This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-XXXX C Christian R. Trott, - Center for Computing Research
Unclassified Unlimited Release Sandia National Laboratories/NM

U.S. DEPARTMENT OF '
‘m m Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

X X L. oL Martin Corporation. for the U.S. Department of Enerav’s National Nuclear Securitv Administration under contract DE-AC04-94AL85000.
Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Cost Of Software (7]

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

= Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k
= Typical App Port thus 2-3 Man-Years

= Sandia maintains a couple dozen of those
= lLarge Scientific Libraries
= E3SM: 1,000k Lines x 10% => 5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years

Applications Libraries

t=0 t=40ps

: SNL LAMMPS uT Uinta_h
SNL NALU Molecular Dynamics Combustine
Wind Turbine CFD

ORNL Summit

IBM Power9 / NVIDIA Volta SNL Vanguard

ARM Architecture

LANL/SNL Trinity ANL Aurora21
Intel Haswell / Intel KNL Intel unannounced Novel Architecture

Applications Libraries

v

©Co
oNi
@ Fe

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

SNL NALU
Wind Turbine CFD ORNL Raptor

Large Eddy Sim

Kokkos

WANGUAR

« p

u"lh“h. ’\Ldi ll ;bj} | G
ORNL Summit ' : ' ol
‘ SNL Vanguard
IBM Power9 / NVIDIA Volta LANL/SNL Trinity ANL Aurora21 ARM Archiclure
Intel Haswell / Intel KNL Intel unannounced Novel Architecture

Kokkos EcoSystem

‘- 8\

Kokkos
Tools

4 N\ |

Kokkos EcoSystem

Kokkos Kernels

Kokkos Core

[

Kokkos Remote Spaces

A Vision of the future

4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming

models??
- GPU: CUDAish
- CPU: OpenMP
- PIM: ?7?

Kokkos Abstractions o)

Parallel Execution

Execution Spaces (“Where”)
- CPU, GPU, Executor Mechanism

Execution Patterns

- parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph

Kokkos Core Capabilities

oot o

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (inti){...BODY... });
Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS LAMBDA (inti, double& upd) {
...BODY...
upd += ...
}, result);
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, intk) {...BODY...});
Non-Tightly parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
Nested Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });
... COMMON CODE 2 ...

i
Task Dag task _spawn(TaskTeam(scheduler, priority), KOKKOS_LAMBDA (Team team) { ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Exec Spaces Serial, Threads, OpenMP, Cuda, ROCm (experimental)

Kokkos Projects M

= Production Code Running Real Analysis Today
= We got about 12 or so.

= Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 25

= Packages In Large Collections (e.g. Tpetra, MuelLu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 50

= Counting also proxyapps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 80-120 packages.

Uintah

System wide many task framework
Combustion Codes

Did Gordon Bell Submissions
University of Utah

Reverse Monte Carlo Ray
Tracing 643 cells

__16
%14
@12
@ 10
+
S 4
ik
F o

CPU GPU KNL

m Original mKokkos

LAMMPS

Molecular Dynamics Code

One of most widely used codes

Often part of procurement benchmarks
Sandia National Laboratories

Architecture Comparison
in.reaxc.tatb / 24k atoms / 100

()]

steps

20
— 15
9,
L 10
: I I
|_

5 i

IBM NVIDIA NVIDIA
K80 P100

Intel
KNL Power8

m Vanilla mKokkos

Alexa

Time ins

Portably performant shock hydrodynamics application
Solving multi-material problems Molecular Dynamics Code
Sandia National Laboratories

Metal foil expansion Single-Rank test

140
120
100
80
60
40
20 I
0
. \l§l @(Q @Q Q\QQ %Q @o
¢ F &y
& @\ @\ © R\ &

Aligning Kokkos with the C++ Standard (&,

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

C++ Backport <

3

Kokkos Core

> C++ Standard

o
»

Kokkos Legacy

C++ Features in the Works M

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&ali],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Also C++23: Executors and Basic Linear Algebra (just began design work)
= David will talk about most mdspan, atomic_ref and Executors

Towards C++23 Executors)

= C++ standard is moving towards more asynchronicity with Executors
= Dispatch of parallel work consumes and returns new kind of future

= Aligning Kokkos with this development means:

= |ntroduction of Execution space instances

DefaultExecutionSpace spaces[2];

partition(DefaultExecutionSpace(), 2, spaces);

// f1l and f2 are executed simultaneously

parallel for(RangePolicy<>(spaces[@], @, N), f1);
parallel for(RangePolicy<>(spaces[1], @, N), f2);
// wait for all work to finish

fence();

= Patterns return futures and Execution Policies consume them

auto fut_1 = parallel for(RangePolicy<>(“Functl”, @, N), f1);

auto fut_2a = parallel for(RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);
auto fut_2b = parallel for(RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);
auto fut_3 = parallel for(RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);

Links M

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ‘Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

= http://on-demand-gtc.gputechconf.com Recorded Talks

Presentations with Audio and some with Video

C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez, S. Bova, J. Miles, D. Hollman, D. Lanbreche, V. Dang

