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Single hole g*(¢)-controlled EDSR

Mechanisms of electrically tunable g-factor:

1.

2.

Wave function penetration into QW barrier with different g-factors.

Composition gradient + soft z-confining potential, e.g. PQW (kV/cm).
Light-heavy hole coupling vs Vg (e.g. Voisin et al. Nano Lett . 2016)
Voltage-dependent g-factor, Stark shift (e.g. Veldhorst et al. Nature Nano. (2014)

Spin-orbit coupling with an auxiliary QD => g*(¢)



Electron EDSR experiments in Double Quantum Dots (DQDs)

Spin-blockade readout mechanism: Energy-blockade readout mechanism:
Koppens et al. Nature (2006) Veldhorst et al. Nature Nano (2014)
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This work: single hole EDSR in a DQD using transport in energy blockade regime +
g* factor control via auxiliary QD




Details of the hole Double Quantum Dot (DQD)

L. A. Tracy, et al. "Few-hole double quantum dot
in an undoped GaAs/AlGaAs heterostructure,"
APL, v. 104, 123101 (2014).

< global
accumulation gate

< Ti/Au depl. gates

AlGaAs <— GaAs/AlGaAs
X DQD heterojunction

buffers, superlattice

T mw

(a) Cross section, and (b) SEM image of the DQD device
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Single hole regime: charge stability and current diagrams
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High-bias current diagrams in strong coupling regime
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Single heavy hole EDSR by sweeping B or V,
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Energy

The hole EDSR position vs detuning € and B
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Energy

E,=g*L,B is Zeeman energy
t, is spin-conserving tunneling; t. is spin-flip tunneling

EZ< th ( — 4tF) EZ> ZtN ( = 4tF)
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g*=hf/u_B
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Positive and negative detuning EDSR resonance lines
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Energy

The EDSR dispersion minimum frequency vs B
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Hybrid spin-charge dispersion spectra fit with theory: t, and t; vs B

Spectra for B-field range 0.8T —4.6T
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Coherent LZS funnels for electron and hole singlet-triple systems

Summary

« A single heavy hole spin system has been realized in the
strong tunnel coupling regime and EDSR has been observed.
The characteristics are strongly influenced by the spin-orbit
interaction which induces spin-flip tunneling.

In particular, here we have:

- Extracted an effective g-factor for heavy-holes that is gate
voltage tunable

* Realized a hybrid spin-charge system where the EDSR signal
can be continuously changed from “spin-like” to “charge-like”

« ty and t- tunneling elements extracted from the EDSR spectra
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