
LLNL-SR-805739

Parallel-in-Time Multigrid Methods for
Hyperbolic Problems, with a Focus on the
Shallow Water Equations

J. Schroder

February 26, 2020

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Final Report

“Parallel-in-Time Multigrid Methods for Hyperbolic Problems,

with a Focus on the Shallow Water Equations”

Submitted by:
Jacob Schroder

Prepared for:
Lawrence Livermore National Laboratory
Attn: Sherrill Kazadzis
Supply Chain Management, L-650
Lawrence Livermore National Laboratory

Under contract number:
B633040

FINAL REPORT

Contract B633040

“Parallel-in-Time Multigrid Methods for Hyperbolic Problems,
with a Focus on the Shallow Water Equations”

Progress has been made in several of the proposed areas of study, and is summarized below.

Project Abstract
The coming massive parallelism of exascale computing presents a pressing challenge for the many DOE
simulations of time-dependent partial differential equations, which typically use traditional sequential
time stepping methods. Since this traditional approach is inherently serial, it presents a sequential
bottleneck when moving to exascale computing, because future performance gains will come through
greater concurrency, not faster clock speeds. Thus, the goal of this work is to research parallelism in
time, i.e., methods that compute multiple time values simultaneously, not sequentially. The focus will
be on hyperbolic problems of programmatic interest to DOE, with the goal of enabling scalable
simulations of time-dependent hyperbolic problems on future architectures.

The difficulty lies in the fact that hyperbolic problems are well-known to be difficult for parallel-in-time
methods, with the most common parallel-in-time method, Parareal, diverging in many cases. Here, the
chosen methodology for scalably solving these hyperbolic space-time equations is multigrid-reduction-
in-time (MGRIT), because multigrid (when it works) is a powerful, optimal, and scalable solver for
discretized PDEs. To further research in this area, this project will explore a model hyperbolic problem
(the shallow water equations) in the context of recent advances (e.g., by Wingate and Haut 1) in
constructing improved coarse time-grid time-propagators by using the slow asymptotic structure of the
equations. In particular, we will investigate if such coarse time-propagators offer significant advantages
in an MGRIT setting, and explore any broader insights gained into parallel-in-time for hyperbolic
problems.

Project Steps

• Schroder and Chaudhry interviewed three students, and selected MSc student Nicholas Abel for
the RA funded by the subcontract

• The summer visit dates to LLNL were selected in consultation with Dr. Falgout
Schroder: July 8th - August 2nd (4 weeks)
Abel: July 8th – July 12th (1 week)

• Equipment was purchased and installed: a group workstation and a student desktop computer.
• Nicholas Abel began his summer RA on June 1st, and has been studying the method of Haut and

Wingate (HW), the rotating shallow water equations, and implementing the parallel-in-time
integration scheme of HW.

• Nicholas Abel began his Fall Semester RA in August, 2019. He has successfully integrated our
production parallel-in-time code XBraid with a target shallow water code in Python developed
by Wingate’s research group (called Cyclops), and is now running research experiments.

1 An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs, SIAM J. Sci. Comput.

• The experiments coupling Cyclops and XBraid have consisted of considering F- versus FCF-
relaxation and various multilevel settings, using combinations of the standard fine-grid time-
stepping operator and the asymptotic time-averaged time-stepping operator. There is a definite
benefit to using FCF-relaxation, which is a new result, but it is yet unknown if multilevel can
provide a benefit. Only preliminary data supports this conclusion. See below for more details.

• Nicholas Abel presented his results at the Annual AMG Summit (workshop) in Santa Fe, NM to
Dr. Falgout and other experts in the field.

Research Synopsis
As outlined in the statement-of-work (SOW), the main effort of this project will come over the summer
and the Fall, when Nicholas Abel will be employed as an RA, and Schroder and Chaudhry will have
summer research funding. There is no funded RA during the Spring semester. So far, we have
accomplished the following.

• We have implemented a 1D shallow water model in the chosen test code (XBraid)
o With no spatial coarsening, which limits the fine-grid time-step size, and the use of a

naïve coarse time-grid time-stepper, XBraid converges in the range of 0.33-0.66. For
practice, the student ran some strong and weak scaling tests.

o With spatial coarsening, XBraid does not converge well, and generally diverges. This is
not surprising, as the problem here is purely hyperbolic.

• Thus after the above warm-up step, we extended our spatial discretization to include extra
terms for the 1D rotating shallow water equations (RSW), as presented by HW.

o This included implementing a nonlinear rotational term, and a hyperviscosity term
o The hyperviscosity term, in particular, should help XBraid.
o The 1D RSW were implemented in Python and XBraid, using both RK4 and a library ODE

solver in Python. This was done to verify the XBraid implementation.
• After consultation with Dr. Falgout during our summer visit, it was decided to develop an

XBraid-Python coupling. This allows us to couple XBraid with a library Python RSW code Cyclops,
written by Wingate’s research group at Exeter. While we were confident in our above
developed finite-difference code for the RSW, use of this code will allow us to use the specific
time and space discretizations of the RSW favored by application area experts such as Wingate’s
group.

o Development of this XBraid-Python interface took longer than expected, in particular
the conversion of Python objects into usable C-style data was difficult, as was
determining the structure of the Python callback functions required by XBraid.

o However, the interface is now complete and has been verified, both for a simple
example (similar to the existing ex-01.c in XBraid) and for the Cyclops code.

§ This verification followed the traditional verification steps for XBraid and a user
code – comparing single and multilevel, comparing single and multiprocessor,
and verifying the fixed-point iteration test.

§ Agreeing with Dr. Falgout, we carried out one last validation experiment, where
we tracked the L-infinity norm of stand-alone Cyclops and Cyclops+XBraid.
Some implementation of the L-infinity norm in Cyclop+XBraid was required. The
convergence histories here were (nearly) identical, thus further verifying the
code.

o We have begun multilevel experiments using XBraid and Cyclops.

• Carried out experiments comparing F-relaxation versus FCF-relaxation. For larger (more
practical) final time values, FCF relaxation shows some benefit, converging in 50% (or slightly
fewer) iterations. In particular, the wall clock times for FCF are 50% faster

o The faster wall clock times are due to the high cost of the coarse time-grid time-step.
This “Step” function on the coarse time-grid costs 10 to 100 time as much as “Step” on
the fine-grid, thus reducing MGRIT iterations with FCF greatly reduces this cost. This
extra cost of “Step” could be parallelized further (as it relates to the computation of
integration points), but at the cost of reduced parallel efficiency. Our conclusion is that
MGRIT with FCF will still be faster.
We consider this new result to be a major outcome of the project.

• Regarding the research goal of using multilevel solvers, the results have been mixed.
o For the case of scale separation (when the problem parameter controlling the oscillation

strength, epsilon, is 0.01), we have not found a case where a 3 or more level solver out-
performs a 2-level solver

o However for the case of no scale separation (epsilon = 1.0), there are some
preliminary numbers showing possible benefit to using a 3-level solver. For this result,
a 3-level MGRIT solver does converge more quickly in at least some cases (e.g., 7
iterations versus 10 iterations). Future work will entail exploring this further, and
especially the aspects of tailoring the time-averaging window to each level in the MGRIT
solver.

• We committed a version of the Python+XBraid interface in a branch in the publicly available
XBraid Github repository. Given how popular Python is, this will benefit the broader
community. Future work will be to push this to the main branch of XBraid, along with user’s
manual documentation.

• We discovered that if the dissipation in the problem gets much larger than that used in classic
rotating shallow water examples (dissipation over 10-2), XBraid converges very fast with no
modifications.

