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2 Motivation for DDROM

 Global model reduction: mature
+ Proper Orthogonal Decomposition method [sirovich, 1987; etc]
+ Reduced Basis method [Prud’Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

+ Proper Generalized Decomposition method [Ladeveze et al., 2009; Chinesta et al, 2010]



3 Motivation for DDROM

* For decomposable systems:
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(Courtesy from Huynh et al., 2013)



4 Motivation for DDROM

* Global model reduction applied to decomposable systems: ineffective

- Costly: requires training simulations for (large-scale) full-system

- Ineffective: each different full-system configuration requires training simulations
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(Courtesy from Huynh et al., 2013)

“Pont du Gard” bridge structure



5 Motivation for DDROM

* Main idea: “divide and conquer” model reduction for decomposable systems
+ Divide: reduced bases constructed separately on each subdomain/component
+ Conquer: compute global solution using non-overlapping domain decomposition
+ General: full-system can be assembled in arbitrary ways
+ Weak compatibility: mitigate the need for matching meshes, freedom for interface RB

+ Applicable to nonlinear systems and multiple different solvers



Literature reviews for DDROM

* Linear parameterized PDEs: quite active topic Not a
comprehensive list

+ Strong constraints
SCRBE [Huynh et al., 2013; Huynh et al., 2015]: heat conduction, structural analysis
RDF [1apichino et al., 2016]: heat conduction

+ Weak constraints
RBEM [Maday et al,, 2002]: potential flow analysis

RBHM [iapichino et al., 2012]: Stokes equation, cardiovascular networks

* Nonlinear parameterized PDEs: hybrid FOM-ROM approach | Not much has
been done

+ Strong constraints

[Kerfriden et al., 2013]: honlinear fracture mechanic problems
+ Weak constraints

[Baiges et al., 2013]: incompressible Navier-Stokes equation with hyper-reduction

[Corigliano et al., 2015]: elastic-plastic structural dynamic problems



Goals

+ Applicable to nonlinear systems

+ Enable hyper-reduction

+ Subdomains ROMs constructed independently (tailored bases, hyper-reduction)
+ Benefits of weak compatibility

+ Enable different kinds of reduced bases on the interfaces: port, skeleton, interface,
subdomain

+ Various parallel numerical solvers: primal-dual monolithic*, primal-dual Schur,
primal monolithic, primal Schur, nonlinear primal

+ Assembly and solve stages expose parallelism



Problem settings

8
® o o o e o o o
e e o o e e o o
e o o o ® e o o
e o o o e e o o
e e o o e o6 o o
e O o o ® o o o

Q)

@)
! = Pz c R™
rl = P;x c R

(T

Lj = (CEQ;, QBZ )
j1T .T Jj1T T
[Pq; £L; [Pz] Ly,

A ()9
e o o o : > . o o o o
e o o o : o o o o
e o o o : I o o ® o
e o o o i e o o o
o= "="="="= o | I—-_,; ________ =
! RN
/i I : N\
e o o o Ir | o o o o
e o o ol : e o o o
e o o o I | @ o o o
e o o o !__J__)]I e o o o
|
(4 Q
I
[
I =
I'y

Global FOM approximation
r(x) =0
with residual r : R* — R"

and state ©x € R"

DDFOM re-formulation:

nao

r(z) = Z[P:]TTZ(P?w7P£w)7

i=1
Ve € R"
ri(xt, et ) =0, i=1,...
no
subject to Z A;zr =0,
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Reduced order models

* DDROM approximation:

Q.. Q r., T .

Introduce reduced bases: <I>,§2 e R™i <Ps ,<I>Z-F e R *Pi ¢=1,...,nq
[ L] [} ~ ~ ~ /\Q /\F

Solution approximation: x; ~ &; = (&, &} ) = (®'&, ®. &, )

n

no
.. 4 o
minimize P~ T @ €T 7@33
({é?”éQQ)?(&{?)a/\gFQ)Q Z H 7/( ¢ t ¢ (4 )”2
" 1=1
nQ
subject to Z Aicﬁg,@{ —0
i=1
* DDGNAT approximation (hyper-reduction)
neo

minimize % Z H‘I);(Zq;q);)JrZiri((I)?i?? ‘PZF@F)H%

(@2, @2 ), (@85 )T

nao
subject to Z A,L-<I>Z.F§3£ =0
i=1



Reduced order models...

* Interface basis types

“Port” bases

“Skeleton” bases

“Interface” bases

“Subdomain” bases

1. Collect snapshots

for subdomain
ports.

. Compute separate
SVD for each port to
form port bases.

. Combine the port

bases to form

interface bases.

. Isolate global snapshots

to skeleton DOFs.

. Compute SVD for the
skeleton snapshots to
create skeleton bases.

. Isolate the skeleton bases
to subdomain interfaces.
. Orthogonalize the above
to form interface bases.

1. Collect snapshots

for subdomain
interfaces.

. Compute

separate SVD for
each interface to
create interface
bases.

1. Collect snapshots

for subdomain
DOFs.

2. Compute separate

SVD to create
subdomain bases.

3. Isolate to interface

bases.

* Constraint types

+ Strong constraint: A; = A,

1
+ Weak constraint: A; = C' A,

i=1,...
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Interface basis types: pros & cons

* Port: has associated global ROM when strong constraints are used
+ Can use both global training & subdomain training

- Total number of interface reduced bases are generally large

» Skeleton: has associated global ROM when strong constraints are used
+ Requires many fewer number of interface reduced bases (w.r.t. “port” type)

- Requires global training

* Interface & subdomain: do NOT have associated global ROM due to possible
solution mismatch at interfaces
+ Can use both global training & subdomain training
+ Requires many fewer number of interface reduced basis (w.r.t. “port” type)
- Requires weak constraints



Sequential Quadratic Programming method
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* Lagrangian:
L@l ar,.... 2" & Zum (®52zh, dl &l )2

ng’ ng’

* Necessary optimality conditions (KKT conditions):

a ,I: AN A A A
i@l al) = (@) Lo (0l Bl al) Ty (@a?, #fal) =0
&,
or; ) )
@l 8]) = (@) ST (@af @fel) (@l 8la]) + (#])T AT =
CL‘

ZAiq){ae{:o, i=1,....nq.

Note: The formulations on this and next 3 slides are for port, skeleton and interface bases.
Subdomain bases formulations are slightly different.

0,



Primal-dual monolithic solver
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Use Gauss-Newton approximation, one SQP iteration is defined as

QA ~Q AT Q' /A~ AT
et S S el SO S X X
Hl (ﬁ:17§31) Hl ('filvil) O O
QO /A0 ~T ar Aél ~T
0 0 Hyo (@ng,2no)  Hug (&0, )

S D
9

M %

SN



Primal-dual monolithic solver...
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where
H (&) &) = (@H7

(/ (A 1

or; A A or;
s (@E] @) =

1

Q~Q £ T\ £0Q
(®; 'z, P, )P

T a’l“?;
@mf

8:1;?

HI (@, &7) = (@)

~ Q) A

1

Q~Q £T~T\xD
(®; 'z, , P; x; )P,

T/~ ~Ty\ . r Or; Q.0 T Tv7 OTi QA0 =TT\ 1T
H; (miawi)'_(q)i) 9 F((I)imiaq)z’mi) 9 F((I)iwivq)iwi)q)i
£L; £L;
Q-0 ~I\ . rr O 0.0 ParT OTi 200 +T 2T\ 4O
H; (miami)°_<(]:)i) 9 [‘((I)z'mz'vq)iwi) 9 Q(q)iwivq)iwi)q)i'
£L; L;
Update
AT AT T
i%mi_i_api? 2—17 s TLQ)
~ Q) ~ Q)
wi%winLozp?, 1 =1, , 1O
A



Primal-dual monolithic solver: online stage
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Algorithm 1: Assembling procedure of
primal-dual monolithic solver in parallel

1: Update the ROM state;
2: Compute residuals 7;(®5'&5", ® &) ) and

7 ()
: . O A T
Jacobians g;& (®)'2;, @) &; ),

- " Q 4T AT .
g;% (‘I)?CBZ ,®. 2. ) from each subdomain;

3: éompute all terms in [Stationary
condition| from each subdomain;
4. “Stamping” all terms into linear system:;

Algorithm 1: Solving procedure of primal-
dual monolithic solver

5: Solve the linear system:;

6: Extract search directions p?, p{, p:
7: Update solutions;

*Offline stage is performed in advance to create all (I)iﬂ, (I>iF, A;



Numerical examples: nonlinear 2d heat equation |

16 |
FE governing equation:
2 H1 o pow . : : [Grepl 2007]
Vou + ,ug( 1) = 100 sin(27x1 ) sin(27xs) (Chaturantabut 20101
_ _ 2 |I= _
M= (,ulv :uQ) < D = [0017 10] 9 "—‘train‘ = 400 I
1r 1r 1r 1r
0.8- 0.8+ 0.8r o o 0.8 ! : " "
06" 06" 0.6 0.6 s By B s
0.4+ 0.4+ 0.4+ | 0.4+ o, o, 0, o,
(21 Qa
0.2F 0.2+ 0.2+ 0.2+
0 0 0 : : . : 0 : : : ‘ —
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

“Coarse” 40x40 elem. “Fine” 80x80 elem. 2x2 configuration 4x4 configuration ‘



i ‘ Numerical examples: DDROM and DDGNAT

1

. 1 _ 1 _
0.5 0.5 0
0.8+ 0.8+ 0.8+
-0.5
06 0 06! 0 06! 1
g & g
04+ -0.5 04+ -0.5 04+ 15
0.2} ; 0.2} r 0.2} -2
0 : 0 ‘ 0 -2.5
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 %1073
1 T #i
Full-order model solution DDROM solution DDROM error
17 1r 17 5
0.5
0.8 0.8+ 0.8+ 0
k- 0 [ 55
0.6 0.6 0.6 =
g g
0.4+ 0.4+ 05 04 -
0.2+ | ol
0.2 p 0.2 o
0 0 ) 0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x10

Sample mesh DDGNAS'Ell' solution DDGNxAT error




Numerical examples: many online computations
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Table 1: (e.r.=energy rate, skel.=skeleton,
dom.=subdomain) Heat equation,

= (5.005,5.005) ¢ =i ain for many online computations

intf.=interface,
ROM method-parameters

sub-
at point

method LSPG

GNAT

{1-107°,1-10"8}
{1-107°,1-10"%}

energy rate on {2;
energy rate on I';

{1-1073,1-1072,
1—-1077,1—-107%}

e.r. for subdomain bases

energy rate on r;

n;/ng
constraint type
basis types

{1, 2, 3, 4, 5, strong}
{port, skel., intf., subdom.}

{1-107°,1-10"%}
{1-107°,1—-10"%}

{1-1073,1-1072,
1—-1077,1-1079%}

{1-107%1-1078,
1—-1071%1—-10"12}

{1, 1.5, 2, 4}
{1, 2, 3, 4, 5, strong}
{port, skel., intf., subdom.}




Performance Pareto front: 2x2 “fine” configuration

10°
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] *Wall-time = timing
w on one processor

10—2 _ —+— LSPG-port
- —+— LSPG-skel
. —+—LSPG-intf
1073 - 4 LSPG-subdom
- == GNAT-port
10—4 _ ——- GNAT-skel
- =0~ GNAT-intf

. - GNAT-subdom
10~° SEEH TR R
10~ 102 10°

Wall All time (sec)
GlobFEM Wall All time (sec)

From: https://www.igi-global.com/dictionary/pareto-front/21878

Average relative error

Pareto front is a set of nondominated solutions, being chosen as optimal, if no objective can
be improved without sacrificing at least one other objective. On the other hand a solution x*
is referred to as dominated by another solution x if, and only if, x is equally good or better
than x* with respect to all objectives.



Performance Pareto front: 2x2 “fine” configuration

10°
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107!}

102 _ —+— LSPG-port
- —+—LSPG-skel
- —+—LSPG-intf
1073 - —+—LSPG-subdom
- == GNAT-port
10~4 » ——- GNAT-skel
- -~ GNAT-intf

. .= GNAT-subdom
()] IR SRS N S T NS R R I R SEH
104 102 10°

Wall All time (sec)
GlobFEM Wall All time (sec)

* Both DDLSPG & DDGNAT yields low errors and significant speedups w.r.t global
FEM (i.e., no DD)

Average relative error
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Performance Pareto front: 2x2 “fine” configuration

10°

1071}

102 _ —+— LSPG-port
- —+— LSPG-skel
. —+—LSPG-intf
10_3 - —+— LSPG-subdom
- == GNAT-port
10—4 » —o—- GNAT-skel
- -~ GNAT-intf

| —e— GNAT-subdom
10— fiiiiii P iEiE Pl F i
1074 102 10°

Wall All time (sec)
GlobFEM Wall All time (sec)

Average relative error

+ DDGNAT vyields low errors and significant speedups (w.r.t DDLSPG)
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Performance Pareto front: 2x2 “fine” configuration

10°

1071}

102 _ —+— LSPG-port
- —+— LSPG-skel
. —+—LSPG-intf
10_3 - —+— LSPG-subdom
- == GNAT-port
10—4 » —o—- GNAT-skel
- -~ GNAT-intf

| —e— GNAT-subdom
10— fiiiiii P iEiE Pl F i
1074 102 10°

Wall All time (sec)
GlobFEM Wall All time (sec)

Average relative error

+ DDGNAT vyields low errors and significant speedups (w.r.t DDLSPG)

* DDLSPG: can produce small errors, but incurs large relative wall time



Performance Pareto front: 2x2 “fine” configuration
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10°,
- [
=
=101
(D)
<) [
= 10721 —+— LSPG-port
e g
< - —+— LSPG-skel
@ ;| —+LSPG-intf
a0 10~ - —+— LSPG-subdom Nl J
%O - == GNAT-port s "
qs‘j 10—4 » —o—-GNAT-skel %
o - —o—-GNAT-intf
< | == GNAT-subdom

1072 IEE RN TR IEEE I
1074 102 10°
Wall All time (sec)

GlobFEM Wall All time (sec)
+ DDGNAT vyields low errors and significant speedups (w.r.t DDLSPG)
* DDLSPG: can produce small errors, but incurs large relative wall time
+ For fixed error, DDGNAT almost 20X faster than DDLSPG
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Performance Pareto front: 2x2 “fine” configuration

10°

W

:

102 _ —+— LSPG-port
- —+—LSPG-skel
. —+—LSPG-intf

1073 Lt SR ardvdony @!

- == GNAT-port
10—4 » ——- GNAT-skel

- =~ GNAT-intf

i —e—GNAT subdom

:

Average relative error

10~° l BN S
104 102 10°
Wall All time (sec)

GlobFEM Wall All time (sec)

+ DDGNAT vyields low errors and significant speedups (w.r.t DDLSPG)
* DDLSPG: can produce small errors, but incurs large relative wall time

+ For fixed error, DDGNAT almost 20X faster than DDLSPG
+ DDGNAT subdomain basis type is Pareto optimal



Performance of various constraint cases |
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-8 9 |
Energy rate on {2, =1 — 10 Er.on();, =1-10
—8 —9
Energy rate 0111 T, =1— 10 Er.onT; =1— 10
[ |
Port type Skeleton type Interface type Subdomain type
10! : : 10! : : 10 10
S ——LSPG 5 —LSPG = .
S 100 -% GNAT (1.5,10) | 1001 -» GNAT (151001 & 100! = 10010
o -o- GNAT (1.5,12) o -o- GNAT (1.5,12) o j o
2107 —-GNAT (210) | 210!} ~w-GNAT (210) | £ 107 © 101
= -o-GNAT (2,12) e -o-GNAT (2,12) e =
=102} =102} =102, e T ! -
— — = ____G____O____‘____i —~ —+—LSPG ~ —+LSPG
1073 }————'\?_:-;%: S & 10%/ T 108 -% GNAT (1.5,10) 1 o (et -% GNAT (1.5,10)
1 === s 5] < -0 GNAT (1.5,12) © -0 GNAT (1.5,12)
0 1074; C 10 10 ~w-GNAT (2,10) 1 o 10 -»-GNAT (2,10) 1
) -e-GNAT (2,12) -e-GNAT (2,12)
1079 ‘ ‘ ‘ ' 1075 ‘ K ‘ ' 1079 x ‘ , ‘ 1079 - ‘ ~ ‘
1 2 3 4 5 SC 1 2 3 4 5 SC 1 2 3 4 5 SC 1 2 3 4 5 SC
constralnts on eacn por constraints on each por consiralints on eacn por constralints on eacn por
& traint h t traint h t traint h t traint h t
=strong constrain =strong constralmn =Sstrong constraimn =Sstrong constrain
SC=st traint SC=st traint SCO=st traint SC=st traint

+ Port & skeleton types work well with both weak & strong constraints

+ Interface & subdomain types, which gave Pareto-optimal results, require weak constraints
for accuracy due to the mismatch of interface basis functions on neighboring subdomains
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Conclusion

A new Domain-Decomposition Reduced-Order Modelling approach is proposed:
+ Solve nonlinear systems, with hyper-reduction
+ Subdomains ROMs constructed independently

+ Reformulate global ROM as a sum of nonlinear least-squares objectives over each
subdomain with linear equality constraints and possibly weak compatibility

+ 4 kinds of reduced bases on the interfaces of subdomains: port, skeleton,
interface and subdomain

+ Hyper-reduction is 20X faster than LSPG
+ Subdomain, interface and skeleton types outperform port type in performance
+ Skeleton is not practical for subdomain training

+ Subdomain and interface types are enabled thanks to weak constraints
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minimize r T x. )l CFE——
<&§27"'7i29)7(i£7"'7i£§2)2,l'/:l ,I’ ’ 27 ’ RS

nao
subject to Z A® a =0 )

’I::1 0 10 20 ﬂz=13102 40 50
0 0,
l - 10° : 17
RDADDED (D 5
A S S % A 5107 08|
® e 6 06 6 © o0 0 o0 o o 0 0 0 ¢ X9 o o o o o
PR L o ‘\\ E 10—2»—!—LSPG—pOI‘t -
M M 7 NN 5 ——LSPG-skel 6/
oo o oo oo oo :/-/>< \_\(AN_& ?534 —— LSPG-intf HN
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Iy Sandia National Laboratories is a multimission laboratory managed

and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.




