

LA-UR-19-24826 (Accepted Manuscript)

Scale Bridging Damage Model for Quasi-Brittle Metals Informed with Crack Evolution Statistics

Larkin, Kevin
Rougier, Esteban
Chau, Viet Tuan
Srinivasan, Gowri
Abdelkefi, Abdessattar
Hunter, Abigail

Provided by the author(s) and the Los Alamos National Laboratory (2020-03-05).

To be published in: Journal of the Mechanics and Physics of Solids

DOI to publisher's version: 10.1016/j.jmps.2020.103921

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-24826>

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Journal Pre-proof

Scale Bridging Damage Model for Quasi-Brittle Metals Informed with Crack Evolution Statistics

Kevin Larkin, Esteban Rougier, Viet Chau, Gowri Srinivasan, Abdessattar Abdelkefi, Abigail Hunter

PII: S0022-5096(20)30157-5
DOI: <https://doi.org/10.1016/j.jmps.2020.103921>
Reference: MPS 103921

To appear in: *Journal of the Mechanics and Physics of Solids*

Received date: 19 July 2019
Revised date: 20 February 2020
Accepted date: 25 February 2020

Please cite this article as: Kevin Larkin, Esteban Rougier, Viet Chau, Gowri Srinivasan, Abdessattar Abdelkefi, Abigail Hunter, Scale Bridging Damage Model for Quasi-Brittle Metals Informed with Crack Evolution Statistics, *Journal of the Mechanics and Physics of Solids* (2020), doi: <https://doi.org/10.1016/j.jmps.2020.103921>

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Highlights

- Improved effective moduli model for fracture of quasi-brittle materials
- Model informed with crack length and orientation statistics
- Stress based degradation of individual material zones
- Excellent agreement between numerical results and experimental flyer plate data

1 Scale Bridging Damage Model for Quasi-Brittle Metals Informed with Crack 2 Evolution Statistics

3 Kevin Larkin^{a,b,*}, Esteban Rougier^b, Viet Chau^b, Gowri Srinivasan^b, Abdessattar Abdelkefi^a, Abigail Hunter^{b,*}

4 ^a*New Mexico State University Department of Mechanical and Aerospace Engineering, Las Cruces, NM 88003, USA*

5 ^b*Los Alamos National Laboratory, Los Alamos, NM 87545, USA*

6 Abstract

7 Computationally efficient methods for bridging length scales, from highly resolved micro/meso-scale models that can
8 explicitly model crack growth, to macro-scale continuum models that are more suitable for modeling large parts, have
9 been of interest to researchers for decades. In this work, an improved brittle damage model is presented for the simu-
10 lation of dynamic fracture in continuum scale quasi-brittle metal components. Crack evolution statistics, including the
11 number, length, and orientation of individual cracks, are extracted from high-fidelity, finite discrete element method
12 (FDEM) simulations and used to generate effective material moduli that reflect the material's damaged state over
13 time. This strategy allows for the retention of small-scale physical behaviors such as crack growth and coalescence
14 in continuum scale hydrodynamic simulations. However, the high-fidelity simulations required to generate the crack
15 statistics are computationally expensive. Thus, steps were taken to produce a flexible constitutive model to reduce the
16 number of costly high-fidelity simulations needed to produce accurate results. A new stress based degradation crite-
17 rion is introduced for the degradation of individual material zones. This allows for the development of a heterogeneous
18 damage distribution within the bulk material. Then a flow stress model is added to the hydrodynamic simulation to
19 account for plasticity in quasi-brittle materials. As a result, the effective moduli model can be applied to a larger
20 range of materials. The effective moduli constitutive model is used to simulate beryllium flyer plate experiments. The
21 results from the continuum scale simulations using statistics from a single high-fidelity simulation are found to be in
22 excellent agreement with numerical and experimental velocity interferometer data. The same set of crack statistics are
23 used to extrapolate the results of a higher rate flyer plate case using the effective moduli model. The extension of this
24 model to higher rate cases shows promise for further reducing the number of costly high-fidelity simulations needed
25 to generate crack statistics.

26 *Keywords:*

27 brittle fracture, shock loading, effective elastic moduli, crack statistics, finite-discrete element method

28 1. Introduction

29 Often, brittle fracture is the primary cause of material failure in dynamic loading scenarios. As, brittle failure often
30 occurs suddenly (on relatively short time scales), it is very difficult to accurately predict especially under high-rate
31 loading conditions, which only further shorten the time scales associated with the growth, coalescence and interactions
32 of micro-cracks. However, there are many applications that require such predictive models. For example, models for
33 dynamic brittle fracture have recently been developed for geomechanics applications such as blasting or percussive
34 drilling (Saadati et al., 2016; Cho et al., 2003), ballistic impacts of ceramic plates for vehicle or body armor (Krishnan
35 et al., 2010; Chen et al., 2007), and general crack growth in quasi-brittle materials (Saksala et al., 2015). Quasi-brittle
36 materials, often metals, can add further difficulty since the overall material behavior changes dramatically from

*Los Alamos National Laboratory
PO Box 1663 MS T086
Los Alamos, NM 87545, USA
ahunter@lanl.gov, klarkin@lanl.gov

37 ductile to brittle with an increase in the applied loading rate (Blumenthal et al., 1998). Beryllium is an example of a
 38 quasi-brittle metal that is a highly desirable for many industrial applications in the automotive, aerospace, and defense
 39 industries because of its high strength to weight ratio (Kolanz, 2001). However, the high-rate loading conditions
 40 materials undergo during fabrication and during the applications themselves lead to the growth and coalescences of
 41 micro-cracks, prompting abrupt material failure that is extremely difficult to predict. The lack of predictive models
 42 addressing the abrupt failure of these materials at a component level drastically limits their real-world applicability
 43 despite their attractive material properties.

44 Over the years, several methods bridging a range of length scales have been developed and applied to the growth
 45 of crack networks within brittle materials, including molecular dynamics simulations (Dienes and Paskin, 1987), per-
 46 dynamics (Silling and Askari, 2005), phase field approaches (Ambati et al., 2015), the extended finite element method
 47 (XFEM) (Zi and Belytschko, 2003), and the finite discrete element method (FDEM) (Munjiza et al., 1995). On the
 48 atomistic and meso-scales, these approaches can finely resolve crack growth, propagation, interaction, coalescence,
 49 etc., and the physics that drive these processes. However, these frameworks are relatively limited in time and length-
 50 scales such that they cannot address material failure at the component-scale (cm and larger). Larger length scale
 51 approaches, such as XFEM and FDEM, can produce highly resolved micro-scale simulations that discretely model
 52 individual cracks, producing accurate predictions of crack network evolution. However, the highly resolved mesh
 53 needed for these models results in extraordinarily high computation costs when modeling continuum-scale systems.
 54 A common method for reducing the computational costs while retaining micro-scale physical phenomena are con-
 55 current and serial multi-scale methods (Horstemeyer, 2009; Zhou and Chen, 2018). Concurrent multi-scale methods
 56 commonly use finite elements to model far field effects while molecular dynamics and/or quantum mechanics is used
 57 to model regions where cracks are formed (Tadmor et al., 1996; Abraham et al., 1998; Rudd and Broughton, 1998; Lee
 58 et al., 2009; Li et al., 2010). These types of multi-scale methods have recently been used to study the properties of
 59 systems with one or very few micro-cracks in small continua (Xu et al., 2017; Qiu et al., 2018). However, using this
 60 type of scale bridging technique can become computationally expensive when modeling large systems with dense,
 61 uniformly distributed crack networks, such as machine components.

62 Converse to these highly-resolved and lower length-scale methods, continuum-scale constitutive models can model
 63 the overall material response for large samples with relative computational ease. Such models have been developed
 64 over several decades, and there has been much effort in the development of more physical informed constitutive
 65 models, particularly for systems undergoing dynamic loading conditions (Addessio and Johnson, 1990; Camacho and
 66 Ortiz, 1996; BaÅant et al., 2000; Ayyagari et al., 2018; Zubelewicz et al., 2014). However, in order to operate at these
 67 larger length-scales, major assumptions about a material's microstructure and active deformation mechanisms are
 68 inherent to these formulations in order to homogenize the system up to the scale of interest. Of particular importance
 69 to the problem of brittle damage and failure, key assumptions include generalizations of the distribution, geometry,
 70 and orientation of the cracks within a body and their subsequent evolution. Because the features that guide crack
 71 evolution are often on a scale that is orders of magnitude lower than that of the materials system of interest, the
 72 discrete nature of the cracks themselves is typically lost. While such assumptions are necessary to remain at a large
 73 length scale, it becomes very difficult to capture key physics driving the evolution of micro-cracks within the body,
 74 and hence it is also difficult to accurately predict the corresponding material response.

75 Consequently, serial multi-scale approaches have evolved. These methods use information from separate micro-
 76 scale analyses to inform a macro-scale model through statistical analysis or a homogenization scheme used to find
 77 the effective properties of the damaged material (Ju and Tseng, 1992; Ju and Chen, 1994a,b; Ju and Tseng, 1995;
 78 Margolin, 1984; Kushch et al., 2009; Gailly and Espinosa, 2002; Sheng and Zeng, 2016; Vaughn et al., 2019). These
 79 methods have developed from traditional effective medium frameworks (Zimmerman, 1985; Kachanov, 1993; Budian-
 80 sky and O'Connell, 1976; Horii and Nemat-Nasser, 1983; Hashin, 1988; Margolin, 1983), which account for damage
 81 accumulation through the degradation of a material's elastic moduli over time, resulting in the determination of an
 82 "effective moduli". These multi-scale approaches intend to retain more information about the evolution of the crack
 83 network by including statistical information about the changing crack lengths and orientations. Often simplified crack
 84 distributions, such as randomly oriented or parallel cracks, are studied because they allow for some degree of analytic
 85 tractability (Ju and Chen, 1994b; Ju and Tseng, 1995; Kushch et al., 2009). Capturing the vast array of arbitrary crack
 86 configurations is still difficult, particularly when considering how the crack network evolves under loading. Under
 87 load an initially uniform distribution of cracks can become quite heterogenous, particularly when dynamic loading is
 88 considered. It has been demonstrated that microstructural defects such as voids, micro-cracks, and inclusions have a

89 significant effect on a material's dynamic strength (Saadati et al., 2016; Sheng and Zeng, 2016; Abedi et al., 2017).
 90 Moreover, every material sample has a unique microstructure which contains different numbers, types, and severities
 91 of defects. For this reason, statistical methods for analyzing crack formation are needed to represent a wide range of
 92 possible defect distribution cases and produce a realistic representation of the average material behavior.

93 In this work, the advantages of serial multi-scale modeling techniques are leveraged to create an efficient and
 94 accurate representation of evolving crack networks under dynamic loading conditions within quasi-brittle metals. A
 95 high-fidelity model that can resolve discrete cracks is used to generate statistical information about the crack network
 96 such as, the number of cracks, crack length and crack orientation over time. These statistics are then used to inform an
 97 effective moduli constitutive model. Because the crack statistics in this approach are informed using a higher fidelity
 98 model, random configurations (e.g., homogeneous and/or heterogeneous) can be considered within this framework.
 99 We discuss the number of high-fidelity simulations necessary to create a statistically relevant data set in comparison
 100 to previous work directed at low-rate loading conditions (Vaughn et al., 2019). Furthermore, we investigate the ability
 101 of the continuum scale model to extrapolate higher rate loading cases. This can also reduce the need for additional
 102 statistics from computationally expensive high-fidelity simulations. Furthermore, this model accounts for plasticity
 103 in addition to the degradation of the material due to brittle damage mechanisms. Quasi-brittle metals are much more
 104 ductile than other brittle materials such as ceramics, glasses, and geo-materials, therefore, plastic deformation of the
 105 material must be included in order to accurately reproduce experimental results.

106 We use this model to simulate beryllium flyer plate impact experiments, with direct comparison to both numerical
 107 and experimental results. During low-rate loading, brittle failure will occur when the single weakest (largest) defect
 108 or micro-crack begins to grow and coalesce with other neighboring cracks, if present, until one dominant crack path is
 109 formed. Conversely, high-rate loading conditions cause multiple micro-cracks in a region of high stress to rapidly grow
 110 and coalesce, forming a heterogeneous region of damage with many branching crack paths. In flyer plate experiments,
 111 which apply planar shock waves, this heterogeneous region of damage is typically well-defined in the test sample
 112 and called a spall region (Meyers and Aimone, 1983). The near instantaneous formation of a spall region resulting
 113 in material failure is accounted for in our approach by using a multi-element simulation in which individual elements
 114 are degraded based on the magnitude of their experienced tensile stress.

115 This work continues as follows: In Section 2 the statistically informed effective moduli model for quasi-brittle
 116 metals is described. Then the method for extracting crack evolution statistics from high-fidelity models for use in
 117 a continuum model is presented in Section 3. Next, in Section 4 the integration of the effective moduli model into
 118 a multiphysics hydrocode for continuum scale analysis of the fracture of quasi-brittle metals is introduced. Later,
 119 in Section 5 the results from the effective moduli model are compared with those from the high-fidelity simulation
 120 and experimental results, the effect of variations in the crack statistics is analyzed, and the ability of the model to
 121 extrapolate a higher rate loading scenario is investigated. Finally, some concluding remarks are drawn in section 6.

122 2. Effective moduli model formulation for statistically evolved damage

123 In this work, the micro-scale behavior of crack propagation is represented in a macro-scale continuum through
 124 the degradation of the material's effective moduli, calculated using the effective moduli model first proposed by Ju
 125 and Chen (Ju and Chen, 1994a,b), which is briefly described here. The effective moduli model relies on the number,
 126 length, and orientation of micro-cracks to produce probability density functions (PDFs) that describe the evolution of
 127 the crack length and orientation over time. The PDFs are then used to degrade the compliance tensor as shown in the
 128 following equations (Ju and Chen, 1994a,b):

$$S_{eff} = S^0 + S^1 + S^2 \quad (1)$$

$$S^1 = \frac{\pi(1 - \nu^2)}{E} f(x) \int_a \int_{\Theta} a^2 M_0 f(a, \theta) d\theta da \quad (2)$$

$$S^2 = \frac{\pi(1 - \nu^2)}{E} f^2(x) \int_a \int_{\Theta} a^2 M^2(a, \theta) d\theta da \quad (3)$$

129 where S_{eff} is the effective compliance tensor, S^0 represents the pristine compliance tensor of the material, S^1 is a
 130 damage tensor that accounts for the growth and coalescence of individual cracks in the material over time, S^2 denotes
 131 an additional damage tensor that represents the interaction of two adjacent non-intersecting cracks, a represents the
 132 crack radius, and θ is crack orientation. These two damage tensors act as corrections to the pristine compliance tensor
 133 due to the presence of micro-cracks (S^1), and their subsequent interactions (S^2). The local coordinates of the cracks
 134 are related to the global coordinate system through transformation matrices M_0 and M . Finally the material is assumed
 135 to be elastically isotropic, hence ν is Poisson's ratio, and E is Young's modulus. For a detailed derivation of equations
 136 (1-3) see Ju and Chen (1994a,b).

137 In the original formulation, the crack distribution within the material is assumed to be uniform, thus, removing the
 138 damage's dependance on x (Ju and Chen, 1994a). Therefore the function $f(x)$ can be replaced by the number of cracks
 139 per unit area or crack density, n . In this work, the crack radius and crack orientation are considered as independent
 140 variables, as a simplification. Therefore, $f(a, \theta)$ becomes $f(a)f(\theta)$. The damage caused by pairwise crack interactions,
 141 S^2 is negligible if the crack density is sufficiently small. However, the degradation of the material moduli due to crack
 142 interactions is removed for simplicity, and its inclusion within the framework is subject of future work. It should be
 143 noted that equations (1-3) are formulated for a material of infinite domain. This means that material fracture will
 144 never occur. Instead the effective moduli of the system will reach some constant minimum over time. However, in a
 145 finite domain, fracture can occur resulting in a material domain with no stiffness. To resolve this issue, a length scale
 146 parameter is added to the compliance degradation function, following the work of Vaughn *et al.* (Vaughn et al., 2019),
 147 to account for a finite domain. After the above simplifications the new expression for the effective compliance tensor
 148 becomes:

$$S_{eff} = S^0 + S_f^1 \quad (4)$$

$$S_f^1 = \left(\frac{L}{L - 2\bar{a}} \right) \frac{\pi(1 - \nu^2)n}{E} \int_a \int_{\Theta} a^2 M_0 f(a) f(\theta) d\theta da \quad (5)$$

149 where L denotes the length of the target plate and \bar{a} is the half length of the projection of the longest crack in the
 150 direction of failure. In the case of a flyer plate, $2\bar{a}$ will approach the length of the target plate, causing S_{eff} to trend
 151 towards infinity, resulting in a fractured material with no strength. Once the degraded compliance tensor has been
 152 determined, the stress state of the material can be calculated using Hooke's Law:

$$\sigma = C_{eff} \epsilon = (S_{eff})^{-1} \epsilon \quad (6)$$

153 where ϵ is the elastic strain tensor and C_{eff} represents the effective stiffness tensor.

154 3. Generation of crack propagation statistics utilizing the Hybrid Optimization Software Suite

155 The continuum model presented in Section 2 relies on statistical information including the length, orientation,
 156 and evolution of individual cracks to represent damage within the material domain. In this work, information about
 157 the propagating crack network is obtained from high-fidelity simulations completed with the Hybrid Optimization
 158 Software Suite (HOSS), which is an implementation of the combined finite-discrete element method (FDEM) (Rougier
 159 et al., 2013b; Knight et al., 2013; Rougier et al., 2013a). Advantageously, this model evolves discrete cracks along
 160 element edges, and can accommodate complex crack network evolution, catastrophic failure, and even fragmentation.
 161 Here we briefly describe how damage is modeled within HOSS, however more extensive reviews detailing the model
 162 are available (Munjiza et al., 1995; Munjiza, 2004; Munjiza et al., 2012, 2015). In addition, the primary algorithms in
 163 HOSS addressing the contact interaction and finite strain elasticity formulation have also been documented (Munjiza
 164 et al., 2012, 2015).

165 To accurately model damage evolution, failure, and fragmentation, the FDEM divides the global system into dis-
 166 crete solid domains, which are then further discretized into finite elements. Each of these finite elements are connected
 167 by a user-specified number of cohesive points, modeled as non-linear springs, between the edges of finite elements
 168 (Godinez et al., 2019; Osthus et al., 2018). For all HOSS simulations presented here, four normal and four shear
 169 cohesive points are utilized; a number that has been shown to provide accurate results at reasonable computational

170 expense (Rougier et al., 2014). These points allow the edges of the finite elements to separate under sufficient tensile
 171 and/or shear loading. Once the separation value reaches a critical value, the cohesion between the elements fails and
 172 a crack forms along the element edge. A damage parameter, D_{HOSS} , that corresponds with the severity of the element
 173 separation is determined for each element edge. D_{HOSS} ranges from 0, an undamaged edge, to 1, a fully separated
 174 edge. In this way, HOSS is able to capture crack nucleation, growth, and coalescence within the specimen over time,
 175 as it was demonstrated in previous studies (Euser et al., 2019, 2018; Rougier et al., 2014). Since discrete cracks
 176 propagate along element edges in the FDEM, a highly resolved mesh is needed to capture complex crack behavior,
 177 such as interactions between cracks and crack branching or bending behavior. Consequently, HOSS simulations can
 178 be extremely computationally expensive when modeling large components or long time scales.

179 In this effort, crack propagation within a flyer plate setup consisting of a beryllium target plate and a beryllium
 180 impactor (Be-Be) is analyzed. Flyer plate simulations are set up in HOSS to mimic an experiment conducted at Los
 181 Alamos National Laboratory (LANL) on samples of S200-F beryllium (Cady et al., 2012). An example of this setup
 182 as modeled in HOSS is presented in Figure 1 where h_i and h_t are the thicknesses of the impactor and target plates,
 183 respectively. The flyer plate is given an initial velocity of $v = 0.0721\text{cm}/\mu\text{s}$. Once the flyer plate impacts the target, it
 184 creates a compressive shock wave that propagates through the target plate. When the compressive shock front reaches
 185 the back side of the target plate it reflects as a consequence of its interaction with the free surface. The returning
 186 wave then interacts with the rarefaction from the initial shock pulse creating a region of high tensile stress, normal to
 187 the plate's surface. The high tensile stress causes the micro-cracks near the mid-plane of the target plate to rapidly
 188 grow and coalesce in a direction perpendicular to the applied velocity, forming the spall region. Despite the flyer plate
 189 providing an initial compressive load, the experiment allows for the evolution of an indirect tensile load that results
 190 in the evolution of damage due to crack opening. Eventually, a dominant horizontal crack within the spall region will
 191 span the length of the target plate leading to Mode I failure.

192 In the HOSS simulation set-up, $h_i = 2\text{mm}$, $h_t = 4\text{mm}$, and the diameter of the impactor and target plates is
 193 28.8mm. The target plate initially contains 200 micro-cracks between 0.1 and 0.3 millimeters in length. The position
 194 of each crack within the target plate is determined through random sampling of a uniform distribution. Similarly,
 195 crack orientations are determined through random sampling of a uniform distribution function constrained between
 196 the angles of -90 and 90 degrees. Crack lengths are randomly sampled from the following power law distribution:

$$f(a) = \frac{ga^{(g-1)}}{b^g - c^g} \quad (7)$$

197 where c is the shortest initial crack length, b is the longest initial crack, and parameter $g = -3$. Very fine time steps
 198 of $1e^{-5}$ microseconds are required to accurately capture the rapid evolution of the crack network in HOSS. Every 250
 199 time steps: stress, velocity, and crack evolution data is output from HOSS. A total of 480 HOSS outputs were created
 200 per simulation. The run time for each simulation was 2.5 hours on 64 processors. One hundred simulations of this
 201 type were conducted in HOSS to create a statistically relevant data set for crack network analysis. However, in each
 202 simulation the pre-existing crack network is perturbed so that the exact locations and lengths of the 200 cracks are
 203 different, thus changing the initial crack network configuration.

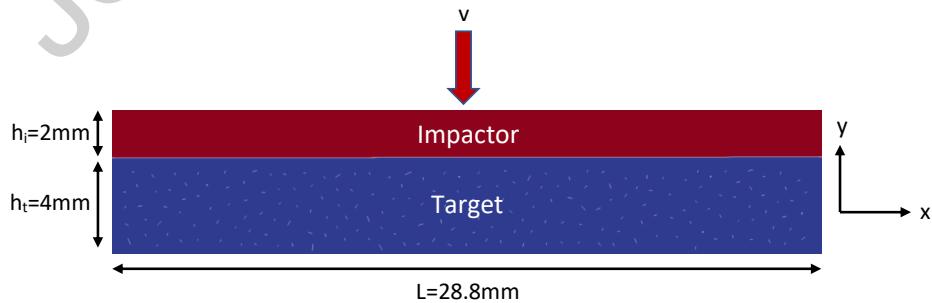


Figure 1: Initial setup of a 2D Be on Be flyer plate simulation with 200 randomly positioned and oriented micro-cracks in the target plate

204 The realistic crack network generated by the HOSS simulations contain complex systems of branching and turning
 205 cracks. However, the effective moduli model discussed previously in Section 2 assumes that all cracks in the domain

206 are straight with an easily definable orientation. A reliable method for determining the length and orientation of
 207 individual cracks must be instituted to compile statistical crack information provided by HOSS so that it is usable in
 208 the effective moduli model. This requires a clear definition of how to measure a crack's length as it propagates, bends,
 209 coalesces, etc. One logical method, which we chose to apply here, is to identify the right-most and left-most points of
 210 a crack and use the straight line distance between these points as the crack length (i.e. the Euclidean length). Then the
 211 angle between this straight line and the horizontal axis can be used as the crack orientation. We note, however, that one
 212 could think of many possible ways to define a crack's length and subsequent orientation. Previous work by Vaughn
 213 *et al.* (Vaughn et al., 2019) utilized a similar model framework as in this work, however applied to low-rate tensile
 214 loading of geomaterials (concrete). In this work, they investigated various definition of the crack length including the
 215 projection normal to the applied load, Euclidean length, and the total crack length. They found that the Euclidean
 216 length measurement technique yielded the best results when compared to the other crack length definitions for the
 217 effective moduli model, hence, we have also chosen to use this length measure in the analysis presented here.

218 A Python script was used to identify the left and right most points of every crack in each HOSS output. Then the
 219 Euclidean length and resulting orientation of each crack was calculated using the extracted data. Consequently, PDFs
 220 of crack length and orientation can be generated for each HOSS time step. Then crack data at every time step for all
 221 100 HOSS simulations can be combined into one statistically significant data set, if necessary. Example crack length
 222 and orientation statistics generated from a single HOSS simulation are presented in Figures 2 and 3, respectively.
 223 Significant crack growth occurs when the target plate is under tensile loading and the spall region develops. This
 224 occurs after the initial shock wave has reflected off the backside of the target plate. Hence, Figure 2 shows that
 225 little to no crack growth occurs during the compressive loading regime, before the shock is reflected. For the flyer
 226 plate statistics shown in Figure 2, a single crack within the spall region spans the width of the target plate after time,
 227 $t = 0.7425\mu\text{s}$. From analysis of Figure 3, crack orientations do not change significantly throughout the simulation.
 228 Indeed, most of the pre-existing cracks in the target plate do not grow or coalesce resulting in only minor changes in the
 229 orientation and length distributions. However, after a tensile region is formed within the target plate, cracks near the
 230 mid-plane join to form a dominant crack system that is normal to the applied loading (nearly horizontal in this case).
 231 Thus, crack orientation slightly trends towards 0° after fracture occurs, regardless of the initial crack distribution.
 232 An effective compliance tensor for each HOSS output can be obtained by numerically integrating Equations 4 and 5,
 233 using the crack length and orientation distributions, like those presented in Figures 2 and 3, as functions $f(a)$ and $f(\theta)$.

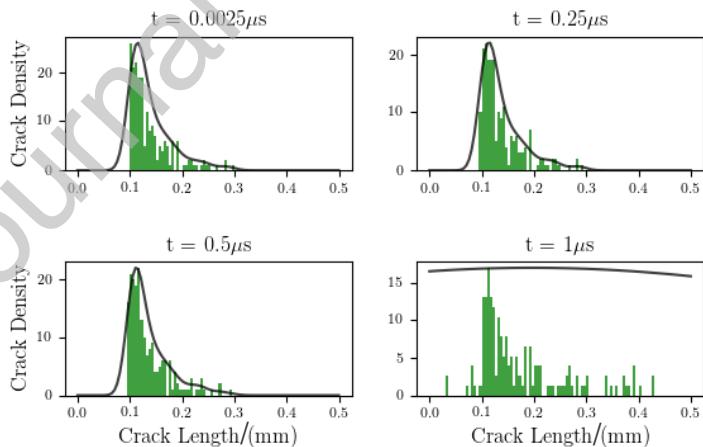


Figure 2: Crack length distributions extracted from a single HOSS simulation at various time steps. The black line represents the probability density function determined using a Gaussian kernel-density estimation

234 3.1. Removing time dependency for multi-zone simulations

235 As stated previously, statistical distributions can be generated for each HOSS output, producing a time series of
 236 statistical information. However, the effective moduli model presented in Section 2 will not be run in HOSS, but in a
 237 hydrodynamic model framework (discussed in more detail in Section 4). Hence, the problem of correlating damage

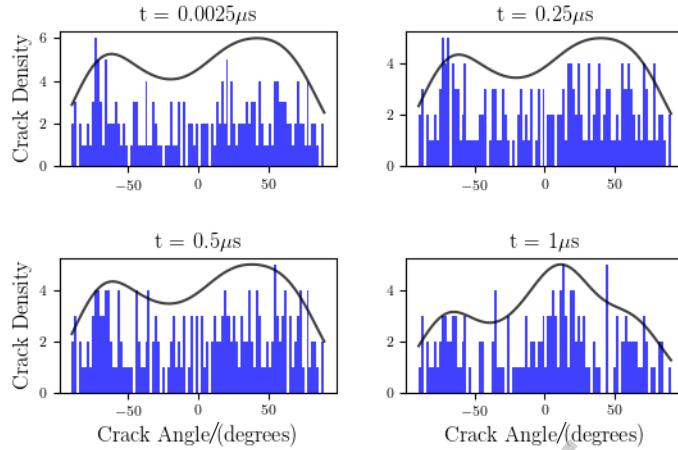


Figure 3: Crack orientation distributions extracted from a single HOSS simulation at various time steps. The black line represents the probability density function determined using a Gaussian kernel-density estimation

238 evolution to the simulation time step across very different codes and model implementations arises. In particular, the
 239 crack length and orientation statistics generated using HOSS output must be utilized in the effective moduli model
 240 at the appropriate point (time) in the system's damage evolution. This requires that the time step used for generating
 241 the statistics (i.e., the HOSS time step), must directly correspond to the time step used in calculations with the
 242 effective moduli constitutive model to avoid interpolation between statistical sets. Such criteria can be quite limiting,
 243 particularly if this requires statistical output from HOSS that is highly resolved in time thus, increasing data storage
 244 requirements and computational costs. These criteria could also require that the continuum-scale model be run at
 245 time steps much more resolved than typically necessary, reducing the computational efficiency gained by increasing
 246 the model's length-scale. Additionally, if we consider a system containing multiple material zones, some zones may
 247 experience much more damage than others. For example, in the case of the flyer plate experiment, the spall region
 248 near the mid-plane of the target plate is the only region that accrues large amounts of damage. Therefore, zones across
 249 the entire target plate cannot be degraded evenly over time but must be degraded individually based on some criteria
 250 determined by the applied loading or material state.

251 Cracks grow when a sufficient stress concentration at the crack tip causes the crack to open and spread (Griffith,
 252 1921). Information concerning the evolution of the stress state can be extracted from HOSS's high-fidelity simulations
 253 in addition to the statistical information about the crack network. Since the spall region is generated from a tensile
 254 stress state in the target material, the maximum tensile stress within the target material domain is chosen as it is the
 255 key indicator of Mode I type damage initiation and evolution. For other loading conditions, a different metric of the
 256 stress state within a material zone may be a better indicator of damage initiation (e.g., a maximum shear stress, or an
 257 effective stress measure for combined loading conditions). Figure 4 shows the value of the maximum tensile stress in
 258 the direction of the applied loading plotted with the velocity calculated at the back of target plate over time with HOSS.
 259 The maximum tensile stress is taken to be the maximum tensile stress in any element of the HOSS simulation. For
 260 the case of the flyer plate, the maximum tensile stress occurs in elements within the spall region, however, it may not
 261 be the same element for every HOSS output. Clearly, the maximum tensile stress and velocity follow a similar trend.
 262 This, coupled with the expectation of Mode I failure, makes the maximum tensile stress a logical choice for a damage
 263 evolution criteria. The maximum tensile stress for each HOSS output is coupled with the degraded compliance tensor
 264 produced for the same HOSS output time. The maximum tensile stress value is then used as a pointer to indicate the
 265 appropriate damage tensor for a zone in the continuum model, which allows a non-homogeneous damage distribution
 266 to evolve within the target material. More details on this approach can be found in Section 4.2.

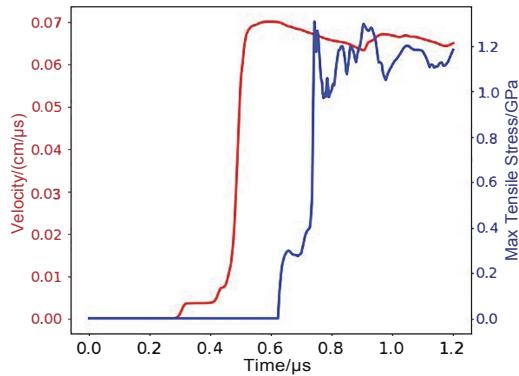


Figure 4: Maximum tensile stress in any zone in the target sample and the velocity at the rear center of the target plate over time from a single HOSS simulation.

267 4. The effective moduli material model in FLAG

268 LANL's hydrodynamic modeling software (hydrocode), FLAG, is used to perform the continuum-scale simulations. FLAG (Burton, 1992, 1994b,a) has been developed and maintained at LANL over several decades, and hence 269 has a diverse set of modeling capabilities for solving fluid and solid mechanics problems. FLAG is a multidimensional 270 (1D, 2D, and 3D), multiphysics research code, that uses a finite-volume approach to compute solutions using either 271 a cell-centered or staggered-grid hydrodynamics algorithm. It utilizes an arbitrary polyhedral mesh arranged on an 272 unstructured grid to resolve multidimensional single material, mixed material, or multi-material domains. Adaptive 273 mesh refinement (AMR) and arbitrary Lagrangian-Eulerian (ALE) relaxation are available for mesh refinement and 274 adaptivity in dynamic simulations. In addition, FLAG includes a wide-ranging library of models that can account 275 for material behaviors under extreme loading conditions, and also capabilities such as slide surfaces for addressing 276 discontinuous meshes.

277 FLAG has been extensively validated for a wide range of classical test problems such as the Noh, Sod shock tube, 278 Taylor-Green vortex, and Howell problem (Burton et al., 2018). Recently, Caldwell *et al.* (Caldwell et al., 2018) 279 performed a verification and validation study for impact cratering simulations in FLAG and found that FLAG was 280 capable of capturing shock dynamics with relatively low error when compared to experimental results. Furthermore, 281 this study included a comparison of results to eight other hydrocodes with similar frameworks and a mesh convergence 282 study. Results showed that FLAG had lower deviations in solutions in comparison to analytical solutions. FLAG 283 has been used for a wide variety of research endeavors including ejecta and transport modeling (Fung et al., 2013), 284 turbulence modeling (Denissen et al., 2012), detonation shock dynamics (Aida et al., 2013), and material damage 285 modeling (Tonks et al., 2007; Vaughn et al., 2019). In this work FLAG is used to simulate crack propagation in 1D 286 and 2D flyer plate experiments using a pure Lagrange solution technique.

288 4.1. Integrating plasticity into the effective moduli model

289 While some brittle materials such as ceramics or geo-materials have negligible plasticity, quasi-brittle metals, have 290 some ductile behavior. Additionally, the high rate loading conditions of interest here will produce compressive and 291 tensile stresses in excess of the material's yield strength. Consequently, a plasticity model must be included to obtain 292 an accurate result. FLAG has several built in plasticity models including von Mises plasticity, Steinberg-Guinan 293 (Steinberg et al., 1980), and Preston-Tonks-Wallace (PTW) (Preston et al., 2003). In this case, we have chosen to 294 use the Steinberg-Guinan flow stress model, however, any flow stress model could be used with effective moduli 295 constitutive model using the methodology described below. It is worth noting, that the Steinberg-Guinan model (and 296 other common flow stress models, such as PTW) assumes elastic isotropy. The Steinberg-Guinan parameters for 297 Beryllium (Steinberg, 1996) can be found in Table 1.

298 In order to include the plasticity model, the total stress tensor is first split into deviatoric and volumetric compo- 299 nents:

$$\sigma_{ij}^0 = \sigma'_{ij} - P\delta_{ij} \quad (8)$$

300 where σ^0 represents the pristine stress, σ' is the stress deviator, P denotes the pressure, and δ_{ij} is the Kronecker
 301 delta function. The framework in FLAG utilizes this type of decoupling to determine the stress state in a zone, rather
 302 than using Hooke's Law directly. Hence, an equation of state (EOS) is then used to determine the zonal pressure,
 303 temperature, and the material's bulk modulus. FLAG's material library has access to both analytic and tabular EOS.
 304 In this work, we have chosen to use a tabular EOS from the SESAME database (Lyon, 1992).

305 The deviatoric stresses, and corresponding amount of plastic strain, of the undamaged material are determined
 306 using an isotropic radial return algorithm (Simo and Hughes, 2006). As mentioned above, the yield criterion is given
 307 by the Steinberg-Guinan model. In addition, the Steinberg-Guinan shear modulus model was used to account for
 308 temperature and pressure dependent changes in the material's shear modulus during loading. FLAG is a velocity
 309 driven code, so the elastic strains can be determined assuming an additive decomposition of the total strain:

$$\epsilon = \epsilon^{tot} - \epsilon^p \quad (9)$$

310 where ϵ is the elastic strain, ϵ^{tot} denotes the total strain, and ϵ^p represents the plastic strain. The determination of the
 311 elastic strain is the key term that accounts for plasticity in the determination of the stress state of the damaged material.
 312 In order to determine the stress state of the damaged material using the effective moduli model, the stress tensor cannot
 313 be decoupled as in Equation 8. Rather, the corrected stress tensor that includes damage must be determined for each
 314 zone directly using Hooke's Law as follows:

$$\sigma = (C^0 + C^1)\epsilon \quad (10)$$

315 where σ represents the stress tensor of the damaged material zone, and ϵ is calculated using equation 9. C^1 is the
 316 damage tensor that is calculated in FLAG using crack statistics from HOSS. The C^1 damage tensor is determined as
 317 follows:

$$C^1 = (S_{eff})^{-1} - C^0 \quad (11)$$

318 where S_{eff} has been defined previously in Equation 4 and C^0 represents the stiffness tensor of the pristine material.

Table 1: Steinberg-Guinan model parameters for Beryllium (Steinberg, 1996)

Parameter	Description	Value
ρ_0	reference density	$1.845g/cm^3$
G_0	initial shear modulus	$1.51Mbar$
Y_0	initial flow stress	$0.0033Mbar$
Y_{max}	max work hardening	$0.0131Mbar$
β	work hardening parameter	26
n	work hardening exponent	0.78
A	pressure dependence multiplier	0
B	temperature dependence multiplier	0
q_y	flow stress pressure dependence factor	1.0
f_g	melt shaping for shear modulus	0
f_y	melt shaping for flow stress	0
ρ_{0s}	crushed-up density	$1.845g/cm^3$

319 4.2. Statistically informed damage evolution in FLAG

320 The effective moduli model in FLAG relies on the maximum tensile stress from the high-fidelity HOSS simulations
 321 to determine the appropriate crack length and orientation statistics to use to calculate the damage tensor for each zone
 322 at each time step. For the first occurrence of tensile loading in a zone σ^0 is matched to a corresponding HOSS
 323 stress value and the associated crack length and orientation statistics. If the stress value from FLAG lies between two

324 maximum tensile stress values from HOSS, linear interpolation is used to correct the components of the computed
 325 damage tensor to provide a more accurate damage estimation. Once damage has been initiated, the pristine stress
 326 will largely overestimate the stress state within the damaged material because energy released by crack growth is not
 327 accounted for in the calculation of the pristine stress. Thus, for subsequent iterations, a trial stress is calculated to
 328 estimate the stress in each damaged zone as follows:

$$\sigma^T = (C_n^0 + C_{n-1}^1)\epsilon_n \quad \text{where : } \epsilon_n = \epsilon_n^{tot} - \epsilon_n^p \quad (12)$$

329 where σ^T represents the trial stress and subscript n is the current time step. The trial stress is determined by first
 330 calculating the elastic strain from the pristine material conditions for the current iteration. Then the damage tensor
 331 from the previous iteration, C_{n-1}^1 , is used to degrade the pristine stiffness tensor. A component of the trial stress or
 332 equivalent stress measure, such as a principle component of the trial stress, is compared to tensile stress values from
 333 HOSS and an updated set of crack statistics are obtained for the current iteration. In this work, the σ_{22}^T component of
 334 the trial stress is compared to the maximum tensile stress values from HOSS because tensile stress in the y-direction
 335 is the primary mechanism contributing to the formation of the spall region in the target plate. Finally, the corrected
 336 stress for the current damage state, σ , is calculated using the updated damage tensor as in Equation 10. A damage
 337 parameter is integrated into the effective moduli model in FLAG as a way to represent the extent to which a material
 338 zone is damaged. The damage parameter in FLAG, D_{FLAG} , has a range from zero, an undamaged zone, to one, a failed
 339 zone with no strength. The damage is determined as follows:

$$D_{FLAG} = 1 - \frac{C_{norm}^0 - C_{norm}^1}{C_{norm}^0}. \quad (13)$$

340 The C_{norm}^0 and C_{norm}^1 represent the components of the pristine stiffness tensor and damage tensor in the direction
 341 of loading primarily responsible for crack growth. Assuming a Mode I type failure; the tensile load will be normal
 342 to the direction of crack growth. In this work, the C_{22}^0 and C_{22}^1 components are used to calculate the damage in the
 343 target plate. When a zone in FLAG reaches a damage value, $D_{FLAG} = 1$, it is considered completely failed. The stress
 344 value in the failed zone is set to zero and failed zones cannot regain strength. This may not be appropriate for cases
 345 of cyclic loading where cracks may be closed by compressive loading. However, this condition is valid in the case of
 346 flyer plates which do not experience large cycles of recompression once crack propagation begins in the target plate.

347 5. Comparative study of Effective Moduli model to FDEM simulations and experimental results

348 5.1. 1D and 2D flyer plate simulations using effective moduli

349 To test and validate the effective moduli constitutive model as implemented in FLAG, we first simulated the
 350 Be-Be flyer plate in both 1D and 2D. The 1D flyer plate FLAG simulation is set up as follows. The impactor and
 351 target plates are divided into 26 and 53 zones along their respective thicknesses (Figure 5(a)). A slideline boundary
 352 condition is placed in between the plates to allow for a discontinuous mesh and to avoid interpenetration of the two
 353 bodies. The impactor is given an initial velocity, v . When the target plate is impacted a compressive shock wave is
 354 transferred through the material until it reaches and is reflected off the back side of the plate. When the reflected wave
 355 crosses the compressive shockwave a region of high tensile stress is created that causes the target plate to fracture.
 356 It is assumed that during the initial compressive regime the cracks in the target plate are unable to grow. Therefore,
 357 the moduli of the target plate is not degraded until a tensile stress is present inside the plate. Velocity data at the
 358 rear center of the target plate is collected over time for comparison to HOSS simulations and experimental Velocity
 359 Interferometer for Any Reflector (VISAR) data (Cady et al., 2012). Figure 5(b) is a comparison of the velocity over
 360 time estimation produced by the effective moduli 1D FLAG simulation with a FLAG simulation without a damage
 361 model, a high-fidelity HOSS simulation, and experimental data. It can be seen that the hydrodynamics simulation
 362 is able to accurately match the first half of the HOSS simulation and experimental VISAR data without a damage
 363 model. However, it is unable to match the pull back region of the VISAR curve, depicted in Figure 5(c). In this case,
 364 the effective moduli model in FLAG is informed with statistics from one randomly selected HOSS simulation. It was
 365 found that the root mean squared error (RMSE) between the effective moduli model and the experimental data was
 366 0.00213 while the RMSE between the effective moduli model and HOSS was 0.00382. The effective moduli model

367 matches the trend of the HOSS results more closely than the experimental VISAR, which is to be expected since
 368 the HOSS simulation is directly informing the damage degradation in FLAG. Yet, the 1D FLAG simulation closely
 369 approximates the experimental data. The simulation run time for the 1D simulation is FLAG is approximately 42
 370 seconds on one processor, which is a vast reduction in computational resources when compared to the high-fidelity
 371 simulations. However, 1D simulations are unable to capture some of the physical phenomenon associated with crack
 372 evolution.

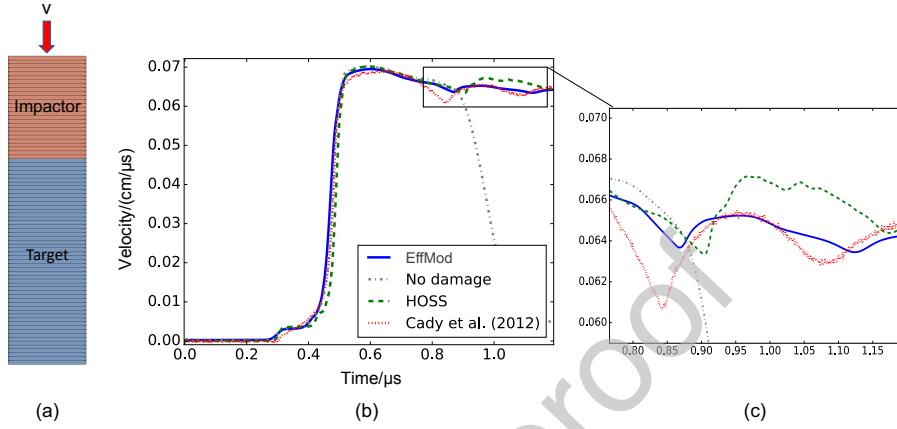


Figure 5: (a) 1D flyer plate simulation setup in FLAG; (b) VISAR comparison of a 1D FLAG simulation with the effective moduli damage model (EffMod) and without a damage model, a HOSS simulation, and experimental data (Cady et al., 2012); and (c) a zoom of the pull back signal

373 To more accurately capture the physical behavior of the flyer plate experiment, a 2D simulation utilizing the
 374 effective moduli model is conducted in FLAG. The flyer plate setup is symmetric about the y-axis thus, in 2D only
 375 the left half of the flyer and target plates are modeled to remove extraneous computational expenses. The impactor
 376 is divided into 5,184 zones and the target plate is divided into 10,176 zones, which corresponds to a zone size of
 377 approximately $5,625\mu\text{m}^2$. Similar to the 1D case, a slideline boundary is placed in between to two plates to allow
 378 for a discontinuous mesh and to avoid interpenetration of the two bodies. Each 2D simulation in FLAG using this
 379 setup takes approximately 9 minutes to run on one processor. The 2D FLAG analysis allows for improved visual
 380 comparisons of the velocity distributions and spall regions within the target plate over time. Figure 6 depicts the
 381 velocity distributions within the impactor and target plates at $t = 1.2\mu\text{s}$. The high-fidelity HOSS simulation clearly
 382 shows a complex crack network that forms a wide spall region in the center of the target plate. The FLAG simulation
 383 is unable to capture the individual cracks spanning the mid-plane of the target plate; however, a spall region of similar
 384 thickness is observed when using the effective moduli model. The spall region in the FLAG simulation is comprised
 385 of highly degraded and zero strength material zones that mimic the crack network.

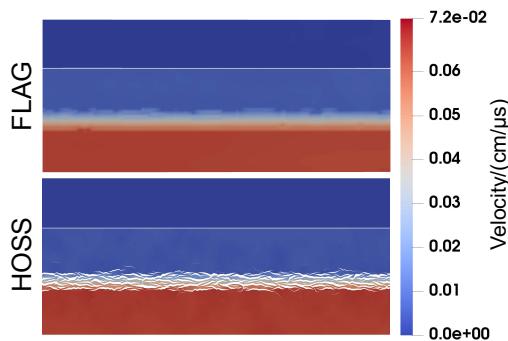


Figure 6: Comparison of the velocity distributions in the FLAG and HOSS flyer plate simulations at $t = 1.2\mu\text{s}$

386 In the 1D case, results that closely match the HOSS VISAR were generated using crack statistics from a single
 387 HOSS simulation. This is in contrast to finding in previous work by Vaughn *et al.* (Vaughn *et al.*, 2019) where
 388 a similar modeling approach was used to address low rate uniaxial tensile loading in geo-materials. Vaughn *et al.*
 389 (Vaughn *et al.*, 2019) found that statistics from multiple high-fidelity simulations were needed to create a large enough
 390 statistical base to qualitatively match experimental results. However, the initial crack distribution considered in these
 391 simulations was somewhat limited in comparison to the initial crack network considered here. Their pre-existing
 392 crack network consisted of cracks with constant initial lengths and only three possible initial orientations. In addition,
 393 there were fewer initial cracks; 20 compared to 200 used here. Having a more varied initial crack network is likely one
 394 reason why fewer high-fidelity simulations are needed in this case to generate PDFs that produce reasonable results
 395 for the overall material response. The difference in loading conditions may also play a role in the size of the statistical
 396 base needed to inform the effective moduli constitutive model. At low rates, a single dominant crack is expected to
 397 grow and coalesce, which will engage relatively few cracks in the pre-existing crack network. In the case of high rate
 398 loading in a flyer plate experiment, a dominant region of localized damage forms (i.e., the spall region) due to the
 399 growth and coalescence of many cracks. In this case, many more cracks in the pre-existing region will be engaged in
 400 the formation of a region rather than a single crack pathway.

401 Regardless of these issues, the initial crack distribution and the crack growth statistics vary from simulation to
 402 simulation for the case of a flyer plate. Figure 7(a) shows that the initial rise time is unaffected by variations in the
 403 initial crack data but the pull back signals produced after the plate is fractured change from HOSS simulation to HOSS
 404 simulation. To investigate the effect the variation in the pre-existing crack network and subsequent statistics have on
 405 the pull back signal, we have combined crack length and orientation statistics from 100 HOSS simulations to use to
 406 inform the effective moduli constitutive model. The simulated VISAR results, obtained from 2D FLAG simulations,
 407 using statistics from two different HOSS simulations as well as statistics from the 100 combined HOSS simulations
 408 are presented in Figure 7(b). The variations in the HOSS statistics do not produce significant changes in the VISAR
 409 plot produced with the effective moduli in FLAG as can be seen from the inset in Figure 7(b), which is focused on the
 410 pull back signal region. This is primarily due to the dense, uniformly distributed initial crack distribution. The initial
 411 crack system consists of a large number of short, randomly oriented and distributed cracks. This causes the degraded
 412 stiffness tensors and the damage evolution to be nearly identical for every HOSS simulation.

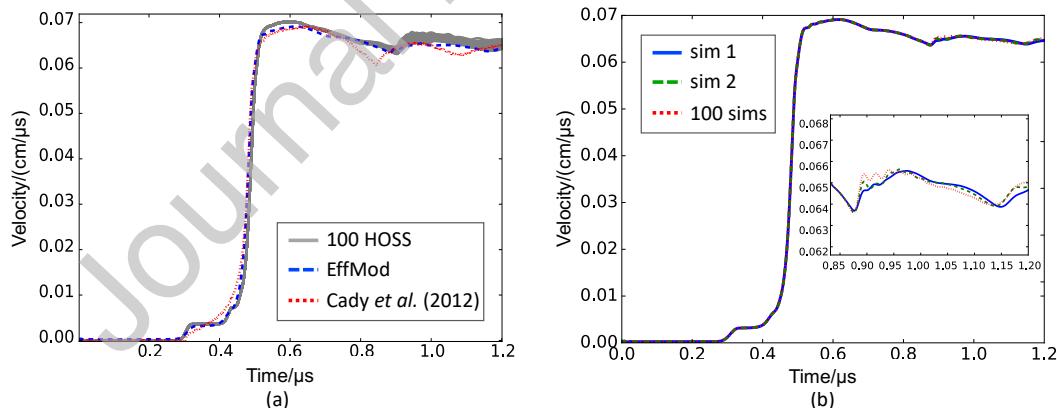


Figure 7: VISARs produced using (a) all 100 HOSS simulations, the effective moduli model in FLAG using statistics from one HOSS simulation, and experimental data from Cady *et al.* (Cady *et al.*, 2012) and (b) the effective moduli model in FLAG using statistics from two different HOSS simulations and averaged statistics from 100 HOSS simulations

413 5.2. Effect of the damage threshold on crack evolution statistics

414 As stated in Section 2, crack growth in HOSS occurs when the cohesive points between element edges separate
 415 until a critical point where these points are broken. In HOSS, a damage value, D_{HOSS} , between 0 and 1 is assigned to
 416 each element edge depending on the extent of the separation between cohesive points. $D_{HOSS} = 1$ meaning cohesion
 417 between the element edges is completely broken. The crack evolution statistics are highly dependent on the choice

418 of a damage threshold value where cracks are considered to begin opening. In previous sections, a damage threshold
 419 value of $D_{HOSS} = 0.1$ was used to determine the crack evolution Figure 8(a) depicts the change in the C_{22} component
 420 of the stiffness tensor over time for various values of D_{HOSS} . Cracks form and spread very quickly across the length
 421 of the target plate resulting in material failure. The sudden drop-off of the C_{22} component near $t = 0.8\mu s$, corresponds
 422 with the fracture of the target plate. Clearly, choosing a higher damage value causes the damage accumulation to
 423 become more gradual which corresponds to slower crack growth, an increase in the time it takes for fracture to occur,
 424 and a less spontaneous material failure.

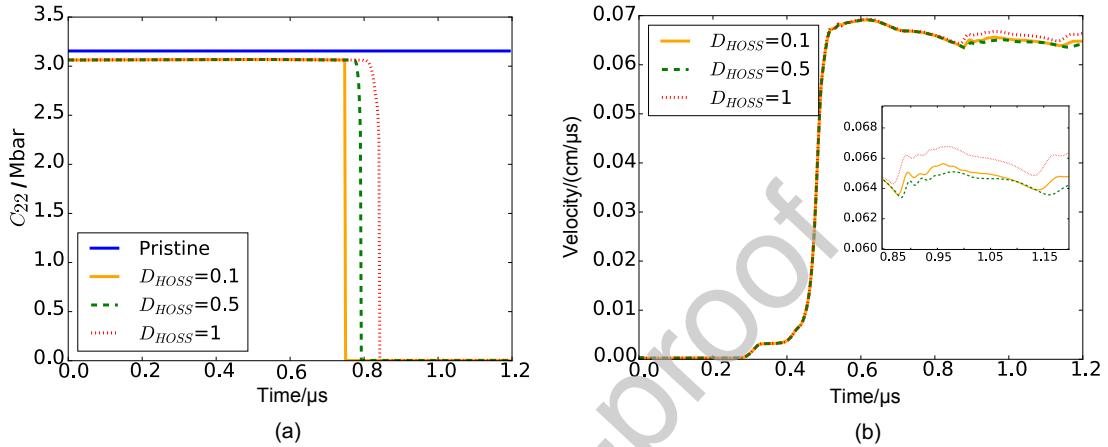


Figure 8: (a) Statistical evolution of the C_{22} component of the stiffness tensor for various HOSS damage thresholds over time compared with the pristine, undamaged stiffness value, (b) shows the resulting VISAR plots generated using FLAG

425 While there is very little effect on the velocity data for the various damage thresholds, there is an observable change
 426 in the crack evolution and spall region present in the target plate. Figure 9 depicts the damage distributions at the end
 427 of simulation $t = 1.2\mu s$, for the various damage thresholds. As D_{HOSS} is increased, the width of the spall region
 428 remains approximately the same. However, the spall region becomes more featured and contains a higher number of
 429 partially degraded zones. Most notably when $D_{HOSS} = 1$ the outside edges of the spall region experience more of
 430 a damage gradient rather than a hard transition from fully damaged zones to slightly degraded zones observed when
 431 $D_{HOSS} = 0.1$. The damage distribution resulting from higher values of D_{HOSS} is more reminiscent of experimental
 432 behavior.

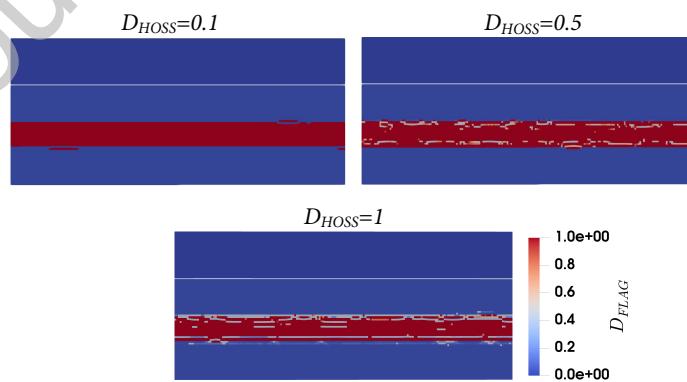
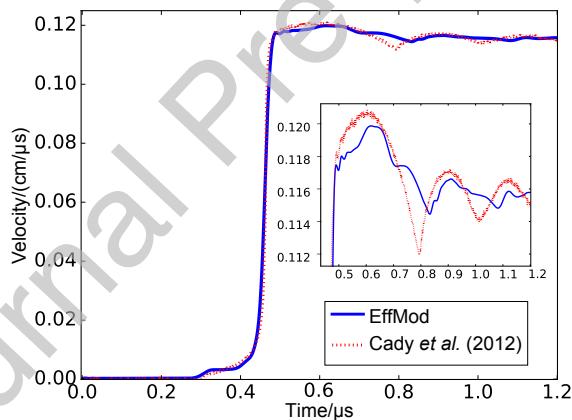


Figure 9: Damage in FLAG at $t = 1.2\mu s$ using sets of statistics formed using various HOSS damage thresholds

433 5.3. Model extrapolation for higher velocity flyer plate cases

434 A primary goal of this work is to develop a model that can be used generally. Of course, if many high-fidelity
 435 simulations are required for every loading condition or each time a new material is employed, the computational cost
 436 of generating the needed statistical input could be a major limitation of the methodology presented here. Previously,
 437 in Section 5.2, we have shown that one high-fidelity simulation generates enough statistics to produce reasonable
 438 results describing the overall material response. However, considering all possible loading conditions and materials
 439 one may be interested in studying, requiring a single high-fidelity simulation for each case to inform the crack length
 440 and orientation PDFs could still be a significant model limitation.

441 Cady *et al.* (Cady et al., 2012) also presented experimental data of a Be-Be flyer plate with a higher impact velocity,
 442 $v = 0.1246\text{cm}/\mu\text{s}$, and the same experimental set-up. We performed simulations at this higher impact velocity using
 443 the effective moduli model as implemented in FLAG, but informed with crack length and orientation statistics from
 444 a single HOSS simulation modeling the Be-Be flyer plate experiment with an impact velocity of $v = 0.721\text{cm}/\mu\text{s}$.
 445 Simulated VISAR results are directly compared to the experimental data in Figure 10. The simulated and experimental
 446 VISARs match reasonably well, however under closer investigation (see inset in Figure 10) the match is not as good
 447 as for the lower velocity case. When the results of the 2D flyer plate simulations in FLAG are compared with the
 448 experimental results RMSE the lower rate case was found to be 0.00150 while a RMSE of 0.00202 was found for
 449 the extrapolated case. It is to be expected that there would be larger error in the extrapolated response. However,
 450 the ability of the effective moduli model to accurately simulate higher velocity flyer plate cases demonstrates that
 451 relationship between the maximum tensile stress and damage is similar for Be-Be flyer plates with the same boundary
 452 conditions. The ability to extrapolate, with reasonable comparison to experiments, further decreases the need for
 453 additional costly high-fidelity simulations to generate statistical input.



454 Figure 10: Extrapolation of higher rate flyer plate case compared to experimental results from Cady *et al.* (Cady et al., 2012), considering
 $D_{HOSS} = 1$ and using statistical data from one HOSS simulation

454 6. Conclusions

455 In this work, well defined crack length and orientation statistics from high-fidelity simulations were used to inform
 456 an effective moduli model for the high-rate fracture of quasi-brittle metals. A new stress based damage criteria was
 457 introduced to allow damage to evolve in individual material zones. This crucial improvement removes the previous
 458 limitations associated with the time based damage evolution previously employed by the effective moduli model.
 459 Stress based material degradation of individual zones also allows for non-homogeneous damage distributions to form
 460 within the material. Thus, realistic regions of localized damage, such as spall regions in the flyer plate experiments
 461 simulated in this study, can now be accurately simulated in continuum scale with the effective moduli model. An-
 462 other important modification to the effective moduli model was the integration of a plasticity model. This allows a

463 wider range of materials, including quasi-brittle materials that exhibit some ductile behavior, can be more accurately
 464 simulated.

465 The effect of variations in the crack statistics was investigated by first studying the number of high-fidelity sim-
 466 ulations that were needed to properly inform the damage model. The dense, randomly distributed and oriented pre-
 467 existing crack network in the high-fidelity simulations coupled with the indirect tensile loading regime within target
 468 plate, lead to very little variation in the crack evolution from simulation to simulation. It was concluded that, one high-
 469 fidelity simulation produced adequate statistical information for accurate simulations of the damage evolution with
 470 the effective moduli model. This substantially reduces the number of costly high-fidelity simulations needed to create
 471 a statically representative set of crack length and orientation distributions. Next the effect of the damage threshold was
 472 found to significantly change the damage evolution within the material over time. Higher damage thresholds produced
 473 a more gradual material degradation and a later time of failure as well as a more realistic final damage distribution
 474 within the target plate. Finally, the effective moduli model was used to extrapolate results for a higher rate loading
 475 case. Excellent agreement between experimental results and extrapolated data from the effective moduli model shows
 476 that similar stress and crack growth trends are present in the same material at different loading rates. This extension of
 477 the effective moduli to higher rate cases further reduces the need for a large number of costly high-fidelity simulations
 478 and increases the flexibility of the model.

479 In future studies, the effective moduli model could be applied and extended to consider more complex loading
 480 conditions to include shear loading, combined shear and tension, and recompression of damaged zones. Finally, the
 481 model framework is ideal to connect with newly developed reduced-order models, such as those that utilize machine
 482 learning (Moore et al., 2018; Hunter et al., 2019). This could also produce more flexibility in the range of statistical
 483 information available to inform the constitutive model at greatly reduced computational costs.

484 7. Acknowledgments

485 The authors would like to acknowledge Los Alamos National Laboratory Directed Research and Development
 486 (LDRD) Program #20170103DR for their financial support.

487 8. References

488 Declaration of interests

489 The authors declare that they have no known competing financial interests or personal relationships that could
 490 have appeared to influence the work reported in this paper.

491 Author Statement

492 Kevin Larkin: Methodology, Software, Formal analysis, Writing-Original Draft Esteban Rougier: Methodology,
 493 Formal Analysis, Writing- Review, & Editing Viet Chau: Methodology, Writing- Review, & Editing Gowri Srinivasan:
 494 Conceptualization, Supervision, Writing- Review, & Editing Abdessattar Abdelkefi: Supervision, Writing- Review,
 495 & Editing Abigail Hunter: Conceptualization, Supervision, Methodology, Writing- Review, & Editing

496 References

497 Abedi, R., Haber, R. B., Clarke, P. L., 2017. Effect of random defects on dynamic fracture in quasi-brittle materials. International Journal of Fracture
 498 208, 241–268.

499 Abraham, F. F., Broughton, J. Q., Bernstein, N., Kaxiras, E., 1998. Spanning the continuum to quantum length scales in a dynamic simulation of
 500 brittle fracture. Europhysics Letters 44, 783.

501 Addessio, F., Johnson, J. N., 1990. A constitutive model for the dynamics response of brittle materials. Journal of Applied Physics 67, 3275–3286.

502 Aida, T., Walter, J. W., Aslam, T. D., Short, M., 2013. Verification of 2-d detonation shock dynamics in conjunction with los alamos lagrangian
 503 hydrocode. Tech. Rep. LA-UR-12-20792, Los Alamos National Lab, Los Alamos, NM, USA.

504 Ambati, M., Gerasimov, T., De Lorenzis, L., 2015. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational
 505 Mechanics 55, 383–405.

506 Ayyagari, R. S., Daphalapurkar, N. P., Ramesh, K. T., 2018. The effective compliance of spatially evolving planar wing-cracks. Journal of the
 507 Mechanics and Physics of Solids 111, 503–529.

508 BaÅant, Z. P., Caner, F. C., Adley, M. D., Akers, S. A., 2000. Fracturing rate effect and creep in microplane model for dynamics. *Journal of*
 509 *Engineering Mechanics*, ASCE 126, 962–970.

510 Blumenthal, W., Abeln, S. P., Cannon, D. D., Gray III, G. T., Carpenter, R. W., 1998. Influence of strain rate and temperature on the mechanical
 511 behavior of beryllium. *Shock Compression of Condensed Matter* 429, 411–414.

512 Budiansky, B., O'Connell, R. J., 1976. Elastic moduli of a cracked soild. *International Journal of Solids and Structures* 12, 81–97.

513 Burton, D., 1992. Connectivity structures and differencing techniques for staggered-grid free-lagrange hydrodynamics. *Tech. Rep. UCRL-JC-*
 514 *110555*, Lawrence Livermore National Laboratory, Livermore, CA.

515 Burton, D., 1994a. Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids. *Tech. Rep. UCRL-JC-118788*,
 516 Lawrence Livermore National Laboratory, Livermore, CA.

517 Burton, D., 1994b. Multidimensional discretization of conservation laws for unstructured polyhedral grids. *Tech. Rep. UCRL-JC-118306*, Lawrence
 518 Livermore National Laboratory, Livermore, CA.

519 Burton, D., Morgan, N., Charest, M., Kenamond, M., Fung, J., 2018. Compatible, energy conserving, bounds preserving remap of hydrodynamic
 520 fields for an extended ale scheme. *Journal of Chemical Physics* 355, 492–533.

521 Cady, C. M., Adams, C. D., Prime, M. B., Hull, L. M., Addessio, F. L., Bronkhorst, C. A., Brown, E. N., Liu, C., Sisneros, T. A., Brown, D. W.,
 522 Blumenthal, W. R., Gray III, G. T., 2012. Characterization of s200-f beryllium using shock loading and quasi-static experiments. *Tech. Rep.*
 523 *LA-UR-11-06976*, Los Alamos National Laboratory, Los Alamos, NM.

524 Caldwell, W. K., Hunter, A., Plesko, C. S., Wirkus, S., 2018. Verification and validation of the flag hydrocode for impact cratering simulations.
 525 *Journal of the American Ceramic Society* 3 (3), 031004.

526 Camacho, G. T., Ortiz, M., 1996. Computational modelling of impact damage in brittle materials. *International Journal of Solids and Structures*
 527 33 (20–22), 2899–2938.

528 Chen, W. W., Rajendran, A. M., Song, B., Nie, X., 2007. Dynamic fracture of ceramics in armor applications. *Journal of the American Ceramic*
 529 *Society* 90 (4), 1005–1018.

530 Cho, S. H., Ogata, Y., Kaneko, K., 2003. Strain-rate dependency of the dynamic tensile strength of rock. *International Journal of Rock Mechanics*
 531 & Mining Sciences 40, 763–777.

532 Denissen, N. A., Fung, J., Reisner, J. M., Andrews, M. J., 2012. Implementation and validation of the bhr turbulence model in the flag hydrocode.
 533 *Tech. Rep. LA-UR-12-24386*, Los Alamos National Lab, Los Alamos, NM, USA.

534 Dienes, G. J., Paskin, A., 1987. Molecular dynamic simulations of crack propagation. *Journal of Physics and Chemistry of Solids* 48, 1015–1033.

535 Euser, B., Lei, Z., Rougier, E., Knight, E., Frash, L., Carey, J., Viswanathan, H., Munjiza, A., 2018. 3-d finite-discrete element simulation of a
 536 triaxial direct-shear experiment. *52nd US Rock Mechanics/Geomechanics Symposium*.

537 Euser, B., Rougier, E., Lei, Z., Knight, E., Frash, L., Carey, J., Viswanathan, H., Munjiza, A., 2019. Simulation of fracture coalescence in granite
 538 via the combined finitediscrete element method. *Rock Mechanics and Rock Engineering*.

539 URL <https://doi.org/10.1007/s00603-019-01773-0>

540 Fung, J., Harrison, A. K., Chitanvis, S., Margulies, J., 2013. Ejecta source and transport modeling in the flag hydorcode. *Computers & Fluids* 83,
 541 177–186.

542 Gailly, B. A., Espinosa, H. D., 2002. Modelling of failure mode transition in ballistic penetration with a continuum model describing microcracking
 543 and flow of pulverized media. *International Journal for Numerical Methods in Engineering* 54, 365–398.

544 Godinez, H., Rougier, E., Osthus, D., Lei, Z., Knight, E., Srinivasan, G., 2019. Fourier amplitude sensitivity test applied to dynamic combined
 545 finite-discrete element methodsbased simulations. *International Journal for Numerical and Analytical Methods in Geomechanics* 43, 30–44.

546 URL <https://doi.org/10.1016/j.ijrmms.2018.03.016>.

547 Griffith, A. A., 1921. The phenomena of rupture and flow in solids. *Philosophical Transactions of the Royal Society of London* 221, 163–198.

548 Hashin, Z., 1988. The differential scheme and its application to cracked materials. *Journal of the Mechanics and Physics of Solids* 36 (6), 719–734.

549 Horii, H., Nemat-Nasser, S., 1983. Overall moduli of solids with microcracks: load-induced anisotropy. *Journal of the Mechanics and Physics of*
 550 *Solids* 31 (2), 155–171.

551 Horstemeyer, M. F., 2009. Multiscale modeling: a review. In: *Practical aspects of computational chemistry*. Springer, Dordrecht, pp. 87–135.

552 Hunter, A., Moore, B., Mudunuru, M., Chau, V., Miller, R., Tchoua, R., Nyshadham, C., Karra, S., O'Malley, D., Rougier, E., Viswanathan,
 553 H., Srinivasan, G., 2019. Reduced-order modeling through machine learning and graph-theoretic approaches for brittle fracture applications.
 554 *Computational Materials Science* 157, 87–98.

555 Ju, J. W., Chen, T. M., 1994a. Effective elastic moduli of two- dimensional brittle solids with interacting microcracks, part i: Basic formulations.
 556 *Journal of Applied Mechanics* 61, 349–357.

557 Ju, J. W., Chen, T. M., 1994b. Effective elastic moduli of two- dimensional brittle solids with interacting microcracks, part ii: Evolutionary damage
 558 models. *Journal of Applied Mechanics* 61, 358–366.

559 Ju, J. W., Tseng, K. H., 1992. A three dimensional statistical micromechanical theory for brittle solids with interacting microcracks. *International*
 560 *Journal of Damage Mechanics* 1, 102–131.

561 Ju, J. W., Tseng, K. H., 1995. An improved two-dimensional micromechanical theory for brittle solids with randomly located interacting microc-
 562 racks. *International Journal of Damage Mechanics* 4, 23–57.

563 Kachanov, M., 1993. Elastic solids with many cracks and related problems. *Advances in Applied Mechanics* 30, 259–445.

564 Knight, E., Rougier, E., Munjiza, A., 2013. Lanl-csm: Consortium proposal for the advancement of hoss. *Tech. Rep. LA-UR-13-23409*, Los
 565 Alamos National Laboratory, Los Alamos, NM.

566 Kolanz, M., 2001. Introduction to beryllium: uses, regulatory history, and disease. *Applied occupational and environmental hygiene* 16, 559–567.

567 Krishnan, K., Sockalingam, S., Bansal, S., Rajan, S. D., 2010. Numerical simulation of ceramic composite armor subjected to ballistic impact.
 568 *Composites Part B: Engineering* 41, 583–593.

569 Kushch, V. I., Sevostianov, I., Mishnaevsky Jr., L., 2009. Effect of crack orientation statistics on effective stiffness of microcracked solid. *International*
 570 *Journal of Solids and Structures* 46, 1574–1588.

571 Lee, J. D., Wang, X. Q., Chen, Y. P., 2009. Multiscale material modeling and its application to a dynamic crack propagation problem. *Theoretical*
 572 and Applied Fracture Mechanics

573 Li, X., Yang, J. Z., Weinan, E., 2010. A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks.
 574 Journal of Chemical Physics 229, 3970–3987.

575 Lyon, S. P., 1992. Sesame: the los alamos national laboratory equation of state database. Tech. Rep. LA-UR-92-3407, Los Alamos National
 576 Laboratory.

577 Margolin, L. G., 1983. Elastic moduli of a cracked body. International Journal of Fracture 22, 65–79.

578 Margolin, L. G., 1984. Microphysical models for inelastic material response. International Journal of Engineering Science 22, 1171–1179.

579 Meyers, M. A., Aimone, C. T., 1983. Dynamic fracture (spalling) of metals. Progress in Materials Science 28, 1–96.

580 Moore, B., Rougier, E., O’Malley, D., Srinivasan, G., Hunter, A., Viswanathan, H., 2018. Predictive modeling of dynamic fracture growth in brittle
 581 materials with machine learning. Computational Materials Science 148, 46–53.

582 Munjiza, A., 2004. The combined finite-discrete element method. Wiley, New York.

583 Munjiza, A., Knight, E. E., Rougier, E., 2012. Computational mechanics of discontinua. Wiley, New York.

584 Munjiza, A., Owen, D. R. J., Bicanic, N., 1995. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering
 585 computations 12, 145–174.

586 Munjiza, A., Rougier, E., Knight, E. E., 2015. Large strain finite element method: a practical course, 1st Edition. John Wiley and Sons, London.

587 Osthus, D., Godinez, H. C., Rougier, E., Srinivasan, G., 2018. Calibrating the stress-time curve of a combined finite-discrete elementmethod to a
 588 split hopkinson pressure bar experiment. International Journal of Rock Mechanics & Mining Sciences 106, 278–288.
 589 URL <https://doi.org/10.1016/j.ijrmms.2018.03.016>

590 Preston, D. L., Tonks, D. L., Wallace, D. C., 2003. Model of plastic deformation for extreme loading conditions. Journal of Applied Physics 93 (1),
 591 211–220.

592 Qiu, R. Z., Lin, Y. C., Fang, T. H., 2018. Fatigue crack growth characteristics of fe and ni under cyclic loading using a quasi-continuum method.
 593 Beilstein journal of nanotechnology 9, 1000–1014.

594 Rougier, E., Knight, E., Lei, Z., Munjiza, A., Mustoe, G., Sarg, R., 2013a. Hoss technology overview: Oil and gas. Tech. Rep. LA-UR-13-29117,
 595 Los Alamos National Laboratory.

596 Rougier, E., Knight, E. E., Broome, S. T., Sussman, A., Munjiza, A., 2014. Validation of a three-dimensional finite-discrete element method using
 597 experimental results of the split hopkinson pressure bar test. International Journal of Rock Mechanics & Mining Sciences 70, 101–108.

598 Rougier, E., Knight, E. E., Munjiza, A., 2013b. Lanl-csm: Hoss - munrou technology overview. Tech. Rep. LA-UR-13-23422, Los Alamos National
 599 Laboratory.

600 Rudd, R. E., Broughton, J. Q., 1998. Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical Review B 58, R5893.

601 Saadati, M., Forquin, P., Weddfelt, K., Larsson, P. L., 2016. On the tensile strength of granite at high strain rates considering the influence from
 602 preexisting cracks. Advances in Materials Science and Engineering 2016.

603 Saksala, T., Brancherie, D., Harari, I., Ibrahimbegovic, A., 2015. Combined continuum damageembedded discontinuity model for explicit dynamic
 604 fracture analyses of quasibrittle materials. ijnm 101.

605 Sheng, Y., Zeng, X. G., 2016. The deformation mechanisms in process of crack propagation for alpha titanium with compounding microdefects.
 606 Advances in Materials Science and Engineering 2016.

607 Silling, S. A., Askari, E., 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures 83, 1526–1535.

608 Simo, J., Hughes, T., 2006. Computational Inelasticity, seventh Edition. Springer Science & Business Media, New York, NY.

609 Steinberg, D. J., 1996. Equation of state and strength properties of selected materials. Tech. Rep. UCRL-Ma-10639, Lawrence Livermore National
 610 Laboratory.

611 Steinberg, D. J., Cochran, S., Guinan, M., 1980. A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics 51 (3),
 612 1498–1504.

613 Tadmor, E. B., Ortiz, M., Phillips, R., 1996. Quasicontinuum analysis of defects in solids. Philosophical Magazine A 73, 1529–1563.

614 Tonks, D. L., Paisley, D. L., Peralta, P. D., Greenfield, S. R., Byler, D. D., Luo, S., Swift, D. C., Koskelo, A. C., 2007. Spallation damage in copper
 615 with columnar grains. AIP Conference Proceedings 955, 605–608.

616 Vaughn, N., A., K., Moore, B., Viswanathan, H., Hunter, A., 2019. Statistically informed upscaling of damage evolution in brittle materials.
 617 Theoretical and Applied Fracture Mechanics 102, 210–221.

618 Xu, T., Fan, J., Stewart, R., Zeng, X., Yao, A., 2017. Quasicontinuum simulation of brittle cracking in singlecrystal material. Crystal Research and
 619 Technology 52, 1600247.

620 Zhou, X., Chen, L., 2018. Review on multi-scale simulation methods. IOP Conference Series: Materials Science and Engineering 394, 032139.

621 Zi, G., Belytschko, T., 2003. New cracktip elements for xfem and applications to cohesive cracks. International Journal for Numerical Methods in
 622 Engineering 57, 2221–2240.

623 Zimmerman, R. W., 1985. The effect of microcracks on the elastic moduli of brittle materials. Journal of Materials Science Letters 4, 1457–1460.

624 Zubelewicz, A., Rougier, E., Ostoja-Starzewski, M., Knight, E. E., Bradley, C., Viswanathan, H. S., 2014. A mechanisms-based model for dynamic
 625 behavior and fracture of geomaterials. International Journal of Rock Mechanics & Mining Sciences 72, 277–282.