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MIMO Input Derivations, Optimizing Input Force Against Output Accuracy

ABSTRACT

Multi-Input-Multi-Output (MIMO) vibration testing is considered more representative of the true
loading environment (flight or wind induced vibration) where the inputs are not through a single
point. The derivation of N inputs for testing typically involves matching the response at M
locations (outputs). This involves inversion of a NxM Transfer Functions (TRF) matrix
corresponding to the N input and M output locations. The matrix inversion is affected by both
mathematical and physical parameters (ill-conditioned matrix, structural modes, signal noise).

Tikhonov regularization is commonly used in inverting an ill-conditioned NxM matrix. A low
value of the Tikhonov regularization parameter minimizes the distortion of the original equations
while a higher value can minimize error. In practice this introduces an interesting dilemma where
obtaining realistic input loads and maintaining accuracy of output are often pitted against each
other. A study was conducted using data synthesized from a simply-supported plate structure with
known vibration modes with added noise at outputs. The objective of the study was to understand
how noise or errors in the output and the Transfer function affect the input. This leads to a more
judicious choice of the Tikhonov parameter that can achieve a balance between reducing input
loads while preserving desired accuracy of output vibration.
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INTRODUCTION

The vibration of a simply supported plate (1.0m x 1.5m, 10cm thick) under multiple input and
response locations was studied. Force input was applied at various locations on the grid shown in
Figure 1 (the grid lines are equally spaced from 0.5 to 0.95 x length in both x and y axes). Response
is also calculated at the same locations. For this specific study the two inputs were applied at
locations 0.25 and 0.45x length (circles in Figure 1). Response was monitored at 4 locations, 0.25,
0.45, 0.65 and 0.85x length (circles and squares in Figure 1). The response and the input are related
by the plate response (Transfer Function TRF) as shown in Equation 1. Input can be derived from
response using Equation 2 where TRF! is the pseudo-inverse of the rectangular TRF matrix. To
invert an ill-conditioned matrix, the Tikhonov regularization parameter is used, which prevents the
very low values of TRF from resulting in distorted (nearly singular) values in TRF"’.

[TRF] 4x2x [Input]2x1 = [Response] 1xi [Eq. 1]

[TRF] " x4x [Response] sx1 = [Input] 2xi [Eq. 2]
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Figure 1. Simply-Supported Plate with Input and Output Locations and Mode Shapes

The frequency domain Response of a simply supported rectangular plate to an input force was
determined based on analytical solution provided Fahy and Gardonio [1]. Transverse displacement
d(w) at position x2, y2 due to a force F(w) at location x;, y; is given by the expression:

__ oo b (x2,92)P(x1,y1)
d((l)) - Zr:l Mr[Wr2(1+jT])]—0J2 F((l)) [Eq 3]
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w, = \/% l(rl—") + (rlz—yn) l represents the modal frequencies of the plate
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d(x,y) = 2sin (rlnx) sin (rlzny ) represents a modal shape function.
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To obtain velocity instead of displacement the equation is multiplied by jw; to get acceleration
a(w) it is multiplied by (-&).

D =EW*/(12(1-V), is plate stiffness, E, h and v are elastic modulus, plate thickness and poisson’s
ratio. m is the mass per unit area of the plate, /, and /, are plate dimensions. r; and 7> are integers

representing mode numbers. M, is the total mass of the plate. n is damping coefficient. Properties
of Aluminum were used (E = 70GPa, v=0.2). Table 1 shows the modes <300Hz.

Table 1. Modes below 300 Hz (numbers refer to values of r1 and r2 in equation above)

(Modes(Hz) | 1] 2] 3] 4] 5
34.0378  65.4573 117.823 191.135 285.394
104.732 136151 188.517 261.829

222,555  253.974



The following steps were used in these analyses:

e Frequency domain Transfer function (TRF) relating input force to response acceleration was
generated using the equation 3 above for all 100 points of the grid shown in Figure 1 (only a
few of these were used). This was done for Frequency values 1 to 8192 radians/sec.

e Frequency domain Input force was generated using random phase (uniformly distributed
between +180°) and constant amplitude = 100N. Input force values for the first 100 low
frequencies were set to zero such that the length of data was statistically representative. Input
force values at high frequencies were also set 0 to satisfy Nyquist criterion.

e The TRF and Input were used to calculate the Response as per Equation 1.

e Response was polluted with increasing amounts of white noise at each frequency and the input
was recalculated based on Equation 2.

e Error in the new input was determined compared to the original input.

e New Response was calculated using the new Input (based on TRF inversion)

e Error in response was calculated relative to the original response.

RESULTS

Figure 2 shows that Input error (=True Input/MIMO-based input) is correlated with condition # of
the TRF; ill-conditioning of the matrix leads to higher error. However, numerical analysis involved
in inverting a 4X2 matrix results in negilible error (note scale 5 x 10'%= in Figure 2). It is also
worth noting that the relatvely higher errors for Input 2 are at frequencies where the input 2 has
very little contribution (at location 0.45xlength it is close to the node at the center of the plate).
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Figure 2. Condition # vs. Input Error with Zero Noise



Figure 3 shows the effect of adding a noise of amplitude 1.0 and uniformly distributed random
phase (£180°) to the response at each frequency. The right side of Figure 3 shows that the noise is
very low in comparison to the amplitudes of the response (peak response is a 1000), and the
response with and without noise is visually indistinguishable. The input error is now considerable.
At frequencies of 65, 136 and 254 Hz where Input 2 is near a node it has considerably more error
than Input 1. Input 2 has small error at 118, 223, 285 Hz because it is no longer at a node and can
contribute to those modes as well as Input 1 can. Also recognizable is the gradual increase in Input
error below the 1 mode of 34Hz, which can be attributed to the lack of motion in the plate.
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Figure 3. Condition # vs. Input Error with Noise =1.0

Figure 4 shows results with the noise level increased to 10.0 at each frequency. The resulting error
in the input is now greater in roughly the same proportion (=X10 greater than that in Figure 3).
The bottom-right plot shows the input error when the tolerance value in the MatLab pseudo-inverse
function ‘pinyv’ is change from 0 to 0.1. This is known as the regulariation parameter and referred
to in this paper as fol. The two plots on the left (in Figure 4) are the same data with the lower figure
with a vertical scale matching the one on the lower right for comparison. The input error is
significantly lower at and below the 1% mode of 34Hz. This is because the lower singular values
in TRF is set =0.1 removing the inversion inaccuracies caused by extremely low singular values.

Additional insight can be gained by examining the relationship between the results of the Singular-
Value-Decompostion (SVD) of the Transfer Function Matrix (TRF) at each frequency. The high
and low singular values are shown in the top right plot of Figure 4 (note long-normal of svd is



presented instead of svd to better visualize the effect of singular values and 7o/ on the error). The
selection of the tolerance value (to/) results in selective minimization of input error. So, when tol
is increased to 0.165 more of the input errors are reduced as seen in the plot in the right-center.
The dotted horizontal lines represent the 2 to/ values relative to the singular values. The circles
show the corresponding decrese in the error in Input 2 where the lower svd values are below
(In0.165=-1.8). Likewise the two dotted lines below 100Hz show where the lower svd values are
below (In0.1 = -2.3) and the corresponding decrease in Input 2 error in those regions.
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Figure 4. Input Error with Noise =10 and Effect of Regularization Parameter
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CONCLUSIONS

e Large condition #s associated with resonant modes is the first source of error in MIMO
inversion. In the absense of other sources of noise this error is negligible.

e When response is polluted with white noise the input error is in proportion to the relative error
in the response (effect of white noise to the response is low at and near resonances).

e Input error at specific frequencies is higher when the input is near a node for that frequency.

e A 10X increase in the noise results in a corresponding 10X increase in the input error.

e Choosing the regularization parameter based on the lower value from singular-value-
decomposition of the complex TRF matrix can be used to decrease input error.



