is paper describes objective technical results and analysis. Any subjective views or opinions that might be expres
the paper do not nec’:essfari ly represent the views of the U .'S. Department of Energy or the United States Governm

Laboratories

SAND2019- 2037C

Performance Portable SIMD Approach
Implementing Block Line Solver For Coupled PDEs

Kyungjoo Kim
Center for Computing Research, Sandia National Labs

SIAM CSE, Feb 25 - Mar 1, 2019

- mENESH MorD

)rator|$ isamultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia,
neywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract

Line Implicit Solver

m Consider a block sparse system of equations Ax = b arising from coupled PDEs.
m Lines are usually formed in the boundary layer to resolve shocks.

= Small blocks represent interactions among a group of variables e.g., velocity, pressure,
density and chemical species.

m Default solver for SPARC (Sandia production-level CFD code)

BN T

>
o . -
VIR -
A= |, N
.. ., >
‘ >
‘ K
Linear system of equations Problem domain and extracted lines

Line Implicit Solver (L0}

m By splitting A = M — S, we obtain
(M—S)x=b
Mx=b+Sx
x=M " (b+Sx)=x+M ' (b—Ax),

where M is a set of block tridiagonal matrices corresponding to the extracted lines of
elements.

m Solve this iteratively
A = M (b4 SxF).

m This procedure requires solutions of many block tridiagonal systems and efficient block
sparse matrix vector multiplication.

A I N | “
T1\\ ., ﬂ\\

LN Y

= L N1t 3

Sandia
Solving Many Tridiagonal Systems @ £
m A fixed number of iterations are applied x**1 = M~1 (b4 Sxb).
m M is factorized once per solution (or each non-linear iteration) and applied multiple times.

m Typical blocksizes b are 3, 5, 9 and 15, which are related to scientific applications e.g.,
elasticity, ideal gas and reactive fluid problems.

m Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory.

m A typical local problem size in a 3D domain (m X n X k) is selected as 128 x 128 x 128 for
b=3,5and 64 x 64 x 128 for b = 10, 15.

m Batch parallelism (m x n) is considered for solving block tridiagonal systems.

= R’ :4:“1;”_; 1 for Tin {Ty,Ti, -, Tpxn—1} do in parallel
N Lo 2 for r < 0tok—2do
. 3 Ar:=LU(Ar);
n\\\ R B LB
% 5 Cr=CU";
) 6 ArHl o At ¢,
7 AV = LU (A% 1Y,

Initialization of the line smoother

Efficient Implmentation using Compact Data Layout (SIMD) @ £

Problems using vendor libraries

m Standard BLAS/LAPACK are not optimized for solving small problems.

m Using batched BLAS/LAPACK APIs, no data locality is exploited in a sequence of batch
operations.

Our approach: Compact Data Layout

m A new interleaved data layout for batched BLAS/LAPACK for efficient vectorization on
small problems.

m Solve a small number of problems in parallel using SIMD instructions.

m Array of blocks is represented by a multi-dimensional array.

AOUO AuCH A‘OD A‘01

A% | A% | AT | ATy

m Compact layout packs data across batch instances with respect to SIMD length.

1
A11_

A%y | Algy

D —

A°01 A1 o1 A°1 0 A1 10 Al71 1

VectorLength 5

SIMD Approach To Solve Small Dense Problems @ £

m To vectorize across batch instances, we use packed vectors as computing unit instead
scalar.

By overloading arithmatic operators, the scalar BLAS are reused and naturally vectorized.

Vector<T,vl>
+ < > Ee >
template<typename T, int vl> operator+(Vector<T,vl> a, Vector<T,vl> b) {

< > ;
struct Vector<T,vl> { VGCtOF T’Yl F’val’ .
T datalvi]: for (int i=0;i<vl;++i)
Yo : r_val._datal[i]l = a._datal[i]l + b._datalil;
’ return r_val;

m Multidimensional array:

typedef double scalar_type;
typedef Vector<scalar_type,VectorLength> vector_type;

// LayoutRight: most right consecutive index is stored in the memory contiguously
Kokkos::View<vector_typesxx ,LayoutRight> Av(‘‘A’’, N, Blk, Blk);

// Reinterpretation of rank 3 vector_type view with scalar rank 4 view
Kokkos::View<scalar_types#*%,LayoutRight> As(Av.data(), N, Blk, Blk, VectorLength);

m What about GPUs ?

Implicit and Explicit (Warp) Vectorizations @

SIMD instructions on CPUs

m A single thread exploits data-level parallelism.
m Vetor length is given from hardware specific vector instruction set e.g., AVX512.

m A compiler is responsible for vectorization.

Warp-based (explicit) vectorization on GPUs

m Warp: a set of concurrent threads executing the same instruction.
m Each thread in a warp process scalar instructions.
m Vector instructions are dynamically formed by a warp.

m Coalesced memory access by threads is essential for efficient memory
operations.
m GPUs have 128 bit memory instruction set (double2 — internal vector type)
m A benefit using double? is to reduce the number of memory transactions.

Kokkos Unified Programming Approach

using namespace Kokkos;

//

Suppose that N = 64, b = 4

// Default values are pre—defined in KokkosBatched but a user can
// control the vector size for CUDA.

// vl: Host 8, Cuda 16, Vector length used for compact data format.
// il: Host 8, Cuda 2, Internal vector length used in a functor.
1/ Using internal vector type, we make sure
// using 128bit memory instructions.
constexpr int vl = DefaultVectorLength<exec_space>::value;
constexpr int il = DefaultInternalVectorLength<exec_space>::value;

typedef double scalar_type
typedef Vector<scalar_type,vl> vector_type;
typedef Vector<scalar_type,il> internal_vector_type;

// Av: Host 8x4x4, Cuda 4x4x4, Rank 3 Multi—dimensional array
// of vector_type.
View<vector_typex#* ,LayoutRight> Av(‘‘A’’, N/vl, b, b);

Example: Set identity of N matrices b x b

Kokkos Unified Programming Approach

using namespace Kokkos;
// Suppose that N = 64, b = 4

// Av: Host 8x4x4, Cuda 4x3x3, Rank 3 Multi—dimensional array
// of vector_type.
View<vector_type#x* ,LayoutRight> Av(‘‘A’’, N/vl, b, b);

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.
// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_typex#x*,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// One can also reinterpret the view with rank 4 scalar type if
// accessing idividual scalar entries is necessary.

// As: Host 8x4x4x8, Cuda 4x4x4x16
View<scalar_typexskx*,LayoutRight> As(Av.data(), N/vl, b, b, vl);

// For this example, we use a view with internal vector type (AA).

o ot o o o

AA_AA

{tou *to1 ﬁtuz {tus +t04 itos *tus ﬁtn7 §t1u
R T e e

Host Cuda

Example: Set identity of N matrices b x b; figure describes different data access patterns for a vector length 8.
9

Kokkos Unified Programming Approach

using namespace Kokkos;
// Suppose that N = 64, b = 4

// Reinterpret the rank 3 vector view with the rank 4 internal vector type.
// AA: Host 8x4x4x1, Cuda 4x4x4x8
View<internal_vector_types#x*,LayoutRight> AA(Av.data(), N/vl, b, b, vl/il);

// Host policy(8,1,1), Cuda policy(gridSize=8,blockDim.y=8, blockDim.x=4)
// You can consider league_size equivalent to the number of independent works.
TeamPolicy<exec_space> policy(league_size = N/vl,
team_size = AUTO,
vector_loop_size = v1/il)
parallel_for (policy, KOKKOS_LAMBDA (const member_type member) {
int p = member.league_rank();
// CUDA: for (int v=threadIdx.x;v<vector_loop_size;v+=blockDim.x)
parallel_for (ThreadVectorRange (member, vector_loop_size), [&](int v) {
// Host A 4x4, Internal vector length 8.
// Cuda A 4x4, Internal vector length 2.
ted Consecutive indexing of v allows perfectly coalesced
7is memory access along 16 doubles.
auto A = subview(AA, p, ALL, ALL, v);
// CUDA: for (int ij=threadldx.y;v<b*b;ij+=blockDim.y)
Kokkos::parallel for (TeamThreadRange (member, bxb), [&](int ij) {
int i = ij/b, j = ij%b;
AA(i,j) =1 == j 7 one : zero;

B B 3

Example: Set identity of N matrices b x b
10

Line Implicit Solver Implementation @

m KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

m Solve phase of block tridiagonal matrices can be done in a similar fashion.

1
2
3
4
5
6
7

for apair T in {(To,T1),(T2,13),* , (Tuxn—2, Tmxn—1) } do in parallel
for rAHOto kj2d0
A= LU(A™);
B =L"B";
= CA"U",;
Ar+l .= Art! _érér;
AT = LU (AT,

Line Implicit Solver Implementation

m KokkosKernels provides serial/team level dense linear algebra components so
that users can compose their own batch operations.

m Solve phase of block tridiagonal matrices can be done in a similar fashion.

// Problem domain (M x N) x K, blocksize b

// — M x N : the number of block tridiagonals (concurrency)
VA : the length of block tridiagonals (workload per team)
View<vector_type#+#,LayoutRight> Av(‘‘A’’, MxN/vl, K, 3, b, b)

View<internal_vector_type##si*,LayoutRight>
AA(Av.data(), MxN/vl, K, 3, b, b, v1/il);

e AT TS pecledand TeamPolicy<exec_space> policy(league_size = MxN/vl,
team_size = AUTO,
vector_loop_size = v1/il);

parallel_for(policy, KOKKOS_LAMBDA(const member_type member) {
int p = member.league_rank();
parallel_for (ThreadVectorRange (member, vector_loop_size), [&](int v) {
for (int r=0;r<(K—1);++r) {
auto A = Kokkos::subview(AA, p, r, 1, ALLO), ALLO, v);
auto B = Kokkos::subview(AA, p, r, 2, ALLO), ALLQO, v);
= 0,
= 1,

auto C Kokkos ::subview(AA, p, r, ALL(), ALLQO), v);
auto D = Kokkos::subview(AA, p, r+1, ALLQ), ALLO, v);
TeamLU (member, A);
TeamTrsm(member, 1.0, A,
TeamTrsm(member, 1.0, A, C);
TeamGemm (member , —1.0, C,

}

auto A = Kokkos::subview(AA, p, K—1, 1, ALL(), ALLQO), v);

TeamLU (member, A);

Hi B

11

Numerical Experiments

Test Machines
m Intel Xeon Phi
m NVIDIA Tesla V100
Test Problems
m With limited device memory (16 GB), the following test problems are evaluated.

% Blocksize MxNxK

3 128 x 128 x 128
5 128x128x 128
10 64 x 64 x 128

' / 15 64x64x128

NVIDIA Tesla V100 (="

= Both codes shows 100% memory store/load efficiency and performance is limited by L2.

m Bigger blocksize (more computational intensity) shows more benefits from 128 bit
memory instructions.

Team (blockDim) 2x16 4x8

Global Store/Load Throughput (GB/s) ~ 215.31/641.38 287.68/762.08
L2 Throughput Writes/Reads (GB/s) 215.31/530.37 287.68 /1 677.41

Global Store/Load Transactions Per Request (Byte) 7.69/31.22 14.27/60.81
Block Tridiagonal Factorization Block Tridiagonal Solve
25 . 16 35 16
s o o
= 14 > ® 30 14 >
2§ : 2
; 125 £25 12 §
= T 5 E il
gt b 220 z
s 08 R e 0.8 R
g10 06 @ 915 06 =
E s é s
e 04 S =10 04 S
£5 © 5 °
= 02 % =5 02 %
= a & al &
0 o ——— 0 0
3 5 10 15 3 5 10 15
Blocksize Blocksize
mmP100 (64 bit) mEP100 (128 bit) «s=Speed-up mmP100 (64 bit) mP100 (128 bit) «=Speed-up

13

Intel KNL vs NVIDIA Tesla V100 Lk=

m Block tridiagonal factorization/solves are inherently sequential.

m With increasing blocksize, the number of concurrent work (tridiagonals) is reduced while
the workload per team increases.

m Need more parallelism for bigger problems.

Cube Size(M x N x K) 128 x 128 x 128 64 x 64 x 128

Multiprocessor Activity (%) 98.31 95.75
Achieved Occupancy 0.29 0.07
Block Tridiagonal Factorization Block Tridiagonal Solve
w25 2 35 2
g -
< 20 Z 2 ‘ =
- = o
E ‘ 15 & = s 15 S
5 X £ oz
g @ E 2
s = g20 [
T 1% v 1%
510] 315 5
o o x o
& \ 2 3 54
3 \ 052 =10 05 2
5 5 ' 2 5 (2]
- Il N
o
* o B B, 0 | 0
3 5 10 15 3 5 10 15
Blocksize Blocksize

mKNL =EP100 «s=Speed-up EEKNL ®mP100 ===Speed-up

Sandia
Block Jacobi Iterations for Solving Block Tridiagonals &
= In transient flow, application (CFD) uses tiny time steps with relaxed error threshold -
more nonlinear iterations and less number of iterations for solves.

= Apply a small number of Jacobi iterations instead of direct solutions (factorize,
foward/backward solves).

m Improve performance on numeric phase (inverse diagonals).

m With increasing data movement during Jacobi iterations, there is not much benefit in the
solve phase.

Numeric Phase Solve Phase

I
=)
w
w
=}
~

£ \
o
2 3 25 525 -
2230 = < l 15 €
g2 2 & E2 g
8 £ = 5 \ ic
5 E © a ©
5520 15 E v 15 1 ‘é"
515 ' 3 2 5
¥ 13 g0 3
=210 2 = 05 &
llde. s UN0N
i) i
o
z 0 g 0 0
= 3 5 10 15 3 5 10 15
Blocksize Blocksize
mKNL mmP100 ===Speed-up EEKNL EEP100 =*=Speed-up

Comparison of Jacobi block tridiagonal solves (threshold 10~*) on P100 against direct block tridiagonal i

b

Summary

m Demonstrated performance portable SIMD approach for line implicit solver
using Kokkos framework.

m Prepare data for multidimensional array of SIMD type.

m Reinterpret the multidimensional array based on execution space.

m Construct Kokkos: : TeamPolicy accordingly to exploit both compiler vectorization
and dynamic vectorization.

m Improved GPU performance (10 - 50 %) by using 128 bit memory instructions
(double?2 or (float4)); performance improvement is higher when
computational intensity increases.

m Compared to highly optimized KNL code (same code), GPUs perform better for
small blocksizes (3 and 5)

m Due to device memory constraint (lowering parallelism), it is difficult to use a
GPU efficiently for bigger blocksizes (10 and 15).

m Easy solution: a GPU with a bigger device memory (32 or 64 GB).

16

