SANDIA REPORT

SAND20XX-XXXX Sandia
Printed January 2020 National
Laboratories

Annular Core Research Reactor
(ACRR) Pulse Curve
Characterization

David Hamilton Saucier, Edward Parma

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or setvice by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@antis.gov

Online order: https://classic.ntis.gov/help/order-methods

NOYSE

National Nuclear Security Administration

ABSTRACT

Reactor pulse characterization at the Annular Core Research Reactor (ACRR) at Sandia
Technical Area V (TA-V) is commonly done through photo conductive detection
(PCD) and calorimeter detectors. Each of these offer a mode of analyzing a digital
signal with different advantages/methods for determination of integrated dose or
temporal based metrology. This report outlines a method and code that takes the
millions of data points from such detectors and delivers a characteristic pulse trendline
through two main methods: digital signal filtration and machine learning, in particular,
Support Vector Machines (SVMs). Each method’s endpoint is to deliver a
characteristic curve for the many bucket environments of ACRR while considering
other points of interest including delayed gamma removal for prompt dose metrics.
This work draws and adds on previous work detailing the delayed gamma fraction
contributions from CINDER simulations of the ACRR. Results from this project show
a method to determine characteristic curves in a way that has previously been limited
by data set size.

ACKNOWLEDGEMENTS

The author would like to thank Edward Parma for his mentorship and guidance for this project in
addition to Taylor Lane for his SAND report and previous research characterizing delayed neutron

fractions in ACRR. This work could also could not have been completed without the support of
TA-V and Organization 1384.

CONTENTS

RO Uil OSSN 9
1.]. Promptand Delayed EnviFonraents Itt ACRR s wmommmrmmsmmmsssnsmsmsmsssmmsonss 12

12, Big Data and Biltration Methodseasesasasmmssmssmauwsmsmmansssspmissmssmsssmimasssis 12
1.2.1. Data Filtration /REAUCTION c..eoveveeeeeeeeeeeeeeeeteeeeteeeeeteeeeeeseeseeseseesessessereesessesseeeneesesseseenees 13

12,2, Maehifie Leatriing Methods For Data FIBration .o 16

2 MetBodolBpsr Bo RSl mmesmwsssmsonunsssrowsossnsess oo i s Taims s s ey 18
21s PGLI afid Caloftimeter FIREaTIOMN o oo s oo s oo 66 5 s m 20
2.2. Filtration and Beyond: Regression and Detivative Peak Analysis.......c.cocoevvinicrvinnicirinicnen 23
220 Detivative Pealk. Ava yau: o o o oo om0 555 i 50 s a0 6 23

diiads It Tt e SR O s mevesonn s e s oo SR S 3 S S AT T3 25

2.3. Delayed Gamma RemoOval.......ccccccuiuiiiiiiiiiinininiiiciccceiccicicieetetetsise s eeeseseaesesenes 26
2.4, POWer CONVEISION cuiuiuiiiuiiiiiiiiciiiciitiiseistsis sttt snenes 28
2.5. Machine Learning Methods.......ccocoiiiiiiiiiniiiiiiiiiiciccscse s sessssessssssssessssesnens 29

3. Concluding STAtEMENLES ..ottt 34
B OO CO8 ussuswcrsesmsmssvomismessensehssesosm ey s o Eve o S R A N NS Ay 35
Appendix A. T etrs. SOMIPCR: O xnsmsnvnannnouscus o s oo 00580 e 45508 1 088080 0K 8 R SN 36
Additional modules:interpolation, Curvefit, simple CUrve fit ... 48
AL INEEIPOIALION ..t 48
A2 CUIVELIE it 50
A.3. PowerConvert (voltage to IMW) ... ssssssesenns 51
A.4. ACRR Transient Rod Timing SUperposition........cocciecuriniiieriininieiiiieensisieessisssessesssseneens 53

LIST OF FIGURES

Figure 1-1. Schematic of the Annular Core Research Reactor (ACRR)ccccvviviciviviiciniiininicncnnn, 9
Bignte 1-2: Seheimatie of the ACRR writhy PRI s e moms s et v oo oo s 5556 a6 a5 10
Figure 1-3. ACRR P(t) During 1.35§ Pulse Showing Importance of Photo neutrons on Dose

(Parma, 2009). ... 11
Figure 1-4. Data Filtration Heuristics for Ideal Situations (National Instruments , 2018).c........ 13
Figure 1-5. Fast Fourier Transform on PCD NoOisy Dataccccviiiiviniicinininiiiniciciceeicennines 14
Figure 1-6. Fast Fourier Transform on PCD Data with Bessel Filtrationccccoecevvvicniniccninnnnes 14
Figure 1-7. Fast Fourier Transform of Gaussian Normal Distribution..........ccevviciiininicininiceniinnnes 15
Figure 1-8. Digital Filtration Profiles of Bessel, Chebyshev, and Butterworth Filters..........cccccoeuvuuceee 16
Figure 2-1. SPND Raw Data Signal from 40 M] PulSe.......cccocouveuiiviiiinininiiiiiiicininiiceisicesccenenenns 18
Figure 2-2. Silicon Calorimeter Raw Data From 40 MJ Pulseccccooviiiiiiiiiiiiiniiiicccn, 19
Figure 2-3. Bessel Low Pass Filtered PCD Detector Data (Log-Log, Red-Raw Data, Purple-

FAItered DIAta) ...c.ccuieieiiiiiiiiiiiiicieiiieise sttt 21

Figure 2-4. Reference Log Amp Data with Filtered Data (Red- Raw Data, Purple- Filtered Data) ..22
Figure 2-5. Comparison of Raw and Smoothed Silicon Calorimeter Data (Red-Raw Data, Purple-

FIIEEred DIAta) ...c.cucuieiiiiiiiiiiiiiicicicicieitetc sttt 23
Figure 2-6. Pulse Time Detection Using Derivative of Detection Response: Log-Amp Channel

(Purple- Derivative of Filtered Channel, Red- PCD Log Amp Channel)ccccoovcuvivinicirinincnenne. 24
Figure 2-7. Diadem Logarithmic Data Regression on Log-transformed Data (G-Log Regression,

155 1 6 1 O S O—————— 25

Figure 2-8. Differential Delayed Gamma Energy for *°U Thermal Fission (Lane & Parma, 2015)...26

Figure 2-9. Delayed Gamma Energy Curve for *’U at Thermal Temperatures Fission (Lane &

Parma, 20T5). ..o 27
Figure 2-10. PCD Log-Amp Detector Channel Data with Subtracted Delayed Gamma Dose

(Red-Total Detector Response, Purple- Prompt Gamma Response)ccccevvevciciviicirinicncnnn. 28
Figure 2-11. SVM Machine Learning Classifier SChematic.........ccovviuiiviviiiininiciiiinicciiccescenieees 30
Figure 2-12. Bismuth Detector Response as a Function of TImMeccccceeuviviicivniceninicciiccenines 31
Figure 2-13 Bissuth Deteetor Mean Classification. HISOQIN...crsmmssmsusommeimmmmsssvemsnsranpsmes 31,
Figure 2-14 SVM Classification of ACRR: Bi (Blue) and Zr (Orange) Detector......c.covvvierriniincninenes 32

This page left blank

ACRONYMS AND DEFINITIONS

Abbreviation Definition
ACRR Annular Core Research Reactor
CM Calorimeter
DOE Department of Energy
ENDF Evaluated Nuclear Data File
FFT Fast Fourier Transform
FREC-II Fuel Ring External Cavity
GNC Gaussian Normal Curve
LSQ Least Squares Regression
MCNPG6 Monte Carlo N-Particle Program v.6
NI National Instruments
PPV Point to Point Variation
RAM Rolling Arithmetic Mean
SNL Sandia National Laboratories
TA-V Technical Area V
Tpk Peak Time
TR Transition Region

1. INTRODUCTION

Experimental data is taken at the Annular Core Research Reactor (ACRR) at Sandia Technical Area
V (TA-V). ACRR is a unique research reactor in a deep swimming pool cavity that offers the
capability of operation at steady-state, transient, or singular pulse mode. A schematic of ACRR given
below shows the specifications of the reactor inclusive of its large experimental cavity size of nine
inches in diameter. This experimental cavity spans up to the top of the reservoir to allow for
placement of experimental packages in the reactor’s dry cavity.

Figure 1-1. Schematic of the Annular Core Research Reactor (ACRR)

The ACRR is very in unique in the sense that the flux characteristics of the central cavity of ACRR is
epithermal and may be operated at 4 MW at steady-state and 400 MJ (licensed for 500 MJ) in pulse

and transient modes, both of which are much higher than the pulse transients done at most TRIGA
pulse reactors which operate in the realm of 10 MJ (Parma, 2009). Such an environment is
achievable through in part to the unique Uranium Beryllium Oxide fuel that offers up favorable
neutronic benefits through (y, n) interactions in addition to high heat capacity. So beneficial is this
effect that this core may be started up without use of a startup neutron source as in most other
reactors (Parma, 2009) (Duderstadt & Hamilton, 1976). Neutron characteristics may be tailored to
customers’ needs by addition of ‘buckets’ to the central cavity to tune the neutron energy spectrum.

Such beneficial fuel neutronics will not be discussed in-depth in this paper, but a in depth
explanation may be found in Nuclear Reactor Analysis (Duderstadt & Hamilton, 1976) under photo
neutron source terms for the radiation transport equation.

It should be noted as well that the ACRR has an additional capability in the form of the Fuel Ring
External Cavity (FREC-II) which houses a larger experimental diameter of 20 inches for larger
experiments. This is shown below on Figure 1-2 while the reactor is operating at steady state. The
ACRR is on the right with transient rods while the FREC is lifted into its steady-state position on
the right (Parma, 2009).

Figure 1-2. Schematic of the ACRR with FREC

The ACRR is one of the most unique reactors in the world, and it provides a key function for the
mission here at Sandia Labs and this is no doubt in part to the unique neutronic and dose
environment it gives for systematic interrogation of radiation dose.

One key take-away from the background of this reactor is that this fuel source contributes an artifact
in two main ways: 1) dose response is over-estimated at the end of the pulse cycle slightly due to the

10

presence of photo neutrons and 2) ground-truth delayed critical reactor configuration is changed by
the presence of the additional neutrons from the (¥, n) reaction from the beryllium. Methods to try

and address this are mentioned in the methodology. Such a visualization is given below on Figure 1-
3 (Bell & Glasstone, 1970) , (Duderstadt & Hamilton, 1976) ,(Parma, 2009).

te+11 p———rrrr——

Te+10 ,, $IS&ACRRPuLse“ xxxxxxxxxxxxxxxxxxxx -

;T R U - with st?utdown - 38 M :]

Ie+8 i_ ; : 3
_TedT e & Betayed-Sroups-+ Spriggs-and Sampbet-—
= le+6 ;,;................,.,,,,,,?,,EI"EPQE%HIE’E?’]E\E‘RHR%;E?EEM \\\\\\\\\\\\ .
§ fe+5 | _ : : :
E 1e+d : ,;\ xxxxxxxxxxxxxxxxxxxx \,. xxxxxxxxxxxxxxxxxxxx “,

1e+3 f\

je+2 5 | | wﬁxxhs

IE+1 !_ mth[}ut i _\\I

1E+D 1 pth‘DT']E’UﬁU‘H‘S 1111111111111 \:‘w\.? xxxxxxxxxxxxxxxx

[0 R AR R S ¥

1e+0 Te+1 Te+2 1e+3 1e+d 1e+5
Time (s)

Figure 1-3. ACRR P(t) During 1.35% Pulse Showing Importance of Photo neutrons on Dose (Parma,
2009).

Keeping that P(t) has a correlation with neutron fluence, photo neutrons influence the integrated
dose given to the central cavity. How this is removed or accounted for is explained in the
methodology section of this report.

11

1.1. Prompt and Delayed Environments in ACRR

One of the key uses for ACRR is the irradiation of electronic components. In ACRR, packages are
exposed to prompt neutron and gammas with the addition of delayed neutrons and gammas because
of the fission products. These prompt and delayed contributions to dose present a challenge in the
form of determining each one’s contributions to the electrical component, which is addressed and
given in this experimental code package thanks in major part to work from Taylor Lane in his
SAND report (Lane & Parma, 2015).

Prompt and delayed neutron emission environments are arenas of active study in the realm of
nuclear engineering. Many software packages have been implemented to allow the user to bin which
energy domains offer dose contributions to the radiation environment. In the case of ACRR, data
can be obtained through the Monte Carlo N-Particle Program (MCNPO6) by binning the energy
domains of interest for neutrons (both delayed and prompt) (Brown, 2018). This has been a
relatively new addition to the code that was implemented around 2012. These methods are readily
available and necessary for the ACRR for each of the radiation environments provided by the cavity
buckets.

To propetly determine the dose to the item, an accurate estimate of the flux/fluence from gamma
and neutrons must be made.

Dose characteristics of photon emission in reactor environments, let alone like one in the ACRR, are
unfortunately very small in number. Characterization of photons, both prompt and delayed, usually
are very strong functions of the fuel, and currently Evaluated Nuclear Data Files (ENDF) files
usually only provide a singular value that comes from different, potentially variable experimental
acquisition states (Grassberger, Hegger, Kantz, Schaffrath, & Schreiber, 1993) (Brown,

2018). Temporal interrogation of delayed gammas has remained relatively unstudied for many years
and even a relatively recent ENDF/B-VII distribution had neatly 30% uncertainty with delayed
gamma energy spectrum for *°U (Lane & Parma, 2015). This is since been improved and the flux

characterization for the function of this report looks at the delayed photon flux/fluence as a
function of the data produced by the CINDER 2008 photon simulations of ACRR.

Objective: Removing the total contribution of these delayed neutrons over the entire time
series of the data set to determine the purely prompt contribution. Other contributing dose
factors may be easily extrapolated from prompt data.

1.2. Big Data and Filtration Methods

Big data presents challenges in the sheer large dimensionality and corresponding interpretation of
data structures. While it might seem beneficial to have millions of data points, the challenge of
interpretation and validation of useful structures gets exponentially more difficult. This is certainly
true for the data sets taken using PCD and calorimeter (CM) detectors at the ACRR.

A typical dataset from ACRR has on the order of 1 to 3 million data points per channel with an
average of about ten different detection channels for some experiments. Loading a single data

12

channel into Excel alone would crash from memory issues. Initially to answer this problem, the
author looked to using simple data filtration methods.

1.2.1. Data Filtration/Reduction

The first alternative to reducing data dimensionality is to determine the amount of noise. To do this,
most filters assume that the noise comes from a given frequency. In the case of this data, Fourier
decomposition and consultation with experimenters suggested that higher frequency electronic noise
was infiltrating the data. Such a problem as this can be addressed using the following: a lowpass,
high pass, bandpass, or band stop filter. These are relatively simplistic heuristics of data filtration
that are summarized below on Figure 1-4.

A A A
-E FH SH -E SH FB -E S8 PB 58 -E FBE S8 PH
B B] — B
=< =< =€ =<
= Fraq = Freq = Freq = Freq
) fe for T for Tz
Lowpass Highpass Bandpass Bandstop

Figure 1-4. Data Filtration Heuristics for Ideal Situations (National Instruments , 2018).
In Figure 1-4 above, SB denotes the stopband or threshold where all data reads stop and PB denotes
the passband threshold where all reads are kept. These above examples show a very idealistic way of
data filtration that would have to be applied to what experimenter needs are (Grassberger, Hegger,
Kantz, Schaffrath, & Schreiber, 1993).

Realistically, we do not know what the exact cutoff should be experimentally as that can change
greatly depending on experimental setup. To address such concerns, what is commonly done is to
introduce a transition region (TR) that attenuates data. The above figures are step functions and
typically are too restrictive.

When trying to determine what would be the best filter to use, many times it helps to determine the
frequency distribution using a Fast Fourier Transform (FFT) which is described by Equation 1.

i2wkn

Xy =2%2x,e N k=0,..N—-1,n=0->N-1 Eqn(1)

What is really being computed here is a discrete Fourier transform (DFT). This helps reduce a noisy
data set to a collection of frequencies. Below on Figures 1-5 and 1-6 are examples of ACRR data sets
before and after filtration through Bessel functions.

13

0 50 100 150
Frequency [Hz]

Figure 1-5. Fast Fourier Transform on PCD Noisy Data

0 50 100 150
Frequencyl [Hz]

Figure 1-6. Fast Fourier Transform on PCD Data with Bessel Filtration

These curves might appear to be esoteric or unmeaningful, but the true beauty in the FFT is found
through comparison of these with an FFT of a Gaussian normal curve (GNC). This is shown below
on Figure 1-7.

14

Gaussian Pulse in Frequency Domain
DZ T T T T T T T

[P

0.08[|
0.06F |
0.04F |

002r |

D e 1 1 L 1 1 1 i
0] 10 15 20 25 30 35
Frequency (f)

40 45 50

Figure 1-7. Fast Fourier Transform of Gaussian Normal Distribution

What should be noted is the shape of each of these distributions. The author of this report started
the shaping of the filter PB by looking at what a characteristic pulse might look like, which was
assumed to be roughly that of a GBC. It should be noted that with removal of delayed gammas, this
assumption is not too unreasonable, with a rough similarity close to a Gaussian as determined

through a Chi-Square test (P<0.05 as threshold of significance).

This data pipeline utilizes a Bessel filtration method for the data stream. The other options along
with their TR behavior are given below on Figure 1-8.

15

Fiter Response

2
2
E 1{— —— Butterworth
EI LY
. "\!_h 1
075 . \ Chebyshey
\ ~.
"1‘ [}
1 1
_ — Bessel
0.5 - Y |
1 [
1
Y]
TIE - .’.\ ‘.
] T - — J
a K a 03 0.4 05

Figure 1-8. Digital Filtration Profiles of Bessel, Chebyshev, and Butterworth Filters

Out of each of these, Bessel offers benefit by being the largest TR with non-rigid attenuation like

Butterworth or Chebyshev. For a low-pass filter, it offers added benefit of being continuous and
smooth on the stopband and passband.

Future developments of this detection method will likely utilize hybridized methods or qualifiers that
better detection of valuable data during the experimental envelope. These methods given are ones
that are currently used and available in the Diadem infrastructure. A current limitation of the

Diadem software is that these more advanced detectors will need to be implemented using custom,
user-created and coded methods.

1.2.2. Machine Learning Methods For Data Filtration

Machine learning is an unfortunately overused, broad term that is at times pootly defined. For the
purposes of this report, there are two overarching flavors of machine learning:

e Supervised Learning: Consists of having a specific subset of paired input and output data.
Commonly this is applied for use in classification of new inputs to a given output family

e Unsupervised Learning: Consisting of NO prior data labelling and only pure heuristic
development using a set classification method. Typically, this is in the form of clustering
analyses to find a hidden pattern in the data structures.

Data structures from ACRR offer the ability to do both alternatives, i.c.:

16

e Supervised Learning: Using prior dataset characteristics to predict or classify a new
experimental environment as one or many buckets. (This could even be separated as a
function of energy for more interesting datasets).

e Unsupervised Learning: Aggregate all ACRR data for each detector and determine if each
experimental spectrum clusters with a given environment, energy or mixture of all of them.
This could be done to determine which experiments have equivalent environments across all
experimental data sets.

It should be noted that this was created for a limited dataset. The author had access to 3 different
experimental runs and was able to determine characteristic curves using data splitting to increase
statistical power by 3™. Given more time, the author would have liked to expand this and analyze the
rigor of the statistical assumptions of splitting each data channel and smoothing,.

The proper conditioning of this data for the hopeful future user of these methods would be to have
a dataset with around 4 test runs 3 validation runs and then as many experimental characterization
runs that are required for the given requirements of the experiment. These are still lower than ideal,
but for the future, when such data sets are done routinely, this is essential.

17

2. METHODOLOGY & RESULTS

Detector data from Self-Powered Neutron Detectors (SPND), Photo Counting Detectors(PCD),
and Calorimetry based data have a great deal of signal noise when it comes to variance of the voltage
signal It becomes clear that to work with a large data set with large inter-temporal variance, it is best
to start with a simple, robust method. To start, we begin with a typical SPND and calorimeter
channel (Figure 2-1 and 2-2 respectively) below.

0.06
0.05
0.04
0.03

0.02

SPND Voltage

0.01

-0.01

0 5 10 15 20 25

Time (s)

Figure 2-1. SPND Raw Data Signal from 40 MJ Pulse

18

Calorimeter Response (V)

-100p . . [

0 5 10 15 20 25

Time (s)

Figure 2-2. Silicon Calorimeter Raw Data From 40 MJ Pulse

These detection methods are displayed because they show two different contributions to radiation
dose. SPNDs generate their current by neutron activation and corresponding beta decay of the
rhodium material in the central portion of the detector. They require no signal amplification and are
used as a method of active neutron flux measurements. Calorimeters show the integrated dose via
heat deposition, which ultimately helps determine how much dose was given to the sample after
calculating parameters from dosimetry. Different materials such as bismuth or tin will give different
information to the integrated dose for a sample.

The point-to-point variance (PPV) is quite large. This presents immediate difficulty when trying to
do line regressions or trendlines because PPV makes it nearly impossible to determine where the
ground truth characterization might lie. An unavoidable data artifact found after conferring with
experimenters is the presence of high-frequency noise, which is from the experimental equipment
itself. One of the goals of this project was to find a way to filter out these high frequencies with
minimal experimental data loss in addition to other forms of signal noise introduction from
detection instruments.

19

2.1. PCD and Calorimeter Filtration

To begin to filter the data, it must be stated that there are two primary issues facing the data:

1) A large data set consisting of millions of data points overwhelms commonly used data
analytic software.

2) PPV Noise is incredibly high and we must remove the variance while preserving the general
shape or characteristic of the dose curve.

These are first addressed through use of the filtration methods mentioned in the previous
introduction section. After optimization and some trial and error, the filtration method chosen for
this was the Bessel filtration method. Butterworth and Chebyshev filters were ultimately dismissed
due to their over conservative SB (Grassberger, Hegger, Kantz, Schaffrath, & Schreiber, 1993).

Bessel edge filters were chosen after a quick comparison of chi-square values between filtered pulse
shapes, and a gaussian. The underlying assumption here that a pulse has the rough characteristics of
a gaussian during peak time. There are better distributions to model this such as a log-normal
distribution, but the limitation of time lead to the choice of the normal curve being the optimization
parameter.

Filtered data sets were input in National Instruments (NI) Diadem and then altered using digital
filtration lowpass filters with Bessel edges. The results of this filtration are shown below on Figures
2-3 and 2-4. Logarithmic amplification (log-amp) is done on this PCD to detect with fine temporal
resolution when the ACRR pulse peak contributions from gammas are given as well as the dose
response at this time due to the prompt gamma emissions. Working in the log-log space allows these
rapid events to be captured. The plot below on Figure 2-3 is inverted due to the experimental
acquisition setup. The data may be retransformed into an upright log-amp curve using a conversion
table for the Yokogawa data. Such an example is given on Figure 2-4.

20

(=)

1.6

Log-Amp Detector Response-Inverted (V)

1.4

-t
P

0 5 10 15 20 25

Time (s)

Figure 2-3. Bessel Low Pass Filtered PCD Detector Data (Log-Log, Red-Raw Data, Purple-Filtered
Data)
This noise reduction was speculated to be further be improved through a moving average to reduce
the data load. This can be pre-conditioned in the code by inputting the number of data points that
you would like to ‘skip,” but the user is taking a million and more data points and putting it in a data
format that could be transferred to a different IDE platform.

With this initial filtration, it can be further improved with smoothing using the rolling arithmetic
mean (RAM). This is a computationally inexpensive process for big data. This greatly improves the
fidelity of the data that is being used. A comparison is given below on Figure 2-5.

21

0.1

[£3]

01

Log-Amp Detector Response (V)

s

Time (:

Figure 2-4. Reference Log Amp Data with Filtered Data (Red- Raw Data, Purple- Filtered Data)

At this scale, there is a difference in the absolute minima of the smoothed cutrve as well as the raw
data. Being in logarithmic space, this presents a problem in that this difference is further exaggerated
outside of log space. This is speculated anecdotally to be improved through use of tuning the
window length of the moving average post smoothing. A smaller window compresses the data less,
but in turn would encapsulate the shape of the spectrum better. This is the inherent trade-off in this
question, and best practices to optimize are in the hands of the experimenter to determine which is
best: more data compression or a shape closer to the experimental data.

22

S| Calorimeter Response (V)

=100y

Time (s)

Figure 2-5. Comparison of Raw and Smoothed Silicon Calorimeter Data (Red-Raw Data, Purple-
Filtered Data)

These filtration methods are an important starting point for the overarching aim of this code: to
generate characteristic curves of dose environment that are manageable. These filtration steps are
used in all analyses of this tool box: regression, derivation analysis of peak regions, logarithm
transformations, and finally power analyses (both with delayed gammas and without).

2.2. Filtration and Beyond: Regression and Derivative Peak Analysis
2.2.1. Derivative Peak Analysis
After the filtration, the experimenter wants to know about the transient data of the peak, so skipping

data points in this region offers little value and can even remove valuable data during transients. To
address this, this code does the following method:

d
Teriticar = E(Vl) =0 Eqn (2)

The largest maxima is the one found from the transient with a few fluctuations just before the pulse.
Taking the derivative of the smoothed data we get the following diagram (Figure 2-6):

23

WA
W)

25ponse

R
=) ()
et
——

Log Amp Detector R
1
s

0 05] 15

Figure 2-6. Pulse Time Detection Using Derivative of Detection Response: Log-Amp Channel
(Purple- Derivative of Filtered Channel, Red- PCD Log Amp Channel)

The data show that the Teica has a slight lag from the true peak time from the data. For the
purposes of this code, it serves as a good peak time indicator that is not sensitive to the slight
perturbations seen and gets the main global maxima. The total time envelope in which we will create
an exclusion region for the data averaging and smoothing is the following:

d
ATpeqx = FWHM (E (VPCD)> Eqn(3).

In practice, this should work well as we are looking at a large full-width at half-maximum (FWHM)
of the derivative of the time dependent voltage. This helps to ensure that the data is preserved
liberally at the area around the transient peak, and the derivative is the most robust global maxima
detector currently available.

Derivative peak analysis presented an initial challenge to calorimeter data. This was done using a
similar method, but rather focused on finding the critical time on the second derivative of the peak
data or when the rate was increasing the most. Or in equation format:

2

TcriticalCal = max (F Vcal(t) = 0) Eqn(4)-

24

The time envelope could not be calculated using FWHM, so for calorimeters it is purely based on
when the maximum second derivative begins to when the first derivative is zero. This time envelope
is something that could be readily improved through either experimenter input or more rigorous
mathematical methods.

2.2.2. Data Regression

Unlike using the derivative, which only applies to the data from PCD detectors, proper data
regression is central to determining the characteristic of experimental data. The predominant
method of regression here is logarithm transformation and then linear regression. There are better
methods of regression such as Least Squares (LSQ) or even some machine learning methods that
will be discussed in future sections. For the sake of brevity, this can be done using a logarithm
graph is shown below on Figure 2-7.

\

|

0.01 \

0.008

0.006

0.0044

0.002

\

'\

regression in Diadem directly or by fitting in Excel after running the script to reduce the data. Such a

Figure 2-7. Diadem Logarithmic Data Regression on Log-transformed Data (G-Log Regression, R-

Diadem is not adept at regression. For this, the author highly recommends the use of Python,

PCD)

XAxis

MATLAB or other scientific software that would make use of more advanced methods. (Which can
be easily done after compressing the data in this code!)

25

23. Delayed Gamma Removal

Delayed gamma removal was one of the main goals of this project. To do this, the fractional energy
distributions were needed for *°U. Raw data for these were taken from (Parma, 2009), (Lane &
Parma, 2015), and relevant parameters are given below on Figure 2-8.

1
= i T =
: = Thermal
10° -
! e =
w12 | -
2 B i
w3k .
= [0735 0735 0734 0716 0.600]
T 0.327 .
= 1077 | 0.061 3
B 0.007]
107 0.001 E
10-% |- |
10-7 : : - - L L
100°% 107F 1wt 1w? 1002 10wt! w 1! 102 1w* 1wt 1wt 10f 10 108
Time (s)

Figure 2-8. Differential Delayed Gamma Energy for 25U Thermal Fission (Lane & Parma, 2015)

26

10° T T T T T T T

10 e 5.879 (85.4 %) 0.885
. 4 o -
3131 (45.5 %) —

1.6 (23.2 %) / S
0.45 (6.5 %) /

i 0.066 (1.0 %)
= 1072 /

0.007 (0.1 %)

1074

= Thermal _
l{}—fl | | | | | | |
107 1wEF 1wt w? 107? w! w 1w 102 1w* 1w0* 1w 10 107 10°
Time (s)

Figure 2-9. Delayed Gamma Energy Curve for 23°U at Thermal Temperatures Fission (Lane &
Parma, 2015).

These curves’ data was tabulated and parsed for input into Diadem. These data show the expected
amount of delayed gamma energy deposited after a given time (Lane & Parma, 2015). This would
mean that for experimental packages left in for a very long time, they would have a substantial
additional dose. Using this data, we calculate the delayed gamma fraction to subtract from our
gamma detectors to get the pure contributions of dose from prompt gammas. This is given below
on Figure 2-10.

27

sponse (W)

Log-Amp Detector Re

Figure 2-10. PCD Log-Amp Detector Channel Data with Subtracted Delayed Gamma Dose (Red-
Total Detector Response, Purple- Prompt Gamma Response)

One item of interest is the peak difference after delayed gamma contributions. It is not currently
known as to the exact reason for this depression in data. This was unexpected and not what we
would predict from other methods. After researching into the reasoning, it is believed to be tied to
the approximation made for the dE/dt distribution given from the Lane report. This approximation
is a rather simple linear regression, that doesn’t encapsulate the finer nuances of the data. In the case
of the peak, where fine temporal and fit resolution is necessary, a small residual in the regression
could explain this larger depression. This data could be improved greatly by improving this
regression. Outside of peak data, there is decrease in the total detector response from delayed
gamma subtraction, but this method has yet to be compared to other methods or experimental
methods. Once that is completed, it would offer more valuable insight into what is the pure prompt
gamma contributions to the dose environment.

2.4. Power Conversion

Putting voltage into a relevant unit of power is necessary for an endpoint deliverable. Admittedly,
this was faitly tricky to do because of detection of the peak and its timepoint. Integration over noise
would lead to a false normalization and incorrect power. This is accomplished by using a relatively
simple power scale conversion as well as a first-derivative slope-based detector to determine the
peak time or (Tpk). This power conversion is given below on Equation 5 and 6 for logarithm power.
These equations are taken from a conversion based on dosimetry data (primarily Nickle foils). These
results have been compiled by a worksheet generated by Elliott Pelfrey, and offer the following
means as a conversion to powet. It should be noted that ideally, this should be done on a

28

experimental basis, matching the reactor foil dosimetry to generate the constants given below. In the
case of Equations 5 and 0, these values are an average of those used for a 40 MJ pulse (the data
presented in this report). These values will change dependent upon the Peak power as well as other
experimental parameters.

P = Z({VL - Unoise})

== % —0.0299(Tpeqr + 1) + 0.8077 Eqn (5)
i

peak

_ Z{log(vl) - log(anoise)}

Pog = ¥ (log (Vipeak))

x10g(—0.0299(Tpear + 1) + 0.8077) Eqn(6)

2.5. Machine Learning Methods

Machine learning methods are a unfortunately vague term that often do not include the central
methodology of the method. To avoid such misgivings here, the underlying proposed methodology

is a supervised learning based Support Vector Machine (SVM). For clarity this means the following:

e Training data sets are required to set limits for distribution features
e Tinal output is a classification
o ACRR Bucket Environment was used as a first example

o Relied on conserved distribution shapes as determinants

e Qualitative data output could be quantified as % likelihoods.
o Ex) 80% most like PbB bucket 20% like no bucket in ACRR cavity

e Offer a quick diagnostic for anomalous data for experimenters

Using these basic parameters, a challenge was to generate a training data set to try these methods.
Data was limited for ACRR pulses, so ultimately the choice was to use one of the prior weakness of
too much data in our favor. Simply put, make three data sets for one distribution environment by
taking every first, second, and third data point repeatedly and use a moving average characteristic
and other smoothing techniques to determine three curves for one data set.

Keep in mind, this method is fundamentally due to the lack of data the author had. With more data,
this would be a very powerful method to train a simple SVM to classify experiments with more
confidence. For a visual depiction of an SVM, please refer to Figure 2-11 below (Mountrakis, Im, &
Ogeole, 2010). This shows a SVM hyperplane, denoted in this report as a Decision plane, along with
two populations of data, represented by <’ symbols and ‘0’ symbols. The hyperplane is generated by
observing where most of a certain data type falls and trends. The more points that are along this
path, the stronger that support vector is, and this in-turn helps set the linear threshold for
classification. The width between the support vector for both ‘x’ data and ‘o’ data is called the
margin with the middle being set as the SVM hyperplane.

29

SVM
hyperplane

Misclassified
mstances

Figure 2-11. SVM Machine Learning Classifier Schematic

It is important to mention that data or distributions can be misclassified. In this case, these
misclassified instances are where our data has additional complexities that aren’t captured by a linear
generalization. Fundamentally we are reducing the dimensionality of our data to something more
general, so data may be classified. Data points inside of the margin can be rejected or, better yet,
chosen as a validation set for when more training set data is available. At its essence, it’s a well-
informed Least Squares like algorithm that doesn’t rely purely on fitting the shape but the features of
the data set, which are much less limiting (Bishop, 20006).

When applied to ACRR data, this was tested using the different CM material detectors: Sn, Bi, and
Zr. However, this method could be applied to any data set that have roughly similar environments
with enough historical data to serve as a training set. For the scope of this report, features were
determined based on histogram average values. Such a plot is given below on figure 2-13.

30

Lt

e

ample C

o

0.0025

=
< o002 N
= \
-
& 0.0015
o
0.001
e
0.0005 e \
1 I 1
0 5 10 15 20 25
Time (s)

Figure 2-12. Bismuth Detector Response as a Function of Time

900k »
800k
700k
600k
500k
400k
300k
200k s

100k . [] -

Figure 2-13 Bismuth Detector Mean Classification Histogram

31

The salient point from Figures 2-12 and 2-13 is that to classify a dataset and spectrum of nearly 3
million data points, the dimensionality of the data needs to be reduced to classify. This is done by
taking means of small windows of data and compiling their frequencies to serve as the fingerprint
for a detector. The first attempts at creating an SVM based classifier on ACRR Pulse Data is given
below on Figure 2-14.

Simple SVM on Histogram Feature Data

3.00E-03
2.50E-03 —@— Bi Histogram Mean
o 2.00E-03 ——@— Zirconium Histogram Means
0o
8
© 1.50E-03 ¥
B D-Plane
£
o
< 100E-03 [ceerrnene Linear (Bi Histogram Mean)
g y =0.0003x - 0.0002
500E-04 | A a1 e -+ Linear (Zirconium Histogram
Means) y = 0.0002x - 0.0003
0.00E+00 - Linear (D-Plane)
0 e y = 0.0002x - 0.0003
-5.00E-04

Hlstogram Bin Number

Figure 2-14 SVM Classification of ACRR: Bi (Blue) and Zr (Orange) Detector

This very simplified method of determining a hyperplane was specifically chosen for its quick
diagnostic approach for experimenters needing an immediate result.

Figure 2-14 is a visual diagram of a simplistic machine learning algorithm. The grey line, denoted as
D or Decision Line, is created through generation of a support vector, which through iteration,
determines this line of demarcation based on the data points classified by data set 1 and 2 (blue and
orange lines respectively). Simply put, it is the classification line where if a new experiment data
point were to be placed above the grey line, it would be classified as part as part of blue group data.
It can make this assumption after observing where the data points in the blue and orange groups fell.

How does each data point on a data spectrum get dimensionally reduced to a series of features? Or
alternatively, how does an entire spectrum get represented by 10 different features? In the case of
this report, this is done through generating histograms of mean values of data in a set elapsed time.
This ideally makes the data comparable between different experimental conditions, thus making this
useful for determination of experimental classifiers. In the y-axis above, these are mean averages for
every 100 data points with a N=10 histogram bins set. Each of these parameters can be tuned or
increased as necessary based on the requirements needed for the experiment (Bishop, 2006).

32

This is best streamlined in a Python environment but can be done relatively simply in a Microsoft
Excel Spreadsheet using good prior data in terms of what to classify features based on. For most
data sets, Diadem can offer a rolling mean characterization on 10 different cluster groups in the
ACRR data based off of mean value. These bins then offer a very flat line as seen above that can be
quickly optimized for a differentiation between Bi and Zr detection data.

It is currently unknown if this would work once larger datasets are given, but at that point, much
more sophisticated methods could be used as a point of entry for feature/shape detection.

This presents a great improvement for data analytics at ACRR as it offers a new way to compare
detector responses over different experimental data sets. Because this method looks at overall
averages, it could be used to determine if a detector is responding as a given type, or better yet,
consider with how much confidence its spectrum falls into what previous testing data shows. The
addition of more and more testing data allows for more iteration and trial on the classification line
(support vector) and thus would improve the fidelity and confidence in stating a classification for a
detector response (Mountrakis, Im, & Ogeole, 2010). Future work in this arena could even lead to
statistical testing against other discriminators to ensure quality of data and dose that extend beyond
subtraction of delayed gammas and truly take the entire experiment into consideration.

33

3. Concluding Statements

In conclusion, this code offers great benefits and a toolbox of resources for interrogation of voltage
data. The goal of this project was to be able to generate a smoothed characteristic curve for each
detector for nearly 12 million different data points across 10+ channels. These analyses can easily
become overwhelming, so this offers a one-stop shop to get these analyses done. This pipeline
offers:

e Data Compression- Millions down to thousands of data
e Logarithmic Transforms-Made specifically for our log-amps
e Delayed Gamma Subtraction- Determine Prompt Dose for Customers
e Power Conversions- Allow for further data analyses
e Novel Peak Detection Methods and Data Compression
o Using derivatives and expectation values to determine time envelopes
e Data Filtration- Taking very noisy data to something manageable

o Performing regressions and other transforms

Begin to build a pipeline for machine learning determination through SVM bootstrap

For future work, what needs to be applied is a central compendium of all pulse data to apply a
rigorous machine learning mechanic. There is a weakness that can only be addressed by exposing the
SVM algorithm to many different features from ACRR pulse data. The higher fidelity the algorithm,
the quicker and more reliable it becomes to give an experimenter a definitive classification of their
data, which ultimately will greatly cut down on the post-processing work for the customer. This
pipeline also works well with previous work (Saucier, Parma 2016) in determining features between
Transient Rod time points in the ACRR (Appendix B.4).

Going forward, a suggestion to the user/reader that Diadem is great at reducing and handling larger
data sets, but outside of that is incredibly limited. Ad-hoc SVM training was done outside of Diadem
simply cause the methods are too archaic or very limited. Python and other languages offer much
more in terms of useful machine learning libraries as well as other user developed tools in the
community.

34

4, REFERENCES

Bell, G., & Glasstone, 1. (1970). Nuclear Reactor Theory. Washington DC: US Atomic Energy
Commission.

Bishop, C. (20006). Pattern Recognition and Machine 1 earning. Springer.

Brown, F. (2018). MCNP6 Users Manual. Los Alamos : Los Alamos National Laboratory.

Duderstadt, J., & Hamilton, L. (1976). Nuclear Reactor Analysis . Ann Arbor: Wiley.

Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., & Schreiber, T. (1993). On noise reduction
methods for chaotic data. Chaos: An Interdiscplinary Journal of Nonlinear Science, 127.

Lane, T., & Parma, E. (2015). Delayed Fission Gamma-ray Characteristics for 232Th, 233U, 235U, 238U,
and 239Pu. Albuquerque: Sandia National Laboratories.

Mountrakis, G., Im, J., & Ogeole, C. (2010). Support vector machines in remote sensing: A Review.
ISPRS Journal of Photogrammetry and Remote Sensing, 247-259.

Parma, E. J. (2009). Photoneutron Effects on Pulse Reactor Kinetics for the Annular Core Research Reactor
(ACRR). Albuquerque: Sandia National Labs.

25

APPENDIX A. DIADEM SOURCE CODE

'-— VBS script file Revision 2--Yokogawa Data Being Used

'-— Author: DAVID HAMILTON SAUCIER, SANDIA NATIONAL LABS

'-— Comment: The author used advice from ANDREW TONIGAN on how to streamline this
scripting process

ESSSSSSS==aS This code takes a Yokogawa input file and then proceeds to take a
baseline to smooth out the data

'--Version Date: 11/10/2019, REQUIRED: WDF data plugin (avaliable from NI)

' Detectors Used: All 12

Option Explicit 'Forces the explicit declaration of all the variables in a script.

Data.Root.ChannelGroups.RemoveAll
'Initiate Mapping of Network Drive-Might not be necessary.

''""'"Create bool to see if drive has been mapped--doing twice results in an error
""'"Uncomment if you have a distant network drive (like \\snl\home)

'if snlNetDrive=

Dim snlNetDrive

Set snlNetDrive = CreateObject ("WScript.Network™)

'Call snlNetDrive.MapNetworkDrive ("Z:","\\snl\home\dhsauci")

' NEW PATH TO TRY \\snl\home\dhsauci\MyDocuments\Active Dosimetry\Feb-2016
shots\11735-ff-43MJ-2kw-2ndshot-2-10-16 NOTE MAKE COPY TO ENSURE PRESERVATION OF DATA
'0ld Path: "Z:\MyDocuments\Active Dosimetry\Feb-2016 shots\11734-ff-26MJ-2kw-1lstshot-
2-10-16\RODD0004~-fast .WDF"

'Initiate Variables

Set

globaldim ("SPND,AA67ref,AA0310g,S93308,B161412,5n61212,72r61312,SPNDacrr,S93308air,Bi6l
412air,Sn6l212air,Zr61312air, TRALl, TRB1,TRC1', TRIG") =

datafileload ("Z:\MyDocuments\Active Dosimetry\Feb-2016 shots\11739-ff-max-2kw-3rdshot-
24hr-2-11-16\RODD0009~-fast .WDF", "Yokogawa WDF", "Load")

'Dim I as int 'loop iteration index

'Call SudDlgShow ("TESTING INPUT", "C:\Users\dhsauci\Documents\Active Dosimetry\Feb-
2016 shots\11734-ff-26MJ-2kw-1stshot-2-10-16\moBetta.tdm")

dim pkChnl

'"BEGIN DATA FILE LOADING:

' Check on whether this path can be queried through a dialogue box or softcoded
Call datafileload("Z:\MyDocuments\Active Dosimetry\Feb-2016 shots\11734-ff-26MJI-2kw—
lstshot-2-10-16\RODD0004-fast.WDF", "Yokogawa WDF","Load")

''LOAD THE DELAYED GAMMA DATA

'BEGIN BASELINE CALCULATIONS
Dim I

Dim Z

Z = ChnLength ("SPND")

'Clean up the channels.
'"For i= 1 te 23

36

v 8tats8el (I)= "No"

'Next

'ArithMean'’

'StatSel (6)= "Yes"

'If CNo ("SPND")> 0 Then
'ChnDel ("SPND")

'Erd If

'ty BEGIN CLEANING ROUTINE FROM CLEANED

CHANNELS ABOQVE"""wnuwnuuwnnn

G LSRNy PR NI PN LYY VR S RN EE LY VA 0 B

'Begin Channel Filtering

Call Data
Call

Data.Root.

Call

Data.Root.

Call

Data.Root.

Call

Data.Root.

4)
call

Data.Root.

4)
call

Data.Root.

4)
Call

Data.Reot.

4)
Call

Data.Root.

4)

Call

Data.Root.

64)
Call

Data.Root.

t64)
Galll

Data.Root.

atoe4d)
Call

Data.Root.

ato64)

.Root.ChannelGroups.Add ("FilteredChannels")
ChannelGroups ("FilteredChannels") .Channels.
ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

ChannelGroups ("FilteredChannels") .Channels.

37

Add ("SPNDclean", DataTypeFloat64)
Add ("siClean", DataTypeFloat64)

Add ("siTime",DataTypeFloat64)

Add ("AA67refClean",DataTypeFloat6

Add ("AAO3logClean",DataTypeFloat6

Add("Bi6l41l2Clean",DataTypeFloaté6

Add ("Sn61212Clean",DataTypeFloat6

Add ("Zr61312Clean",DataTypeFloat6

Add ("SPNDacrrClean",DataTypeFloat

Add ("S93308airClean”,DataTypeFloa

Add("Bi6l4l2airClean",DataTypeFlo

Add ("Sn6l212airClean",DataTypeFlo

Galll
Data.Root.ChannelGroups ("FilteredChannels") .Channels
atoe4d)

'Begin Channel Filtering

Call ChnFiltCalc("","[1]/593308","[3]/siClean","IIR"
pass",1,60,0,0,1.2,25, "Rectangle",1,1)
Call ChnFiltCalec("","[1]/SPND","[3]/SPNDclean","IIR"
pass";1,60,0,0,1.2,25,"Rectangle",1,1)
Call ChnFiltCalc("","[1]/ARAG6T7ref","[3]/ARA67refClean"
pass",1,60,0,0,1.2,25, "Rectangle",1,1
Call ChnFiltCalc("","[1]/AA031log"™,"[3]/AA031logClean"
pass",1,60,0,0,1.2,25, "Rectangle",1,1
Call ChnFiltCalc("","[1]/Bi6l412","[3
pass",1,60,0,0,1.2, 25, "Rectangle", 1,1
Call ChnFiltCalc("","[1]/Sn61212","[3
pass",1,60,0,0,1.2,25, "Rectangle",1,1
Call ChnFiltCale("","[1]/Zr61312","[3
pass";1;6050,0,1.2;26,"Rectangle";1,1)
Call ChnFiltCalc("","[1]/SPND","[3]/SPNDacrrClean","

]

)

]

)
]/Bi6l4l2clean”
)
]/Sn6l1212clean”
)
]

/Zr61312clean"

.Add("Zr6l1312airClean",DataTypeFlo

, "Bessel", "Low

, "Bessel", "Low

,"IIR","Bessel","Low
,"IIR","Bessel","Low
,"IIR","Bessel","Low
,"IIR","Bessel","Low
,"IIR","Bessel", "Low

IIR", "Bessel"”, "Low

pass",1,60,0,0,1.2,25,"Rectangle”,1,1) 'add acrr if labeled such
Call ChnFiltCalc("","[1]/Bi6l412air","[3]/Bi6l412airclean”,"IIR", "Bessel","Low

pass",1,60,0,0,1.2,25, "Rectangle",1,1)

Call ChnFiltCalc("","[1]/Sn61212air","[3]/Sn6l1l212airclean","IIR", "Bessel","Low

pass",1,60,0,0,1.2,25,"Rectangle",1,1)

Call ChnFiltCalc("","[1]/Z2r61312air","[3]/Zr61312airclean","IIR", "Bessel","Low

pass",1,60,0,0,1.2,25,"Rectangle",1,1)
Call €anFiltCale("","[1]/593308air","[3]/5893308AirCL
pass",1,60,0,0,1.2,25,"Rectangle",1,1)

'Begin making cleaned channels

dim cleanArray(),cleanChannels (0)

Call Data.Root.ChannelGroups.Add("CleanedChannels")
Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels.
Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels.

ean","IIR","Bessel","Low

Add ("SPNDclean",DataTypeFloat64)

Add ("siClean",DataTypeFloat64)

Call Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add("siTime",DataTypeFloat64)

Gall

Data.Root.ChannelGroups ("CleanedChannels") .Channels
)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels
)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels
)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels
)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels

)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels
4)

Call

Data.Root.ChannelGroups ("CleanedChannels") .Channels
64)

38

.Add ("AAG67refClean"”,DataTypeFloat64

.Add ("AAO3logClean",DataTypeFloat64

.Add ("Bi61412Clean", DataTypeFloat64

.Add ("Sn61212Clean", DataTypeFloat64

.Add ("Zr61312Clean", DataTypeFloat64

.Add ("SPNDacrrClean",DataTypeFloaté

.Add ("S93308airClean", DataTypeFloat

Call
Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add ("Bi6l412airClean",DataTypeFloa
t64)
Call
Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add ("Sn6l1212airClean",DataTypeFloa
t64)
Call
Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add ("Zr61312airClean",DataTypeFloa
t64)

'Time Channels

Call Data.Root.ChannelGroups.Add("TimeChannels")

Call Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("SPNDclean",DataTypeFloat64)
Call Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("siClean",DataTypeFloat64)
Call Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("siTime",DataTypeFloat64)

gzi;.Root.ChannelGroups("TimeChannels").Channels.Add("AA67refClean“,DataTypeFloat64)
gzi;.Root.ChannelGroups("TimeChannels").Channels.Add("AAO3logClean",DataTypeFloat64)
gZi;.Root.ChannelGroups("TimeChannels").Channels.Add("Bi61412Clean",DataTypeFloat64)
gZi;.Root.ChannelGroups("TimeChannels").Channels.Add("Sn61212Clean",DataTypeFloat64)
gZi;.Root.ChannelGroups("TimeChannels").Channels.Add("Zr61312Clean",DataTypeFloat64)

Call
Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("SPNDacrrClean",DataTypeFloat64)
Call
Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("S93308airClean",DataTypeFloat64)
Call
Data.Root.ChannelGroups ("TimeChannels") .Channels.Add ("Bi6l412airClean", DataTypeFloat64
)

Call
Data.Root.ChannelGroups ("TimeChannels") .Channels.Add("Sn61212airClean"”, DataTypeFloat64
)

Call
Data.Root.ChannelGroups ("TimeChannels") .Channels.Add("Zr61312airClean"”, DataTypeFloat64
)

Call Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add ("t1l",DataTypeFloat64)
Call Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add("t2",DataTypeFloat64)
Call Data.Root.ChannelGroups ("CleanedChannels") .Channels.Add("t3",DataTypeFloat64)

Call Data.Root.ChannelGroups.Add("TransformedChannels")

Call

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("SP1Log", DataTypeFloat64)
Call

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("xAxis",DataTypeFloat64)
''! Generate Time Channel

Call ChnFromWEFxGen ("[1]/S93308","[1]/siTime",""WfXRelative™)

dim SPNDclean, siClean
dim j
j=1

'Query User to Enter Step Size
dim N

39

N = InputBox ("Enter How Many Data Points to Skip","SaucierSmooth.vbs User Query",100)

dim t

t=1

dim maxtl

Call ChnPeakDetect ("[1]/t","[1]/TR-Al1","maxaPl", "maxaAl", "PEAKS", 1, 3)
Call CtheakDetect("[l]/t","[l]/TR—Bl","mabel","mabel","PEAKS",1,3)
Call CtheakDetect("[l]/t","[l]/TR—Cl","maxcPl","machl","PEAKS",1,3)
dim ¢l; @2, &3

cl =1
cz2 =1
c3 =1
dim bool

iy v BEGIN TRANSIENT ROD PROCESSING''''''rrrrrrrrrrrrrinnnnnunnnnnnn

LA T 20 O T O U I L T S TR T R A ST NN A R O O I R R T A TR A A R R B A R O A U R A R R (O o

'For t=1 to Z

'b= Lg(Ch([1]/TR-B1))
'e= Lg(Ch([1]/TR-C1))

' If Data.GetChannel ("[1]/TR-Al").Values(t) >=

0.2*Data.GetChannel ("[2] /maxaAl") .Maximum then

! Data.GetChannel (" [3]/tl") .Values(t) = 0.0002 ' (Chd(t,"[1]/TR-A1")) /40000
v if el < 7 then

. Data.GetChannel ("[3]/tl1l") .Values (t+cl)

Il

0000 "(Chd(t,™[1]/TR-A1")) /40000
i cl= cl+1

y if ¢l = 6 then ¢l = 1 and t=t+6
i End if

| Else Data.GetChannel ("[3]/tl") .Values (t)
' End if

0 '(Chd(t,"[1]/TR-A1l")) /80000

If Data.GetChannel ("[1]/TR-B1") .Values (t) >=
0.2*Data.GetChannel ("[2] /maxbAl") .Maximum then
i Data.GetChannel (" [3]/t2") .Values(t) = 0.0002 ' (Chd(t,"[1]/TR-B1")) /40000
: if €2 <« 7 then
v Data.GetChannel ("[3]/t2") .Values (t+c2)

Il

0.000 '(Chd(t,"[1]/TR-A1")) /40000
! c2= ¢2+1

! if c2 = 6 then c2 = 1 and t=t+6
! End if

' else Data.GetChannel ("[3]/t2").Values(t) = 0 '(Chd(t,"[1]/TR-B1")) /80000
' End If

' If Data.GetChannel ("[1]/TR-Cl") .Values(t) >=

0.2*Data.GetChannel ("[2]/maxcAl") .Maximum then

g Data.GetChannel ("[3]/t3") .Values(t) = 0.0002 ' (Chd(t,"[1]/TR-C1")) /40000

! if €3 < 7 then

$ Data.GetChannel ("[3]/t3") .Values (t+c3) = 0.000 ' (Chd(t,"[1]/TR-A1"))/40000

! c3= c3+1

40

! if ¢3 = 6 then ¢3 = 1 and t=t+6

4 Frnd 1.f

! Else Data.GetChannel (Y[31/£3") . Valuesi(t) = 0 "(Chd(t,"[1]/TR=C1")) /80000
' Bng. 4.

'Next

P VNG E v YEENS el vy Py Yy Y e e R e vyl P Py Oy Y i

'Yy BEGIN SMOOTHING ROUTINE FROM CLEANED CHANNELS ABOQVEM"™"Mwmmmmwmwmmwmn

LS (R L I ol TV T R Y A R P A A B b R (AT T Rl T O B A I T O B 8 T I TR

'Initiate Statistical Calculations for each channel

'''""Check the method-- the average smoothing function is acting oddly(dropping values)
'Call Statblockcalc ("Channel","0-"& Z,"[4]/SPNDclean")

'"Call Statbloeckealc ("Channel™,™0-"§ Z,"[4]/siClean™)

'Begin calculating the aritmetic means across the channel

'Call FormulaCalc("Ch('CleanedChannels/SPNDclnAvg') :=" & "Ch('[4]/SPNDclean')" & "-
StatArithMean")

'Call FormulaCalc("Ch('CleanedChannels/siClnAvg') :=" & "Ch('[4]/siClean')" & "-
StatArithMean")

'Begin Smoothing Routines
''" Note the generate average channels for each yield the same shape but at a lower
magnetude.

''"'"Normal Smoothing Block, no averages

Call

ChnSmooth ("FilteredChannels/SPNDclean","FilteredChannels/SPNDsmooth", Data.Root.Propert
ies.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/siClean","FilteredChannels/siSmoothedr2",Data.Root.Propert
ies.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/AA67refClean", "FilteredChannels/AA67refSmooth", Data.Root.P
roperties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/AAO3logClean","FilteredChannels/AAO031logClean",Data.Root.Pr
operties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/Bi61412Clean", "FilteredChannels/Bi61412Smooth", Data.Root.P
roperties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/Sn61212Clean", "FilteredChannels/Sn61212Smooth", Data.Root.P
roperties.Count, "maxNumber")

41

Call
ChnSmooth ("FilteredChannels/Zr61312Clean", "FilteredChannels/Zr61312Smooth", Data.Root.P
roperties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/SPNDacrrClean","FilteredChannels/SPNDacrrSmooth", Data.Root
.Properties.Count, "maxNumber")

call

ChnSmooth ("FilteredChannels/S93308airClean", "FilteredChannels/S93308airSmooth", Data.Ro
ot.Properties.Count, "maxNumber")

call

ChnSmooth ("FilteredChannels/Bi6l412airClean","FilteredChannels/Bi6l1412airSmooth", Data.
Root.Properties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/Sn61212airClean","FilteredChannels/Sn61212airSmooth", Data.
Root.Properties.Count, "maxNumber")

Call

ChnSmooth ("FilteredChannels/Zr61312airClean","FilteredChannels/Zr61312airSmooth", Data.
Root.Properties.Count, "maxNumber")

''"'"Average Smoothing Block, statistical averages used and must be calculated in
earlier block

Call

ChnSmooth ("CleanedChannels/SPNDclnAvg", "CleanedChannels/SPNDsmoothed", Data.Root.Proper
ties.Count, "maxNumber")

"Call

ChnSmooth ("CleanedChannels/siClnAvg", "CleanedChannels/siSmoothed", Data.Root.Properties
.Count, "maxNumber")

''rrry BEGIN CHANNEL PEAK SEARCH AND BRANCHING FOR LOOPS'M"Mmwwimmmmwwmmmn

i | "

</ RN AT G S OO M 8l R T A B R A S RO A OO A T G OOk I N o b A T N R S R R T R I A e A L

'Begin Searching For Peaks

'Call ChnPeakDetect ("[1]/t","[1]/SPND", "maxpSPND", "maxaSPND", "PEAKS",0.01, 3)

'Call ChnPeakDetect (" [1]/t","[1]1/S93308", "maxpSI", "maxaSI","PEAKS",0.01,3)

"Call ChnPeakDetect (" [1]1/t","[1]/TR-C1", "maxcP1", "maxcAl"™, "PEAKS" ,1;3)

Call

ChnPeakFind ("","[1]/SPND", " [3]/maxSPNDx", " [3] /maxSPNDa",1, "Max.Peaks","Amplitude")
'BEGIN new subroutine

dim spndInd

spndInd = PnO("[1]/SPND",CMax("[1]/SPND"))

dim aaRefInd
aaRefInd = PnO("[1]/AA67ref",CMAX("[1]/AAG6Tref"))

Call
ChnPeakFind (""," [1]/AA6T7ref","[3] /maxAA6T7refX", " [3]/maxAR67refA", 1, "Max.Peaks", "Amplit
ude")

42

''TYPE 2 PEAKS

'Note: for most type 2 peaks, channel peaks are relatively useless. Differentiate and
find where the delta is greatest.

Call ChnDifferentiate("","[3]/siClean","[3]/siDiffX","[3]/siDiffY")

Call ChnPeakFind("","[3]/siDiffY","[3]/maxSiX"," [3]/maxSiA",1, " "Max.Peaks", "Amplitude")
dim siInd

siInd= PnO("[3]/siDiffyY",CMAX("[3]/siDiffyY"))

call ChnDifferentiate("","[3]/Bi61412Clean","[3]/Bi61412diffX","[3]/Bi61412diffy")
call

ChnPeakFind ("","[3]/Bi61412diffy","[3]/maxBi61412X","[3]/maxBi61412A",1,"Max.Peaks","A
mplitude")

dim biInd

biInd= PnO("[3]/Bi61412diffyY",CMAX ("[3]/Bi61412diffy"))

call ChnDifferentiate("","[3]1/Sn61212Clean","[3]/Sn61212diffX","[3]/Sn61212diffyYy")
Call

ChnPeakFind ("","[3]/Sn61212diffY","[3]/maxSn61212X","[3] /maxSn61212A",1, "Max.Peaks","A
mplitude")

dim snInd

snInd = PnO("[3]/Sn61212diffY",CMax("[3]/Sn61212diffy"))

call ChnDifferentiate("","[3]/Zr61312Clean","[3]1/Z2r61312dif£X","[3]/2r61312diffy")

dim zrInd
zrInd = PnO("[3]/2r61312diffy",CMax("[3]/2r61312diffy"))

call
ChnDifferentiate("","[3]/S93308airClean™,"[3]/S93308airdiffX","[3]/S93308airdiffy")

dim siAirInd
siAirInd = PnO("[3]/5S93308airdiffyY",CMax (" [3]/S93308airdiffyY"))

call
ChnDifferentiate ("","[3]/Bi6l412airClean","[3]/Bi6l4l2airdiffX","[3]/Bi6l412airdiffy")

dim biAirInd
biAirInd = PnO("[3]/Bi61412airdiffY",CMax("[3]/Bi61412airdiffy"))

'Peak width of types 1 and 2
dim dtl

dtl= 500000 '5 seconds

dim dt2

dt2 = 1000000 '10 seconds

i=1

''""'"Begin new algorithm Technique

dim spndChanNo, timeChanNo, AA67refChanNo
spndChanNo = CNo (" [3]/SPNDsmooth™)
timeChanNo = Cno("[1]/t")

AA67refChanNo= CNo ("[3]/AA67refSmooth")
Call ChnAlloc("[4]/SPNDclean", Z)

Do While i< Z
' Redim Preserve cleanArray(0,3)

43

Data.GetChannel (" [5] /SPNDclean") .Values(j) = chD(i, "[1]/t")

NS EEENE R RSN R
'Type 1 Peaks
if 1 < spndInd - dtl or i > spndInd + dtl Then
Data.GetChannel ("[4]/SPNDclean") .Values (j) = chdx (i, spndChanNo)
i=i+N
else Data.GetChannel (" [4]/SPNDclean") .Values (j) = chdx (i, spndChanNo)
end If

j= §+1
i=i+1
Loop
i= 1
j=1

DO while i<z

Data.GetChannel ("[5] /AA6T7refclean") .Values(j) = chD(i, "[1]/t")

if i < aaRefInd - dtl or i > aaReflInd+ dtl Then

Data.GetChannel (" [4] /AA6TrefClean”) .Values(j) = ChdX (i, AA67refChanNo)
i=i+N
else Data.GetChannel ("[4]/AA67refClean”) .Values(j) = ChDX(i,AA67refChanNo)
end IF
j= +1
i=d41
Loop
i=1
j=1

'SPND ACRR has a different type of peak structure

'Data.GetChannel ("[4]/SPNDacrrClean") .Values (j) = Chd(i, "[3]/SPNDacrrClean")

Do while i<z
'Type 2 Peaks
Data.GetChannel ("[5]/siClean") .Values (j) = chD(i, "[1]/t"™)

if i < siInd or i > siInd +dt2 then
Data.GetChannel ("[4]/siClean™) .Values(j) = Chd(i, "[3]/siClean")
i=i+N

else Data.GetChannel("[4]/siClean") .Values(j) = Chd(i, "[3]/siClean")
'Call MsgBox ("IF Tripped")
end if

j= j+1
i=i+1
Loop
i=1
j=1

44

Do while i<z

Data.GetChannel ("[5]/Bi61412clean") .Values(j) = chD(i, "[1]/t")
'ADD THESE PEAKS TO TYPE 2 IF ROUTINE
Yif 4 < biInd =dt2 or i > bilnd +dt2 then
if i <biInd or i > biInd + 1500000 then
Data.GetChannel ("[4]/Bi61412Clean") .Values (j) = Chd(i, "[3]/Bi6l412Smooth")
i=i+N
else Data.GetChannel ("[4]/Bi6l412Clean").Values(j) = Chd(i, "[3]/Bi6l412Smooth")

end if

Jj= Jj+1
i=i+l

Loop
i=1
J=1
Do while i<z

Data.GetChannel ("[5]/Sn61212clean") .Values(j) = chD(i, "[1]/t")

'"ADD THESE PEAKS TO TYPE 2 IF ROUTINE
'if 4 < bilnd =dt2 or i > bilnd +dtZ2 then
if i <snInd or i > snInd + 1500000 then
Data.GetChannel ("[4]/Sn61212Clean") .Values (j) = Chd(i, "[3]/Sn61212Clean")
1i=i+N

else Data.GetChannel ("[4]/Sn61212Clean") .Values(j) = Chd(i, "[3]/Sn6l212Clean")

end if

J= J+1

i=i+1

Loop

i=1
=L
Do while i<z
Data.GetChannel ("[5]/Zr61312clean") .Values(j) = chD(i, "[1]/t")
if 1 <zrInd or i > zrInd + 1500000 then
Data.GetChannel ("[4]/Zr61312clean") .Values(j) = Chd(i, "[3]/Zr61312Clean")
i=i+N
else Data.GetChannel (" [4]/Zr61312clean") .Values(j) = Chd(i, "I[3]/Zr61312Clean")

end if

j= 3+1
i=i+1

Loop

i=1
j=1

SRR VRN sy

45

t1rrrey BEGIN LOG TRANSFORM ROUTINE'' ' !/ 111 a it v v a vy v unmmmnmmmnmnmn

''" Taken From Billy Martin, SP1l data- All should be similar u

/SRR O A RO 8 e O i T G R AR R AT O TR R R R B R RO R K G T R TR AT O P i I T T O R

Call dataFileLoad("C:\Users\dhsauci\Documents\LogAmp 062016DSrevs.csv","CSV", "Load")
call
ChnMapLinCalc("[7]/IIN","[7]/VOUT","[1]/AAO031l0og","[6]/SP1Log",True,"f[bound.slope]",No
Value, "analogue")
Call datafileload("Z:\MyDocuments\delayedGammaData.xlsx","Excel Example", "Load")

'LOG Type Peak

'Data.GetChannel ("[4]/AAO03logClean") .Values(j) = Chd(i, "[3]/AA03logClean")

' cleanArray (0, 7) Chv (i, "Date Time 1")

'cleanArray(1l,3) = "1™ ' RTT(cleanArray(l,3j),"#mm/dd/yyyy hh:nn:ss.ff")
'Loop
'FIX THIS CHANNEL GET ERROR
'dim chnCopyList
'set chnCopyList = Data.GetChannels("[4]/SPNDclean" & "[4]/siTime")
'ChnCopy (" [4] /SPNDclean"," [5] /spndClean™)
'"ChnCopy (" [4]/siTime”, " [5] /Time")

'Call DataFileSaveSel ("C:\Users\dhsauci\Documents\dataForTommy\dataOut"
FCsVT ™ (4] /siTime",; " [4] /SENDclean'™)

trrrey BEGIN OPTIONAL CODING BLOCKS "nwunununwunnnuunmamanumunnmamnmannman

Fo WL W N R EE A T PR B R R ET AT VR e R R e

'For calorimeter data--- Convert to millivolts to use for calculations

'Call MatScalMul ("CalSmoothed", 1e3, True)

RERLUAS IPETS SUBROUTINE ADDS THE ANACYSIS OF ATR DETECTORSY ' MIMAFLLVLE 1N vELLL KLY

'Do while i<z
! Data.GetChannel ("[5]/S93308airClean") .Values (j) = chD(i, "[1]/t")

46

! if 1 %8ilnd pr 1 > siInd + 1500000 then

! Data.GetChannel ("[4]/S893308airClean") .Values(j) = Chd(i, "[3]/S93308airClean")
’ i=i+N

' else Data.GetChannel ("[4]/5S93308airClean") .Values(j) = Chd(i,
"[3]1/893308airClean™")

' end if
'og= 4+l
¥ de=iiEE

'Loop
voi=1
' j=l

'Do while i<z
. Data.GetChannel ("[5]/Bi6l412airClean") .Values(j) = chD(i, "[1]/t")

Y if 1 <biAirInd or i > biAirInd + 1500000 then

! Data.GetChannel ("[4]/Bi6l412airClean") .Values (j) = Chd(i, "[3]/Bi6l412airClean")
4 i=i+N

' else Data.GetChannel ("[4]/Bi6l412airClean") .Values(j) = Chd(i,
"[3]/Bi6ld412airClean")

' end if
' 9= g+l
'oi=i+41
'Loop
'oi=l

L j:l

'Do while i<z
¢ Data.GetChannel ("[5]/Sn61212airClean") .Values (j) = chD(i, "[1]/t")

Y if i <snAirInd or i > snAirInd + 1500000 then

v Data.GetChannel ("[4]/Sn61212airClean") .Values (j) = Chd(i, "[3]/Sn6l212airClean")
! i=i+N

' else Data.GetChannel ("[4]/Sn61212airClean") .Values (j) = Chd(i,
"[3]/8n61212airClean™)

' end if
¥ H= Sy
' i=i41

'Loop

'oi=1

] j:l

'Do while i<z
. Data.GetChannel ("[5]/Zr61312airClean") .Values (j) = chD(i, "[1]/t")

y if 1 <zrAirInd or i > zrAirInd + 1500000 then

' Data.GetChannel ("[4]/Zr61312airClean") .Values (j) = Chd(i, "[3]/Zr61312airClean")
. i=i+N

' else Data.GetChannel ("[4]/Zr61312airClean") .Values (Jj) = Chd (i,

w3 /226131251 Felean)

'end 1if

rog= g+l
toi=i+l

47

ADDITIONAL MODULES:INTERPOLATION, CURVEFIT, SIMPLE CURVE FIT

AA1. Interpolation

'-— VBS script file Revision 1-- Interpolation Method/ Transform for logarithm based
channels.

'-— Created on 08/19/16

'-— Author: DAVID HAMILTON SAUCIER, SANDIA NATIONAL LABS

V== Comment:

'--Version Date: 10/23/2018, REQUIRED: WDF data plugin (avaliable from NI) for
grabbing data, and loading CSV parsed data

' Detectors Used: Just looking at the AAO3ref Log Detector

Option Explicit 'Forces the explicit declaration of all the variables in a script.

''Create Data Variables

Call chndelete("[6]/xAxis™)

Call chndelete("[6]/SP1Log")

Caill

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("xAxis",DataTypeFloat64)
Call

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("SP1Log", DataTypeFloat64)

dim i,j,slope,Y,Z, ind,N
i=1

J=1

ind= 1

slope= 1

<
Il

ChnLength (" [7]/VOUT")
Z = ChnLength("[1]/SPND")

'Find where the peak happens in order to save time
call ChnDifferentiate("","[3]/AA03logClean","[3]/ARA031logdiffX","[3]/AA031logdiffY")

dim aaLogInd

aalogInd = PnO("[3]/AA03logdiffY",CMin("[3]/AA031logdiffY"))
Call msgbox (aaLogInd)

'Tolerance:Keeping numbers before D/dt pk

N=200

'Begin For loop interpolation method

'Outside loop--->Loop through each value in data channel

for i=aalogInd-N to Z

ind = 1

'Data.GetChannel (" [6] /xAxis") .Values (ind) = chD(i, "[1]/t"™)

'Inside Loop--->Loop through and check where to interpolate
For j=1 to Y 'step 1000

if Data.GetChannel ("[3]/AA031logClean") .Values (i) < CHD(j,"[7]/VOUT") and
Data.GetChannel ("[3] /AR031ogClean") .Values (i) > Chd(j+1,"[7]/VOUT") then

if (CHD(j+1,"[7]1/VOUT")-CHD(j,"[7]1/VOUT")) = 0 then

Data.GetChannel ("[6]/SP1LogInterp") .Values (ind)= CHD(i-
1,"[6]/SPlLogInterp")

48

else slope = (CHD(j+1,"[7]/IIN")-CHD(3,"[7]/IIN"))/(CHD(j+1,"[7]/VOUT")~
CHD(3J,"[7]/VOUT"))
Data.GetChannel ("[6]/SP1LogInterp") .Values (ind) =
slope* (CHD (i, " [3]/AA03logClean")-CHD(j,"[7]/VOUT"))+ CHD(j,"[7]/IIN")

'call msgbox (slope)
end if
else
Data.GetChannel ("[6]/SP1LogInterp") .Values (ind)= CHD(i-1,"[6]/SPlLogInterp")

end 1if

Next

Next

49

V== 'VBS script file

'-— Created on 08/31/2017 17:30:11
'-— Author: David Saucier

'-— Comment:

Option Explicit 'Forces the explicit declaration of all the variables in a script.

''"Create Data Variables

Call chndelete ("[6]/xAxis™)

Call chndelete("[6]/SP1Log")

Call

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("xAxis",DataTypeFloat64)
Call

Data.Root.ChannelGroups ("TransformedChannels") .Channels.Add ("SP1Log",DataTypeFloat64)

dim %, i, 2
% = ChnLength (" [1]/SPNDbig")
i= 1

"' TYICHANGE THE BEGINNING I INDEX WHEN YOU'RE DONE POPULATING!!! THIS IS JUST TO
OBSERVE THE SHAPE AND SAVE TIME

v

' CHANGE BACK TO I=1

v

for i= 1 to Z "1l624401

v

1

i]

v

{1 R A N G A DU R i Ak A U RO O R I O R R R A O R N A LG ACCH R N AR B R R I O U IS b (R AL I R R i O R ¢

SN ETENPYE YT PR NDN VYOS PN LY

if Data.GetChannel("[7]/Smoothed") .Values (i) < 1.85 and
Data.GetChannel (" [7]/Smoothed") .Values (i) => 0.0034 then
x=Data.GetChannel (" [7] /Smoothed") .Values (i)

Data.GetChannel ("[6]/SP1Log") .Values (i)= 10.774*exp(8.4614*x)
elseif Data.GetChannel ("[7]/Smoothed") .Values (i) <= 4.20 and
Data.GetChannel ("[7]/Smoothed") .Values (i) > 1.85 then

x=Data.GetChannel (" [7]/Smoothed") .Values (i)

Data.GetChannel ("[6]/SP1Log") .Values (i1)= 2*x"3+9el2*x"2-2el13*x+1el3

else
Data.GetChannel ("[6]/SP1Log") .Values(i)= 9999

end if

Next

50

A.3. PowerConvert (voltage to MW)

V—— WVBS script file

'-— Created on 10/06/2017 16:52:41
'-— Author: David Saucier

'-— Comment:

Option Explicit 'Forces the explicit declaration of all the variables in a script.

'NEED TO SYNC UP TIMING FOR THE LINEAR FIT, ALSO SEE IF THE FIT NEEDS TO BE PIECEWISE

CAUSE OF EARLY TIME REGION CONSTANT

' Begin Conversion to Watts
dim z

dim sum

dim j, 1

z= chnlength ("[1]/SPNDbig")

'Call ChnDelete (" [9]/PowerChannel")

'Call ChnDelete("[9]/PowerChannel2")

'Call ChnDelete("[9]/PowerTime")

'Call ChnDelete ("[9]/ConvertedPowerChannel")
'Call ChnDelete("[9]/ConvertedLogChannel")

Call Data.Root.ChannelGroups.Add ("ConvertedPowerChannels")
Gall

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
ate64)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
Float64)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
Float64)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
eFloato4)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
ato4d)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
,DataTypeFloat64)

Call

Data.Root.ChannelGroups ("ConvertedPowerChannels") .Channels.
ataTypeFloat64)

Add ("PowerTime", DataTypeFlo

Add ("PowerTimeLog",DataType

Add ("PowerChannel", DataType

Add ("PowerChannel2",DataTyp

Add ("PowerTime", DataTypeFlo

Add ("ConvertedPowerChannel"

Add ("ConvertedLogChannel", D

Call ChnDifferentiate("","[3]/SPNDclean","[7]/spndDiffX","[7]/spndDiffyY")

'Call

ChnPeakFind ("™, " [9] /spndDiffX"," [9]/spndDiffY", " [3] /maxSiA", 1, "Max.Peaks", "Amplitude™)

dim spndInd, zerolIndex, sumPulseTime, zeroPulseInd
spndInd = PnO("[3]/AA6T7refClean",CMax (" [3]/AR67refClean"))

zeroPulseInd = PnO("[7]/spndDiffY",CMax (" [7]/spndDiffY"))
zeroIndex = spndInd - 5* (-zeroPulseInd+spndInd)

51

'CURRENT METHOD: POWER NORMALIZATION TO X MEGAJOULE PULSE

'Call ChnSum("[1}/SPND","[9]/SPNDintegral™)
sumPulseTime= CHD(chnlength("[1]/t"),"[1]/t")-CHD(zeroPulselInd,"[1]/t")

'PULSE TIME--- Basic metric taken from DSA pg 674 15-79. Not sure if correct.
dim startIndex, pulseBool
pulseBool = FALSE

'Normalization Terms

dim sumPower, sumBG, nBG, avgBG, sumPowerLog, sumBGLog, nBGLog, avgBGLog
nBG=1

'Remove Background and calculate sum of power in peak domain

for j= 1 to z
Data.GetChannel ("[9] /PowerTime") .Values (j) = chD(j, "[1]1/t"™)

if j >= zeroIndex then

sumPower = sumPower + abs(chd(j,"[3]/AAR67refclean™))
sumPowerLog = sumPowerLog + abs(chd(j,"[6]/SP1Log"))
end if

if chd(j,"[9]/PowerTime"™) > 22 then

sumBG = sumBG + abs(chd(j,"[3]/AR6T7refclean™))
sumBGLog = sumBGLog + abs(chd(j,"[6]/SP1Log"))
nBG = nBG+1

nBGLog = nBGLog +1

end if

next

avgBG = sumBG/nBG
Call MsgBox (avgBG)
for 1= 1 te %

'check these units...

if i >= zeroIndex then 'chd(i,"[9]/FilteredSignal") > 0 or

chd (i, "[9]/FilteredSignal") < -0.000000001 then 'zeroPulseInd - 3000 then
= if pulseBool = FALSE then

¥ startIndex= i

. pulseBool= TRUE MIGHT HAVE TO CHANGE TO A M* (X (T1)-
X(TO0)) set up

Y end if

'Data.GetChannel (" [9] /ConvertedPowerChannel") .Values (i) = ((1- (-

0.0299* (chd(i,"[9]/PowerTime") -
chd (startIndex, " [9] /PowerTime"))+0.8077)))*CHD (i, " [9] /PowerChannel")
Data.GetChannel (" [9] /PowerChannel") .Values (i) = (chd(i,"[3]/AA67refclean") -
avgBG) /sumPower* 1
Data.GetChannel ("[9] /PowerChannel2") .Values (i) = (chd(i,"[6]/SPlLog")-
avgBGLog) /sumPowerLog* 1
Data.GetChannel (" [9] /ConvertedPowerChannel") .Values (i) =
(CHD(i,"[9]/PowerChannel"))* (((-0.0299* (chd(i-zeroIndex + 1,"[1]/t"))+0.8077)))
Data.GetChannel ("[9] /ConvertedLogChannel"”) .Values (i) =
(CHD(i,"[9]/PowerChannel2"))* (((-0.0299* (chd (i-zeroIndex + 1,"[1]/t"))+0.8077)))

Data.GetChannel ("[9] /PowerTimeLog") .Values (i) = chD(i, "[1]/t")
else

Data.GetChannel ("[9] /PowerChannel") .Values (i) = 0

Data.GetChannel ("[9] /PowerChannel2") .Values (i) = 0

52

Data.GetChannel (" [9] /ConvertedPowerChannel") .Values (i) = c¢hd(i,"[9]/PowerChannel")
Data.GetChannel ("[9] /PowerTimeLog") .Values (i) = chD(i, "[1]/t")
end if

next

A4, ACRR Transient Rod Timing Superposition

Tiws (%]

53

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address
David Saucier 1384 dhsauci@sandia.gov
William Martin 1384 wjmarti@sandia.gov
Thomas Ball 1384 thoball@sandia.gov
Elliott Pelfrey 1384 eapelfr@sandia.gov
Technical Library 01977 sanddocs@sandia.gov
Hardcopy—Internal
Number of
Copies Name Org. Mailstop
1 David Saucier 1384 1146
1 William Martin 1384 1146
1 Thomas Ball 1384 1146
1 Elliott Pelfrey 1384 1146

54

This Page Left Blank

58

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

