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General form of transport equation r

1
—0t0(x,SZ, E , t) + SI • Vx0(x, E , t) = C [Id

(x, ft, E, t) is the angular flux

0- at the point xeXc 0 in the direction it c S2,

O with energy E > 0, 0. at time t > O.

C is the collision operator that describes radiation-material interactions.

Sources of difficulty:

0- 7 dimensional.

0 Wide range of timescales. ► 
0 Strong material coupling.

Nonlinearity.
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Assumptions:

10- Background material is fixed.

0. Cross sections are known.

10. Source is known.

II,- Scattering is isotropic.

0- Neglect energy dependence and normalize to unit speed.

This yields the following gray equation:

atO + c2 • v.0 + t
as ( fit) ds.-2/ q.
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Diffusive scaling
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Scale for:

0- Large time and length scales.

0- Strong scattering.

10 Small absorption.

E(90/) + SZ v.V) + c).t 
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47 
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Up to 0 (E), the scalar flux satisfies

OtO — ( 1 Vx0) aa0 (q),
3at

with V) =



Discrete ordinates method (DOM) 0 Sandia
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Approximate the integral over angle using a quadrature

{(nk,wk)}r,-1 c s2 x R and evaluate the resulting equation at each

quadrature node:

as 
wok + ' at'Ok = 47r

.e=1

weOf + qk, (k = 1, ,K).

This can be written in the compact form

0,11f = - (r - SP) W + Q,

where r—k = • + at,

= 

[r1

[1 

qs

, Q =[1, C =

qic 0

SP =

as
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'Implicit Euler approximation 
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An implicit Euler approximation of the discrete ordinates system

Ot 

(kr — 1) = — (r — SP) kr + Qn

yields the following linear system to be solved for each timestep update:

sp) Trt Q n

10- System is solved using iterative
techniques (source iteration,
GMRES).

► Solves are built around the
direct inversion of G through
"transport sweeps".

Two options to reduce cost of linear
solve:

1. Reduce the number of
iterations.

2. Reduce the cost of each
iteration.



'Accuracy and efficiency of DOM 
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The accuracy and computational cost of discrete ordinates methods
depends strongly on collisionality:

Regime: free-streaming diffusive multiscale

Ordinates required: manyL2
Solver iterations: few

few many
many3 many

Motivation for hybrid:

Isolate streaming and diffusive regimes and choose a different number
of ordinates for each case.

1 K. D. Lathrop (1968). "Ray Effects in Discrete Ordinates Equations". In: Nucl. Sci. & Eng. 32,
pp. 357-369.

2K. D. Lathrop (1971). "Remedies for Ray Effects". In: Nucl. Sci. & Eng. 45, pp. 255-268.

3J. S. Warsa, T. A. Wareing, and J. E. Morel (2004). "Krylov Iterative Methods and the Degraded
Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN Calculations in Problems with
Material Discontinuities". In: Nucl. Sci. & Eng. 147, pp. 218-248.



A first-collision splitting 0 "

Split the angular flux as = i u+ where4•5,

•cb„ is the flux of uncollided particles,

IN is the flux of collided particles.

The split densities satisfy

atOu + SI • VmOu atOu = q,

atoc + 11 • v.oc + atoc = [(ou) + OM], ( ) = •)(1C2-
Apply discrete ordinates approximations with different quadratures:

OttPu = —LuTu + Q,
atTC = — (Gc — ScPc) scPuTu.

4C. D. Hauck and R. G. McClarren (2013). "A collision-based hybrid method for time dependent,
linear, kinetic transport equations". In: Multiscale Modeling and Simulation 11.4, pp. 1197-1227.

5R. E. Alcouffe, R. D. O'Dell, and F. W. Brinkley, Jr. (1990). "A First-Collision Source Method That
Satisfies Discrete 5„, Transport Balance. In: Nucl. Sci. & Eng. 105, pp. 198-203.



l First-order hybrid method 
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An implicit Euler approximation yields two systems to be solved at each
timestep:

(Cu ± —At) In

(L, — scPc) Trc'

1 1 n

= At + ,

1
= 

At 
+ Sc'Pu Tr; .

Uncollided: 0- Can be solved using a single transport sweep.
10 Use a large number of ordinates to reduce ray

effects.

Collided: 0- Requires a full iterative solve.
0- Use fewer ordinates to reduce computational cost.

Problem:

IP- Once collided, particles stay collided.

► Accuracy is reduced due to the low number of collided ordinates.



l"Relabeling" the collided flux 
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Introduce an operator Rcu to map from the collided quadrature set to the
uncollided quadrature6. Apply this operator to relabel the collided
particles as uncollided after each timestep:

(GU + Tun = kt —1 + Qrz

(Lc + 
A
1 
t 
scPc) = ScPu 'Li'

A timestep of the hybrid method with relabeling is composed of three
steps:

► Solve uncollided system for T'J.
o• Solve collided system for T'c'.

► Reconstruct Tr: = R c̀'

6C. D. Hauck and R. G. McClarren (2013). "A collision-based hybrid method for time dependent,
linear, kinetic transport equations". In: Multiscale Modeling and Simulation 11.4, pp. 1197-1227.



How to define R I,1?
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Initial approach: kn = , ) = 7-Vc'

0- Given values at each collided quadrature node.

10- Extend to a function on all of 52.

0, Evaluate this function at each of the uncollided quadrature nodes.

Desired properties:

10. Computationally inexpensive.

► Parallelizable.
0- Guarantee positivity of reconstructed values.

► Preserve physical quantities, etc. (e.g., angular moments).

0- Applicable to a wide range of angular quadratures.



I Slab-geometry convergence National
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0 Sand a

Gray equation in slab geometry with diffusive scaling:

1

EatO 1,10,0 —
ut 

= 71) ([1') (III
E 26 

f 
-1

where 0 = bt, t) and it E [-1, 1].

1.0

0.8

0.6

0.4

0.2

0.0
-4

Initial condition

-3 -2 -1 2 3 4

Run convergence tests with

at = 1/6

tfinal = 1/26

CFL = 8/6

using E = le-3.

► Uncollided Angles:
► Collided Angles:
► Relabel by interpolation.

32
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Slab-geometry convergence 0 "

c
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Low-resolution discrete ordinates methods:

► Saturate due to error of angular discretization.
I,- Saturation error depends on collisionality regime.
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l Slab-geometry convergence 
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Hybrid methods show:

11, Order reduction in low- to moderately-collisional regimes.

► Saturation in highly-collisional regimes.



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(Li] ,th) = th +
(cc + ot - ScPc) xrc' = ScPu xrj



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(cu + ,th) Tr; = th kIJ,7, 1 ±

(Lc + ot - ScPc) xrc' = ScPu‘n

We want to solve the non-hybrid system:

(cu + - supo = QTh



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(cu + ,th)c-; = ±

(Lc + ot — scPc) xrc' = ScPu xrj

We want to solve the non-hybrid system:

(cu + —supo = + QTh



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(cu + ,th) Tr; = ±

(Lc + ot - ScPc) xrc' = scpu‘n

We want to solve the non-hybrid system:

(Lu = th T'7-1 QTh SuPuWn



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(cu + ,th)n, = ±

(Lc + ot - ScPc) xrc' = ScPuln

We want to solve the non-hybrid system:

(Lu kt) = kn-1 Qn SUPUWTh

Instead, use the hybrid components to approximate the scattering source:

(Lu + L) ‘11„T = L417,-1 + QTh ± SU ("Pun ± "Pcirc)



Nyström reconstruction (implicit Euler) 
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For each implicit Euler step, the hybrid fluxes satisfy:

(cu + ,th)n, = ±

(Lc + ot - ScPc) xrc' = ScPuln

We want to solve the non-hybrid system:

(Lu kt) = kn-1 Qn SUPUWTh

Instead, use the hybrid components to approximate the scattering source:

(LU + k) 41,7 = kATZ-1 + QTh + SU ("Pun ± "Pcirc)

► Quadrature agnostic.
0. Uses standard procedures found in existing discrete

ordinates implementations.
0. Preserves positivity.

Cons: 0. Requires additional high-resolution sweep(s) (expensive).



I Nyström reconstruction convergence 
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► Nyström reconstruction improves order reduction.

0. Saturation in highly-collisional regimes remains.
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I Basics of defect correction 
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System:

Solution:

Ax = b

x = A-lb



Basics of defect correction 0 $andia
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System:

Solution:

Approximate solution:



Basics of defect correction 0

System:

Solution:

Ax = b

x =

Approximate solution: el) = flb

Error: e(1) = x — (1)

Residual: r(1) = b — Ae(1)



Basics of defect correction

System:

Solution:

Approximate solution:

Error:

Residual:

Error equation:

Ax = b

x = A-1b

(1) = fib

e(1) = x _ ei)

r(1) = b — Ael)

Ae(1) = b — Ael)



I Basics of defect correction Natunel
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System:

Solution:

Ax = b

x = A lb

Approximate solution: e(1) = ftb

Error: e(1) = x — (1-)

Residual: r(1) = b — Ael)

Error equation:

Approximate Error:

Updated solution:

Ae(1) = b — Ae(1)

(b — Ae1))

(2) (1-) ,(1)



I Basics of defect correction Natunel
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System:

Solution:

Ax = b

x = A-1b

Approximate solution: e(1) = ftb

Error:

Residual:

Error equation:

Approximate Error:

Updated solution:

e(k) = x (k)

r(k) = b — Aek)

Ae(k) = b — Aek)

€(k) (b — Aek))

(k-F1) = (k) e(k)



I Basics of defect correction 
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System:

Solution:

Approximate solution:

Approximate Error:

Updated solution:

► Integral deferred correction (IDC):

Ax = b

x = A—lb

el) = FIb

6(k) = H (b — Aek))

(k-E1) = ek) c(k)

P. High-order accuracy using low-order method.

io• Increase order of accuracy by one at each iteration.

0. Extended to correct other errors; e.g., operator splitting.

0. Wrap hybrid into IDC defect correction iteration.

► Effectively a two-grid collocation method in angle.





Inhomogeneous sphere test problem
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1

0

100
c
o

o

2

Radius

TA angular quadratures7.

3 4

04

3

2 -2

1 -3

0 4
0 2 3

Order: 3

Final time: 8

CFL: 160

4

7C. P. Thurgood, A. Pollard, and H. A. Becker (1995). "The TN Quadrature Set for the Discrete
Ordinates Method". In: Journal of Heat Transfer 117.4, p. 1068. doi: 10.1115/1.2836285.



Inhomogeneous sphere convergence
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► Don't iterate two-grid/hybrid IDC method to convergence.
► 162 = 256 vs 12 = 1 ordinates/octant for S16,1 method.
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Thank you.

Questions?


