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General form of transport equation

%atw(m, Q,E,1) + Q- Voip(x,Q, B, t) = C[¢]

¥ (x,Q, E, t) is the angular flux

» atthe pointx € X C R?, » inthe direction Q € S?,
» with energy E > 0, > attimet > 0.

C is the collision operator that describes radiation-material interactions.

Sources of difficulty:

» 7 dimensional. > Strong material coupling.
» Wide range of timescales. > Nonlinearity.



Gray equation with isotropic scattering

Assumptions:
» Background material is fixed.
» Cross sections are known.
» Source is known.
» Scattering is isotropic.
» Neglect energy dependence and normalize to unit speed.

This yields the following gray equation:

Ob + Q- Vot + ovp = Z—ﬂ B() dY + .
S2



Diffusive scaling

Scale for:
» Large time and length scales.
» Strong scattering.
» Small absorption.

o, 1 (ot _ _
eatwm-vmm;w—h(g coa) b+eq, b= [ v o

Up to O (e), the scalar flux ¢ satisfies
1
016 — Vg - <§_vm¢> +0ap = <Q>7
o

with i = 1= ¢.



Discrete ordinates method (DOM)

Approximate the integral over angle using a quadrature
{(Q, wr)}_; C S? x R and evaluate the resulting equation at each
quadrature node:

K
8t'l/}k+nk‘vw¢k+0'twk:g—szwlwé‘f‘qu (k=1,...,K).
T =

This can be written in the compact form
0V =—(L-SP)¥ +Q,

where L = Q. - Vo + oy,

ﬁ
1 q1 L1 0 47

U 5 Q: s L= 3 SP = [wl,...,wK].
wK aK 0 Lk Os

47



Implicit Euler approximation (@)

An implicit Euler approximation of the discrete ordinates system

1
At

yields the following linear system to be solved for each timestep update:

(T" =" ) =~ (L-SP)T" + Q"

1 n 1 n—1 n
— =—U .
(L—i—At SP)\I/ A7 +Q

> System is solved using iterative Two options to reduce cost of linear
techniques (source iteration, solve:
GMRES). 1. Reduce the number of

» Solves are built around the iterations.
direct inversion of £ through 2. Reduce the cost of each
“transport sweeps”. iteration.




Accuracy and efficiency of DOM

The accuracy and computational cost of discrete ordinates methods
depends strongly on collisionality:

Regime: free-streaming diffusive  multiscale
Ordinates required: ~ many'-? few many
Solver iterations: few many? many

Motivation for hybrid:

Isolate streaming and diffusive regimes and choose a different number
of ordinates for each case.

K. D. Lathrop (1968). “Ray Effects in Discrete Ordinates Equations”. In: Nucl. Sci. & Eng. 32,
pp. 357-369.

2K. D. Lathrop (1971). “Remedies for Ray Effects”. In: Nucl. Sci. & Eng. 45, pp. 255-268.

3). 5. Warsa, T. A. Wareing, and J. E. Morel (2004). “Krylov Iterative Methods and the Degraded
Effectiveness of Diffusion Synthetic Acceleration for Multidimensional S Calculations in Problems with
Material Discontinuities”. In: Nucl. Sci. & Eng. 147, pp. 218-248.



A first-collision splitting

Split the angular flux as ¢ = vy + 1c where*>,

yu is the flux of uncollided particles,
e is the flux of collided particles.

The split densities satisfy
Oy + Q- Vatby + oty = ¢,

O+ Q- Vate b o = ) + W] ()= [ ()an

Apply discrete ordinates approximations with different quadratures:

0tVy = —LuVu + Q,
8t\ch = == ([:c = Scpc) \I}c + ScPU\I/u.

4C. D. Hauck and R. G. McClarren (2013). “A collision-based hybrid method for time dependent,
linear, kinetic transport equations”. In: Multiscale Modeling and Simulation 11.4, pp. 1197-1227.

5R. E. Alcouffe, R. D. O'Dell, and F. W. Brinkley, Jr. (1990). “A First-Collision Source Method That
Satisfies Discrete S,, Transport Balance”. In: Nucl. Sci. & Eng. 105, pp. 198-203.



Laboratories

First-order hybrid method () e

An implicit Euler approximation yields two systems to be solved at each

timestep:
0 n __ _]-_ n—1 n
(ACU'J"E)\PU—Atqju ‘J"Q ’
Lot L _sp)wr = Lort 4 sepoun
[ At o c — At € c/7u u-
Uncollided: » Can be solved using a single transport sweep.
» Use a large number of ordinates to reduce ray
effects.
Collided: » Requires a full iterative solve.

» Use fewer ordinates to reduce computational cost.

Problem:

» Once collided, particles stay collided.
» Accuracy is reduced due to the low number of collided ordinates.



“Relabeling” the collided flux () e

Laboratories

Introduce an operator R¢ to map from the collided quadrature set to the
uncollided quadrature®. Apply this operator to relabel the collided
particles as uncollided after each timestep:

n__ n—1 n
(Lu+At) U= R

(Ec F = AL ScPc) Ve =S PV

A timestep of the hybrid method with relabeling is composed of three
steps:

» Solve uncollided system for ¥y.
» Solve collided system for ¥¢.
» Reconstruct U} = R¢ (U, 7).

6C. D. Hauck and R. G. McClarren (2013). “A collision-based hybrid method for time dependent,
linear, kinetic transport equations”. In: Multiscale Modeling and Simulation 11.4, pp. 1197-1227.



How to define R{?

Initial approach: U7 = R{ (U}, UF) = ¥ + R{TY
» Given values at each collided quadrature node.
» Extend to a function on all of S°.
» Evaluate this function at each of the uncollided quadrature nodes.

Desired properties:
» Computationally inexpensive.
» Parallelizable.
» Guarantee positivity of reconstructed values.
> Preserve physical quantities, etc. (e.g., angular moments).
» Applicable to a wide range of angular quadratures.



Slab-geometry convergence @),

Gray equation in slab geometry with diffusive scaling:
1
O (o / ’
o+ po+ 2o =3 [ () du
where ¢ = (2, u, t) and p € [—1,1].

Run convergence tests with

1o Initialcondition or=1/e

sl | tinal = 1/2¢

06 | i CFL=8/e

QA ] using € = 1le-0, le-1, 1e-3.

M | » Uncollided Angles: 32

» Collided Angles: 2,4,8
» Relabel by interpolation.



Slab-geometry convergence

Lz(dx ) error vs. reference

102 |- A
104 | .
10 - -
108 - .
1010 |- ]
&= s + A
1012 |- =+ Ss )
—— S,
[ —— S
1014 |- % PR N I N

27 29 211 213 215 217 27 29 211 213 215 I 217 27 29 211 213 215 217
Spatial cells Spatial cells Spatial cells

Low-resolution discrete ordinates methods:

» Saturate due to error of angular discretization.

» Saturation error depends on collisionality regime.



Slab-geometry convergence

L%(dx ) error vs. reference
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Hybrid methods show:
» Order reduction in low- to moderately-collisional regimes.
» Saturation in highly-collisional regimes.



Nystrém reconstruction (implicit Euler) () e

Laboratories

For each implicit Euler step, the hybrid fluxes satisfy:

(Lut 27) U3 = 20071+ Q"
(Lc+ 25 — ScPc) UF = ScPu¥y



Nystrém reconstruction (implicit Euler) () e

Laboratories

For each implicit Euler step, the hybrid fluxes satisfy:

(Lut 27) U3 = 20071+ Q"
(Lc+ 25 — ScPc) UF = ScPu¥y

We want to solve the non-hybrid system:

(Lut a7 = SuPu) ¥ = VI +Q"



Nystrém reconstruction (implicit Euler) () e

Laboratories

For each implicit Euler step, the hybrid fluxes satisfy:

(Lut 27) U3 = 20071+ Q"
(Lc+ 25 — ScPc) UF = ScPu¥y

We want to solve the non-hybrid system:

(Cu+ 2 — SuPu) ¥m = Rwrt 4 @



Nystrém reconstruction (implicit Euler) () e

Laboratories

For each implicit Euler step, the hybrid fluxes satisfy:

(Lut 27) U3 = 20071+ Q"
(Lc+ 25 — ScPc) UF = ScPu¥y

We want to solve the non-hybrid system:

(Lut a7) U™ = A ¥771 + Q" + SuPul”



Nystrém reconstruction (implicit Euler) () e

Laboratories

For each implicit Euler step, the hybrid fluxes satisfy:

(Lot 2) W5 = 92t +Q"
(Lc + ﬁ - Scpc) \I’? = SCPU\I/G

We want to solve the non-hybrid system:
(Lu+t 27) U = 01+ Q" + SuPu V"
Instead, use the hybrid components to approximate the scattering source:

(Lu+ 27) W= 20071+ Q™ + Sy (Pul + Peuy)



Nystrém reconstruction (implicit Euler) () e

For each implicit Euler step, the hybrid fluxes satisfy:

(Lot 2) W5 = 92t +Q"
(Lc + ﬁ - Scpc) \I’? = SCPU\I/G

We want to solve the non-hybrid system:
(Lu+t 27) U = 01+ Q" + SuPu V"
Instead, use the hybrid components to approximate the scattering source:

(Lu+ 27) W= 20071+ Q™ + Sy (Pul + Peuy)

Pros: » Quadrature agnostic.
» Uses standard procedures found in existing discrete
ordinates implementations.
> Preserves positivity.

Cons: > Requires additional high-resolution sweep(s) (expensive).



Nystrom

L2(dx ) error vs. reference
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Basics of defect correction @zﬂaﬁm

Laboratories

System: Ar =5
Solution: r= A"



Basics of defect correction

System: Az =b
Solution: z=A""b

Approximate solution: 5“) = Hb



Basics of defect correction

System:
Solution:

Approximate solution:

Error:

Residual:

Axr =0
r=A""b
M=

o) — g — 5(1)
P =p_ Ag(l)



Basics of defect correction

System:
Solution:

Approximate solution:

Error:

Residual:

Error equation:

Arx=b
z=A""b

¢ = b

6(1) —— 6(1)

,,,(1) h— Aﬁ(l)



Laboratories

Basics of defect correction @zﬂaﬁm

System: Az =b

Solution: r=A""b
Approximate solution: ¢ = Hp

Error: e =g —¢®
Residual: rM =p— 4e®
Error equation: AeM) =p— AW
Approximate Error: D =H (b — Af(l))

Updated solution: @ =W 4 O



Basics of defect correction

System:
Solution:

Approximate solution:

Error:

Residual:

Error equation:

Approximate Error:

Updated solution:
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Ax=b
z=A""b

¢ = Hgb

6B e f(k)

P& —p_ A§<k)
Ae® =b— Ae®
™ = a1 (b— 4g™)

f(k+1) - g(k) + ™)



Basics of defect correction () e

System: Az =1b

Solution: z=A"1p
Approximate solution: eW = ap
Approximate Error: e®) = g (b — Aé’”)
Updated solution: gD — (k) 4 (k)

> Integral deferred correction (IDC):

» High-order accuracy using low-order method.

P Increase order of accuracy by one at each iteration.

» Extended to correct other errors; e.g., operator splitting.
» Wrap hybrid into IDC defect correction iteration.
> Effectively a two-grid collocation method in angle.



Defect correction convergence

L2(dx ) error vs. reference
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» Hybrid + Nystrom reconstruction + defect correction virtually
eliminates splitting error.



Inhomogeneous sphere test problem

T T T
1 i
Y
s
3
O 1 1 1
T T T
100 -
=4
o
o
S
e
¥ Order: 3
10 N
0 1 1 H H .
5 3 > 3 4 Final time: 8
Radius CFL: 160

Ty angular quadratures’.

7¢C. P. Thurgood, A. Pollard, and H. A. Becker (1995). “The T’y Quadrature Set for the Discrete
Ordinates Method". In: Journal of Heat Transfer 117.4, p. 1068. doi: 10.1115/1.2836285.



Inhomogeneous sphere convergence
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» Don't iterate two-grid/hybrid IDC method to convergence.
» 162 = 256 vs 12 = 1 ordinates/octant for S;,1 method.



Inhomogeneous sphere efficiency @),
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Inhomogeneous sphere efficiency
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Inhomogeneous sphere efficiency @),
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Inhomogeneous sphere efficiency
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Inhomogeneous sphere efficiency
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Thank you.

Questions?



