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The black hole information paradox is really a combination of two problems: the causality paradox
and the entanglement problem. The causality paradox arises because in the semiclassical approxi-
mation infalling matter gets causally trapped inside its own horizon; it is therefore unable to send
its information back to infinity if we disallow propagation outside the light cone. We show how the
causality paradox is resolved in the fuzzball paradigm. One needs to distinguish between two kinds
of Rindler spaces: (a) Rindler space obtained by choosing accelerating coordinates in Minkowski
space and (b) ‘pseudo-Rindler’ space, which describes the region near the surface of a fuzzball.
These two spaces differ in their vacuum fluctuations. While low energy waves propagate the same
way on both spaces, infalling objects with energies F£ > T suffer an ‘entropy enhanced tunneling’
in the pseudo-Rindler spacetime (b); this leads to the nucleation of a fuzzball before the infalling

object gets trapped inside a horizon.

I. BLACK HOLE PUZZLES

Consider a spherical shell of mass M collapsing to form
a black hole. In the semiclassical approximation we find
that the shell passes through its horizon at r, = 2GM,
and ends at a singularity at » = 0. Hawking found that
the vacuum around the horizon is unstable, and leads to
the creation of particle pairs [1]. One member of the pair
(carrying a net negative energy) falls into the hole and
reduces its mass, while the other escapes to infinity as
‘Hawking radiation’. While overall energy is conserved,
there are two fundamental problems with this evapora-
tion process:

(A) The causality paradoz: After the shell passes
through its horizon, light cones in the region between the
shell and the horizon ‘point inwards’ as shown schemati-
cally in fig.1. If we assume that we do not have any ‘faster
than light’ propagation in our theory, then the informa-
tion in the shell is causally trapped inside the horizon.
Thus this information cannot escape to infinity as the
hole evaporates away. What happens to this information
at the endpoint of evaporation?

(B) The entanglement problem: The process of Hawk-
ing radiation creates entangled pairs at the horizon; thus
we find a monotonically increasing entanglement between
the radiation near infinity and the remaining hole. Hawk-
ing’s original computation was done at leading order in
the semiclassical approximation, but the small correc-
tions theorem [2] shows that this monotonic increase can-
not be overcome by any source of small corrections to the
pair creation process. What happens to this large entan-
glement near the endpoint of evaporation?

These two problems together make up the black hole
information paradox.

One proposal to resolve both of these problems is the
idea of ‘remnants’: the evaporation process stops due
to quantum gravity effects when the hole reaches planck

FIG. 1. (a) A shell of mass M is collapsing towards its hori-
zon. (b) If the shell passes through its horizon, then the
information it carries is trapped inside the horizon due to the
structure of light cones.

size. The information in the infalling matter and in the
negative energy members of the created pairs is then
locked inside this planck mass remnant. But string the-
ory does not allow remnants if we accept AdS/CFT du-
ality [3]. Remnants must have an infinite degeneracy
within an energy range £ < Ey ~ m,. On the other
hand the dual CFT lives on a finite volume space S,
and the CFT in a finite volume can only have a finite
number of states for £ < Ej.

Further, there is no clear evidence that string theory
allows propagation faster than the speed of light. It is
true that the theory has extended objects like strings, but
this does not imply acausality: if we excite one end of a
string, the information of this excitation travels along the
string at a speed less than or equal to the speed of light.

What then is the resolution of the above puzzles in
string theory? Extensive work in constructing black hole
microstates had led to the fuzzball paradigm. For our
present discussion, the relevant features of this paradigm
are as follows:

(1) The microstates describing the black hole do not
have a traditional horizon, i.e. there is no formation of a
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closed trapped surface. There is no singularity either;
instead we have horizon sized quantum objects called
fuzzballs whose states we write as |F;) [4, 5]. These
fuzzballs radiate from their surface like normal warm
bodies so there is no entanglement puzzle (B). The rate
of radiation turns out to agree with that expected for
Hawking radiation from individual microstates, but this
radiation does not arise from pair creation since there is
no region ‘interior to the horizon’” where negative energy
particles can exist [6].

(2) The semiclassical collapse of a shell suggests that
it passes through » = r;, and a horizon does form. But
as the shell reaches r = rj, the semiclassical approxima-
tion is violated by an entropy enhanced tunneling into the
space of fuzzballs |F;). The probability for the collapsing
shell to tunnel into any of the fuzzball states is small,
as expected for transitions between two macroscopic ob-
jects:

P~ e 25 (1)

where S is the classical action for the tunneling process.
But this smallness is offset by the large degeneracy

N~ ek (2)

of fuzzball states, where Syex is the Bekenstein entropy
[7-9]. As a result the shell state |S) transitions to a
linear combination of the |F}), and we then get unitarity
preserving radiation just as we would get from any other
warm body.

In this paper our goal is to obtain a picture of how,
when and were the entropy enhanced tunneling should
happen. Our principal tool will be the causality paradox
(A): we require that the tunneling happens in a way that
information of a collapsing object never gets trapped in-
side its own horizon. Since horizons form over timescales
of order the crossing time ~ M, this requirement pro-
vides a much stronger constraint than the entanglement
problem (B): the entangled pairs are produced over the
much longer Hawking evaporation timescale ~ M3, and
a transition to fuzzballs over any timescale < M3 would
suffice to remove the entanglement problem.

Let us now summarize our central proposal:

(i) In fig.2(a) we depict the traditional picture of the
black hole, where we have the vacuum state around the
horizon r = 2GM. In fig.2(b) we depict the fuzzball,
which has a boundary at a location

r=2GM +e=my (3)

where ¢ < GM. We wish to argue that vacuum fluc-
tuations in the region r > 7, in the fuzzball spacetime
are different from the vacuum fluctuations outside the
horizon in the traditional black hole.

(ii) The dashed lines in fig.2(b) depict the processes
that modify the vacuum outside the fuzzball. We conjec-
ture that the fuzzball of mass M undergoes virtual fluc-
tuations to fuzzballs of mass M; > M; the dashed lines

(a) (b)

FIG. 2. (a) The traditional black hole. The region around the
horizon is locally just like empty Minkowski space, so it has
the same vacuum fluctuations as empty space. (b) A fuzzball
has a surface at r = r, = 2GM + €. The presence of this
fuzzball boundary at r = 7, can lead to new virtual effects
indicated by the dashed lines.
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FIG. 3. (a) In the traditional hole, the region just outside the
horizon is Rindler space, which is just a part of Minkowski
space. (b) The dark circle is the fuzzball. The region out-
side the fuzzball has extra vacuum fluctuations that corre-
spond to the fuzzball of mass M fluctuating to a fuzzball of
mass My > M. These virtual fuzzballs are depicted by the
shaded region outside the fuzzball. Because of altered vacuum
fluctuations, the region near the fuzzball boundary is termed
pseudo-Rindler space.

therefore represent processes that create such fuzzballs.
The energy My — M is not small, so one might think that
such fluctuations would be suppressed. But we conjec-
ture that these fluctuations nevertheless have a nontrivial
effect because of ‘entropy enhancement’: there are a large
number of possible fuzzballs of mass M that the system
can fluctuate to.

(iii) This altered vacuum polarization has very little ef-
fect on low energy infalling objects, so these objects just
see the normal Schwarzschild metric for a black hole of
mass M in the region r > r,. But an infalling object with
high energy (E > T') converts the virtual fluctuations of
the fuzzball to on-shell fuzzball states before it reaches
r = rp; the extra energy required for the larger fuzzball
is drawn from the energy of the infalling object. This
effect prevents the infalling object from getting trapped
inside its own horizon: energy is leaked away to fuzzballs
just before a horizon would have formed. The space near



FIG. 4. The black region is land, while the grey region is
water. A wave of travels freely when its amplitude is much
less than the depth of the water, but will suffer nontrivial
deformation when the amplitude becomes comparable to the
depth of the water.

the fuzzball boundary r = r is termed ‘pseudo-Rindler
space’ to emphasize the fact that it has a different vac-
uum polarization from usual Rindler space which is just
a part of normal Minkowski space (fig.3).

We can get a schematic model of the above conjecture
by considering the lake depicted in fig.4. On the left is
land; this represents the interior of the fuzzball r < 7.
The water represents the exterior region r > r,. Waves
can propagate on the surface of this water, and represent
matter quanta in the region r > r,. The vacuum fluc-
tuations are strongest near the fuzzball boundary, and
their effect is to reduce the depth of the lake to a small
value near the fuzzball surface. Low energy waves prop-
agate without noticing the reduced depth, all the way
upto r == 1,. But large waves (representing high en-
ergy infalling objects) feel the finite depth of the lake at
some location r > 7, and their evolution changes at this
point. In our actual problem this ‘bottom of the lake’ is
felt when the infalling object carrying energy AM reaches
r &~ 2G(M + AM); the semiclassical evolution then be-
comes invalid and an ‘entropy enhanced tunneling’ takes
place. As a consequence, the objet is never trapped in its
own horizon, and we avoid any problem with causality.

We proceed in the following steps:

(a) We describe a toy model for the fuzzball; this will
help explain how the no-hair theorems and the Buch-
dahl limit are bypassed by the fuzzball structure found
in string theory (section IT).

(b) We use this toy model to give a picture of grav-
itational collapse: an infalling shell starts nucleating
fuzzball excitations as it approaches the location r =~
2G M, and thereby ends up as a fuzzball of radius ry
rather than a spacetime with horizon (section III).

(¢) We use some toy models and analogies to ex-
plain our proposal that the vacuum fluctuations outside
the fuzzball are different from the fluctuations of empty
space, and how such a change can lead to fuzzball for-
mation before an infalling object reaches r = r;, (section
V).

(d) We state our proposal in concrete form, and explain
how it allows us to preserve causality in the process of

black hole formation and evaporation (sections V and
VI).

(e) We give some rough estimates of the location where
the ‘entropy enhanced tunneling’ is expected to take
place in different instances of infall (section VII).

(f) We note the difference between our picture of
fuzzball dynamics and the assumed dynamics in the fire-
wall argument [27]; we argue that the assumptions in the
firewall argument are in conflict with each other because
of a violation of causality (section VIII).

(g) We recall the conjecture of fuzzball complementar-
ity, and note that causality in the underlying theory is a
logical requirement for any such conjecture (section IX).

(h) We close with a summary and a general discussion
of causality (section X).

II. A TOY MODEL FOR THE FUZZBALL

Fuzzballs are solutions found in the full quantum the-
ory of strings. But we can understand some essential
aspects of their structure by looking at toy models found
in Einstein gravity with an extra dimension. In this sec-
tion we recall one such a solution described in [10]; one
may use this toy model as a rough picture to understand
the elements that compose an actual fuzzball solution.
We first mention the problem that fuzzballs solve, and
then give the model for the fuzzball.

A key aspect of the information paradox is the ar-
gument that ‘black holes have no hair’. Consider the
Schwarzschild metric

2M dr?

+r2dQ5 (4)

We can consider a scalar [J¢ = 0 and try to add scalar
‘hair’ of the form

¢ = Re[d(7)Yim (0, p)e™ "] (5)

But we find that there are no regular solutions for the
function ¢(r): rapid oscillations near the horizon lead
to a divergence of the stress tensor of ¢ at the loca-
tion r — 2M. This is an illustration of the classical
‘no hair’ theorem, but it is crucial that the same compu-
tation leads gives ‘no hair’ at the quantum level. To see
this, we first recall a situation where we can add hair to
deform the solution. Consider a static star given by the
metric
2
ds? = — f(ryd? + I
g(r)

Let the lowest energy state for the quantum field (;3 in this
vacuum be |0)4tq,. We can again solve the wave equation
O¢ = 0 in the metric (6)

¢ = Grim (1) Yim (0, @)™t = dpy, (7)

+r2dQ3 (6)



This time there will be a complete set of solutions of this
form. We can therefore write

q; = Z ((bklmdklm + ¢Itlmdzlm) (8)

klm

Then the states of the system are given by exciting the
vacuum |0) szqr

al timy - 0h 1 |0)star (9)
These excitations add ‘scalar hair’ to the star.

By contrast, for the black hole metric (4) we do not
find regular solutions ¢y, and so we cannot change the
quantum state in this way. The quantum vacuum state
around the horizon is therefore unique, and it is this state
that leads to the creation of Hawking’s entangled pairs.

We have looked at a simple example above, but years
of effort with different models did not shake this basic
conclusion that the horizon cannot be deformed, either
at the classical or quantum level. One may try to avoid
the problem by not allowing a horizon in the first place,
but here we run into results like Buchdahl’s theorem [11].
Consider a star made of a perfect fluid, whose density p
increases monotonically inwards. If the radius R of the
fluid ball satisfies

oM
4

then the pressure will diverge at some radius r > 0, ren-
dering the solution invalid. Thus any fluid ball that has
been compressed to a size smaller than (10) must neces-
sarily collapse and generate a horizon.

String theory avoids these problems in a remarkable
way, through the fuzzball mechanism. A toy model for
the fuzzball was discussed in [10]. Consider the 441 di-
mensional spacetime obtained by adding a trivial time di-
rection to the 3+1 dimensional Euclidean Schwarzschild
solution

R < (10)

d 2
ds? = —dt? + (1 — "2)dr? + —Z o +r3(d6? + sin® 0d?)

r 1

(11)
This metric is a perfectly regular solution of the 4+1 vac-
uum Finstein equations. The ‘Euclidean time’ direction
7 is compact, with 0 < 7 < 4nrg. The rg, 7 directions
form a cigar, whose tip lies at » = rg. The spacetime
ends at r = rg; we can say that the ball » < ry has been
excised from the manifold, and the compact directions
closed off to generate a geodesically complete spacetime.
We can now dimensionally reduce on the circle 7, re-
garding this solution as a 3+1 dimensional metric in

(t,r,0,0) coupled to a scalar field

o= ? In(1 — ’”70) (12)

T

describing the radius of the compact direction 7. This
scalar field has a standard stress tensor, whose value
works out to be

THV = diag{—p,pr,pe,pqs} = dlag{_fa f7 _f7 _f} (13)

where

g
F= i (14)

We see that the pressures do diverge at r — rg > 0,
and if we followed the spirit of Buchdahl’s theorem, we
would discard this solution. But the solution is actually a
perfectly regular solution in 4+1 dimensions; what breaks
down is the dimensional reduction map when the length
of the compact circle goes to zero.

The fuzzball solutions are similar in spirit: they are
valid solutions in the full 10-dimensional string theory,
but are singular when viewed from the perspective of
the noncompact directions alone. The simplest fuzzball
solutions are characterized by a set of KK monopoles and
antimonopoles, which are regular solutions of gravity but
with a singular dimensional reduction. In the limit where
the center if a KK monopole coincides with the center of
an anti-monopole, it is known that the bosonic fields yield
the Euclidean Schwarzschild solution tensored trivially
with time and the other compact directions, similar in
spirit to (11) [13]. This solution is unstable, but that
is as it should be: microstates of the nonextremal hole
should radiate radiate energy, and in specific cases the
instability of the microstate solutions has been shown to
map exactly to the Hawking radiation expected from that
microstate [6].

Thus we can use the solution (11) as our toy model
of a fuzzball to illustrate the picture of the gravitational
vacuum that we wish to present.

Before proceeding, we note that similar features are
obtained for the ‘bubble of nothing’ which was discov-
ered an an instability of the vacuum for the spacetime
M3 x S' [12]. In this solution a bubble nucleates by
a vacuum fluctuations that pinches off the compact cir-
cle. After the bubble tunnels to a certain size, it can
continue to expand further as an on-shell classical solu-
tion. Topologically the metric is similar to the Euclidean
Schwarzschild solution. Again we can dimensionally re-
duce on the S!, getting a scalar ® on 3+1 dimensional
spacetime. The stress tensor of ® diverges as we approach
the bubble wall, though the overall spacetime is smooth
[10, 14]. In our qualitative analysis below we will use the
Euclidean Schwarzschild solution as our toy model of the
fuzzball, and we will assume (by analogy with the bubble
of nothing) that such solutions can nucleate by tunneling
when a suitable amount of energy is available.

The actual fuzzball solutions involve other fields of
string theory besides the metric. We may roughly pic-
ture such a fuzzball as having many KK monopoles and
antimonopoles, with fluxes on the spheres between these
topological objects. It was explained in [15] how such
solutions evade the conditions assumed in deriving the
various types of no-hair results in earlier years.



IIT. MODELLING THE TUNNELING INTO
FUZZBALLS

As noted in section I, the fuzzball paradigm says that
a collapsing shell suffers an ‘entropy enhanced tunneling’
to fuzzballs. In this section we conjecture a picture of
when and where this tunneling should take place; this
picture will be consistent with causality of the underlying
gravity theory. In later sections we will argue that such a
picture is made possible by an altered polarization of the
vacuum outside the fuzzball (the change from Rindler to
‘pseudo-Rindler’).

Let the theory of gravity be such that all black hole
microstates are fuzzballs. To picture these fuzzballs, we
can imagine that spacetime has the topology Mz 1 x St,
and that the radius of S! is 47ry. Then around any point
of space we can nucleate a ‘bubble’ of the form (11),
where a sphere of radius ry has been removed and the
compact direction smoothly closed off at the boundary
of this sphere. A general fuzzball state in string theory
may be pictured as having many such bubbles with other
objects like flux-carrying spheres carrying spheres linking
the bubbles.

Now consider a spherical shell of mass M, collapsing
radially inwards, with no other matter present. We have
the following picture (we draw the steps schematically in
fig.5):

(a) When the shell is far from its horizon radius r, =
2G M, the motion of the shell is given by semiclassical

physics (fig.5(a)).

(b) When the shell reaches r = rp, + €, with € < 7y,
there is a nucleation of ‘bubbles’ just outside the location
of the shell. (There can always be quantum fluctuations
creating such bubbles, but they become ‘less expensive’
near the shell because of the large redshift when the shell
is near its horizon radius.) The bubbles cost energy, and
this energy is drawn from the shell by the process similar
to the process of backreaction in pair creation. So the
shell now has a lower energy, which we write as M — M.
This energy corresponds to a horizon radius r = 2G(M —
OM) = ry, — drp, (fig.5(b)).

(¢) The shell therefore travels a little further inwards
without forming a horizon. As it approaches the radius
r = rp — 0rp, there is again a nucleation of bubbles.
The shell loses some more energy, and so travels further
inwards without creating a horizon (fig.5(c)).

(d) The shell loses all its energy to the creation of bub-
bles by the time it reaches » = 0. The ball shaped region
containing all the created bubbles is the ‘fuzzball’: the
shell state |.S) has transitioned into a linear superposition
of fuzzball eigenstates |F;) (fig.5(d)).

Thus instead of a horizon, we get a horizon sized
region filled with a nontrivial structure. This struc-
ture is analogous to that found in the fuzzball construc-
tions of [4, 5], where a ball shaped region is filled with
monopoles/antimonopoles, with fluxes/branes wrapped

FIG. 5. (a) A shell is collapsing in empty space; in its clas-
sical evolution it would create a horizon when it reached the
dotted circle. (b) In the theory with fuzzballs, there is a nucle-
ation of ‘bubbles’ as the shell comes close to this dotted circle.
Since the shell loses some energy in creating these bubbles,
the location where the classical horizon would form moves to
a smaller radius. (c) The shell keeps moving inwards, losing
more and more energy to nucleated bubbles, and thus always
staying outside its horizon. (d) We finally get a fuzzball with
no horizon or singularity.

on cycles stretching between the monopole centers. Of
course the degeneracy of states in our toy model of ‘Eu-
clidean Schwarzschild bubbles’ is not high, but the actual
fuzzball states |F;) of the full string theory are expected
to correspond to the Exp[Spex] states of the black hole,
and in that case they would indeed describe a vast phase
space. The conjecture of [7] is that the large number
of states that the shell can tunnel to offsets the small
amplitude for tunneling to any given fuzzball state |F;),
so that we indeed violate the semiclassical approxima-
tion and end up with the ball depicted schematically in

fig.5(d).

Note that in this picture of fuzzball formation the in-
falling shell was never trapped inside its own horizon,
unlike the shell in the classical picture depicted in fig.1.
Our goal now is to find the physical effects needed to trig-
ger the nucleation of fuzzballs at r = 2GM + e depicted
in fig.5(b).

IV. A PICTURE OF WHAT WE SEEK

In the above section we have conjectured a picture
where a collapsing a shell of mass M begins to tunnel into



fuzzballs just before it reaches the location r = 2GM. We
now come to the central question of this paper: what tells
the collapsing shell to change its semiclassical behavior
at this location?

In fig.5 we had depicted the collapse of a shell of mass
M in otherwise empty space. For simplicity let us first
turn to the case where we already have a fuzzball of mass
M, and a shell of mass AM is coming in from infinity at
the speed of light. We will again expect that nucleation
of the kind in fig.5(a) will start when the shell reaches a
location

r~2G(M+AM) +e (15)

where € is small compared to the classical scales in the
problem. What tells the incoming shell that its semiclas-
sical motion should be altered at the location (15)7?

As mentioned in the introduction, we conjecture that
the spacetime outside the fuzzball of mass M is not just
the traditional vacuum: there are no particles as such
in this region, but the vacuum fluctuations are different
from the fluctuations of empty spacetime. In this section
we will give toy examples to explain the idea of a region
with altered vacuum fluctuations, and simple analogies
to explain what such an altered vacuum can do.

A. An toy example of an altered vacuum

Consider an example from electrodynamics, where the
Schwinger effect in an electric field replaces the process
of pair creation in a gravitational field. Consider two in-
finite parallel plates, with normal along the & direction.
Let one plate (carrying a positive charge density o) be
located at x = —L, and the other plate (carrying a pos-
itive charge density —o) be located at = L. Between
these plates we have an electric field

E="% (16)
€0
and a potential difference
vV =2L|E| =202 (17)

€0

Now suppose the theory contains a scalar field ¢ with
charge ¢ and mass m. A particle-antiparticle pair of this
scalar field can be produced at a minimum energy cost
AE = 2mc?. The positively charged particle moves to
the negatively charged plate and the negatively charged
particle moves to the positively charged plate; this pro-
cess generates a drop in energy of AE = 2¢|E|L. We
therefore get a creation of particle pairs if and only if
A& > AE; ie., if and only if L > L,,;, where

me? mec2ey

me = —= = (18)
q|E| a0

Let us take L < Ln, so we do not have any creation
of particle pairs. Thus there are no on-shell quanta of the

field ¢. But this does not mean that the state in region
between the plates is the same as it would be in a theory
which did not have the scalar field ¢. To see this, suppose
we do an experiment where we place an additional pair of
plates, carrying surface charge densities 6 at x = —F L,
where L < L. The field between the plates is now

o+o0 .

E = & (19)

€0

The potential difference between z = +L is now

v=2or2 422 (20)
€0 €0

We find that the condition AE’ = AE is now satisfied at
mcieo I g
qo o

E:

Lonin (21)

Thus if we let L > Emm then we will in fact get creation
of particle pairs for the scalar field ¢.

It may seem that the particle creation we get this way
is a small quantum effect, and so nothing dramatic hap-
pens when L crosses L.,i,. But now let us add to our
toy model a version of ‘entropy enhancement’. Instead
of one scalar field ¢, we take IV scalar fields ¢;, with

N>1 (22)

We still set L < L. Thus before we add in the extra
plates at x = £L, we have no on shell particles. Now
we add in the extra plates at * = +L. When L < L,in,
there are still no on shell particles of the fields ¢;. But
when L crosses L., we get a large number of created
pairs, and the backreaction of this pair creation can cre-
ate a significant change in the dynamics of the plates at
r==+L.

To summarize, the large number of virtual pairs of
the fields ¢; changes the vacuum between the plates at
xr = £L, to a form different from the vacuum in a the-
ory which did not have the fields ¢;. This is an example
of an altered vacuum state, and we have noted that this
altered state can lead to a large effect of the dynamics of
the plates at = +L if we assume the ‘entropy enhance-
ment’ (22). This effect is quantum in its origin however,
and would be missed if we considered only the classical
dynamics of the electrodynamic setup considered here.

B. A schematic picture of the near-horizon region

Let us now ask: what is the consequence of having a
region with altered vacuum fluctuations? We illustrate
our conjecture with a schematic model:

(i) Consider the edge of a lake depicted in fig.4. On
the left is land; this represents the interior of the fuzzball
r < rp. The water represents the exterior region r > ry,.
Waves can propagate on the surface of this water, and
represent matter quanta in the region r > ry,.



(ii) If a quantum were travelling in flat spacetime, we
would depict it by a wave on a lake with infinite depth.
But as we approach r = ry, the vacuum gets altered more
and more strongly by the effects depicted in fig.2. In our
schematic model, the effect of these altered fluctuations
is to reduce the depth of the lake; this depth goes to zero
as we reach r = ry.

(iii) Consider a shell carrying energy AM which is
falling towards the fuzzball surface. This corresponds
to a wave on the lake, with the wave height being pro-
portional to AM. Since the depth of the lake decreases
towards the shore, there will be a point where the height
of the wave becomes comparable to the depth of the lake.
Beyond this point the will no longer be able to travel
freely as if it were a wave on a lake of infinite depth, and
we expect new dynamical effects to arise. In the fuzzball,
the shell of mass AM will similarly reach some location
r > rp where it is no longer able to proceed as expected
by a semiclassical analysis; this is the point where the
tunneling into fuzzballs will start to take place.

To summarize, we have argued that we should think of
the spacetime outside the fuzzball (i.e. the region r > )
as having a ‘thickness’ that reaches zero at the surface
of the fuzzball, and increases as we go away from the
fuzzball. Thus it does not make sense to ask if physics
is ‘normal’ outside the fuzzball: the correct question is:
the physics is normal for objects upto what energy AM?
The answer would then be that the physics is normal
below an energy where the shell would have started to
pass through its own horizon; and at this point we get
the entropy-enhanced tunneling which changes the shell
into a fuzzball.

C. The notion of spacetime having a ‘thickness’

The notion that we should associate a ‘thickness’ with
spacetime arose in the discussion of [16]; let us recall this
discussion here.

Consider the extremal 2-charge hole in string theory
given by the D1D5 model. The D1D5 system is ob-
tained by compactifying IIB string theory as Mg —
My x St xT* We wrap n; D1 branes on the S! and nj
D5 branes on T4 x S'. The bound state of these branes
gives an effective string wound around the S' with wind-
ing number N = nins. This effective string can be par-
titioned in different ways into ‘component strings’ with
different windings k. If the winding of each component
string is the same, then the number of component strings
is given by n. = N/k. In fig.6 we depict two different par-
titions: one where all windings are unity, and one where
we have a single component string of winding £ > 1.
The corresponding spacetime solutions have throats of
different depth: the ones with the large winding & has
a deeper throat. We say that the geometry has been
‘stretched’ more in this situation. It was then argued
that this stretching gives rise to a spacetime which has a

lesser ‘thickness’, in the sense that it can be more easily
distorted to create a near-extremal black hole. More pre-
cisely, it was found in [4] that the black hole threshold
is reached when we send into the throat a quantum with
enough energy F to excite each component string with
its lowest allowed excitation energy. If the S* has radius
R, then the lowest excitation consists of one left and one
right moving vibration with energy

1 1 2

R TRR iR (23)

The minimum total energy required to excite all compo-
nent strings is then

In the gravity solution, we find that a quantum with
energy E > E,,;, creates a black hole (fuzzball) instead
of just bouncing back from the ‘cap’ at the end of the
throat. Note that all parameters like the string coupling
g and the size of the T% cancel out; leaving the simple
expression (24) for this critical energy. Since the throats
where the spacetime been more stretched — the ones with
larger k — are more easily deformed to black holes, we say
that the ‘thickness’ of the space decreases when space is
stretched. Thus we can think of spacetime as a rubber
sheet rather than just a manifold: the thickness of such a
rubber sheet decreases when the sheet is stretched, while
a manifold has no ‘thickness’ whatsoever.

D. The ¢c=1 Matrix model

Another system which furnishes a useful analogy for
our purposes is the ¢ = 1 matrix model. This model does
not have a black hole, or the phenomenon of ‘entropy
enhanced tunneling’, so we do not capture all the features
of our conjecture. But the model does have a ‘fermi sea
with varying depth’, which is similar to fig.4.

The model arises from the quantization of a N x N Her-
mitian matrix with a Lagrangian Tr[M? — V(M)]. The
eigenvalues of this matrix behave like fermions, which fill
a fermi sea in the ground state [17]. Small ripples on this
fermi sea are described by a quadratic Lagrangian, and
can be mapped to a massless scalar ¢. But the depth
of the fermi sea goes to zero near its edge. When a
ripple gets close enough to the edge that its height is
comparable to the depth of the fermi sea, then a cubic
term becomes relevant in the effective Lagrangian for the
scalar, so it no longer behaves as a free field. One can
analyze the nonperturbative dynamics that results from
this cubic coupling, and regard this as a model for non-
perurbative effects in gravity [18].

We can map the low energy behavior of this scalar ¢
to a scalar coupled to 141 dimensional dilaton gravity.
We then find that the place where the ripple touches the
bottom of the fermi sea is roughly the location where
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(a) (b)

FIG. 6. Two microstates of the D1D5 system and their cor-
responding geometries. (a) The effective string is broken into
‘singly wound cycles’; the corresponding geometry is a shal-
low throat. A quantum thrown into this throat returns back
to infinity without creating a horizon. (b) The effective string
is ‘multiply wound’; the corresponding geometry has a deep
throat, and a quantum with the same energy will create a
fuzzball when it reaches the location marked by the dotted
circle. We say that the extra stretching in (b) has made the
space have a smaller ‘thickness’ than the space in (a), so it is
depicted with a thinner line.

a black hole would have formed if the dilaton gravity
description had continued to be valid [19, 20].

While the low energy dynamics of the fermi sea resem-
bles dilaton gravity, there is no long-lived black hole type
state in the matrix model [21]. It might therefore seem
that this model does not furnish a useful analogy for the
information puzzle. But we should note that the model
arises from an actual quantization of string world sheets,
so it is an example of a string theory computation rather
than just a schematic model. Thus it is significant that
this model leads to a ‘fermi sea with varying depth’ in a
natural way. Further, the breakdown of classical evolu-
tion in this model — resulting from the formation of ‘folds’
on the fermi sea — can be understood as a nonperturba-
tive effect arising from the interaction between a large
number of bosonic quanta [22]; thus this effect may have
some similarities to the idea of ‘entropy enhancement’
that we have used in our picture.’

1 It should be noted however that the eigenvalues making up the
fermi sea decouple from the angular degrees of freedom of the
matrix, so a perturbation on the fermi sea is not able to access
most of the ~ N2 degrees of freedom in the matrix model.

V. THE ‘PSEUDO-RINDLER’ CONJECTURE

While the above intuitive examples serve to illustrate
the physics we are looking for, they do not tell us how a
‘varying depth sea’ should actually arise. String theory
is a complete theory which permits no addition of new
particles or interactions. So if we wish to argue that the
region outside a fuzzball is different from the conventional
vacuum, then we have to conjecture a concrete source
effects in string theory which can generate the required
change of state. This is the question we turn to now.

In this section we explain our conjecture that vacuum
fluctuations of the fuzzball change the region outside the
fuzzball from Rindler space to what we will call ‘pseudo-
Rindler’ space. We will first state the context of problem
we are addressing (Section V A), then state our ‘pseudo-
Rindler’ conjecture (section V B) and finally use this con-
jecture to get a picture of infall in a theory with fuzzballs
(section V C).

A. The state around the horizon

The traditional understanding of a black hole has been
dominated by two ideas:

(i) The spacetime at the horizon of a large black hole
is essentially a part of Minkowski space in its vacuum
state.

(ii) The region just outside the horizon is locally de-
scribed by Rindler space; i.e., the Schwarzschild coordi-
nates become the Rindler coordinates which cover one
quadrant of Mikowski spacetime.

It is true that (ii) is implied by (i): if the region around
the horizon is a patch of Minkowski space, then restrict-
ing this patch to the part outside the horizon will give
Rindler space. But with fuzzballs, we find that (i) is not
true: the region r < 2GM + ¢ is altered to a state [¢))
that has very low overlap with the local vacuum (i.e.,
(0lY)) < 1). We can now ask if (ii) is still true; i.e., is the
space outside the fuzzball locally identical to the Rindler
quadrant of empty Minkowski space? Our conjecture will
be that with fuzzballs, (ii) is not true either: the vacuum
fluctuations in this region change Rindler space to what
we will call ‘pseudo-Rindler’ space.

Before we address how (ii) would be invalidated, let
us recall how (i) fails in the fuzzball paradigm. Empty
Minkowski space has no mass:

M =0 (25)

If we take a black hole whose radius tends to infinity,
then we have the limit

M — (26)

Classical, it appears that the spacetime generated by the
limit (26) reproduces, in a patch near the horizon, the



locally flat spacetime given by (25). But in the case (25)
we have a unique ground state; i.e., the number of states
is

N=1 (27)

while in the limit (26) the number of states goes to infin-
ity

Nz eSeer (M) o (28)

In the fuzzball paradigm, the difference between (27) and
(28) prevents us from decoupling a small region around
the horizon of a black hole and treating it as a patch of
empty Minkowski space. The phase space volume cor-
responding to (28) grows rapidly and nonlinearly with
M, and we are forced to look at the complete system as
a whole when the tunneling into the fuzzball states |F;)
becomes important.

B. Vacuum fluctuations outside the fuzzball

In fig.2(a) we depict the traditional black hole with
vacuum at the horizon. Fig.2(b) depicts a fuzzball.

In the region outside the horizon of the traditional hole,
we have the same vacuum fluctuations as we would find
locally in empty space. Note that the absence of exci-
tations like (9) around the black hole prevents us from
changing the vacuum; this was the ‘no-hair theorem’ at
the quantum level.

But the case is different for the fuzzball, as we see
from fig.2(b). Now we have a surface at the location
r = 2GM + €. This surface can emit virtual quanta into
the Rindler region, which generates vacuum fluctuations
that would be different from those in a patch of empty
space. It is these fluctuations which change the spacetime
around the hole from Rindler to pseudo-Rindler. The two
questions that we must now address are:

(A) What is the nature of the relevant quantum fluc-
tuations?

(B) Why should such fluctuations be important for the
dynamics of the hole?

Let us now state conjecture our answer to these two
questions in the fuzzball paradigm.

(A’) Suppose we start with a fuzzball of mass M. Con-
sider a fluctuation where the configuration changes to a
fuzzball of mass M + AM. Since we do not have the ex-
tra energy AM, this is a virtual fluctuation, just like the
appearance of a virtual electron-positron pair in the vac-
uum. Note that the amplitude for this fluctuation will be
large if AM is small; i.e., if the hole already has a mass
M close to the value M +AM. We conjecture that these
fluctuations of the hole into fuzzballs of larger size are
the fluctuations relevant for changing the polarization of
the vacuum in the region outside the fuzzball.

(B’) Vacuum fluctuations are normally a quantum ef-
fect, ignorable for the leading order classical approxima-
tion for macroscopic dynamics. But here we encounter
the entropy-enhancement effect again: the number of vir-
tual fuzzballs N with mass M + AM is very large

N @Seen(MFAM) 5, q (29)

The large number of these virtual fluctuations can com-
pensate the low probability of the fluctuation to any indi-
vidual fuzzball. Thus the vacuum polarization caused by
these fuzzball fluctuations can be significant. The region
around the hole polarized by such fluctuations is what we
call pseudo-Rindler space, to distinguish it from Rinder
space which has just the fluctuations of empty space.

C. A picture of infall

Let us use the conjecture above to obtain a picture
of infall onto a fuzzball of mass M. This fuzzball has a
surface at r, = 2GM + e.

(a) Start with the fuzzball of mass M. Let a shell of
mass AM be incident on this fuzzball from infinity.

(b) When the shell is at large radii = it travels in the
usual semiclassical approximation. The fuzzball of mass
M has fluctuations to fuzzballs of mass M + AM. But
the region near the fuzzball has only energy M, so these
fluctuations remain virtual.

(¢) When the shell reaches close to r = 2G(M + AM),
these virtual fluctuations are able to turn into real fluctu-
ations, since now a mass M + AM is available in a region
with radius equal to the radius of these virtual fuzzballs.
We then get the process outlines in section III where the
shell breaks up into bubbles, creating a fuzzball state in
the region 2GM < r < 2G(M + AM). At the end of this
process we are left with a fuzzball of mass M + AM and
radius 2G(M + AM).

D. Causality in the collapse process

Our central question was: how is causality maintained
during the process of transitioning to fuzzballs? Looking
at the transition process conjectured in section III we see
that we do not have any violation of causality; this is
because the shell never gets trapped inside its own hori-
zon. Let us analyze in more detail how such a causality
preserving transition is attained in our picture.

Suppose the shell is composed of massless quanta that
fall in radially at the speed of light. In this case it is true
that the incoming shell cannot influence the fuzzball sur-
face at r = 2GM + € when it is still far away from this
surface; this is because there has not been time for a light
signal to go from the infalling shell to the fuzzball sur-
face. Thus there is certainly no way for the infalling shell



at r > 1 to influence the fuzzball surface at » = 2GM +¢
to send an outwards signal that will change the motion
of the shell. So it would seem that the shell would travel
inwards while maintaining in the semiclassical approxi-
mation all the way till » = r, and then crash onto the
fuzzball surface.

But we have argued that this is not the case. The
fuzzball (describing the black hole of mass M) has been
in existence for some time (several crossing times, say).
This allows the mass M to polarize the space outside
r = rp by virtual fluctuations of fuzzballs (fig.2(b)), with-
out any violation of causality.? When the shell is at a
position r > 7, then it can react to the altered vacuum
polarization at its position . When the virtual fuzzball
fluctuations reaching upto location r are more massive
than the total available energy M + AM then they have
very little effect on the infalling shell of mass AM. The
situation changes at the location r = 2G(M+AM), when
these virtual fluctuations can turn into on-shell fuzzball
states by absorbing the energy AM of the shell. This
change is quite sudden because it involves the compe-
tition between two exponentials: a decreasing one from
the action required to create the massive fuzzball, and
a growing one from the large degeneracy (29) of these
fuzzballs. In this manner the shell can transition to
fuzzballs at a point r > r, — before it crosses its own
horizon — and without any violation of causality.

Given that the spacetime outside the fuzzball has an
altered vacuum state, one might wonder if we should say
that the fuzzball itself extends past r = r,. The reason
that we should not say this is the following. Low energy
quanta travel in the region r» > r, just as they would in
empty spacetime, so for such quanta the region r = ry is
in fact characterized accurately by the classical metric.
In fact for any given mass AM of an infalling shell, the
classical metric captures the dynamics to a good approx-
imation for r > 2G(M + AM). Thus we should still say
that the fuzzball ends at r = 7, but that it alters the
vacuum at r > ry.

VI. COMMENTS ON THE PSEUDO-RINDLER
CONJECTURE

We have proposed that vacuum fluctuations modify the
spacetime outside the fuzzball to yield pseudo-Rindler
spacetime, and that this effect allows causality to be
maintained in the process of fuzzball formation and evap-
oration. We now make some observations to explain var-
ious aspects of this proposal.

2 In fact we can make a stronger statement. The fuzzball was
created by matter which fell in from infinity, and this infalling
matter crosses all the positions > rp in the process of reaching
its final location. Thus causality does not forbid this matter from
influencing any location r > ry,.
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A. Collapse in empty space

In the above discussion, we have started with a fuzzball
of mass M, and considered a shell of mass AM that
collapsed towards the fuzzball. We can take the limit
where M — 0, so that we have just the collapse of a
shell in empty space. What does our conjecture about
causality say in this case?

The fuzzball of mass M had vacuum fluctuations to
fuzzball states of mass M + AM. Even if we have no
mass in our spacetime, there will be vacuum fluctuations
corresponding to fuzzball states of all masses M, cen-
tered about all points of spacetime. When a shell of
mass M contracts to the point where it is about to form
a horizon, these vacuum fluctuations become converted
to ‘real’ fuzzball states, and we get the picture of black
hole formation described in fig.5. This picture preserves
causality, as we have noted.

Note that the tunneling to fuzzball states happens
when the matter density in the collapsing shell is still
low. As noted in section I, this is one of the aspects
of the fuzzball paradigm: the large entropy of fuzzball
states destroys the semiclassical approximation when the
collapsing shell reaches its horizon radius. To understand
this a little better let us recall a toy model presented in
[8]. Consider the collapse of a shell with mass M. Imag-
ine that the theory contains a large number N of massless
scalar fields ¢;. These fields are in their ground state, so
the shell is collapsing in the vacuum. When the shell tra-
verses the region between say 4GM to 3GM, it changes
the metric there by order unity, and this deformation cre-
ates ~ 1 pairs of excitations for each scalar field ¢;. The
wavelength of each such created quantum is A\ ~ GM,
which corresponds to an energy ~ 1/(GM). Suppose the
number of species N satisfies

N> GM? (30)

Then the infalling shell will lose its energy to the created
quanta before it reaches its horizon, and a black hole
will not form. Of course in this toy model N is a fixed
number, so we will still get horizon formation if M >
(N/G)z. But in a theory with fuzzballs, the number of
fuzzball states that we can transition to grows with M,
and so we do not form a horizon for any M.

B. Vacuum fluctuations vs. thermal fluctuations

We have conjectured that the vacuum fluctuations cre-
ated by the existence of a fuzzball surface at r ~ 2GM +¢
polarizes the spacetime outside the fuzzball to a state dif-
ferent from usual empty spacetime. Note that these are
quantum fluctuations rather than thermal fluctuations.
To see the difference, consider a an extremal hole with
charge @ = M. The hole has a temperature T' = 0,
so there are no thermal fluctuations near the near hori-
zon. But if we throw in a neutral shell of mass AM,



then the classical dynamics would create a horizon at
e — o, &= G/2QAM. Thus to preserve causality, we
would need fuzzball formation at this location r,, which
would arise from nontrivial quantum fluctuations at r;“*.
Thus the fluctuations we are interested in are quantum
fluctuations rather than thermal fluctuations.

It is important to distinguish these vacuum fluctua-
tions caused by the fuzzball from the fluctuations that we
get when expressing Minkowski spacetime in Rindler co-
ordinates. Minkowski space of course has its own vacuum
fluctuations. If we write Minkowski space is Rindler coor-
dinates, then we are not changing these fluctuations: we
are simply splitting them in a different way between what
we call the ‘vacuum’ and what we call ‘particles’. By con-
trast, when we have a fuzzball boundary at r ~ 2GM + ¢
then the vacuum fluctuations in the region r > 2GM + ¢
actually change. The presence of the boundary breaks
the translation invariance of the local spacetime. This
allows new fluctuations of the kind pictured in fig.2(b),
and it is such fluctuations that help resolve our causality
problem.

Put another way, we may break up the fluctuations
outside the fuzzball into two categories:

(i) We have a gas of gravitons near the fuzzball surface;
these have the same temperature and energy density as
the graviton gas found in Rindler space.

(ii) We have excitations that are supported by the
fuzzball surface at r, = 2GM + ¢; these fluctuations are
actual deformations of the fuzzball, and would not arise
if the fuzzball surface did not break the translation in-
variance of the local spacetime.

It is the fluctuations of category (ii) which are relevant
for creating the entropy enhanced tunneling that we have
conjectured to help resolve the causality problem.

C. The wavefunctional in superspace

We have argued that even in empty Minkowski space-
time, there are quantum fluctuations, around every point,
into fuzzball modes of all energies M. How should we un-
derstand the wavefunctional describing such a vacuum
state?

This question was addressed in [8]. We should not
think of just the Minkowski metric, but of superspace —
the space of all possible metrics. The gravity wavefunc-
tional is a wavefunction on this superspace. Most of the
regions of this superspace corresponds to configurations
that have a large mass M > 0; fuzzball solutions are ex-
amples of such points in superspace. Empty Minkowski
space has M = 0, so these M > 0 regions are ‘under
the barrier’ for the wavefunction on superspace. The
wavefunction in these regions does not vanish; rather it
decays towards the direction of larger M just like wave-
functions decay under the barrier in a square-well poten-
tial in quantum mechanics.
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FIG. 7. The spacetime generated by the collision of two shock
waves [24]. The shock waves describe massless particles A and
B that meet in a head-on collision. The shaded region has a
nontrivial structure arising from the effect of the collision.
The other regions of the geometry are parts of Minkowski
space. The dashed line denotes a light ray emitted by A; such
rays can reach infinity for all emission times upto the collision
point.

Ordinarily the part of the wavefunction under the bar-
rier would not be very significant. But due to the large
entropy of fuzzballs the volume of superspace where the
wavefunction is under the barrier is very large. Thus
most of the wavefunction is actually under the barrier.
This part of the wavefunction still does not have a large
significance for the propagation of light quanta on space-
time. But now consider the collapse of a shell of mass
M. When such an extra energy is available, the part of
the wavefunction that was under the barrier at M = 0
can now become oscillatory. In particular when the shell
reaches a radius r =~ 2G M, the wavefunction describing
fuzzballs of radius r, &~ 2G M becomes oscillatory. These
fuzzballs thus become on-shell states, and this is the tun-
neling into fuzzballs that we have conjectured.

It would be interesting to explore further the wave-
functional we have conjectured where a large part is ‘un-
der the barrier’ in the form of fuzzballs. For example,
one might ask how the part under the barrier is altered
when there is a cosmological constant A, and whether this
might favour a small A over other values. The nature of
the vacuum (and in particular its Lorentz invariance) was
studied for the Schwinger effect and for bubble nucleation
in [23].

D. Causality in a special limit

Consider the situation where we make a black hole
by a head-on collision of two massless particles. One
particle A with energy E travels along the positive = axis,
while another particle B with energy E travels along the



negative x axis. We can arrange the trajectories so that
the particles meet at x = 0,¢ = 0.

If signals do not travel faster than the speed of light,
then the first particle cannot know if the existence of the
second particle until they actually collide at t = 0. What
constraints are set by causality in this situation?

The black hole spacetime created by such a collision
was studied in [24], and is depicted in fig.7. The shaded
region is the interior of the hole; in our paradigm, this
is the region where a fuzzball should exist. The other
regions are locally flat spacetime. We see that a null ray
can start at particle A at any time before the point of
collision and escape to infinity; such a ray is depicted
by a dashed line in the figure. A similar situation holds
of course for particle B. Thus we see that causality does
not require fuzzball formation before the collision in this
example. After the collision a fuzzball can be generated
at the point of impact and expand, maintaining causality,
in such a way that its surface lies just outside the shaded
region in the figure.

E. Fluctuations outside a star

A black hole of mass M has a horizon radius r = 2G M,
and in the fuzzball paradigm this would be replaced by
a fuzzball of radius r, = 2GM + e. We have argued that
the region r > 7, contains virtual fluctuations that are
important for the dynamics of heavy infalling objects.
But now consider a neutron star of mass M. The radius
of this star is 744 > 2G M. Will here be a similar change
in vacuum fluctuations outside this star?

Consider a shell incident on this star with mass Mpe;.
Then in the classical picture of collapse the shell will form
a horizon at a radius

ry, = 2G(M + Mgpen) (31)
provided that
Th > Tstar (32)

We satisfy the condition (32) for

Tstar

Mpen >
hell 20

M (33)

Thus for shells with mass satisfying (33) we will again
have our problem with causality, if we do not have a
tunneling to fuzzballs just before the shell reaches the
radius 7. Note that r, depends on the total mass M
in the region interior to the shell, but not on whether
this mass M is in the form of a black hole (fuzzball) or a
neutron star. Thus we conjecture that the fluctuations at
a radius r > rgq, are, to leading order, the same outside
a neutron star and a fuzzball provided the two objects
have the same mass.

But recall that the fluctuations are strong near r ~
2G M and small further away. Since 744, is much larger
than 2GM, the fluctuations at r > rg,, are quite weak
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anyway, and cannot be seen unless we probe the system
with a shell of mass exceeding (33). Thus while we do
have fluctuations outside a neutron star, small infalling
objects will not be affected in any appreciable way by
these fluctuations as they fall onto the surface of the star.

VII. DISTANCE AND ENERGY SCALES

In this section we give estimates for the distance s from
the horizon at which an incoming pulse of energy loses
semiclassical behavior. We have conjectured above that
this is the location where a horizon would be about to
form, so our estimates are just those that give the lo-
cation of the horizon for a given energy profile of the
infalling object. But it is useful to recall these results in
the present context and see the value of s in the Rindler
approximation for different kinds of infalling objects.

A. The Rindler approximation

The Schwarzschild hole in D spacetime dimensions is
give by the metric

ds®> = —f(r)dt* + ;(—7; +r2d0% _, (34)
where
fry=1- ()" (35)
and

= <<D —1627;gD_2 M> h (36)

The near-horizon region is given by r — 79 < ro. In this
region we define

2 1 1
SZT%(T—T‘())Q, TZEOt (37)
Jo

where f = df /dr(r = r¢). This gives

D—2
ds® =~ —s*dr* + ds* + Z dx;dx; (38)

=1

We see that s measures the distance from the horizon.

B. Infalling shell

Consider the infall of a spherical shell of mass m <
M onto the hole (34). From (36) we find that the new
horizon will form at

279 m

sp ~ Do\ (39)



so the tunneling into fuzzballs will take place just outside
this location. It is interesting to note that we cannot take
a strict Rindler limit of this process. In such a limit the
shell will look like an infinite plane sheet stretching in the
directions z;, with some surface energy density o. One
may then try to ask for the value of s where such a sheet
will form a horizon. But as we will now note, the value
of 7y does not decouple from such a computation, so we
cannot take the limit ro — oco.

Consider the shell as it passes the point s = s1; we
assume that s, < s; < rg. At this point we can set
up a local orthonormal frame with unit vectors £, 7 along
the ¢, r directions. The shell is moving close to the speed
of light at this location. The shell will look like a plane
with surface energy density in the local frame given by

o om (D-3)\"'" (D=2 1 m
n Qp_ord 72 (Sl 2rg > - (D -3)87GM s,
(40)
where the factor (s1 (DQ;?) )~1 arises from the redshift at
the location s;. One may now try to hold fixed s1, 07 and
ask for the location sj; this would pose the problem in
a purely Rindler language. But expressing (39) in terms
of o1 rather than m we find that

1
327TG0181 2
~ —_ 41
w=no (om0 ) )
so it diverges in the Rindler limit ry — oco. In other

words, the location s;, of the horizon depends on the
total extent of the sheet in the directions z;, and not just
on the local surface energy density o. (The extent of the
sheet is Ax; ~ rg.)

In section IV B, we had considered an analogy where
the infalling object transitioned to fuzzballs at a location
where the ‘height of the wave became comparable to the
depth of the lake’. In this language we can interpret (41)
as follows. In general the height of the incoming wave at
a location x; is determined not just by the density o at
the location x;, but also by the value of ¢ at neighboring
values of x;. If the sheet is very large, then the location
sp, will be determined by the entire extent of the sheet,
and not just by its local energy density.

To study this in more detail, we now consider the infall
of a compact object, where we can in fact take a Rindler
limit. We will then see how to compose the effect of a
distribution of such objects and recover the result (41)
for the shell.

C. Compact infalling objects

Consider an infalling object with energy E. When this
object gets absorbed by the black hole, the entropy of
the hole increases by

Nt

(42)
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In [25] a rough criterion was proposed for when the tun-
neling into fuzzballs would commence. Suppose the in-
falling object is at a distance s from the horizon. Con-
sider a hemispherical surface of radius ~ s which rep-
resents the deformation of the horizon in the process of
absorbing the infalling object. The area of this surface is

AA ~ sP72 (43)

Then it was conjectured that the tunneling into fuzzball
will take place when the infalling object reaches a dis-
tance s from the horizon where

AA
— ~AS 44
- (44)

which gives

5~ (%)D L (45)

It is useful to think of the energy at infinity F in units
of the energy ~ T of the Hawking quanta at infinity

=— 46

n= (46)

As the object falls in, the energy gets blueshifted to

higher values in a local frame like that used in (40), but

T gets blueshifted by the same factor, so that we always
have Ejocal/Tiocar = n. In terms of n, the scale (45) is

§ ~ D2 (47)

In the above estimate we assumed that all length scales
were ~ s, but we can consider objects that are very com-
pact, with a size d < s. In this case the location of the
event horizon was computed in [26]. For us the more
relevant location is that of the apparent horizon, but for
our present estimates we will assume that they are given
by a scale that is at least qualitatively similar. Consider
the metric (38) describing the near horizon region. We
define Minkowski coordinates through

T =ssinht, Z=scoshTt (48)

Consider a particle with energy given by n as in (46).
Let E be the energy of this particle when it is at a dis-
tance s from the horizon, as measured in a local Lorentz
frame with axes along T',Z. At this location the local
temperature is

1
Tiocal = =— 49
oot = (49)
SO
. n
EFE=— 50
27s (50)

A pointlike object moving with the speed of light with
this energy generates an Aichelberg-Sex] shock wave of
the form

ds® = —dUdV + E®(|z|)s(U — Up)dU? + da;dz;  (51)



where U =T+ Z, V=T — Z and

CD

o= — 2
R (52
with
167G
D= (53)

(We have restricted to D > 4 for simplicity; the case
D = 4 gives a log in place of the power law in |z].)

The future horizon is at V' = 0. Consider an outgoing
null ray V' = Vj outside the horizon. Let us assume that
this ray meets the shock when the shock is at the above
selected distance s from the horizon. In the process of
passing through the shock the outgoing null ray will get
‘pushed’ towards the horizon by an amount

AV = Ed(|z|) (54)

where |z| is the distance between the outgoing ray and
the infalling particle as measured in the plane of the
shock.? In this process we have AU = 0, which gives
AT = —-AZ. Thus

AV = —2AZ (55)

If AZ = —s, the outgoing null ray will get pushed into
the horizon, and thus not emerge to infinity. Thus we set
the needed shift to AV = 2s, and equate this shift to the
expression (54):

2s = E0(|a]) = (5 ((D—ZW) (56)

Thus when the infalling particle is at a distance s from
the horizon, its shock front has trapped all outgoing null
rays which are between the shock and the horizon, as
long as the value of |z| for the null ray is less than the
one given by solving the above relation

s = (22) 7 57)

To summarize, when the infalling particle is at a distance
s from the horizon, the excitation in the region |z| <
|€|maz at the radial position s has reached the ‘bottom
of the sea’ in the schematic picture of fig.4, and we will
have a tunneling into fuzzballs in this region.

If we set all scales to be comparable; i.e., |Z|mazr ~
in (57), then we recover (47).

3 We have assumed that the outgoing ray emerges from the shock
in a direction which is radially outwards (i..e travelling in the Z
direction); such rays will escape the pull of the hole more easily
than rays directed at an angle. Thus we should consider radially
outgoing rays when locating the new horizon.
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D. Infall of a mass distribution

Let us now consider more general distributions of in-
falling matter. First, let us relate the location of the
horizon (39) we found for the spherical shell to the ap-
proach we used for the infalling particle. Consider again
a infalling shell with mass m; at a distance s; from the
horizon its surface energy density is given by (40). Sup-
pose this shell falls inwards to a location s < s;. The
surface energy density is now

o= o1 <§) (58)

The quantity E® in (51) is give by integrating over the
shell to find the potential. Thus at x = 0 we would get

1

E(I)((E = O) ~ /dD_2(EIGO' W (59)

For an infinite plane this integral would diverge, but we
should cut off the integral at || ~ rg. Thus we set

1
D—2 2
/d I|$|D_4 ~ s (60)
We then get for the shift AV
1
AV ~Goy (;) r2 (61)

Setting AV = 2s as in (55) we find that a horizon will
appear when

s~ Goy (%1) e (62)

This gives

[N

S~To (GO’181) (63)
which agrees with (41).

For more general distributions of infalling matter, we
can similarly compute the potential ® created by the
shock waves in the near horizon region, and compute
the shift AV due to these shocks. If this shift pushes
a geodesic back by an amount that would take it inside
the surface of the existing fuzzball, then we can say that
this geodesic is ‘trapped’, and use this to fact to get as
estimate of when the tunneling into fuzzballs should com-
mence.

VIII. THE CAUSALITY PROBLEM AND THE

FIREWALL ARGUMENT

To see the power of the causality constraint, we now
show that it creates a conflict between two of the assump-
tions made in the firewall argument.



Hawking’s computation showed that if we have the vac-
uum state at the horizon, then we will have a monotoni-
cally increasing entanglement. This leading order compu-
tation was made rigorous using a bit model in [2], where
it was shown to be robust against small corrections to
the evaporation process. This converts the Hawking ar-
gument into a ‘theorem’. We can state the theorem in an
exactly equivalent way as follows. Suppose we assume

Ass:1 The information in the hole is radiated out the
same way as by any other black body; i..e, there is no
monotonic rise in entanglement.

Then the Hawking theorem says that the horizon can-
not be a vacuum region.

AMPS [27] sought to make this result stronger by
adding an extra assumption

Ass:2 Let the region r > 7, +1, (i.e., the region outside
the stretched horizon) be described by ‘effective field the-
ory’; i.e., the physics outside the hole is ‘normal physics’.
In particular, if a shell is approaching the stretched hori-
zon at the speed of light, then, by causality, the stretched
horizon cannot respond in any way until the shell actually
reaches the stretched horizon.

Under these assumptions, AMPS argued that an in-
falling object will encounter radiation quanta of increas-
ingly high energy E,..q4 as it approaches the horizon, with
E.qq reaching planck scale at the stretched horizon. Thus
not only is the region near the horizon not a vacuum, it
is a ‘firewall’ for any object that tries to enter the hole.

The intuition behind the firewall argument is simple.
In Hawking’s pair creation from the vacuum, the particles
do not actually materialize until they are well separated
from the horizon; the region around the horizon remains
a vacuum. Thus any actual particles (i.e. those that can
be interacted with) are always long wavelength (A ~ 73)
quanta. But if the radiation was emerging from a hot
surface placed at the stretched horizon, then one can fol-
low these quanta back to a location close to the stretched
horizon, where they will be blueshifted to high energies.
They will still be real particles however, and can interact
with and burn an infalling object.

But we find that there is a problem with this argument,
since Assumptions Ass:1 and Ass:2 are in conflict with
each other due of the causality problem. We can see this
as follows:

(a) Consider a black hole of mass M. The stretched
horizon is at

re =2GM +1, (64)

By assumption Ass:2, the region r > ry has ‘normal
physics’, given by usual effective field theory.

(b) Now consider a shell of radially ingoing gravitons,
carrying a total energy AM Since this shell moves at the
speed of light, it continues to move inwards all the way to
r = rg, with a dynamics governed just by effective field
theory (again by assumption Ass:2).
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(c) The total mass of the black hole and the shell is
M+ AM , which corresponds to a horizon at the location,

r = 2G(M + AM) (65)

From (a) we see that the shell must pass without drama
through the location (65). But then the information in
the shell is trapped inside its own horizon, and cannot
reach infinity unless we have a violation of causality.*

(d) But we cannot violate causality in the region
r > 14, since this region is assumed to be described by
effective field theory. Thus we find that the information
in the shell cannot be radiated to infinity, in violation of
assumption Ass:1.%

Note that if we are willing to violate causality, then
there is no information puzzle in the first place; we can
always say that some mechanism takes the information
from the singularity and puts it outside the hole. Thus
we see that causality creates a conflict between the as-
sumptions Ass:1 and Ass:2 used in the firewall argument;
in consequence we cannot argue that black hole horizons
must act like firewalls.

Let us now see how the assumptions of the firewall ar-
gument differ from the situation in the fuzzball paradigm.
The crucial point is that in the fuzzball paradigm, at any
point r > r, outside the hole, we have ‘normal physics’
(effective field theory) only for infalling objects up to a
certain energy E(r); objects with energy E < E(r) will
travel through the location r without any significant de-
parture from semiclassical evolution, while objects with
energy E > E(r) will not. Recalling the infall picture of
section V C, we see that the transition to fuzzballs pre-
vents the trapping inside the horizon. By contrast, the
assumptions of the firewall argument force the trapping
of a massive shell inside its own horizon, and then we
have a problem with causality.

IX. FUZZBALL COMPLEMENTARITY

In the above sections we have seen how the fuzzball
paradigm can solve problems (A),(B) while maintaining

4 One should note that the shell can interact with any Hawking
radiation quanta that are emerging from the stretched horizon.
But the energy of these quanta drops sharply as they recede from
the horizon. The wavelength at a distance s from the horizon
is A ~ s, so that at 1 mm from the horizon the temperature
as already lower than the microwave background of outer space.
Thus we can easily take AM large enough so that the shell has
a negligible interaction with this radiation at the point where it
passes through its horizon.

We can of course let the information be trapped in a remnant,
and then perhaps leak out very slowly over a timescale much
longer than Hawking evaporation time. But this is not what was
assumed in Ass:1 — this assumption was really asking for the hole
to radiate like a normal body and send its information out in the
radiation.

ot



the requirement of causality in our theory of gravity. In
this section we will recall the conjecture of fuzzball com-
plementarity, which addresses a somewhat different ques-
tion in black hole dynamics: the infall problem. After
recalling this conjecture we will note that while causality
is certainly not sufficient for the conjecture to be true,
it s a necessary condition for such a conjecture to be
possible.

A. The infall problem

Besides the questions (A) and (B) stated in section I,
we can ask another question:

(C) What does an infalling observer feel as he reaches
the horizon of a black hole?

In the traditional semi-classical picture of a black hole
he would pass through the horizon without noticing any-
thing special. But if the horizon is a vacuum region then
we have the problems (A),(B). If we have a nontrivial
structure at the horizon, then we may be able to resolve
(B), but it seems that the observer must interact with this
structure and thus not feel that he is harmlessly passing
into the black hole interior.

We may call (C) the ‘infall’. question. Note that this
question is not on the same footing as questions (A),(B),
in the sense that it does not relate to any fundamental
problem with our theory of gravity. If the observer feels
something nontrivial at the horizon, then we say that the
full quantum gravity theory implies for him an experience
different from the traditional semiclassical expectation.
But this difference is not in conflict with some basic law
of physics; besides, we have to find a violation of the
semiclassical approximation anyway to resolve the prob-
lems (A),(B). On the other hand the problems (A),(B)
are fundamental difficulties: (A) conflicts with causality,
while (B) conflicts with the basic requirements of linear
quantum mechanics.

In spite of the fact that there is no fundamental re-
quirement on the nature of infall, it would be more sat-
isfying if the classical intuition of ‘free fall through the
horizon’ were preserved in some way by the full quan-
tum theory. This desire to preserve free infall gave rise
to the notion of ‘complementarity’. The term arose in
the work of 't Hooft [28] and the idea was formulated
in detail by Susskind and others [29]. In the latter ap-
proach one postulates that ‘new physics’ arises when a
black hole forms: the information in an infalling object
can be duplicated. An observer outside the hole sees the
information returned from the horizon to infinity, while
an observer falling in with the object sees the informa-
tion being carried into the hole. Normally we cannot
duplicate information (‘no cloning’) because such a du-
plication process conflicts with the linearity of quantum
mechanics. But observers inside the hole cannot com-
municate with the outside, so one cannot easily compare
the duplicate copies inside and outside the hole; it was
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argued that this fact allows us to bypass the ‘no cloning’
theorem when a black hole forms.

There are several immediate difficulties with such a
complementarity proposal. The principal one stems from
the fact that the classical picture of gravitational collapse
can be studied in a ‘good slicing” where nothing special
happens at the horizon. What then triggers ‘new physics’
when a horizon forms? What mechanism reflects infor-
mation back to infinity for an outside observer? It was
argued that the outside observer must use Schwarzschild
coordinates at the horizon, and quantum field have large
fluctuations at the horizon in these coordinates. But such
fluctuations would appear to a coordinate artifact, and so
it is not clear how they could lead to a reflection of in-
formation from the horizon. Lastly, if the good slicing
picture were true, then how do we stop the production
of entangled pairs and the corresponding problem (B)?

We will call the above proposal of complementarity
as ‘traditional complementarity’. This will serve to dis-
tinguish it from a conjecture about infall that we can
make in the fuzzball paradigm; the latter will be termed
‘fuzzball complementarity’.

B. The conjecture of fuzzball complementarity

With fuzzballs we find a rather different situation from
the one which led to the ideas of traditional complemen-
tarity. With traditional complementarity, the goal was to
reconcile two facts: (i) the horizon is in the local vacuum
state |0) for an infalling observer and (ii) information
should escape from this horizon in Hawking radiation.
With fuzzballs, the semiclassical approximation is vio-
lated by ‘entropy enhanced tunneling’, and r ~ r, is not
a vacuum region. Further, in the fuzzball paradigm we
require no ‘new physics’ in the presence of a black hole:
all dynamics of the hole must follow from just the usual
rules of string theory which is based on linear quantum
mechanics.

In this situation it may appear that an infalling ob-
server must fell that he ‘crashes and burns’ at the sur-
face of the fuzzball. Indeed the firewall argument [27]
attempted to argue that any object like a fuzzball that
radiated information from its surface will have to neces-
sarily behave like a firewall for infalling observers. We
have seen that the assumptions used in the firewall argu-
ment are in conflict with one another if we assume that
causality holds in the underlying theory. In the picture
of fuzzball formation presented above, we do maintain
causality, so the firewall argument cannot really apply to
this picture. But one may still wonder if some modifica-
tion of the firewall argument could rule out any feeling
of smooth infall in the fuzzball paradigm.

In a series of papers [14, 25, 30], a scenario was devel-
oped which allowed an infalling observer to feel no violent
impact when he reaches r ~ 75, while information was
still unitarily radiated from the surface of the fuzzball.
The key point was that this feeling of ‘free infall’ was lim-
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(a)

(b)

FIG. 8. The idea of fuzzball complementarity. (a) The configurations in superspace. The central dark square represents an
incoming shell of mass M, when it is travelling semiclassically at r > 2G M. After the shell reaches r ~ 2G M, its wavefunction
spreads in superspace, since the shell tunnels to a linear combination of fuzzballs. This wavefunction in superspace reaches the
circle B and at a later time, the circle C. (b) The emergence of an effective black hole interior. The shell travels semiclassically
at position A, where it is outside its horizon (the dotted circle). The locations B and C do not actually exist in the spacetime,
but the progression of the wavefunction indicated in (a) can be depicted by using an effective black hole interior where the shell

continues to move to r < 2GM.

ited to a subclass of observers: those who fall in freely
from afar with an energy £ > T, where T is the temper-
ature of the hole. Since T ~ % is very small for a large
hole, we see that objects with a given energy E will feel
very little unusual behavior at the horizon as the mass of
the hole is taken to infinity.

In more detail, the conjecture of fuzzball complemen-

tarity is as follows:

(1) Consider the gravitational collapse of a shell de-
picted in fig.8(b). At position A, the shell is far from its
horizon, and its evolution is given by semiclassical grav-
ity.

In fig.8(a), we depict superspace, the space of all solu-
tions of our quantum gravity theory. The wavefunction
of the shell at position A is depicted schematically by the
square at the center of fig.8(a).

(2) As the shell reaches its horizon r & ry,, it will tun-
nel into a linear combination of fuzzballs as discussed
in section III. The evolution of the full quantum state
is depicted by an approximately spherical wavefront in
superspace, with the radius of this wavefront moving to
larger values as the evolution progresses: thus the full
state of the shell evolves to the wavefront B and then to

the wavefront C in fig.8(a).

(3) The conjecture of fuzzball complementarity says
that this evolution B — C — ... can be approximately
mapped to the infall of a shell in the traditional picture
of the black hole; i.e., the infall depicted by the loca-
tions B — C — ... in fig.8(b). Thus the actual exact
wavefunctional in the full gravity theory never forms a
horizon, but the evolution in superspace can be mathe-
matically mapped to a picture where the shell is allowed
to progress into the interior of an effective black hole ge-
ometry. This picture is approximate, becoming more and
more accurate as we let E/T — oo. (Here E is the en-
ergy of the shell, and T is the temperature of the hole,
which in the present case is T ~ 1/E.)

C. A partial analogy

To understand the fuzzball complementarity conjec-
ture better, we note that something similar happens in
the case of AdS/CFT duality. It will be important to note
both the similarities and the differences between the two
situations.

Consider a stack of N coincident D3-branes, depicted



(@) (b)

(c) (d)

FIG. 9. (a) A graviton is incident on a stack of D3 branes.
(b) When the graviton hits the branes, it creates open strings,
so it may appear that the graviton has been ‘destroyed’. (c)
The open strings are, however, in a definite coherent state;
we denote this by a blob which expands along the surface of
the branes while maintaining its coherent structure. (d) The
expansion of the blog along the D3 branes can be mathemat-
ically mapped to the progression of the graviton into an AdS
space; in this way we see that the graviton is not ‘destroyed’.

in fig.9(a). Let a graviton be incident on this stack.
When the closed string representing the graviton reaches
the branes, it gets converted into a collection of open
strings with endpoints on the branes (fig.9(b)). It would
therefore seem that the graviton has been destroyed in
the process of being absorbed by the branes.

But we can replace the branes by a smooth AdS space
as depicted in fig.9(d), and in this description the absorp-
tion process is replaced by an uneventful passage of the
graviton into the AdS throat. In this description it does
seems that the graviton has not been destroyed. How
does this description square with the earlier one in terms
of open strings?

The explanation lies in the strongly coupled nature
of the gauge theory describing the open strings. While
the pictorial description in terms of open strings sug-
gests that a graviton can transition into a large number
of open string configurations, the strong interactions be-
tween these open strings forces most of these states to
be lifted to high energies. This leaves relatively few low
energy states that are relevant for the process in ques-
tion, and these states have a definite coherent structure
in terms of their distribution of open strings. Thus we
depict these low lying states by a coherent blob on the
D-branes (rather than a gas of open strings); this is de-
picted in fig.9(c). As time passes, this blob expands on
the surface of the D-branes, while maintaining its coher-
ent internal structure. This evolution of the blob along
the surface of the branes may be mapped, mathemati-
cally, to the simple evolution of the graviton into an AdS
interior. This is the way AdS space emerges from strongly
coupled gauge theory.
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Remarkably, there do exist a large number states in the
gauge theory that are not lifted to high energies: these
are the states corresponding a black hole and they have
a high degeneracy. But these states are not easily acces-
sible when we start with simple configurations like those
corresponding to a few high energy gravitons. The blobs
corresponding to the high energy gravitons first spread
over all the available D-branes, and then the state evolves
to a quark-gluon plasma phase; such plasma states are
the ones that are expected to yield the entropy of a black
hole.

Now consider the collapse of the shell depicted in fig.8:

(i) When the shell is outside its horizon (position A),
the situation is analogous to the graviton being away
from the D3 branes.

(ii)) When the shell reaches r =~ 7, it tunnels to
fuzzballs, and the further evolution of the quantum grav-
ity state must be described in superspace, the space of
all complicated gravity configurations. This evolution is
depicted by wavefronts B, C in fig.8(a). The expanding
wavefront in superspace is analogous to the expanding
blob made of open strings on the D3 branes.

(iii) It may appear that there are many directions in
superspace, and so the evolution of the wavefunctional
could be a very complicated spread in all these direc-
tions. But there is a strong coupling between neigh-
bouring configurations in superspace; we can think of
this coupling as arising from a large transition amplitude
between neighbouring fuzzball configurations. This cou-
pling lifts a large number of supersapce wavefunctionals
to high energy, leaving very few low energy wavefunction-
als that are relevant to the process in question. As a toy
model, we can think of a 2-level system with Hamiltonian

o o o E 0 01
i = (59 (0w

The transition amplitude p lifts the degeneracy, giving a
low energy eigenvector (1,1) with eigenvalue E — p and
a high energy vector (1,—1) with energy E + u. In a
similar way, the low energy configurations in superspace
that are easily accessed from the initial shell state |.S)
are depicted as nearly spherical wavefronts in superspace
where the wavefunction has spread almost uniformly over
a large number of fuzzball configurations.

(iv) The evolution of the wavefronts in superspace can
be mathematically mapped onto the motion of a shell
that is progressing past r ~ r, into the interior of a tra-
ditional hole. As we will discuss below, it is very impor-
tant that this mapping is approximate rather than exact,
with the approximation improving as we let E/T — oo.
This map is analogous to the map in AdS/CFT duality
where the expanding blob in the configuration space of
open strings is mapped to a graviton progressing deeper
into an AdS spacetime.

(v) There exist a large number of wavefunctionals in
superspace that are not lifted to high energies, but these



are not easily accessible when we start with the simple
initial shell state |S). These wavefunctionals correspond
to generic black hole states, and account for the Beken-
stein entropy Sper. After the wavefunctional has moved
through the stages B — C — ... and in the approximate
description of fig.8(b) the shell has reached near r ~ 0,
the wavefunctional in superspace starts to spread in the
direction of these generic states of superspace, and this
is the process of relaxation towards the generic fuzzball
states which are characterized by the entropy Spe.

It would seem from the above discussion that the con-
jecture of fuzzball complementarity is very similar to the
conjecture of AdS/CFT duality: just as the AdS space
emerges from the dynamics of collective excitations on
D-branes, the interior of the hole can emerge from the
collective dynamics of fuzzballs. But as we will now see,
there is a crucial difference: fuzzball complementarity
only requires an effective black hole interior to emerge
when the infalling shell has energy £ > T.

D. The condition £ > T

In AdS/CFT the gauge theory dynamics of D-branes
gives rise to AdS spacetime. Suppose the dynamics of
fuzzballs really gave rise to the traditional geometry of
a black hole. Then we would face an immediate prob-
lem: won’t the low energy dynamics around the horizon
produce entangled pairs, just as in Hawking’s original
computation? If we get such pairs, then we will be back
in problem (B), the problem of monotonically growing
entanglement.

It would also seem that we cannot avoid this problem
by asking that the traditional geometry of the horizon
emerge only approximately. The small corrections theo-
rem [2] says that the entanglement of the produced pairs
is robust: small corrections to the state of the entan-
gled pairs cannot change the conclusion that the entan-
glement keeps rising monotonically. Should we therefore
conclude that fuzzball complementarity is not possible;
i.e., any such conjecture would destroy the resolution
we have found to puzzles (A) (B) through the fuzzball
paradigm?

The key to the conjecture of fuzzball complementar-
ity is that the effective black hole interior only emerges
for objects that are infalling with high energy onto the
location r =~ r. Consider a black hole of mass M this
would be in a generic fuzzball configuration with radius
ry, = 2GM + €. Let a shell of energy E > T ~ 1/r), fall
onto this hole. We have the following situation:

(i) The low energy outgoing quanta with energy E ~ T
have no description in terms of semiclassical modes on
a traditional black hole background. These modes are
emitted from the fuzzball surface and carry the informa-
tion of the fuzzball, just as photons emitted from a piece
of coal carry information about the coal.
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FIG. 10. A Penrose diagram illustrating the conjecture of
fuzzball complementarity. The thick left moving line repre-
sents a shell that is collapsing in flat spacetime. Just be-
fore the shell reaches the horizon, it tunnels to fuzzballs; the
fuzzball surface is depicted by the thick line just outside the
position where the horizon would have been. The shaded re-
gion of spacetime does not exist; it can however be added as
an approximate mathematical description of high energy in-
falling objects. These objects create an expanding wavefront
in superspace, and the progression of this wavefront can be
mathematically mapped to infall in the shaded region. The
left moving arrows in the shaded region tell us that this re-
gion is an effective spacetime only for high energy left moving
objects; it is not an effective spacetime for Hawking modes,
which are right moving quanta.

(i) Infalling objects with energy F > T have an ap-
proximate description in terms of motion in an effective
black hole interior; this description is accurate only for a
brief period of infall, during which the object travels in
an effective geometry between the locations r ~ r;, and
r = 0. It is these modes for which the wavefunctional in
superspace spreads in the manner depicted in fig.8(a).

The reason for the difference between (i) and (ii) has
to do with how many states can be accessed with the
given energy; we will discuss this in more detail below.
The Penrose diagram for illustrating the fuzzball comple-
mentarity conjecture was given in [31], and is reproduced
in fig.10. The actual smooth spacetime ends just outside
r & r, at the fuzzball boundary. The region 0 < r < 7y, is
depicted with left-directed arrows, to signify the fact that
it arises as an effective description only for high energy
infalling objects.

Let us now come to the difference between cases (i)



and (ii) above, and in particular how differentiating be-
tween these two is important in bypassing a firewall type
argument. In the firewall argument one focuses on the
entanglement of quanta emitted from r ~ r; which will
end up as Hawking radiation quanta at infinity. (These
are the quanta that we term E ~ T quanta, whatever
be their position; their energy in a local frame near the
horizon will of course be blueshifted to a larger value.)
But these quanta are not those for which we ask for any
complementary description in fuzzball complementarity.
Instead we focus on quanta which start at infinity with
E > T and fall in. Such quanta create a large number of
new degrees of freedom when they approach the fuzzball
surface, and these new degrees of freedom are not entan-
gled with anything. If we start with a hole of mass M
and add an energy F, the total number of final states is
related to the number of initial states as

N(M +E) _ Exp[Spex(M + E)]
N(M)  Ezp[Sper(M)]
~ FExp[ASyer] = Exp[E/T] > 1 (67)

Thus a high energy infalling quantum creates a large
number of new degrees of freedom, and it is the evolution
of these (unentangled) new degrees of freedom that is de-
scribed by the conjecture of fuzzball complementarity.

We can now see the difference between the cases (i)
and (ii) above. In case (ii) we have E > T, and the large
number of new degrees of freedom (67) have very little
to do with the initial state of the fuzzball before the new
energy F was added. Thus these evolution of these new
degrees of freedom can have a universal form given by
the wavefronts in fig.8(a). But in case (i) the infalling
quantum adds only ~ 1 new bits to the fuzzball. The
quantum reaches within ~ [, of the fuzzball surface be-
fore creating the new bit, and so its evolution is strongly
influenced by the initial state of the fuzzball. Thus there
is no approximation of ‘effectively smooth infall’ that is
available for such E ~ T quanta.

In [31] a bit model was presented where information
escaped in low energy (E ~ T) modes while the high
energy (E > T) infalling modes had an effective evo-
lution mimicking infall into a black hole interior. This
model therefore gives an explicit counter to the firewall
argument.

E. Causality and fuzzball complementarity

Finally let us come to the relation between fuzzball
complementarity and the subject of the present paper:
causality.

The conjecture of fuzzball complementarity uses the
fact that an infalling object transitions to fuzzballs just
before the place where it would have created the hori-
zon. Having a transition at this location (or earlier) is
required by causality, as we have noted. The spread of
the wavefunctional in superspace then gives an effective
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evolution that can be interpreted as infall into a black
hole interior.

Suppose on the other hand we had the set-up assumed
in the firewall argument of [27]. Let the infalling object
be composed of massless radially infalling quanta. In this
case the assumptions of the firewall argument would de-
mand that the object approach the horizon of the existing
hole without any novel quantum gravity effects being rel-
evant. The infalling quanta would however interact with
the radiation being emitted from r ~ rj. This inter-
action would destroy the infalling object, and then we
cannot hope for any complementary description in which
one would see free infall through the horizon.

To make this concrete, let us outline argument of [27]
in the present context. Let the hole be past its halfway
point of evaporation. A radiation quantum A being emit-
ted from the hole has a state which is close to maximally
entangled with states |out); at infinity, so that the rele-
vant part of the quantum state is

1
V2

where |£);, are the spin states for h. Now consider the
infalling object to be a quantum in a state |¢). This quan-
tum can scatter off the two spin states of h in different
ways; for example

(1+nlouths + | =)ulout): ) (68)

)| =)n = la2)|=)n (69)

where |¢1), |¢g2) are two orthogonal states of g. Since the
energy of the radiation quantum h goes to the planck
scale as we follow it back to the stretched horizon, the
probability of such a scattering is high if we are allowed
to follow ¢ all the way to the stretched horizon. After
this scattering the overall state of h, ¢ and the radiation
at infinity has the form

9 +)n = la)+)n,

1
=

Now we cannot get any complementary behavior for q.
In obtaining complementarity we are allowed to make a
change of basis, and with this change of basis the evo-
lution of ¢ must become one where ¢ did not change its
state when it passes through r =~ r,. But should this
change of basis map [¢) — |q1) or |¢) — |g2)? Since we
can make at most one of these choices, we see we cannot
make a change of variables where ¢ feels no change at the
horizon.

But as we have noted above, if we let ¢ reach the
stretched horizon as required by the assumptions of the
firewall argument then we have a problem with causality:
q is trapped inside its own horizon and cannot sent its in-
formation to infinity without information transfer outside
the light cone. In the fuzzball paradigm the ¢ transitions
to fuzzballs before reaching the stretched horizon. The
distance from the stretched horizon where this transition
occurs increases with E/T. Thus for large E the radi-
ation at the point of transition is not strong enough to

(1+nlout)ilar) + [=nloutizlas) ) (70)



give any significant interaction between h and ¢ [25]. The
effective infall description is then encoded in the new de-
grees of freedom (counted as in (67)) which are created
by the energy E, and the subsequent evolution in super-
space of the fuzzball configuration (fig.8) generated by
these degrees of freedom. Thus we see that fuzzball com-
plementarity evades the firewall argument by the same
mechanism by which it avoids the causality problem.

X. DISCUSSION

Let us note the three different categories of solutions
that have been proposed to deal with the information
paradox:

(1) Remnants: The data of the infalling shell (and the
negative energy partners of Hawking radiation quanta)
stay trapped in a planck sized object.

(2) Fuzzballs: String theory yields states that do not
collapse under their own gravity, and such states describe
the microstates of black holes. Thus there is no horizon
or singularity. In particular the absence of a vacuum
region around a horizon implies that we do not get the
creation of entangled pairs by Hawking’s mechanism [1],
and this resolves the entanglement problem (B).

(3) Wormholes: The horizon is a vacuum region, but
novel physics intervenes to resolve the information puz-
zle. The new physical concept is that the degrees of
freedom near infinity are not distinct from the degrees
of freedom inside the horizon [32, 33]. We may depict
this identification of degrees of freedom by a set of thin
wormholes that connect the interior of the hole to the
radiation quanta at infinity. More generally, one could
conjecture nonlocal effects over different length scales:
Giddings [34] has conjectured nolocality for low energy
modes over scales ~ GM, while Hawking et. al [35] have
conjectured that the degrees of freedom of the hole may
live at infinity, being encoded in diffeomorphisms that do
not vanish at the boundary of spacetime.

We now summarize the various aspects of the fuzzball
paradigm (2), and then note the relation between these
aspects and the issue of causality that we have discussed
in this paper. The fuzzball paradigm has four differ-
ent results/conjectures, that are loosely related with each
other:

(i) The actual fuzzball construction, which gives ex-
plicit examples of black hole microstates in string theory
with no horizon or singularity [4, 5].

(ii) The small corrections theorem, which says that we
cannot remove the problem of growing entanglement by
small corrections to the states of the created pairs [2].

(iii) The conjecture that the semiclassical approxima-
tion is violated at the horizon scale by ‘entropy enhanced
tunneling’ into fuzzballs [7-9].
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(iv) The conjecture of ‘fuzzball complementarity’,
which says that it may be possible to preserve a notion
of approximate semiclassical infall for infalling observers
that fall in freely from afar with F > T [14, 25, 30].

From (ii) we see that we must have an order unity
change to the evolution at the horizon. One may try
to avoid this conclusion by having a nonlocal identifica-
tion of degrees of freedom of the kind proposed in the
wormhole scenario. But if we have nonlocality, then we
typically lose causality as well. The construction (i) is
of course the central feature of the fuzzball paradigm,
which makes the rest of the picture possible. In a theory
which did not have fuzzballs, an infalling shell would pass
smoothly through its horizon, and we would then need
to violate causality if we wish to have its information
emerge in Hawking radiation. The conjecture (iii) allows
the fuzzball effects to start at the location where a hori-
zon would have appeared, and this is needed to prevent
trapping inside the new horizon. Finally, the same effects
that give causality also allow us to have the conjecture
of fuzzball complementarity (iv), though this conjecture
is not required by causality.

The firewall argument [27] assumes that an infalling
shell will see no novel effects of quantum gravity until it
reaches r = 2G M + l,,; this is called ‘validity of effective
field theory’ outside the stretched horizon’. In this situ-
ation a shell of mass AM will be trapped inside its own
horizon at r = 2G(M + AM), and we will have to vi-
olate causality if we require that its information emerge
in Hawking radiation. We have noted that this sets up
a contradiction between two of the postulates assumed
in the firewall argument. (If we do not assume that ef-
fective field theory is valid outside the stretched horizon
then we cannot prove that there must be a firewall; in fact
in this situation we can construct an explicit bit model
[31] which gives ‘fuzzball complementarity’ for E > T
infalling objects.)

From the perspective of our picture, the problem with
the firewall approach arises from asking the question: is
effective field theory valid outside the stretched horizon
or not? In the actual situation conjectured here, effective
field theory is valid at a given position r > 1y, for objects
upto a certain energy E, and not for objects of higher
energy. With this picture we resolve all the problems
with the quantum theory of black holes.

Finally, one may ask if it is essential to require causal-
ity in a theory of quantum gravity. One may argue that
quantum fluctuations of the metric will lead to a fluctu-
ation of light cones, so that no strict causality is possi-
ble. But perturbative diagrams in general relativity and
string theory preserve causality, and the nonperturba-
tive aspects of string theory have shown no violation of
causality either. Even the very nonperturbative gravity
process of bubble nucleation in a false vacuum respects
causality: the nucleated universe expands at a speed less
than the speed of light as seen from the both the true
and the false vacuum regions. Note also that some fun-
damental approaches to developing a theory of quantum



gravity have the notion of causality built in from the start
[36, 37].

To understand how there can be some notion of causal-
ity in a theory with fluctuating metrics, consider a max-
imally symmetric space like Minkowski spacetime. This
symmetry group is defined using coordinates z* and a
fiducial metric 7,,,,. The fluctuations around this fiducial
metric are not completely arbitrary: they must satisfy
the requirement that the full wavefunctional preserve the
Poincare symmetry group. We can then define causality
using the light cones of the fiducial metric 7,,; i.e., ask
that commutators of local field operators vanish strictly
outside the light cones defined by 7, .

The Schwarzschild metric is not a maximally symmet-
ric space, but the curvature away from the singularity
is small, and so any ambiguities in defining causality in
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the region r 2 2G M should also be small. It is therefore
unlikely that the information puzzle is resolved by effects
that violate causality. If we assume that causality holds,
then we have argued that the only way to get information
to emerge in the Hawking radiation is to have an alter-
ation of quantum fluctuations in the region outside the
fuzzball; i.e., replace the Rindler region of the traditional
black hole by pseudo-Rindler space.
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