fit to the correlation function, depends on a number
of factors, including the distribution of points in q-space.
This is not problematic when the shape of the correla-
tion function is Gaussian (or very nearly so). However,
when the correlation function is strongly distorted from
a Gaussian shape by the inclusion of medium-lived res-
onances (e.g., the ω resonance, which has a width of
roughly 8.5 MeV), it becomes necessary to sample the
correlation function at a denser distribution of points, in
order for the fitting procedure to yield well-defined and

unambiguous results. Because of the limited computa-
tional resources (as discussed above) which are typically
available for performing event-by-event analyses, a suffi-
ciently dense grid of points must be regarded as generally
impractical. What is possible is to first compute the cor-
relation function on a sparse grid of points, and then
attempt to use this sparse grid to interpolate the corre-
lation function to a sufficiently dense grid of points to
ensure that the Gaussian fit radii become unambiguous.
We refer to this tactic as fleshing out the correlation func-
tion, and we illustrate its effectiveness in Fig. 13. The
sparse grid of points is the same as the one defined above
in Sec. III C, consisting of 7 points in each direction. The
dense grid used here spans the same range in each direc-
tion as the sparse grid (−75.0 ≤ qx, qy ≤ +75.0 MeV and
−37.5 ≤ qz ≤ 37.5), but with 51 points in each direction.

Clearly, although small discrepancies arise in each di-
rection, the transverse radii are essentially identical for
the curves shown in Fig. 13a and b. The largest dif-
ference again emerges in the longitudinal (qz) direction,
where our difficulty at reproducing the exact correlator
in the range 30 MeV ≤ |qz| ≤ 40 MeV leads us to over-
estimate R2

l by roughly 3.5%. The quality of the longi-
tudinal interpolation can obviously be improved, for in-
stance, by using a denser grid of points in this direction,
at the expense of greater computational time. We defer
improvements of the “fleshing out” technique to future
studies.

4. Evaluating the Fourier-transformed spectra and
resonance decays

We conclude this appendix by documenting several
steps which allows us to simplify and accelerate the cal-
culation of all Fourier-transformed spectra as functions
of pT , pφ, and pY .

The Cooper-Frye prescription requires an integration
of the distribution function over space-time coordinates,
which include the space-time rapidity ηs. We first expand
the distribution function in a Boltzmann-like series of
exponentials under the approximation that the particle
massm is much larger than the freeze-out temperature T :
m/T � 1. Each term in this series expansion can then
be integrated exactly over ηs, with the result expressible
in terms of Bessel functions. Below, we write down the
expressions that are used to compute the thermal particle
spectra: for all particles but pions, only the leading order
terms in the Bessel series expansion are required. For
pions, we keep the 10 largest terms in all relevant sums,
allowing us to maintain accuracy at or better than the
level of 10−4.

The Cooper-Frye integrals used in the code rely on
Fourier-transforming the equilibrium distribution func-
tion with shear viscous corrections included. The emis-
sion function and distribution function can be written in
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FIG. 12: Three different slices (qx = 0, qy = 0, and qz = 0, respectively) of the correlation function at fixed KT and ΦK ,
comparing the truncated resonance calculation at 60%, with (solid) and without (dashed) extrapolation over the remaining
resonances, compared with the full 100% calculation (solid black). The correlation function was computed and extrapolated at
7 equally spaced nodes along each q-axis (cf. III C) and then interpolated using a quadratic spline for aesthetic purposes.
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FIG. 13: Three different slices (qx = 0, qy = 0, and qz = 0, respectively) of the correlation function at fixed KT and ΦK ,
illustrating our correlation function constructed by fleshing out a sparse grid (solid), compared with the same correlation
function computed on a dense grid over a similar range of q-points (dashed). For the first term in the numerator of (56),
the algorithm interpolates the logarithm of the thermal contribution linearly in q2, which is an excellent approximation, since
the thermal contribution is nearly Gaussian. For the remaining two terms in the numerator of (56), the algorithm uses cubic
interpolation. This approach clearly works well at all q, although small discrepancies emerge at large q in the longitudinal (qz)
direction.

general in the form

S(x, p) =
1

(2π)3

∫
Σf

p · d3σ(y) δ4(x−y) f(y, p) , (A3)

f(x, p) = f0 (x, p) + δf (x, p) (A4)

=
1

e(p·u−µ)/T−1
+
χ(p2)pµpνπµν

2T 2(E+P)
f0(1+f0);

accordingly, the Fourier transform of the emission func-

tion is∫
d4xeiq·xS(x, p) =

1

(2π)3

∫
dηs

×
∫

Σf

p · d3σ(y) eiq·yf(y, p) .(A5)

For a system undergoing longitudinal Björken expansion,
we have also that

p · u = γ⊥ (m⊥ cosh(py − ηs)− ~p⊥ · ~v⊥) , (A6)
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p · d3σ(x) = (m⊥ cosh(py − ηs)− ~p⊥ · ∇τf ) τfd
2r⊥dηs ,

(A7)
and

q · x ≡ q0τ cosh ηs − ~q⊥ · ~x⊥ − qzτ sinh ηs

= τ
[(
q0 cosh py − qz sinh py

)
cosh(py − ηs)

+
(
q0 sinh py − qz cosh py

)
sinh(py − ηs)

]
− ~q⊥ · ~x⊥

≡ β cosh η̃s + γ sinh η̃s − ~q⊥ · ~x⊥, (A8)

where we have introduced the shorthands

β ≡ τ
(
q0 cosh py − qz sinh py

)
γ ≡ τ

(
q0 sinh py − qz cosh py

)
and η̃s ≡ py − ηs (A9)

Focusing on the integral over ηs, we find that the Fourier-transformed spectra can be evaluated as∫
d4xeiq·xS(x, p) ∼

∫ ∞
−∞

dηs
m⊥ cosh(py − ηs)− ~p⊥ · ∇τf

e(p·u−µ)/T±1
(1 + χµνp

µpν (1 + f0))

=

∫ ∞
−∞

dη̃s (m⊥ cosh η̃s − ~p⊥ · ∇τf ) exp (iβ cosh η̃s + iγ sinh η̃s − i~q⊥ · ~x⊥)

×
∞∑
k=1

(∓)
k+1

exp

(
−kγ⊥

T
(m⊥ cosh η̃s − ~p⊥ · ~v⊥ − µ)

)

×

[
1 + Cχµνp

µpν

(
1 +

∞∑
`=1

(∓)
`+1

exp

(
−`γ⊥

T
(m⊥ cosh η̃s − ~p⊥ · ~v⊥ − µ)

))]
, (A10)

and χµνp
µpν can be written in the form

χµνp
µpν = a cosh2 η̃s + b cosh η̃s + c. (A11)

The basic form of this expression is the integral

Ik (α, β, γ) ≡
∫ ∞
−∞

dx e−α cosh x+iβ cosh x+iγ sinh x coshk x .

(A12)
Since it is obvious that

Ik (α, β, γ) =

(
− d

dα

)k
I0 (α, β, γ) , (A13)

we only need to compute I0 (α, β, γ). Making the change

of variable u = sinhx, du = coshx dx =
√
u2 + 1dx, we

find that

I0 (α, β, γ) =

∫ ∞
−∞

du√
u2 + 1

e−(α−iβ)
√
u2+1+iγu

= 2

∫ ∞
0

du cos (γu)√
u2 + 1

e−(α−iβ)
√
u2+1

= 2K0

(√
(α− iβ)

2
+ γ2

)
. (A14)

Defining

A ≡ e−i~q⊥·~x⊥m⊥, B ≡ e−i~q⊥·~x⊥~p⊥ · ∇τf , α ≡
γ⊥m⊥
T

, and f⊥ ≡ exp
(γ⊥
T

(~p⊥ · ~v⊥ + µ)
)
, (A15)

we can compute the Bessel series expansion of (A10) term-by-term to obtain∫
d4xeiq·xS(x, p) ∼

∫ ∞
−∞

dη̃s (A cosh η̃s −B) exp (iβ cosh η̃s + iγ sinh η̃s)

×
∞∑
k=1

∓(∓f⊥)
k

exp (−kα cosh η̃s)

[
1 + Cχµνp

µpν

(
1 +

∞∑
`=1

∓(∓f⊥)
`
exp (−`α cosh η̃s)

)]

=

∫ ∞
−∞

dx (A coshx−B)

∞∑
k=1

∓(∓f⊥)
k

exp (−kα coshx+ iβ coshx+ iγ sinhx)

×

[
1 + C

(
a cosh2 x+ b coshx+ c

)(
1 +

∞∑
`=1

∓(∓f⊥)
`
exp (−`α coshx)

)]
(A16)
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=

∞∑
k=1

∓(∓f⊥)
k

(AI1(kα, β, γ)−BI0(kα, β, γ))

+ C

∞∑
k=1

∓(∓f⊥)
k

(AaI3(kα, β, γ) + (aB + bA) I2(kα, β, γ)

+ (bB + cA) I1(kα, β, γ) + cBI0(kα, β, γ))

∓ C

∞∑
k=1

∞∑
`=1

(∓f⊥)
k+`

(AaI3((k + `)α, β, γ) + (aB + bA) I2((k + `)α, β, γ)

+ (bB + cA) I1((k + `)α, β, γ) + cBI0((k + `)α, β, γ)) .

(A17)

Fortunately, the Boltzmann approximation (i.e., keeping
only the first term in each of these sums) works already
extremely well for all hadrons other than pions. In the
Boltzmann limit, the above result simplifies to∫

d4xeiq·xS(x, p)

∼ f⊥ (AI1(α, β, γ)−BI0(α, β, γ))

+ Cf⊥ (AaI3(α, β, γ) + (aB + bA) I2(α, β, γ)

+ (bB + cA) I1(α, β, γ) + cBI0(α, β, γ))

∓ Cf2
⊥ (AaI3(2α, β, γ) + (aB + bA) I2(2α, β, γ)

+ (bB + cA) I1(2α, β, γ) + cBI0(2α, β, γ)) ,

(A18)

where finally, with z ≡
√

(α− iβ)2 + γ2,

I0(α, β, γ) = 2K0 (z) ,

I1(α, β, γ) =
2(α− iβ)K1 (z)

z
,

I2(α, β, γ) =
2(α− iβ)2K0 (z)

z2
+

2(z2 − 2γ2)K1 (z)

z3
,

I3(α, β, γ) =
2

z5
(α− iβ)

[
z
(
z2 − 4γ2

)
K0 (z)

+(2z2 + z4 − γ2z2 + 8γ2)K1 (z)
]
.

(A19)

Inspection of these results reveals that they are even in
γ, while their real (imaginary) parts are even (odd) in β.
This will be useful below.

In addition to performing the ηs-integrals analytically
as detailed above, the full calculation (of all thermal res-
onance spectra and subsequent resonance feeddown) we
identify and exploit several symmetries which can be used
to shorten and/or accelerate the calculation of the cor-
relation function. There are three symmetries which are
useful for our purposes here; they are:

1. Symmetry under q → −q. This symmetry follows
trivially by replacing eiq·x in all Fourier integrals
with cos(q · x) + i sin(q · x), and noting that the
first term is even under this symmetry, while the
second term is odd. Consequently, the Fourier mo-
ments only need to be calculated for half of q-space

(say, q0 ≥ 0) and then reflected to the other half
(with the odd moments receiving an additional mi-
nus sign upon reflection).

2. Symmetry under qz → −qz and y → −y simul-
taneously. This symmetry follows by noting that
qz and y enter into the Fourier moments only in
the combinations β and γ given in Eq. (A10). The
Fourier moments, in turn, depend only on the func-
tions Eqs. (A19), which depend only on β and γ2.
Taking qz → −qz and y → −y simultaneously thus
takes β → β and γ → −γ, leaving the Fourier mo-
ments unchanged. This symmetry can be exploited
by computing the full y dependence and half the qz
dependence of the moments, and reflecting to the
other half as above.

3. Symmetry under reflection of y about ysym and
~q⊥ → ±~q⊥ simultaneously. The third symmetry
also arises by studying the structure of β and γ.
We first define ysym to be

ysym ≡
1

2
log

∣∣∣∣q0 + qz
q0 − qz

∣∣∣∣ . (A20)

Then a little algebra reveals that taking y → ȳ ≡
2ysym − y is a convenient reflection point for the
Fourier moments. Specifically, one can show that

β (ȳ) = sgn
((
q0
)2 − q2

z

)
β (y) , (A21)

γ (ȳ) = −sgn
((
q0
)2 − q2

z

)
γ (y) . (A22)

Moreover, note that the reflection point ysym is the
same for all resonances, since it depends only on q0

and qz. Additionally, since the Fourier moments de-
pend only on γ2, reflection of y → ȳ is a symmetry
of the Fourier moments only when

∣∣q0
∣∣ ≥ |qz|; the

case where
∣∣q0
∣∣ ≤ |qz| will be discussed in greater

detail below.

First, we describe how the Fourier moment calcu-
lation is organized. We split the generic Fourier
integral of the emission function for a resonance r
into different terms for convenience:
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∫
x

eiq·xSr(x,K) =

∫
x

(cosφT + i sinφT ) (cosφL + i sinφL)Sr(x,K) (A23)

=

∫
x

cosφL cosφTSr(x,K)− i
∫
x

cosφL sinφTSr(x,K)

+ i

∫
x

sinφL cosφTSr(x,K) +

∫
x

sinφL sinφTSr(x,K) (A24)

≡ SCCr + iSCSr + iSSCr + SSSr (A25)

where φT ≡ ~q⊥ · ~x⊥, φL ≡ q0t − qzz. Also, in
the first index, C and S label the cosine and sine
components in φL, while in the second index, C
and S label the cosine and sine part in φL. As we
shall see, the longitudinal C and S moments each
have a definite parity under y → ȳ. Thus, each

of these Fourier moments of the source function for
resonance r is computed independently. To see how
each these moments is related to the moments of
its daughter particles, we substitute (A25) into the
phase-space integrals which yield the contributions
to the daughter moments:

SCCr→r′ + iSCSr→r′ + iSSCr→r′ + SSSr→r′ =
∑
k=±

∫
R

1 + iαk

1 + (αk)
2

(
SCCr + iSCSr + iSSCr + SSSr

)
=
∑
k=±

∫
R

(
1 +

(
αk
)2)−1 [(

SCCr − αkSCSr
)

+ i
(
SCSr + αkSCCr

)
+i
(
SSCr + αkSSSr

)
+
(
SSSr − αkSSCr

)]
. (A26)

where αk ≡ q · P k/(MΓ) and

∫
R

≡M
∫ s+

s−

ds g(s)

∫ +1

−1

∆Y dv√
m2
⊥ cosh2(v∆Y )− p2

⊥

∫ π

0

dζ
(
M⊥ + ∆M⊥ cos ζ

)
. (A27)

Each of the terms on the lefthand side of (A26)
should be identified with the respective term on
the righthand size in the square brackets. Note also
that M⊥ and ∆M⊥ are even functions of v∆Y .

We need to know whether the phase-space integrals
(A26) and (A27) respect the reflection symmetries
of the Fourier moments of the parent resonance (so
that daughter particles inherit the same set of re-

flection symmetries). To show this is just a few
lines: using the shorthand

S̃(q,K) ≡
∫
d4xeiq·xS(x,K) (A28)

to abbreviate the Fourier transform, we can write

S̃r→r′(q;m, ~p⊥, ȳ) = M
∑
k=±

∫ s+

s−

ds g(s)

∫ +1

−1

∆Y dv√
m2
⊥ cosh2(v∆Y )− p2

⊥

∫ π

0

dζ
(
M⊥ + ∆M⊥ cos ζ

)
× 1

1− iᾱk

∫
x

eiq·xSr→r′(x;M, ~P k⊥, 2Ysym − y + v∆Y ) (A29)
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v→−v
= M

∑
k=±

∫ s+

s−

ds g(s)

∫ −1

+1

−∆Y dv√
m2
⊥ cosh2(−v∆Y )− p2

⊥

∫ π

0

dζ
(
M⊥ + ∆M⊥ cos ζ

)
× 1

1− iᾱk

∫
x

eiq·xSr→r′(x;M, ~P k⊥, 2Ysym − y − v∆Y )

=
∑
k=±

∫
R

1 + iᾱk

1 + (ᾱk)
2

∫
x

eiq·xSr→r′(x;M, ~P±⊥ , Ȳ ) , (A30)

where the barred quantities have been reflected
about ysym, and

ᾱk ≡ αk
(
Ȳ
)

(A31)

=
M⊥
MΓ

sgn
((
q0
)2 − q2

z

)
β (Y )− ~q⊥ · ~P k⊥

MΓ
.

(A32)

To proceed further, we now consider the cases∣∣q0
∣∣ ≥ |qz| and

∣∣q0
∣∣ < |qz| separately.

(a)
∣∣q0
∣∣ ≥ |qz|. In this case, β → β and γ2 → γ2

when y → ȳ, so that SCCr , SCSr , SSSr , and SSCr
are all symmetric; i.e.,

SCCr
(
~q⊥; Ȳ

)
= SCCr (~q⊥;Y ) (A33)

SCSr
(
~q⊥; Ȳ

)
= SCSr (~q⊥;Y ) (A34)

SSCr
(
~q⊥; Ȳ

)
= SSCr (~q⊥;Y ) (A35)

SSSr
(
~q⊥; Ȳ

)
= SSSr (~q⊥;Y ) . (A36)

Furthermore, it is obvious that ᾱk → αk =(
M⊥β (Y )− ~q⊥ · ~P k⊥

)
/(MΓ) as well. To-

gether, with (A26), this implies that

SCCr→r′ (~q⊥; ȳ) = SCCr→r′ (~q⊥; y) (A37)

SCSr→r′ (~q⊥; ȳ) = SCSr→r′ (~q⊥; y) (A38)

SSCr→r′ (~q⊥; ȳ) = SSCr→r′ (~q⊥; y) (A39)

SSSr→r′ (~q⊥; ȳ) = SSSr→r′ (~q⊥; y) , (A40)

i.e., the symmetries of each Fourier moment
are preserved by the phase-space integrals.

(b)
∣∣q0
∣∣ < |qz|. In this case, reflection about ysym

by itself is not a symmetry of the Fourier mo-
ments after the phase space integration, since

now

ᾱk =
−M⊥β (Y )− ~q⊥ · ~P k⊥

MΓ

6= αk . (A41)

Fortunately, however, some symmetry can be
restored if the reflection about ysym is accom-
panied in this case by the reflection ~q⊥ →
−~q⊥, in which case

ᾱk = −M⊥β (Y )− ~q⊥ · ~P k⊥
MΓ

= −αk . (A42)
Under this combined transformation, we now
find that

SCCr (−~q⊥; ȳ) = SCCr (~q⊥; y) (A43)

SCSr (−~q⊥; ȳ) = −SCSr (~q⊥; y) (A44)

SSCr (−~q⊥; ȳ) = −SSCr (~q⊥; y) (A45)

SSSr (−~q⊥; ȳ) = SSSr (~q⊥; y) , (A46)

as follows immediately from Eq. (A25). Tak-
ing all of this together with (A26), one finds
that

SCCr→r′ (−~q⊥; ȳ) = SCCr→r′ (~q⊥; y) (A47)

SCSr→r′ (−~q⊥; ȳ) = −SCSr→r′ (~q⊥; y) (A48)

SSCr→r′ (−~q⊥; ȳ) = −SSCr→r′ (~q⊥; y) (A49)

SSSr→r′ (−~q⊥; ȳ) = SSSr→r′ (~q⊥; y) , (A50)

so that the symmetries are again preserved in
this case.
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