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Line Implicit Solver

• Consider a block sparse system of equations Ax = b arising from coupled PDEs.

• Lines are usually formed in the boundary layer to resolve shocks.

• Small blocks represent interactions among a group of variables e.g., velocity, pressure,
density and chemical species.

• Default solver for SPARC (Sandia production-level CFD code)
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Line Implicit Solver

• By splitting A =M — S, we obtain

(M — S)x = b

Mx = b + Sx

x=M-1(b+Sx)=x+M-1(b—Ax),

where M is a set of block tridiagonal matrices corresponding to the extracted lines of
elements.

• Solve this iteratively

xk+1 
= M-1 (b+Sxk).

• This procedure requires solutions of many block tridiagonal systems and efficient block
sparse matrix vector multiplication.
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Solving Many Tridiagonal Systems

• A fixed number of iterations are applied xk+1 = /1/1-1 (b Sxk).

• M is factorized once per solution (or each non-linear iteration) and applied multiple times.

• Typical blocksizes b are 3, 5, 9 and 15, which are related to scientific applications e.g.,
elasticity, ideal gas and reactive fluid problems.

• Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory.

• A typical local problem size in a 3D domain (m x n x k) is selected as 128 x 128 x 128 for
b = 3,5 and 64 x 64 x 128 for b = 10,15.

• Batch parallelism (m x n) is considered for solving block tridiagonal systems.

for T in {To,T • • • ,T,..0,_1} do in parallel
2 for rt—Otok-2do
3 :=Lu(Ar);
4 fir := L-1 fir;
5 :=

6 Ar+1 :=Ar+1 6,-fr;

7 Ak-1 := ok -1);

Initialization of the line smoother
4



Efficient Implmentation using Compact Data Layout (SIMD)

Problems using vendor libraries

• Standard BLAS/LAPACK are not optimized for solving small problems.

• Using batched BLAS/LAPACK APIs, no data locality is exploited in a sequence of batch
operations.

Our approach: Compact Data Layout

• A new interleaved data layout for batched BLAS/LAPACK for efficient vectorization on
small problems.

• Solve a small number of problems in parallel using SIMD instructions.

• Array of blocks is represented by a multi-dimensional array.

A0„„ A001 A10„ A ot , A20 A300
.

A301

A010 A01, A1,0 All, A2,0 A211 A°10 N11

• Compact layout packs data across batch instances with respect to SIMD length.

A000 Al„ A00, A101 A010 A110 A011 All, A2,0 Po,„ A2o1 A201 A210 A2,0, A21, A21,

Vectorl_ength 5



SIMD Approach To Solve Small Dense Problems

■ To vectorize across batch instances, we use packed vectors as computing unit instead
scalar.

■ By overloading arithmatic operators, the scalar BLAS are reused and naturally vectorized.

template<typename T, int vl>

struct Vector<T,vl> {

T _data[vl];

1;

■ Multidimensional array:

Vector<T,vl>

operator+(Vector<T,vl> a, Vector<T,vl> b) f

Vector<T,vl> r_val;

for (int i=0;i<v1;++i)

r_val._data[i] = a._data[i] + b._data[i];
return r_val;

typedef double scalar_type;

typedef Vector<scalar_type,VectorLength> vector_type;

// LayoutRight, most right consecutive index is stored in the memory contiguously

Kokkos::View<vector_type*** ,LayoutRight> Av("A", N, Blk, Blk);

// Reinterpretation of rank 3 vector_type view with scalar rank 4 view

Kokkos::View<scalar_typeeeee,LayoutRight> As(Av.data(), N, Blk, Blk, VectorLength);

■ What about GPUs ?

6



Implicit and Explicit (Warp) Vectorizations

SIMD instructions on CPUs

• A single thread exploits data-level parallelism.

• Vetor length is given from hardware specific vector instruction set e.g., AVX512.

• A compiler is responsible for vectorization.

Warp-based (explicit) vectorization on GPUs

• Warp: a set of concurrent threads executing the same instruction.

• Each thread in a warp process scalar instructions.

• Vector instructions are dynamically formed by a warp.

• Coalesced memory access by threads is essential for efficient memory
operations.

• GPUs have 128 bit memory instruction set (double2 — internal vector type)
• A benefit using double2 is to reduce the number of memory transactions.
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Kokkos Unified Programming Approach

using namespace Kokkos;

// Suppose that N - 64, b - 4

// Default values are pre-defined in KokkosBatched but a user can

// control the vector size for CUDA.

// vl: Host 8, Cuda 16, Vector length used for compact data format.

// il: Host 8, Cuda 2, Internal vector length used in a functor.

// Using internal vector type, we make sure

// using 128bit memory instructions.

constexpr int vl = DefaultVectorLength<exec_space>::value,

constexpr int il = DefaultInternalliectorlength<exec_space>::value;

typedef double scalar_type

typedef Vector<scalar_type,v1> vector_type;

typedef Vector<scalar_type,il> internal_vector_type;

// Av: Host 8x4x4, Cuda 4x4x4, Rank 3 Multi-dimensional array

// of vector_type.

View<vector_type.00 ,LayoutRight> Av("A", N/vl, b, b);

Example: Set identity of N matrices b x b
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Kokkos Unified Programming Approach

using namespace Kokkos;
// Suppose that N = 64, b - 4

// Av: Host 8x4x4, Cuda 4x3x3, Rank 3 Multi-dimensional array

// of vector_type.
View<vector_type.** ,LayoutRight> Av("A", N/vl, b, b);

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.

// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_type****,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// One can also reinterpret the view with rank 4 scalar type if
// accessing idividual scalar entries is necessary.

// As: Host 8x4x4x8, Cuda 4x4x4x16
View<scalar_type000.,LayoutRight> As(Av.data(), N/vl, b, b, vl);

// For this example, we use a view with internal vector type (AA).

+ to

AAL 1 1 1 1 1 T1 AA
+to +

As[ I Scilar acicess 'Oa ve4tor lopp 

Host

As

+too +to, +t„ +t„

+too +to, +t„ +too +t„ +too +t„ +to, +to,

1_1111_111
Cuda

Example: Set identity of N matrices b x b; figure describes different data access patterns for a vector length 8.
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Kokkos Unified Programming Approach

using namespace Kokkos;

// Suppose that N = 64, b = 4

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.

// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_type0000,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// Host policy(8,1,1), Cuda policy(gridSize=8,blockDim.y=8, blockDim.x=4)
// You can consider league_size equivalent to the number of independent works.
TeamPolicy<exec_space> policy(league_size = N/vl,

team_size = AUTO,

vector_loop_size = vl/il);
parallel_for(policy, KOKKOS_LAMBDA(const member_type member) {
int p = member.league_rank();
// CUDA: for (int v=threadIdx.x;v<vector_loop_size;v+=blockDim.x)
parallel_for(ThreadVectorRange(member, vector_loop_size), [M(int v) {
// Host A 4x4, Internal vector length 8.

// Cuda A 4x4, Internal vector length 2.

// Consecutive indexing of v allows perfectly coalesced

// memory access along 16 doubles.
auto A = subview(AA, p, ALL, ALL, v);
// CUDA: for (int ij=threadIdx.y;v<bob;ij+=blockDim.y)
Kokkos::parallel_for(TeamThreadRange(member, b*b), [C(int ij) {

int i = ij/b, j = ij%b;

AA(i,j) = i == j ? one : zero;

}); }); });

Example: Set identity of N matrices b x b
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Line Implicit Solver Implementation

• KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

• Solve phase of block tridiagonal matrices can be done in a similar fashion.

i for a pair T in {(To,Ti) ,(T2,T3),• • • T,,,x.-1)} do in parallel
2 for rOtok-2do
3 Ar := Ly(rir);
4 hr :=L-lhr;
5 := eru-1;
6 

Ar+1 := Ar+1 Orfir;

Ak-1 := LuOk-1);



Line Implicit Solver Implementation

• KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

• Solve phase of block tridiagonal matrices can be done in a similar fashion.

// Problem domain (Mxbi)xk, blocksime b

// —MxN, the number of block tridiagonals (concurrency)

// — K the length of block tridiagonals (workload per team)

View<vector_type=====,LayoutRight> Av('A", MoN/v1, K, S. b, b);
View<internal_vector_typeeeeo.,LayoutRight>

AA(Av.data(), MON/vl, K, 3, b, b, v1/11);

TeamPolicy<exec_space> policy(league_sime = MeN/vl,

team_size = AUTO,

vector_loop_size = vl/11);
parallel_for(policy, KOKKOS_LAMBDA(const member_type member) f

int p = ember.league_rank();
parallel_

m

for(ThreadVectorbange(member, vector_loop_sime), [C(int v) f
for (int r=0;“(K-1);,+r) f

auto A = Kokkos;;subview(AA, p, r, 1, ALL(), ALL(), v);
auto B = Kokkos;;subview(AA, p, r, 2, ALL(), ALL(), v);
auto C = Kokkos;:subview(AA, p, r, 0, ALLO, ALL(), v);
auto D = Kokkos;;subview(AA, p, r+1, 1, ALL(), ALL(), v);

TeamLU(member, A);
TeamTrsm(member, 1.0, A, B);

Teamirsm(member, 1.0, A, C);
TeamGemm(member, —1.0, C, B, 1.0, D);

auto A = Kokkos;:subview(AA, p, K-1, 1, ALL(), ALL(), v);
TeamLU(member, A);

}); });



Numerical Experiments

Test Machines

■ Intel Xeon Phi

■ NVIDIA Tesla V100

Test Problems

■ With limited device memory (16 GB), the following test problems are evaluated.

Blocksize M x N x K

3 128 x 128 x 128
5 128 x 128 x 128
10 64 x 64 x 128
15 64 x 64 x 128

N
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NVIDIA Tesla V100

• Both codes shows 100% memory store/load efficiency and performance is limited by L2.

• Bigger blocksize (more computational intensity) shows more benefits from 128 bit
memory instructions.

Team (blockDim) 2 x 16 4 x 8

Global Store/Load Throughput (GB/s) 215.31 /641.38 287.68 /762.08
L2 Throughput Writes/Reads (GB/s) 215.31 /530.37 287.68 /677.41

Global Store/Load Transactions Per Request (Byte) 7.69 /31.22 14.27 /60.81

Block Tridiagonal Factorization
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Intel KNL vs NVIDIA Tesla V100

• Block tridiagonal factorization/solves are inherently sequential.

• With increasing blocksize, the number of concurrent work (tridiagonals) is reduced while
the workload per team increases.

• Need more parallelism for bigger problems.

Cube Size(M x N x K) 128 x 128 x 128 64 x 64 x 128

Multiprocessor Activity (%) 98.31 95.75
Achieved Occupancy 0.29 0.07

Block Tridiagonal Factorization

25 2

1 20

g 15

10

1 5
z

0

3 5 10 15

Blocksize

mKNL _P100 .e.Speed-up

1.5 1.

0.5

35

30

.= 25
E

N., 20

1, 15

2, 10

5

0

Block Tridiagonal Solve

i 11 ll

5 10 15

Blocks'.

•

mKNL _P100 .e.Speed-up

2

1.5 0.

1

0.5 g,

0

14



Block Jacobi Iterations for Solving Block Tridiagonals

• In transient flow, application (CFD) uses tiny time steps with relaxed error threshold -
more nonlinear iterations and less number of iterations for solves.

• Apply a small number of Jacobi iterations instead of direct solutions (factorize,
foward/backward solves).

• Improve performance on numeric phase (inverse diagonals).

• With increasing data movement during Jacobi iterations, there is not much benefit in the
solve phase.
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Summary

■ Demonstrated performance portable SIMD approach for line implicit solver
using Kokkos framework.

■ Prepare data for multidimensional array of SIMD type.
■ Reinterpret the multidimensional array based on execution space.
■ Construct Kokkos : : TeamPolicy accordingly to exploit both compiler vectorization

and dynamic vectorization.

■ Improved GPU performance (10 - 50 %) by using 128 bit memory instructions
(double2 or (f loat4)); performance improvement is higher when
computational intensity increases.

■ Compared to highly optimized KNL code (same code), GPUs perform better for
small blocksizes (3 and 5)

■ Due to device memory constraint (lowering parallelism), it is difficult to use a
GPU efficiently for bigger blocksizes (10 and 15).

■ Easy solution: a GPU with a bigger device memory (32 or 64 GB).
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