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Highlights

• Improved effective moduli model for fracture of quasi-brittle materials

• Model informed with crack length and orientation statistics

• Stress based degradation of individual material zones

• Excellent agreement between numerical results and experimental flyer plate data
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Abstract6

Computationally efficient methods for bridging length scales, from highly resolved micro/meso-scale models that can7

explicitly model crack growth, to macro-scale continuum models that are more suitable for modeling large parts, have8

been of interest to researchers for decades. In this work, an improved brittle damage model is presented for the simu-9

lation of dynamic fracture in continuum scale quasi-brittle metal components. Crack evolution statistics, including the10

number, length, and orientation of individual cracks, are extracted from high-fidelity, finite discrete element method11

(FDEM) simulations and used to generate effective material moduli that reflect the material’s damaged state over12

time. This strategy allows for the retention of small-scale physical behaviors such as crack growth and coalescence13

in continuum scale hydrodynamic simulations. However, the high-fidelity simulations required to generate the crack14

statistics are computationally expensive. Thus, steps were taken to produce a flexible constitutive model to reduce the15

number of costly high-fidelity simulations needed to produce accurate results. A new stress based degradation crite-16

rion is introduced for the degradation of individual material zones. This allows for the development of a heterogeneous17

damage distribution within the bulk material. Then a flow stress model is added to the hydrodynamic simulation to18

account for plasticity in quasi-brittle materials. As a result, the effective moduli model can be applied to a larger19

range of materials. The effective moduli constitutive model is used to simulate beryllium flyer plate experiments. The20

results from the continuum scale simulations using statistics from a single high-fidelity simulation are found to be in21

excellent agreement with numerical and experimental velocity interferometer data. The same set of crack statistics are22

used to extrapolate the results of a higher rate flyer plate case using the effective moduli model. The extension of this23

model to higher rate cases shows promise for further reducing the number of costly high-fidelity simulations needed24

to generate crack statistics.25

Keywords:26

brittle fracture, shock loading, effective elastic moduli, crack statistics, finite-discrete element method27

1. Introduction28

Often, brittle fracture is the primary cause of material failure in dynamic loading scenarios. As, brittle failure often29

occurs suddenly (on relatively short time scales), it is very difficult to accurately predict especially under high-rate30

loading conditions, which only further shorten the time scales associated with the growth, coalescence and interactions31

of micro-cracks. However, there are many applications that require such predictive models. For example, models for32

dynamic brittle fracture have recently been developed for geomechanics applications such as blasting or percussive33

drilling (Saadati et al., 2016; Cho et al., 2003), ballistic impacts of ceramic plates for vehicle or body armor (Krishnan34

et al., 2010; Chen et al., 2007), and general crack growth in quasi-brittle materials (Saksala et al., 2015). Quasi-brittle35

materials, often metals, can add further difficultly since the overall material behavior changes dramatically from36
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ductile to brittle with an increase in the applied loading rate (Blumenthal et al., 1998). Beryllium is an example of a37

quasi-brittle metal that is a highly desirable for many industrial applications in the automotive, aerospace, and defense38

industries because of its high strength to weight ratio (Kolanz, 2001). However, the high-rate loading conditions39

materials undergo during fabrication and during the applications themselves lead to the growth and coalescences of40

micro-cracks, prompting abrupt material failure that is extremely difficult to predict. The lack of predictive models41

addressing the abrupt failure of these materials at a component level drastically limits their real-world applicability42

despite their attractive material properties.43

Over the years, several methods bridging a range of length scales have been developed and applied to the growth44

of crack networks within brittle materials, including molecular dynamics simulations (Dienes and Paskin, 1987), peri-45

dynamics (Silling and Askari, 2005), phase field approaches (Ambati et al., 2015), the extended finite element method46

(XFEM) (Zi and Belytschko, 2003), and the finite discrete element method (FDEM) (Munjiza et al., 1995). On the47

atomistic and meso-scales, these approaches can finely resolve crack growth, propagation, interaction, coalescence,48

etc., and the physics that drive these processes. However, these frameworks are relatively limited in time and length-49

scales such that they cannot address material failure at the component-scale (cm and larger). Larger length scale50

approaches, such as XFEM and FDEM, can produce highly resolved micro-scale simulations that discretely model51

individual cracks, producing accurate predictions of crack network evolution. However, the highly resolved mesh52

needed for these models results in extraordinarily high computation costs when modeling continuum-scale systems.53

A common method for reducing the computational costs while retaining micro-scale physical phenomena are con-54

current and serial multi-scale methods (Horstemeyer, 2009; Zhou and Chen, 2018). Concurrent multi-scale methods55

commonly use finite elements to model far field effects while molecular dynamics and/or quantum mechanics is used56

to model regions were cracks are formed (Tadmor et al., 1996; Abraham et al., 1998; Rudd and Broughton, 1998; Lee57

et al., 2009; Li et al., 2010). These types of multi-scale methods have recently been used to study the properties of58

systems with one or very few micro-cracks in small continua (Xu et al., 2017; Qiu et al., 2018). However, using this59

type of scale bridging technique can become computationally expensive when modeling large systems with dense,60

uniformly distributed crack networks, such as machine components.61

Converse to these highly-resolved and lower length-scale methods, continuum-scale constitutive models can model62

the overall material response for large samples with relative computational ease. Such models have been developed63

over several decades, and there has been much effort in the development of more physical informed constitutive64

models, particularly for systems undergoing dynamic loading conditions (Addessio and Johnson, 1990; Camacho and65

Ortiz, 1996; BaÅant et al., 2000; Ayyagari et al., 2018; Zubelewicz et al., 2014). However, in order to operate at these66

larger length-scales, major assumptions about a material’s microstructure and active deformation mechanisms are67

inherent to these formulations in order to homogenize the system up to the scale of interest. Of particular importance68

to the problem of brittle damage and failure, key assumptions include generalizations of the distribution, geometry,69

and orientation of the cracks within a body and their subsequent evolution. Because the features that guide crack70

evolution are often on a scale that is orders of magnitude lower than that of the materials system of interest, the71

discrete nature of the cracks themselves is typically lost. While such assumptions are necessary to remain at a large72

length scale, it becomes very difficult to capture key physics driving the evolution of micro-cracks within the body,73

and hence it is also difficult to accurately predict the corresponding material response.74

Consequently, serial multi-scale approaches have evolved. These methods use information from separate micro-75

scale analyses to inform a macro-scale model through statistical analysis or a homogenization scheme used to find76

the effective properties of the damaged material (Ju and Tseng, 1992; Ju and Chen, 1994a,b; Ju and Tseng, 1995;77

Margolin, 1984; Kushch et al., 2009; Gailly and Espinosa, 2002; Sheng and Zeng, 2016; Vaughn et al., 2019). These78

methods have developed from traditional effective medium frameworks (Zimmerman, 1985; Kachanov, 1993; Budian-79

sky and O’Connell, 1976; Horii and Nemat-Nasser, 1983; Hashin, 1988; Margolin, 1983), which account for damage80

accumulation through the degradation of a material’s elastic moduli over time, resulting in the determination of an81

“effective moduli”. These multi-scale approaches intend to retain more information about the evolution of the crack82

network by including statistical information about the changing crack lengths and orientations. Often simplified crack83

distributions, such as randomly oriented or parallel cracks, are studied because they allow for some degree of analytic84

tractability (Ju and Chen, 1994b; Ju and Tseng, 1995; Kushch et al., 2009). Capturing the vast array of arbitrary crack85

configurations is still difficult, particularly when considering how the crack network evolves under loading. Under86

load an initially uniform distribution of cracks can become quite heterogenous, particularly when dynamic loading is87

considered. It has been demonstrated that microstructural defects such as voids, micro-cracks, and inclusions have a88
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significant effect on a material’s dynamic strength (Saadati et al., 2016; Sheng and Zeng, 2016; Abedi et al., 2017).89

Moreover, every material sample has a unique microstructure which contains different numbers, types, and severities90

of defects. For this reason, statistical methods for analyzing crack formation are needed to represent a wide range of91

possible defect distribution cases and produce a realistic representation of the average material behavior.92

In this work, the advantages of serial multi-scale modeling techniques are leveraged to create an efficient and93

accurate representation of evolving crack networks under dynamic loading conditions within quasi-brittle metals. A94

high-fidelity model that can resolve discrete cracks is used to generate statistical information about the crack network95

such as, the number of cracks, crack length and crack orientation over time. These statistics are then used to inform an96

effective moduli constitutive model. Because the crack statistics in this approach are informed using a higher fidelity97

model, random configurations (e.g., homogeneous and/or heterogeneous) can be considered within this framework.98

We discuss the number of high-fidelity simulations necessary to create a statistically relevant data set in comparison99

to previous work directed at low-rate loading conditions (Vaughn et al., 2019). Furthermore, we investigate the ability100

of the continuum scale model to extrapolate higher rate loading cases. This can also reduce the need for additional101

statistics from computationally expensive high-fidelity simulations. Furthermore, this model accounts for plasticity102

in addition to the degradation of the material due to brittle damage mechanisms. Quasi-brittle metals are much more103

ductile than other brittle materials such as ceramics, glasses, and geo-materials, therefore, plastic deformation of the104

material must be included in order to accurately reproduce experimental results.105

We use this model to simulate beryllium flyer plate impact experiments, with direct comparison to both numerical106

and experimental results. During low-rate loading, brittle failure will occur when the single weakest (largest) defect107

or micro-crack begins to grow and coalesce with other neighboring cracks, if present, until one dominant crack path is108

formed. Conversely, high-rate loading conditions cause multiple micro-cracks in a region of high stress to rapidly grow109

and coalesce, forming a heterogenous region of damage with many branching crack paths. In flyer plate experiments,110

which apply planar shock waves, this heterogeneous region of damage is typically well-defined in the test sample111

and called a spall region (Meyers and Aimone, 1983). The near instantaneous formation of a spall region resulting112

in material failure is accounted for in our approach by using a multi-element simulation in which individual elements113

are degraded based on the magnitude of their experienced tensile stress.114

This work continues as follows: In Section 2 the statistically informed effective moduli model for quasi-brittle115

metals is described. Then the method for extracting crack evolution statistics from high-fidelity models for use in116

a continuum model is presented in Section 3. Next, in Section 4 the integration of the effective moduli model into117

a multiphysics hydrocode for continuum scale analysis of the fracture of quasi-brittle metals is introduced. Later,118

in Section 5 the results from the effective moduli model are compared with those from the high-fidelity simulation119

and experimental results, the effect of variations in the crack statistics is analyzed, and the ability of the model to120

extrapolate a higher rate loading scenario is investigated. Finally, some concluding remarks are drawn in section 6.121

2. Effective moduli model formulation for statistically evolved damage122

In this work, the micro-scale behavior of crack propagation is represented in a macro-scale continuum through123

the degradation of the material’s effective moduli, calculated using the effective moduli model first proposed by Ju124

and Chen (Ju and Chen, 1994a,b), which is briefly described here. The effective moduli model relies on the number,125

length, and orientation of micro-cracks to produce probability density functions (PDFs) that describe the evolution of126

the crack length and orientation over time. The PDFs are then used to degrade the compliance tensor as shown in the127

following equations (Ju and Chen, 1994a,b):128

S e f f = S 0 + S 1 + S 2 (1)

S 1 =
π(1 − ν2)

E
f (x)

∫

α

∫

Θ

a2M0 f (a, θ)dθda (2)

S 2 =
π(1 − ν2)

E
f 2(x)

∫

α

∫

Θ

a2M2(a, θ)dθda (3)
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where S e f f is the effective compliance tensor, S 0 represents the pristine compliance tensor of the material, S 1 is a129

damage tensor that accounts for the growth and coalescence of individual cracks in the material over time, S 2 denotes130

an additional damage tensor that represents the interaction of two adjacent non-intersecting cracks, a represents the131

crack radius, and θ is crack orientation. These two damage tensors act as corrections to the pristine compliance tensor132

due to the presence of micro-cracks (S 1), and their subsequent interactions (S 2). The local coordinates of the cracks133

are related to the global coordinate system through transformation matrices M0 and M. Finally the material is assumed134

to be elastically isotropic, hence ν is Poisson’s ratio, and E is Young’s modulus. For a detailed derivation of equations135

(1-3) see Ju and Chen (1994a,b).136

In the original formulation, the crack distribution within the material is assumed to be uniform, thus, removing the137

damage’s dependance on x (Ju and Chen, 1994a). Therefore the function f (x) can be replaced by the number of cracks138

per unit area or crack density, n. In this work, the crack radius and crack orientation are considered as independent139

variables, as a simplification. Therefore, f (a, θ) becomes f (a) f (θ). The damage caused by pairwise crack interactions,140

S 2 is negligible if the crack density is sufficiently small. However, the degradation of the material moduli due to crack141

interactions is removed for simplicity, and its inclusion within the framework is subject of future work. It should be142

noted that equations (1-3) are formulated for a material of infinite domain. This means that material fracture will143

never occur. Instead the effective moduli of the system will reach some constant minimum over time. However, in a144

finite domain, fracture can occur resulting in a material domain with no stiffness. To resolve this issue, a length scale145

parameter is added to the compliance degradation function, following the work of Vaughn et al. (Vaughn et al., 2019),146

to account for a finite domain. After the above simplifications the new expression for the effective compliance tensor147

becomes:148

S e f f = S 0 + S 1
f (4)

S 1
f =

( L
L − 2ā

)
π(1 − ν2)n

E

∫

α

∫

Θ

a2M0 f (a) f (θ)dθda (5)

where L denotes the length of the target plate and ā is the half length of the projection of the longest crack in the149

direction of failure. In the case of a flyer plate, 2ā will approach the length of the target plate, causing S e f f to trend150

towards infinity, resulting in a fractured material with no strength. Once the degraded compliance tensor has been151

determined, the stress state of the material can be calculated using Hooke’s Law:152

σ = Ce f f ε = (S e f f )
−1ε (6)

where ε is the elastic strain tensor and Ce f f represents the effective stiffness tensor.153

3. Generation of crack propagation statistics utilizing the Hybrid Optimization Software Suite154

The continuum model presented in Section 2 relies on statistical information including the length, orientation,155

and evolution of individual cracks to represent damage within the material domain. In this work, information about156

the propagating crack network is obtained from high-fidelity simulations completed with the Hybrid Optimization157

Software Suite (HOSS), which is an implementation of the combined finite-discrete element method (FDEM) (Rougier158

et al., 2013b; Knight et al., 2013; Rougier et al., 2013a). Advantageously, this model evolves discrete cracks along159

element edges, and can accommodate complex crack network evolution, catastrophic failure, and even fragmentation.160

Here we briefly describe how damage is modeled within HOSS, however more extensive reviews detailing the model161

are available (Munjiza et al., 1995; Munjiza, 2004; Munjiza et al., 2012, 2015). In addition, the primary algorithms in162

HOSS addressing the contact interaction and finite strain elasticity formulation have also been documented (Munjiza163

et al., 2012, 2015).164

To accurately model damage evolution, failure, and fragmentation, the FDEM divides the global system into dis-165

crete solid domains, which are then further discretized into finite elements. Each of these finite elements are connected166

by a user-specified number of cohesive points, modeled as non-linear springs, between the edges of finite elements167

(Godinez et al., 2019; Osthus et al., 2018). For all HOSS simulations presented here, four normal and four shear168

cohesive points are utilized; a number that has been shown to provide accurate results at reasonable computational169
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expense (Rougier et al., 2014). These points allow the edges of the finite elements to separate under sufficient tensile170

and/or shear loading. Once the separation value reaches a critical value, the cohesion between the elements fails and171

a crack forms along the element edge. A damage parameter, DHOS S , that corresponds with the severity of the element172

separation is determined for each element edge. DHOS S ranges from 0, an undamaged edge, to 1, a fully separated173

edge. In this way, HOSS is able to capture crack nucleation, growth, and coalescence within the specimen over time,174

as it was demonstrated in previous studies (Euser et al., 2019, 2018; Rougier et al., 2014). Since discrete cracks175

propagate along element edges in the FDEM, a highly resolved mesh is needed to capture complex crack behavior,176

such as interactions between cracks and crack branching or bending behavior. Consequently, HOSS simulations can177

be extremely computationally expensive when modeling large components or long time scales.178

In this effort, crack propagation within a flyer plate setup consisting of a beryllium target plate and a beryllium179

impactor (Be-Be) is analyzed. Flyer plate simulations are set up in HOSS to mimic an experiment conducted at Los180

Alamos National Laboratory (LANL) on samples of S200-F beryllium (Cady et al., 2012). An example of this setup181

as modeled in HOSS is presented in Figure 1 where hi and ht are the thicknesses of the impactor and target plates,182

respectively. The flyer plate is given an initial velocity of v = 0.0721cm/µs. Once the flyer plate impacts the target, it183

creates a compressive shock wave that propagates through the target plate. When the compressive shock front reaches184

the back side of the target plate it reflects as a consequence of its interaction with the free surface. The returning185

wave then interacts with the rarefaction from the initial shock pulse creating a region of high tensile stress, normal to186

the plate’s surface. The high tensile stress causes the micro-cracks near the mid-plane of the target plate to rapidly187

grow and coalesce in a direction perpendicular to the applied velocity, forming the spall region. Despite the flyer plate188

providing an initial compressive load, the experiment allows for the evolution of an indirect tensile load that results189

in the evolution of damage due to crack opening. Eventually, a dominant horizontal crack within the spall region will190

span the length of the target plate leading to Mode I failure.191

In the HOSS simulation set-up, hi = 2mm, ht = 4mm, and the diameter of the impactor and target plates is192

28.8mm. The target plate initially contains 200 micro-cracks between 0.1 and 0.3 millimeters in length. The position193

of each crack within the target plate is determined through random sampling of a uniform distribution. Similarly,194

crack orientations are determined through random sampling of a uniform distribution function constrained between195

the angles of -90 and 90 degrees. Crack lengths are randomly sampled from the following a power law distribution:196

f (a) =
ga(g−1)

bg − cg
(7)

where c is the shortest initial crack length, b is the longest initial crack, and parameter g = −3. Very fine time steps197

of 1e−5 microseconds are required to accurately capture the rapid evolution of the crack network in HOSS. Every 250198

time steps: stress, velocity, and crack evolution data is output from HOSS. A total of 480 HOSS outputs were created199

per simulation. The run time for each simulation was 2.5 hours on 64 processors. One hundred simulations of this200

type were conducted in HOSS to create a statistically relevant data set for crack network analysis. However, in each201

simulation the pre-existing crack network is perturbed so that the exact locations and lengths of the 200 cracks are202

different, thus changing the initial crack network configuration.203

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impactor 

Target x 

y 

L=28.8mm 

hi=2mm 

ht=4mm 

v 

Figure 1: Initial setup of a 2D Be on Be flyer plate simulation with 200 randomly positioned and oriented micro-cracks in the target plate

The realistic crack network generated by the HOSS simulations contain complex systems of branching and turning204

cracks. However, the effective moduli model discussed previously in Section 2 assumes that all cracks in the domain205
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are straight with an easily definable orientation. A reliable method for determining the length and orientation of206

individual cracks must be instituted to compile statistical crack information provided by HOSS so that it is usable in207

the effective moduli model. This requires a clear definition of how to measure a crack’s length as it propagates, bends,208

coalesces, etc. One logical method, which we chose to apply here, is to identify the right-most and left-most points of209

a crack and use the straight line distance between these points as the crack length (i.e. the Euclidean length). Then the210

angle between this straight line and the horizontal axis can be used as the crack orientation. We note, however, that one211

could think of many possible ways to define a crack’s length and subsequent orientation. Previous work by Vaughn212

et al. (Vaughn et al., 2019) utilized a similar model framework as in this work, however applied to low-rate tensile213

loading of geomaterials (concrete). In this work, they investigated various definition of the crack length including the214

projection normal to the applied load, Euclidean length, and the total crack length. They found that the Euclidean215

length measurement technique yielded the best results when compared to the other crack length definitions for the216

effective moduli model, hence, we have also chosen to use this length measure in the analysis presented here.217

A Python script was used to identify the left and right most points of every crack in each HOSS output. Then the218

Euclidean length and resulting orientation of each crack was calculated using the extracted data. Consequently, PDFs219

of crack length and orientation can be generated for each HOSS time step. Then crack data at every time step for all220

100 HOSS simulations can be combined into one statistically significant data set, if necessary. Example crack length221

and orientation statistics generated from a single HOSS simulation are presented in Figures 2 and 3, respectively.222

Significant crack growth occurs when the target plate is under tensile loading and the spall region develops. This223

occurs after the initial shock wave has reflected off the backside of the target plate. Hence, Figure 2 shows that224

little to no crack growth occurs during the compressive loading regime, before the shock is reflected. For the flyer225

plate statistics shown in Figure 2, a single crack within the spall region spans the width of the target plate after time,226

t = 0.7425µs. From analysis of Figure 3, crack orientations do not change significantly throughout the simulation.227

Indeed, most of the pre-existing cracks in the target plate do not grow or coalesce resulting in only minor changes in the228

orientation and length distributions. However, after a tensile region is formed within the target plate, cracks near the229

mid-plane join to form a dominant crack system that is normal to the applied loading (nearly horizontal in this case).230

Thus, crack orientation slightly trends towards 0◦ after fracture occurs, regardless of the initial crack distribution.231

An effective compliance tensor for each HOSS output can be obtained by numerically integrating Equations 4 and 5,232

using the crack length and orientation distributions, like those presented in Figures 2 and 3, as functions f (a) and f (θ).233

//

Figure 2: Crack length distributions extracted from a single HOSS simulation at various time steps. The black line represents the probability density
function determined using a Gaussian kernel-density estimation

3.1. Removing time dependency for multi-zone simulations234

As stated previously, statistical distributions can be generated for each HOSS output, producing a time series of235

statistical information. However, the effective moduli model presented in Section 2 will not be run in HOSS, but in a236

hydrodynamic model framework (discussed in more detail in Section 4). Hence, the problem of correlating damage237
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//

Figure 3: Crack orientation distributions extracted from a single HOSS simulation at various time steps. The black line represents the probability
density function determined using a Gaussian kernel-density estimation

evolution to the simulation time step across very different codes and model implementations arises. In particular, the238

crack length and orientation statistics generated using HOSS output must be utilized in the effective moduli model239

at the appropriate point (time) in the system’s damage evolution. This requires that the time step used for generat-240

ing the statistics (i.e., the HOSS time step), must directly correspond to the time step used in calculations with the241

effective moduli constitutive model to avoid interpolation between statistical sets. Such criteria can be quite limiting,242

particularly if this requires statistical output from HOSS that is highly resolved in time thus, increasing data storage243

requirements and computational costs. These criteria could also require that the continuum-scale model be run at244

time steps much more resolved than typically necessary, reducing the computational efficiency gained by increasing245

the model’s length-scale. Additionally, if we consider a system containing multiple material zones, some zones may246

experience much more damage than others. For example, in the case of the flyer plate experiment, the spall region247

near the mid-plane of the target plate is the only region that accrues large amounts of damage. Therefore, zones across248

the entire target plate cannot be degraded evenly over time but must be degraded individually based on some criteria249

determined by the applied loading or material state.250

Cracks grow when a sufficient stress concentration at the crack tip causes the crack to open and spread (Griffith,251

1921). Information concerning the evolution of the stress state can be extracted from HOSS’s high-fidelity simulations252

in addition to the statistical information about the crack network. Since the spall region is generated from a tensile253

stress state in the target material, the maximum tensile stress within the target material domain is chosen as it is the254

key indicator of Mode I type damage initiation and evolution. For other loading conditions, a different metric of the255

stress state within a material zone may be a better indicator of damage initiation (e.g., a maximum shear stress, or an256

effective stress measure for combined loading conditions). Figure 4 shows the value of the maximum tensile stress in257

the direction of the applied loading plotted with the velocity calculated at the back of target plate over time with HOSS.258

The maximum tensile stress is taken to be the maximum tensile stress in any element of the HOSS simulation. For259

the case of the flyer plate, the maximum tensile stress occurs in elements within the spall region, however, it may not260

be the same element for every HOSS output . Clearly, the maximum tensile stress and velocity follow a similar trend.261

This, coupled with the expectation of Mode I failure, makes the maximum tensile stress a logical choice for a damage262

evolution criteria. The maximum tensile stress for each HOSS output is coupled with the degraded compliance tensor263

produced for the same HOSS output time. The maximum tensile stress value is then used as a pointer to indicate the264

appropriate damage tensor for a zone in the continuum model, which allows a non-homogeneous damage distribution265

to evolve within the target material. More details on this approach can be found in Section 4.2.266
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Figure 4: Maximum tensile stress in any zone in the target sample and the velocity at the rear center of the target plate over time from a single
HOSS simulation.

4. The effective moduli material model in FLAG267

LANL’s hydrodynamic modeling software (hydrocode), FLAG, is used to perform the continuum-scale simula-268

tions. FLAG (Burton, 1992, 1994b,a) has been developed and maintained at LANL over several decades, and hence269

has a diverse set of modeling capabilities for solving fluid and solid mechanics problems. FLAG is a multidimensional270

(1D, 2D, and 3D), multiphysics research code, that uses a finite-volume approach to compute solutions using either271

a cell-centered or staggered-grid hydrodynamics algorithm. It utilizes an arbitrary polyhedral mesh arranged on an272

unstructured grid to resolve multidimensional single material, mixed material, or multi-material domains. Adaptive273

mesh refinement (AMR) and arbitrary Lagrangian-Eulerian (ALE) relaxation are available for mesh refinement and274

adaptivity in dynamic simulations. In addition, FLAG includes a wide-ranging library of models that can account275

for material behaviors under extreme loading conditions, and also capabilities such as slide surfaces for addressing276

discontinuous meshes.277

FLAG has been extensively validated for a wide range of classical test problems such as the Noh, Sod shock tube,278

Taylor-Green vortex, and Howell problem (Burton et al., 2018). Recently, Caldwell et al. (Caldwell et al., 2018)279

performed a verification and validation study for impact cratering simulations in FLAG and found that FLAG was280

capable of capturing shock dynamics with relatively low error when compared to experimental results. Furthermore,281

this study included a comparison of results to eight other hydrocodes with similar frameworks and a mesh convergence282

study. Results showed that FLAG had lower deviations in solutions in comparison to analytical solutions. FLAG283

has been used for a wide variety of research endeavors including ejecta and transport modeling (Fung et al., 2013),284

turbulence modeling (Denissen et al., 2012), detonation shock dynamics (Aida et al., 2013), and material damage285

modeling (Tonks et al., 2007; Vaughn et al., 2019). In this work FLAG is used to simulate crack propagation in 1D286

and 2D flyer plate experiments using a pure Lagrange solution technique.287

4.1. Integrating plasticity into the effective moduli model288

While some brittle materials such as ceramics or geo-materials have negligible plasticity, quasi-brittle metals, have289

some ductile behavior. Additionally, the high rate loading conditions of interest here will produce compressive and290

tensile stresses in excess of the material’s yield strength. Consequently, a plasticity model must be included to obtain291

an accurate result. FLAG has several built in plasticity models including von Mises plasticity, Steinberg-Guinan292

(Steinberg et al., 1980), and Preston-Tonks-Wallace (PTW) (Preston et al., 2003). In this case, we have chosen to293

use the Steinberg-Guinan flow stress model, however, any flow stress model could be used with effective moduli294

constitutive model using the methodology described below. It is worth noting, that the Steinberg-Guinan model (and295

other common flow stress models, such as PTW) assumes elastic isotropy. The Steinberg-Guinan parameters for296

Beryllium (Steinberg, 1996) can be found in Table 1.297

In order to include the plasticity model, the total stress tensor is first split into deviatoric and volumetric compo-298

nents:299
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σ0
i j = σ′i j − Pδi j (8)

where σ0 represents the pristine stress, σ′ is the stress deviator, P denotes the pressure, and δi j is the Kronecker300

delta function. The framework in FLAG utilizes this type of decoupling to determine the stress state in a zone, rather301

than using Hooke’s Law directly. Hence, an equation of state (EOS) is then used to determine the zonal pressure,302

temperature, and the material’s bulk modulus. FLAG’s material library has access to both analytic and tabular EOS.303

In this work, we have chosen to use a tabular EOS from the SESAME database (Lyon, 1992).304

The deviatoric stresses, and corresponding amount of plastic strain, of the undamaged material are determined305

using an isotropic radial return algorithm (Simo and Hughes, 2006). As mentioned above, the yield criterion is given306

by the Steinberg-Guinan model. In addition, the Steinberg-Guinan shear modulus model was used to account for307

temperature and pressure dependent changes in the material’s shear modulus during loading. FLAG is a velocity308

driven code, so the elastic strains can be determined assuming an additive decomposition of the total strain:309

ε = ε tot − ε p (9)

where ε is the elastic strain, ε tot denotes the total strain, and ε p represents the plastic strain. The determination of the310

elastic strain is the key term that accounts for plasticity in the determination of the stress state of the damaged material.311

In order to determine the stress state of the damaged material using the effective moduli model, the stress tensor cannot312

be decoupled as in Equation 8. Rather, the corrected stress tensor that includes damage must be determined for each313

zone directly using Hooke’s Law as follows:314

σ = (C0 + C1)ε (10)

where σ represents the stress tensor of the damaged material zone, and ε is calculated using equation 9. C1 is the315

damage tensor that is calculated in FLAG using crack statistics from HOSS. The C1 damage tensor is determined as316

follows:317

C1 = (S e f f )
−1 −C0 (11)

where S e f f has been defined previously in Equation 4 and C0 represents the stiffness tensor of the pristine material.318

Table 1: Steinberg-Guinan model parameters for Beryllium (Steinberg, 1996)

Parameter Description Value
ρ0 reference density 1.845g/cm3

G0 initial shear modulus 1.51Mbar
Y0 initial flow stress 0.0033Mbar

Ymax max work hardening 0.0131Mbar
β work hardening parameter 26
n work hardening exponent 0.78
A pressure dependence multiplier 0
B temperature dependence multiplier 0
qy flow stress pressure dependence factor 1.0
fg melt shaping for shear modulus 0
fy melt shaping for flow stress 0
ρ0s crushed-up density 1.845g/cm3

4.2. Statistically informed damage evolution in FLAG319

The effective moduli model in FLAG relies on the maximum tensile stress from the high-fidelity HOSS simulations320

to determine the appropriate crack length and orientation statistics to use to calculate the damage tensor for each zone321

at each time step. For the first occurrence of tensile loading in a zone σ0 is matched to a corresponding HOSS322

stress value and the associated crack length and orientation statistics. If the stress value from FLAG lies between two323
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maximum tensile stress values from HOSS, linear interpolation is used to correct the components of the computed324

damage tensor to provide a more accurate damage estimation. Once damage has been initiated, the pristine stress325

will largely overestimate the stress state within the damaged material because energy released by crack growth is not326

accounted for in the calculation of the pristine stress. Thus, for subsequent iterations, a trial stress is calculated to327

estimate the stress in each damaged zone as follows:328

σT = (C0
n + C1

n−1)εn where : εn = ε tot
n − ε p

n (12)

where σT represents the trial stress and subscript n is the current time step. The trial stress is determined by first329

calculating the elastic strain from the pristine material conditions for the current iteration. Then the damage tensor330

from the previous iteration, C1
n−1, is used to degrade the pristine stiffness tensor. A component of the trial stress or331

equivalent stress measure, such as a principle component of the trial stress, is compared to tensile stress values from332

HOSS and an updated set of crack statistics are obtained for the current iteration. In this work, the σT
22 component of333

the trial stress is compared to the maximum tensile stress values from HOSS because tensile stress in the y-direction334

is the primary mechanism contributing to the formation of the spall region in the target plate. Finally, the corrected335

stress for the current damage state, σ, is calculated using the updated damage tensor as in Equation 10. A damage336

parameter is integrated into the effective moduli model in FLAG as a way to represent the extent to which a material337

zone is damaged. The damage parameter in FLAG, DFLAG, has a range from zero, an undamaged zone, to one, a failed338

zone with no strength. The damage is determined as follows:339

DFLAG = 1 − C0
norm −C1

norm

C0
norm

. (13)

The C0
norm and C1

norm represent the components of the pristine stiffness tensor and damage tensor in the direction340

of loading primarily responsible for crack growth. Assuming a Mode I type failure; the tensile load will be normal341

to the direction of crack growth. In this work, the C0
22 and C1

22 components are used to calculate the damage in the342

target plate. When a zone in FLAG reaches a damage value, DFLAG = 1, it is considered completely failed. The stress343

value in the failed zone is set to zero and failed zones cannot regain strength. This may not be appropriate for cases344

of cyclic loading where cracks may be closed by compressive loading. However, this condition is valid in the case of345

flyer plates which do not experience large cycles of recompression once crack propagation begins in the target plate.346

5. Comparative study of Effective Moduli model to FDEM simulations and experimental results347

5.1. 1D and 2D flyer plate simulations using effective moduli348

To test and validate the effective moduli constitutive model as implemented in FLAG, we first simulated the349

Be-Be flyer plate in both 1D and 2D. The 1D flyer plate FLAG simulation is set up as follows. The impactor and350

target plates are divided into 26 and 53 zones along their respective thicknesses (Figure 5(a)). A slideline boundary351

condition is placed in between the plates to allow for a discontinuous mesh and to avoid interpenetration of the two352

bodies. The impactor is given an initial velocity, v. When the target plate is impacted a compressive shock wave is353

transferred through the material until it reaches and is reflected off the back side of the plate. When the reflected wave354

crosses the compressive shockwave a region of high tensile stress is created that causes the target plate to fracture.355

It is assumed that during the initial compressive regime the cracks in the target plate are unable to grow. Therefore,356

the moduli of the target plate is not degraded until a tensile stress is present inside the plate. Velocity data at the357

rear center of the target plate is collected over time for comparison to HOSS simulations and experimental Velocity358

Interferometer for Any Reflector (VISAR) data (Cady et al., 2012). Figure 5(b) is a comparison of the velocity over359

time estimation produced by the effective moduli 1D FLAG simulation with a FLAG simulation without a damage360

model, a high-fidelity HOSS simulation, and experimental data. It can be seen that the hydrodynamics simulation361

is able to accurately match the first half of the HOSS simulation and experimental VISAR data without a damage362

model. However, it is unable to match the pull back region of the VISAR curve, depicted in Figure 5(c). In this case,363

the effective moduli model in FLAG is informed with statistics from one randomly selected HOSS simulation. It was364

found that the root mean squared error (RMSE) between the effective moduli model and the experimental data was365

0.00213 while the RMSE between the effective moduli model and HOSS was 0.00382. The effective moduli model366
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matches the trend of the HOSS results more closely than the experimental VISAR, which is to be expected since367

the HOSS simulation is directly informing the damage degradation in FLAG. Yet, the 1D FLAG simulation closely368

approximates the experimental data. The simulation run time for the 1D simulation is FLAG is approximately 42369

seconds on one processor, which is a vast reduction in computational resources when compared to the high-fidelity370

simulations. However, 1D simulations are unable to capture some of the physical phenomenon associated with crack371

evolution.372
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Figure 5: (a) 1D flyer plate simulation setup in FLAG; (b) VISAR comparison of a 1D FLAG simulation with the effective moduli damage model
(EffMod) and without a damage model, a HOSS simulation, and experimental data (Cady et al., 2012); and (c) a zoom of the pull back signal

To more accurately capture the physical behavior of the flyer plate experiment, a 2D simulation utilizing the373

effective moduli model is conducted in FLAG. The flyer plate setup is symmetric about the y-axis thus, in 2D only374

the left half of the flyer and target plates are modeled to remove extraneous computational expenses. The impactor375

is divided into 5,184 zones and the target plate is is divided into 10,176 zones, which corresponds to a zone size of376

approximately 5, 625µm2. Similar to the 1D case, a slideline boundary is placed in between to two plates to allow377

for a discontinuous mesh and to avoid interpenetration of the two bodies. Each 2D simulation in FLAG using this378

setup takes approximately 9 minutes to run on one processor. The 2D FLAG analysis allows for improved visual379

comparisons of the velocity distributions and spall regions within the target plate over time. Figure 6 depicts the380

velocity distributions within the impactor and target plates at t = 1.2µs. The high-fidelity HOSS simulation clearly381

shows a complex crack network that forms a wide spall region in the center of the target plate. The FLAG simulation382

is unable to capture the individual cracks spanning the mid-plane of the target plate; however, a spall region of similar383

thickness is observed when using the effective moduli model. The spall region in the FLAG simulation is comprised384

of highly degraded and zero strength material zones that mimic the crack network.385
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Figure 6: Comparison of the velocity distributions in the FLAG and HOSS flyer plate simulations at t = 1.2µs
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In the 1D case, results that closely match the HOSS VISAR were generated using crack statistics from a single386

HOSS simulation. This is in contrast to finding in previous work by Vaughn et al. (Vaughn et al., 2019) where387

a similar modeling approach was used to address low rate uniaxial tensile loading in geo-materials. Vaughn et al.388

(Vaughn et al., 2019) found that statistics from multiple high-fidelity simulations were needed to create a large enough389

statistical base to qualitatively match experimental results. However, the initial crack distribution considered in these390

simulations where somewhat limited in comparison to the initial crack network considered here. Their pre-existing391

crack network consisted of cracks with constant initial lengths and only three possible initial orientations. In addition,392

there were fewer initial cracks; 20 compared to 200 used here. Having a more varied initial crack network is likely one393

reason why fewer high-fidelity simulations are needed in this case to generate PDFs that produce reasonable results394

for the overall material response. The difference in loading conditions may also play a role in the size of the statistical395

base needed to inform the effective moduli constitutive model. At low rates, a single dominant crack is expected to396

grow and coalesce, which will engage relatively few cracks in the pre-existing crack network. In the case of high rate397

loading in a flyer plate experiment, a dominant region of localized damage forms (i.e., the spall region) due to the398

growth and coalescence of many cracks. In this case, many more cracks in the pre-existing region will be engaged in399

the formation of a region rather than a single crack pathway.400

Regardless of these issues, the initial crack distribution and the crack growth statistics vary from simulation to401

simulation for the case of a flyer plate. Figure 7(a) shows that the initial rise time is unaffected by variations in the402

initial crack data but the pull back signals produced after the plate is fractured change from HOSS simulation to HOSS403

simulation. To investigate the effect the variation in the pre-existing crack network and subsequent statistics have on404

the pull back signal, we have combined crack length and orientation statistics from 100 HOSS simulations to use to405

inform the effective moduli constitutive model. The simulated VISAR results, obtained from 2D FLAG simulations,406

using statistics from two different HOSS simulations as well as statistics from the 100 combined HOSS simulations407

are presented in Figure 7(b). The variations in the HOSS statistics do not produce significant changes in the VISAR408

plot produced with the effective moduli in FLAG as can be seen from the inset in Figure 7(b), which is focused on the409

pull back signal region. This is primarily due to the dense, uniformly distributed initial crack distribution. The initial410

crack system consists of a large number of short, randomly oriented and distributed cracks. This causes the degraded411

stiffness tensors and the damage evolution to be nearly identical for every HOSS simulation.412
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Figure 7: VISARs produced using (a) all 100 HOSS simulations, the effective moduli model in FLAG using statistics from one HOSS simulation,
and experimental data from Cady et al. (Cady et al., 2012) and (b) the effective moduli model in FLAG using statistics from two different HOSS
simulations and averaged statistics from 100 HOSS simulations

5.2. Effect of the damage threshold on crack evolution statistics413

As stated in Section 2, crack growth in HOSS occurs when the cohesive points between element edges separate414

until a critical point where these points are broken. In HOSS, a damage value, DHOS S , between 0 and 1 is assigned to415

each element edge depending on the extent of the separation between cohesive points. DHOS S = 1 meaning cohesion416

between the element edges is completely broken. The crack evolution statistics are highly dependent on the choice417
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of a damage threshold value where cracks are considered to begin opening. In previous sections, a damage threshold418

value of DHOS S = 0.1 was used to determine the crack evolution Figure 8(a) depicts the change in the C22 component419

of the stiffness tensor over time for various values of DHOS S . Cracks form and spread very quickly across the length420

of the target plate resulting in material failure. The sudden drop-off of the C22 component near t = 0.8µs, corresponds421

with the fracture of the target plate. Clearly, choosing a higher damage value causes the damage accumulation to422

become more gradual which corresponds to slower crack growth, an increase in the time it takes for fracture to occur,423

and a less spontaneous material failure.424
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Figure 8: (a) Statistical evolution of the C22 component of the stiffness tensor for various HOSS damage thresholds over time compared with the
pristine ,undamaged stiffness value, (b) shows the resulting VISAR plots generated using FLAG

While there is very little effect on the velocity data for the various damage thresholds, there is an observable change425

in the crack evolution and spall region present in the target plate. Figure 9 depicts the damage distributions at the end426

of simulation t = 1.2µs, for the various damage thresholds. As DHOS S is increased, the width of the spall region427

remains approximately the same. However, the spall region becomes more featured and contains a higher number of428

partially degraded zones. Most notably when DHOS S = 1 the outside edges of the spall region experience more of429

a damage gradient rather than a hard transition from fully damaged zones to slightly degraded zones observed when430

DHOS S = 0.1. The damage distribution resulting from higher values of DHOS S is more reminiscent of experimental431

behavior.432

DHOSS=0.1 DHOSS=0.5

DHOSS=1

Figure 9: Damage in FLAG at t = 1.2µs using sets of statistics formed using various HOSS damage thresholds
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5.3. Model extrapolation for higher velocity flyer plate cases433

A primary goal of this work is to develop a model that can be used generally. Of course, if many high-fidelity434

simulations are required for every loading condition or each time a new material is employed, the computational cost435

of generating the needed statistical input could be a major limitation of the methodology presented here. Previously,436

in Section 5.2, we have shown that one high-fidelity simulation generates enough statistics to produce reasonable437

results describing the overall material response. However, considering all possible loading conditions and materials438

one may be interested in studying, requiring a single high-fidelity simulation for each case to inform the crack length439

and orientation PDFs could still be a significant model limitation.440

Cady et al. (Cady et al., 2012) also presented experimental data of a Be-Be flyer plate with a higher impact velocity,441

v = 0.1246cm/µs, and the same experimental set-up. We performed simulations at this higher impact velocity using442

the effective moduli model as implemented in FLAG, but informed with crack length and orientation statistics from443

a single HOSS simulation modeling the Be-Be flyer plate experiment with an impact velocity of v = 0.721cm/µs.444

Simulated VISAR results are directly compared to the experimental data in Figure 10. The simulated and experimental445

VISARs match reasonably well, however under closer investigation (see inset in Figure 10) the match is not as good446

as for the lower velocity case. When the results of the 2D flyer plate simulations in FLAG are compared with the447

experimental results RMSE the lower rate case was found to be 0.00150 while a RMSE of 0.00202 was found for448

the extrapolated case. It is to be expected that there would be larger error in the extrapolated response. However,449

the ability of the effective moduli model to accurately simulate higher velocity flyer plate cases demonstrates that450

relationship between the maximum tensile stress and damage is similar for Be-Be flyer plates with the same boundary451

conditions. The ability to extrapolate, with reasonable comparison to experiments, further decreases the need for452

additional costly high-fidelity simulations to generate statistical input.453
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Figure 10: Extrapolation of higher rate flyer plate case compared to experimental results from Cady et al. (Cady et al., 2012), considering
DHOS S = 1 and using statistical data from one HOSS simulation

6. Conclusions454

In this work, well defined crack length and orientation statistics from high-fidelity simulations were used to inform455

an effective moduli model for the high-rate fracture of quasi-brittle metals. A new stress based damage criteria was456

introduced to allow damage to evolve in individual material zones. This crucial improvement removes the previous457

limitations associated with the time based damage evolution previously employed by the effective moduli model.458

Stress based material degradation of individual zones also allows for non-homogeneous damage distributions to form459

within the material. Thus, realistic regions of localized damage, such as spall regions in the flyer plate experiments460

simulated in this study, can now be accurately simulated in continuum scale with the effective moduli model. An-461

other important modification to the effective moduli model was the integration of a plasticity model. This allows a462
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wider range of materials, including quasi-brittle materials that exhibit some ductile behavior, can be more accurately463

simulated.464

The effect of variations in the crack statistics was investigated by first studying the number of high-fidelity sim-465

ulations that were needed to properly inform the damage model. The dense, randomly distributed and oriented pre-466

existing crack network in the high-fidelity simulations coupled with the indirect tensile loading regime within target467

plate, lead to very little variation in the crack evolution from simulation to simulation. It was concluded that, one high-468

fidelity simulation produced adequate statistical information for accurate simulations of the damage evolution with469

the effective moduli model. This substantially reduces the number of costly high-fidelity simulations needed to create470

a statically representative set of crack length and orientation distributions. Next the effect of the damage threshold was471

found to significantly change the damage evolution within the material over time. Higher damage thresholds produced472

a more gradual material degradation and a later time of failure as well as a more realistic final damage distribution473

within the target plate. Finally, the effective moduli model was used to extrapolate results for a higher rate loading474

case. Excellent agreement between experimental results and extrapolated data from the effective moduli model shows475

that similar stress and crack growth trends are present in the same material at different loading rates. This extension of476

the effective moduli to higher rate cases further reduces the need for a large number of costly high-fidelity simulations477

and increases the flexibility of the model.478

In future studies, the effective moduli model could be applied and extended to consider more complex loading479

conditions to include shear loading, combined shear and tension, and recompression of damaged zones. Finally, the480

model framework is ideal to connect with newly developed reduced-order models, such as those that utilize machine481

learning (Moore et al., 2018; Hunter et al., 2019). This could also produce more flexibility in the range of statistical482

information available to inform the constitutive model at greatly reduced computational costs.483
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