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Cost Of Software (7]

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application needs to get rewritten for adoption
of Shared Memory Parallel Programming Model

=  Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k
= Typical App Port thus 2-3 Man-Years

= Sandia maintains a couple dozen of those
= lLarge Scientific Libraries
= E3SM: 1,000k Lines x 10% => 5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years




Applications Libraries
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Kokkos EcoSystem
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A Vision of the future

4 Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

3 Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

Special Hardware
- Non caching loads
- Read only cache
- Atomics

3 Programming

models??
- GPU: CUDAish
- CPU: OpenMP
- PIM: ?7?



Kokkos Abstractions o)

Parallel Execution

Execution Spaces (“Where”)
- CPU, GPU, Executor Mechanism

Execution Patterns

- parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Streaming, Atomic, Restrict - Range, Team, Task-Graph




Kokkos Core Capabilities

oot o

Parallel Loops parallel_for( N, KOKKOS_LAMBDA (inti){...BODY... });
Parallel Reduction parallel_reduce( RangePolicy<ExecSpace>(0,N), KOKKOS LAMBDA (inti, double& upd) {
...BODY...
upd += ...
}, result);
Tightly Nested parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
Loops KOKKOS_LAMBDA (inti, intj, intk) {...BODY...});
Non-Tightly parallel_for( TeamPolicy<Schedule<Dynamic>>( N, TS ), KOKKOS_LAMBDA (Team team) {
Nested Loops ... COMMON CODE 1 ...

parallel_for(TeamThreadRange( team, M(N)), [&] (intj) { ... INNER BODY... });
... COMMON CODE 2 ...

i
Task Dag task _spawn( TaskTeam( scheduler, priority), KOKKOS_LAMBDA (Team team) { ... BODY });
Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);
Data Transfer deep_copy(a,b);
Exec Spaces Serial, Threads, OpenMP, Cuda, ROCm (experimental)



Kokkos Projects M

=  Production Code Running Real Analysis Today
= We got about 12 or so.

=  Production Code or Library committed to using Kokkos and actively porting
= Somewhere around 25

= Packages In Large Collections (e.g. Tpetra, MuelLu in Trilinos) committed to
using Kokkos and actively porting

= Somewhere around 50

= Counting also proxyapps and projects which are evaluating Kokkos (e.g.
projects who attended boot camps and trainings).

= Estimate 80-120 packages.
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Aligning Kokkos with the C++ Standard (&,

= Long term goal: move capabilities from Kokkos into the ISO standard
= Concentrate on facilities we really need to optimize with compiler

C++ Backport <
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C++ Features in the Works M

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&ali],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.
= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Also C++23: Executors and Basic Linear Algebra (just began design work)
= David will talk about most mdspan, atomic_ref and Executors




Towards C++23 Executors )

= C++ standard is moving towards more asynchronicity with Executors
= Dispatch of parallel work consumes and returns new kind of future

= Aligning Kokkos with this development means:

= |ntroduction of Execution space instances

DefaultExecutionSpace spaces[2];

partition( DefaultExecutionSpace(), 2, spaces);

// f1l and f2 are executed simultaneously

parallel for( RangePolicy<>(spaces[@], @, N), f1);
parallel for( RangePolicy<>(spaces[1], @, N), f2);
// wait for all work to finish

fence();

= Patterns return futures and Execution Policies consume them

auto fut_1 = parallel for( RangePolicy<>(“Functl”, @, N), f1 );

auto fut_2a = parallel for( RangePolicy<>(“Funct2a”, fut_1,0, N), f2a);
auto fut_2b = parallel for( RangePolicy<>(“Funct2b”, fut_1,0, N), f2b);
auto fut_3 = parallel for( RangePolicy<>(“Funct3”, all(fut_2a,fut2_b),0, N), f3);
fence(fut_3);




Links M

= https://github.com/kokkos Kokkos Github Organization

Kokkos: Core library, Containers, Algorithms

Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
Kokkos-Tools: Profiling and Debugging

Kokkos-MiniApps: MiniApp repository and links

Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

= https://cs.sandia.gov Publications (search for ‘Kokkos’)

Many Presentations on Kokkos and its use in libraries and apps

=  http://on-demand-gtc.gputechconf.com Recorded Talks

Presentations with Audio and some with Video
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