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AsCeND LDRD — Asymptotically Compatible foundations for Nonlocal

Discretization

= Objective: mathematical framework for provably convergent nonlocal
schemes, with applications+software (ductile fracture, subsurface flow/fracture,
failure in lithium 1on batteries)

= People: Nat Trask, Marta D’Elia, Dave Littlewood, Stewart Silling, Mike
Tupek, John Foster (UT:Austin)

Compadre LDRD — Compatible Particle Discretization

=  Objective: approximation theory, meshless methods with mimetic properties
mirroring compatible mesh-based bethods, scalable Trilinos library

=  People: Pavel Bochev (PI), Pete Bosler, Paul Kuberry, Mauro Perego, Kara
Peterson, Nat Trask

Academic collaborations

= Lehigh: Huaigian You, Yue Yu
= UT:Austin: John Foster, Xiaochuan Tian




Taking advantage of previous meshfree machinery... @?ﬁm




Generalized moving least squares (GMLS)

T(u) =~ 7"(u) 2
* amg;mm ( 22N @’) 37((”‘))) Wi, Ai)
peV Th{

) o) !“ Ay
u) == 7(p

Example:
Approximate point evaluation of derivatives:

Target functional 7; = D% o 4y,
Reconstruction space V = P™
Sampling functional Aj = 6z,
Weighting function W = W ([|z; — ;|[)

Abstract approximation theory:

75 (u) — 7 ()] < |7 (v — )| + Cw |7 -

AL max [Ai(u—p)|, peP
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Objective: Preserve limit to corresponding local model

Local mechanics: Natural setting u € H!

(00 u30) = £u] )

Lu](x) = ? (VPu+VV-u)

Non-local mechanics: Natural setting u € L?

(00 () = £ )

£9[u](x) = L » ﬁguﬁ (u'(y) — w®(x)) dy

No physical nonlocality — consider peridynamics as a nonlocal
regularization of continuum mechanics for fracture problems
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Consider a family of integral equations of the form:

il = [ Ky (u(y) - ux) dy = 16
supp(K(z,-)) = 6
K(x,y) = nix, yi , where n(x,y) < Cp,




Asymptotic compatibility ) e
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Seek a discretization that recovers local solution
as nonlocal + discretization length scales both
tend to zero at same rate

Tian, Xiaochuan, and Qiang Du. "Asymptotically compatible schemes and applications to robust discretization of nonlocal
models." SIAM Journal on Numerical Analysis 52.4 (2014): 1641-1665. ;




Why is this a hard quadrature problem? ) e

Define quadrature rule:

Ll = [ Kxy) () - ux) dy

/ B(x,6)
o) = ) Kxixj) (ulx) — ulxi)) wj

o GB(xq ,5)

= (Challenges in finite element setting:
=  Costly geometric intersection
= Singularity in non-local kernel

= Accurate treatment of null-space sensitive to symmetry
in quadrature points

= [ssues compounded by double integral in weak form

= (Candidate for meshfree treatment!




Meshfree generation of quadrature rules on balls

Idea:
- Construct rule just like Gauss quadrature
- Can’t pick points (governed by physics) but we
can pick weights

- Requires knowledge of how to integrate against each
member of reproducing set

- Small, easy linear systems to solve over each
neighborhood

minimize § w2
o J
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subject to the equality constraint

I[f] :ijwjz Vp € Vy

J

where I[f] = [, 5 fdz
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= As reproducing space, select polynomials + integrand of operator
V5, = P, U Sk nx, where
SK,MX = {K(Xa y)f(y) I f S an}

Theorem. Consider for fized x a kernel of the form K(x,y) = MxY) here

y—x|*’
the numerator n satisfies n(x,y) < C, for all y € B(x,9). A set lof qaltmdmmm
weights obtained from the GMLS process with the choice of Vi, = Py, U Sk nx
for u € C™ and m > n satisfies the following pointwise error estimate, with
C > 0 independent of the particle arrangement.

< G&n—a—i—d+1

/}; ) K(z,y) (u(y) —u(x)) dy — ) K(z,x;) (u; —u;) wﬂ'

JEX,
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Manufactured solution to BVP in bond based m sﬁ:ﬂ':m
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Damage modelling

Given a pair (%, j) in B(z;, 8), associate the state of either broken or unbroken

5 s — d Wirk> if bond is unbroken
77710,  if bond is broken .

Bonds are either

/
e Broken as a pre-processing step to introduce a crack to the problem
/

¢ Broken over the course of the simulation if the bond strain

Ge —
(Er ) 172

Ge
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d=3.




Resolution of surface effects in bond-based

— h=1/16
- h=1/32
- h=1/64

h=1/128 N
----- h = 1/256

Damage model recovers analytic traction-free local solution as O(6).
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[ (AM=y) —uz,y) K(ly —x[) (y —x) (6(x) +6(y)) dy
m(5) B@(x)

e, ) K (ly - x) L= I’;) ?E” %) (u(x) - u(y))dy = 1,

0o (x) = O K(ly —x|) (y — x) - M(x) - (u(y) — u(x)) dy,
m(é?) Ba (x)N
with
M) = |2 [ K(y—x)(y-x)®(y—x)dy

mw) / Bs(x)NQ
= Remove boundary effects by renormalizing dilatation

= No modification to material model

= Apply optimization based quadrature without modification y
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Convergence in near incompressible limit to free-surface, inclusion problems
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Diffusion for heterogeneous materials

E=rsy
- -iappa

V- -kVo =~

sz, y)K(z,y) (6(y) — ¢(x)) dy

' 5(x) 3 '




Comparison to microstructural data
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Comparison to finite element solution ) e
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A microstructure framework for transport induced fracture

Diffusion process

Mechanics process
V-o=f

0 = Omech(1) + €@l

n-o =t




Consistent coupling to mechanics

U Magnitude
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Temperature
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Error Magnitude

3.004e-05 0.031 0.061 0.092 1.22%e-01
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Consistent pressure loading of cracks
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See talks by Yue Yu, Huaigian You for details regarding mathematics
- well-posedness, error estimates, and discretization with our scheme
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Conclusions

= Continuum peridynamic theory is robust, but lacks aproper discretization to
support modeling efforts

= For practitioners, this is often misinterpreted as a physical effect

=  We have introduced a new optimization based quadrature rooted in GMLS
approximation theory

=  Swapping out quadrature weights in standard peridynamics codes with new
scheme restores convergence in sense of asymptotic compatibility

= Therefore, with a slight perturbation, we can restore accuracy to a number
of methods

= Fixes: surface effects, consistency, near incompressible limits

=  Future work: still strong form, so analysis 1s limited to truncation error and
special cases of particle distribution

=  Extensions to variational forms




