
Exceptional service in the national interest 0 Sandia
National
Laboratories

Performance Portable SIMD Approach

Implementing Block Line Solver For Coupled PDEs

Kyungj oo Kim

Center for Computing Research, Sandia National Labs

SIAM CSE, Feb 25 - Mar 1, 2019

&NH& "'MASA 0.=====.107,=======7,5gZFRLIOdaoNt

SAND2019-2037C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Line Implicit Solver

• Consider a block sparse system of equations Ax = b arising from coupled PDEs.

• Lines are usually formed in the boundary layer to resolve shocks.

• Small blocks represent interactions among a group of variables e.g., velocity, pressure,
density and chemical species.

• Default solver for SPARC (Sandia production-level CFD code)

K

A=

EN

To
•Lii•

•

N

•••

ti • •

•
■

•
1.•

■

••

TN-, m_

Linear system of equations

K

Problem domain and extracted lines

2

Line Implicit Solver

• By splitting A =M — S, we obtain

(M — S)x = b

Mx = b + Sx

x=M-1(b+Sx)=x+M-1(b—Ax),

where M is a set of block tridiagonal matrices corresponding to the extracted lines of
elements.

• Solve this iteratively

xk+1
= M-1 (b+Sxk).

• This procedure requires solutions of many block tridiagonal systems and efficient block
sparse matrix vector multiplication.

A =

■

M- s=

3

Solving Many Tridiagonal Systems

• A fixed number of iterations are applied xk+1 = /1/1-1 (b Sxk).

• M is factorized once per solution (or each non-linear iteration) and applied multiple times.

• Typical blocksizes b are 3, 5, 9 and 15, which are related to scientific applications e.g.,
elasticity, ideal gas and reactive fluid problems.

• Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory.

• A typical local problem size in a 3D domain (m x n x k) is selected as 128 x 128 x 128 for
b = 3,5 and 64 x 64 x 128 for b = 10,15.

• Batch parallelism (m x n) is considered for solving block tridiagonal systems.

for T in {To,T • • • ,T,..0,_1} do in parallel
2 for rt—Otok-2do
3 :=Lu(Ar);
4 fir := L-1 fir;
5 :=

6 Ar+1 :=Ar+1 6,-fr;

7 Ak-1 := ok -1);

Initialization of the line smoother
4

Efficient Implmentation using Compact Data Layout (SIMD)

Problems using vendor libraries

• Standard BLAS/LAPACK are not optimized for solving small problems.

• Using batched BLAS/LAPACK APIs, no data locality is exploited in a sequence of batch
operations.

Our approach: Compact Data Layout

• A new interleaved data layout for batched BLAS/LAPACK for efficient vectorization on
small problems.

• Solve a small number of problems in parallel using SIMD instructions.

• Array of blocks is represented by a multi-dimensional array.

A0„„ A001 A10„ A ot , A20 A300
.

A301

A010 A01, A1,0 All, A2,0 A211 A°10 N11

• Compact layout packs data across batch instances with respect to SIMD length.

A000 Al„ A00, A101 A010 A110 A011 All, A2,0 Po,„ A2o1 A201 A210 A2,0, A21, A21,

Vectorl_ength 5

SIMD Approach To Solve Small Dense Problems

■ To vectorize across batch instances, we use packed vectors as computing unit instead
scalar.

■ By overloading arithmatic operators, the scalar BLAS are reused and naturally vectorized.

template<typename T, int vl>

struct Vector<T,vl> {

T _data[vl];

1;

■ Multidimensional array:

Vector<T,vl>

operator+(Vector<T,vl> a, Vector<T,vl> b) f

Vector<T,vl> r_val;

for (int i=0;i<v1;++i)

r_val._data[i] = a._data[i] + b._data[i];
return r_val;

typedef double scalar_type;

typedef Vector<scalar_type,VectorLength> vector_type;

// LayoutRight, most right consecutive index is stored in the memory contiguously

Kokkos::View<vector_type*** ,LayoutRight> Av("A", N, Blk, Blk);

// Reinterpretation of rank 3 vector_type view with scalar rank 4 view

Kokkos::View<scalar_typeeeee,LayoutRight> As(Av.data(), N, Blk, Blk, VectorLength);

■ What about GPUs ?

6

Implicit and Explicit (Warp) Vectorizations

SIMD instructions on CPUs

• A single thread exploits data-level parallelism.

• Vetor length is given from hardware specific vector instruction set e.g., AVX512.

• A compiler is responsible for vectorization.

Warp-based (explicit) vectorization on GPUs

• Warp: a set of concurrent threads executing the same instruction.

• Each thread in a warp process scalar instructions.

• Vector instructions are dynamically formed by a warp.

• Coalesced memory access by threads is essential for efficient memory
operations.

• GPUs have 128 bit memory instruction set (double2 — internal vector type)
• A benefit using double2 is to reduce the number of memory transactions.

7

Kokkos Unified Programming Approach

using namespace Kokkos;

// Suppose that N - 64, b - 4

// Default values are pre-defined in KokkosBatched but a user can

// control the vector size for CUDA.

// vl: Host 8, Cuda 16, Vector length used for compact data format.

// il: Host 8, Cuda 2, Internal vector length used in a functor.

// Using internal vector type, we make sure

// using 128bit memory instructions.

constexpr int vl = DefaultVectorLength<exec_space>::value,

constexpr int il = DefaultInternalliectorlength<exec_space>::value;

typedef double scalar_type

typedef Vector<scalar_type,v1> vector_type;

typedef Vector<scalar_type,il> internal_vector_type;

// Av: Host 8x4x4, Cuda 4x4x4, Rank 3 Multi-dimensional array

// of vector_type.

View<vector_type.00 ,LayoutRight> Av("A", N/vl, b, b);

Example: Set identity of N matrices b x b

8

Kokkos Unified Programming Approach

using namespace Kokkos;
// Suppose that N = 64, b - 4

// Av: Host 8x4x4, Cuda 4x3x3, Rank 3 Multi-dimensional array

// of vector_type.
View<vector_type.** ,LayoutRight> Av("A", N/vl, b, b);

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.

// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_type****,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// One can also reinterpret the view with rank 4 scalar type if
// accessing idividual scalar entries is necessary.

// As: Host 8x4x4x8, Cuda 4x4x4x16
View<scalar_type000.,LayoutRight> As(Av.data(), N/vl, b, b, vl);

// For this example, we use a view with internal vector type (AA).

+ to

AAL 1 1 1 1 1 T1 AA
+to +

As[I Scilar acicess 'Oa ve4tor lopp

Host

As

+too +to, +t„ +t„

+too +to, +t„ +too +t„ +too +t„ +to, +to,

1_1111_111
Cuda

Example: Set identity of N matrices b x b; figure describes different data access patterns for a vector length 8.
9

Kokkos Unified Programming Approach

using namespace Kokkos;

// Suppose that N = 64, b = 4

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.

// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_type0000,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// Host policy(8,1,1), Cuda policy(gridSize=8,blockDim.y=8, blockDim.x=4)
// You can consider league_size equivalent to the number of independent works.
TeamPolicy<exec_space> policy(league_size = N/vl,

team_size = AUTO,

vector_loop_size = vl/il);
parallel_for(policy, KOKKOS_LAMBDA(const member_type member) {
int p = member.league_rank();
// CUDA: for (int v=threadIdx.x;v<vector_loop_size;v+=blockDim.x)
parallel_for(ThreadVectorRange(member, vector_loop_size), [M(int v) {
// Host A 4x4, Internal vector length 8.

// Cuda A 4x4, Internal vector length 2.

// Consecutive indexing of v allows perfectly coalesced

// memory access along 16 doubles.
auto A = subview(AA, p, ALL, ALL, v);
// CUDA: for (int ij=threadIdx.y;v<bob;ij+=blockDim.y)
Kokkos::parallel_for(TeamThreadRange(member, b*b), [C(int ij) {

int i = ij/b, j = ij%b;

AA(i,j) = i == j ? one : zero;

}); }); });

Example: Set identity of N matrices b x b
10

Line Implicit Solver Implementation

• KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

• Solve phase of block tridiagonal matrices can be done in a similar fashion.

i for a pair T in {(To,Ti) ,(T2,T3),• • • T,,,x.-1)} do in parallel
2 for rOtok-2do
3 Ar := Ly(rir);
4 hr :=L-lhr;
5 := eru-1;
6

Ar+1 := Ar+1 Orfir;

Ak-1 := LuOk-1);

Line Implicit Solver Implementation

• KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

• Solve phase of block tridiagonal matrices can be done in a similar fashion.

// Problem domain (Mxbi)xk, blocksime b

// —MxN, the number of block tridiagonals (concurrency)

// — K the length of block tridiagonals (workload per team)

View<vector_type=====,LayoutRight> Av('A", MoN/v1, K, S. b, b);
View<internal_vector_typeeeeo.,LayoutRight>

AA(Av.data(), MON/vl, K, 3, b, b, v1/11);

TeamPolicy<exec_space> policy(league_sime = MeN/vl,

team_size = AUTO,

vector_loop_size = vl/11);
parallel_for(policy, KOKKOS_LAMBDA(const member_type member) f

int p = ember.league_rank();
parallel_

m

for(ThreadVectorbange(member, vector_loop_sime), [C(int v) f
for (int r=0;“(K-1);,+r) f

auto A = Kokkos;;subview(AA, p, r, 1, ALL(), ALL(), v);
auto B = Kokkos;;subview(AA, p, r, 2, ALL(), ALL(), v);
auto C = Kokkos;:subview(AA, p, r, 0, ALLO, ALL(), v);
auto D = Kokkos;;subview(AA, p, r+1, 1, ALL(), ALL(), v);

TeamLU(member, A);
TeamTrsm(member, 1.0, A, B);

Teamirsm(member, 1.0, A, C);
TeamGemm(member, —1.0, C, B, 1.0, D);

auto A = Kokkos;:subview(AA, p, K-1, 1, ALL(), ALL(), v);
TeamLU(member, A);

}); });

Numerical Experiments

Test Machines

■ Intel Xeon Phi

■ NVIDIA Tesla V100

Test Problems

■ With limited device memory (16 GB), the following test problems are evaluated.

Blocksize M x N x K

3 128 x 128 x 128
5 128 x 128 x 128
10 64 x 64 x 128
15 64 x 64 x 128

N

12

NVIDIA Tesla V100

• Both codes shows 100% memory store/load efficiency and performance is limited by L2.

• Bigger blocksize (more computational intensity) shows more benefits from 128 bit
memory instructions.

Team (blockDim) 2 x 16 4 x 8

Global Store/Load Throughput (GB/s) 215.31 /641.38 287.68 /762.08
L2 Throughput Writes/Reads (GB/s) 215.31 /530.37 287.68 /677.41

Global Store/Load Transactions Per Request (Byte) 7.69 /31.22 14.27 /60.81

Block Tridiagonal Factorization

25

20

g 15

E 10

1

o

kt 0

1.6 35

2, 30

.G 25

1.4 g.

1.2

1
E

20
0.8 ry

0.6 g

000..42

15

-6
10

4. 5

0

3 5 10 15

Blocksize

Block Tridiagonal Solve

3

11

5 10 15

Blocksize

1.6

1.4 g.

1.2

1

0.8 F1

0.6

0.4

0.20

mP100 (64 bit) _P100 (128 bit) ...Speed-up P100 (64 bit) _P100 (128 bit) ...Speed-up

13

Intel KNL vs NVIDIA Tesla V100

• Block tridiagonal factorization/solves are inherently sequential.

• With increasing blocksize, the number of concurrent work (tridiagonals) is reduced while
the workload per team increases.

• Need more parallelism for bigger problems.

Cube Size(M x N x K) 128 x 128 x 128 64 x 64 x 128

Multiprocessor Activity (%) 98.31 95.75
Achieved Occupancy 0.29 0.07

Block Tridiagonal Factorization

25 2

1 20

g 15

10

1 5
z

0

3 5 10 15

Blocksize

mKNL _P100 .e.Speed-up

1.5 1.

0.5

35

30

.= 25
E

N., 20

1, 15

2, 10

5

0

Block Tridiagonal Solve

i 11 ll

5 10 15

Blocks'.

•

mKNL _P100 .e.Speed-up

2

1.5 0.

1

0.5 g,

0

14

Block Jacobi Iterations for Solving Block Tridiagonals

• In transient flow, application (CFD) uses tiny time steps with relaxed error threshold -
more nonlinear iterations and less number of iterations for solves.

• Apply a small number of Jacobi iterations instead of direct solutions (factorize,
foward/backward solves).

• Improve performance on numeric phase (inverse diagonals).

• With increasing data movement during Jacobi iterations, there is not much benefit in the
solve phase.

_ 40

35

i

Numeric Phase

% 3 30

0 252.5

2 t, E 20

0 Fe
rd
c,
.
151.5

a °

...E io
f,

5 0

I
 il

7 1 :3

ii
 v'

•M 0

5

-6 10

.

S'
"5 5

0

3 5 10 15

Blocksize

=KNL =1,100 -.-Speed-up

Solve Phase

3 5 10

Blocksize

15

MKNL =1,100 ...Speed-up

Comparison of Jacobi block tridiagonal solves (threshold 10-4) on P100 against direct block tridiagonal
solves on KNL

15

Summary

■ Demonstrated performance portable SIMD approach for line implicit solver
using Kokkos framework.

■ Prepare data for multidimensional array of SIMD type.
■ Reinterpret the multidimensional array based on execution space.
■ Construct Kokkos : : TeamPolicy accordingly to exploit both compiler vectorization

and dynamic vectorization.

■ Improved GPU performance (10 - 50 %) by using 128 bit memory instructions
(double2 or (f loat4)); performance improvement is higher when
computational intensity increases.

■ Compared to highly optimized KNL code (same code), GPUs perform better for
small blocksizes (3 and 5)

■ Due to device memory constraint (lowering parallelism), it is difficult to use a
GPU efficiently for bigger blocksizes (10 and 15).

■ Easy solution: a GPU with a bigger device memory (32 or 64 GB).

16

