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Partitioning for parallel computing

Problem: Partition the work among processors to balance the load
and keep communication low.

• Fundamental problem (distributed memory)
• Importance may grow as HPC becomes

increasingly parallel (exascale)
• Might become less important in the future if

dynamic task migration systems improve
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Partitioning Strategies

Use geometry, connectivity, graph/hypergraph model?
• Hypergraphs generalize graphs
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Graph Partitioning

Problem: Partition the vertices of the graph into k roughly equal
disjoint sets such as to minimize
a) Cut edges, or
b) Communication volume (boundary vertices)

A closely related problem is to find small vertex separators.

Algorithms (chronological order):
• Local greedy

• BFS and level sets
• Kemighan-Lin and FM

• Spectral
• Multilevel
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Multi-Level Graph Partitioning

• Highly successful graph partitioning method
• Bui & Jones (1993); Hendrickson & Leland (1993); Karypis and Kumar (1995)

• Construct smaller approximations to graph.

• Perform graph partitioning on coarse graph.

• Propagate partition back, refine as needed (typically each level)

• Software:
• Graphs: (Par-)Metis, Scotch, KaHip/Kaffpa,

• Hypergraphs: PaToH, hMetis, Zoltan/PHG, Mondriaan
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Exascale challenges:

1. Parallel quality.
• We want high quality independent of number of processors. Currently

only geometric methods are scalable in this sense, not multilevel graph
partitioners.

2. Multi-GPU.
• Current partitioners run on CPU only. Need GPU and multi-GPU code

for current and future supercomputers.

3. Other objectives.
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Exascale: My thoughts

Multilevel:
• Most popular method today (Metis, Scotch, KaHiP, etc.)
• Hard to parallelize due to (KL/FM) refinement
• Poorly suited for GPU, need another approach!

Spectral:
• Based on linear algebra, so well suited for GPU.
• Worse quality, but not by much so still feasible
• Leverage investments in eigensolvers (e.g., LOBPCG)
• May need to combine with multilevel?

1 8



Spectral partitioning

• Use eigenvectors of the graph Laplacian: L(G) = D-A
• Partitioning Fiedler (73), Donath, Hoffman (73), Pothen, Simon, Liou (SO)

• Clustering: Hagen, Kahng (S2), Shi, Malik COO), Ng et al. r02)

• Algorithm outline

• Compute min x1.1.6.)x using eigensolver
x x

• Bisect: Vo = {xi s.t. x, < median(x)}, V1 = (xi s.t. x, >= median(x)}

• Recurse on subgraphs

• Variations:
• Spectral quadrisection and octasection using 2-3 eigenvectors

• Use several eigenvectors for low-dimensional embedding then geometric dustering or
partitioning

• Why does it work?
• Continuous relaxation of discrete (binary) optimization problem

• Discrete bisection method models graph edge cut exactly

0 hillaiaL
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Spectral partitioning: Current work

We are working on parallel code for ECP (ExaGraph).
• Spectral partitioning using Trilinos/Anasazi
• Will run on multi-GPU (soon)
• Evaluating several algorithmic options
• Will deliver in Zoltan2 (Trilinos)
• May also be used within multilevel framework (future)

Related effort by Pieter Ghysels (LBL) for vertex separators and nested
dissection ordering.
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History lesson: "Graph Partitioning - Has the Dams
Emperor No Clothes?", Hendrickson, '98

• Bruce Hendrickson gave a talk at Irregular'98 pointing out
several deficiencies and challenges in graph partitioning.

• This was so popular it was recycled/improved many times
• Status 20 years later:

• Only a few issues have been resolved
• Most are still there!
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■ Two happy occurrences.

• (1) Good graph partitioning tools & software.

• (2) Good parallel efficiencies for many applications.

■ Is the latter due to the former?

■ Yes, but also no.

■ We have been lucky!

■ Graph partitioning optimizes wrong objectives.

■ Model is insufficiently general.

■ Software tools often poorly designed.

March 20, 2002 12



Flaw 1: The Edge Cut Deceit

■ Generally believed that
■ "Edge Cuts = Communication Cost".

■ This belief is behind the use of graph partitioning.

■ In reality:
■ Edge cuts are not equal to communication volume.

■ Communication volume not equal to communication cost.

March 20, 2002 13



Flaw 2: Lack of Expressibility

■ Implicit assumptions of graph model

■ Edge cuts = communication volume.

■ Single vertex weight can encode computational cost.

■ Computational cost known a priori.

■ Data dependencies are bi-directional.

■ Assumptions often invalid!

■ Computation consists of multiple phases.

■ Work depends on decomposition.

E.g. sparse factorization on each subdomain.

■ Dependencies are directed

e.g. unsymmetric or rectangular matvec.

March 20, 2002 14



Update: Incorrect/inexact metrics

Hypergraph model correctly models communication volume
(SpMV).
• Software available:

•PaToH, hMetis, Mondriaan (serial)
•Zoltan/PHG (parallel)

Still less widely used than graph partitioners. Why?
• Little difference for meshes and low-degree graphs
• Often slower
• Hypergraphs obscure concept, only known by experts

bhandedesnaglingSallira
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Update: Communication metrics

• Hypergraphs do communication volume, but that only
approximates execution time.

• Not single metric is "the right one":
• Total comm. volume
• Max volume (per proc.)
• #send/recv messages

• Recent papers address this:
• "Encapsulating multiple communication metrics", B. Ucar and C. Aykanat,

SISC, 2004
• "Improving performance of sparse matrix dense matrix multiplication on large-

scale parallel systems", S. Acer, O. Selvitopi, C. Aykanat, Parallel Computing,
2016

• "A recursive hypergraph bipartitioning framework for reducing bandwidth and
latency costs simultaneously", O. Selvitopi, S. Acer, C. Aykanat, IEEE TPDS,
2017
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Update: 2D or nonzero partitioning

• To minimize number of messages, use 2D matrix partitioning
• This implies we partition the nonzeros of the matrix

• A checkerboard (2D block) partitioning has at most 2*sqrt(p)
messages
• Dense: tight, sparse: upper bound

• Several recent algorithms:
• Coarse-grain (checkerboard) using hypergraphs

• Catalyurek & Aykanat

• Fine-grain, large hypergraph
• Catalyurek & Aykanat

• Mondriaan
• Vastenhouw & Bisseling

• Medium-grain
• Pelt & Bisseling

• 2D using 1D graph/hypergraph
• B., Devine, Rajamanickam



Update: Multiple weights/constraints

• Important in multi-physics
• Ex: Balance both particles and mesh
• Ex: Balance both computation and memory

• Makes partitioning problem even harder!
• Partially supported in some partitioners

• Metis/ParMetis, PaToH, Zoltan
• Still not widely used

• Predict higher usage in the future
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Conclusions

• Partitioning has played a key role in the success of (distributed
memory) parallel computing

• Graph partitioning has some flaws but is still widely used
• Hypergraph partitioning and extensions have some advantages

and slowly gaining traction
• Many challenges from '90s still remain!
• Exascale computing poses new challenges

• Sandia Exagraph team is working on it

• Recent problems/work in data science (network science) on
clustering and community detection is related but different
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