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Abstract — Smart grid technologies and wide-spread
installation of advanced metering infrastructure (AMI) equipment
present new opportunities for the use of machine learning
algorithms paired with big data to improve distribution system
models. Accurate models are critical in the continuing integration
of distributed energy resources (DER) into the power grid,
however the low-voltage models often contain significant errors.
This paper proposes a novel spectral clustering approach for
validating and correcting customer electrical phase labels in
existing utility models using the voltage timeseries produced by
AMI equipment. Spectral clustering is used in conjunction with a
sliding window ensemble to improve the accuracy and scalability
of the algorithm for large datasets. The proposed algorithm is
tested using real data to validate or correct over 99% of customer
phase labels within the primary feeder under consideration. This
is over a 94% reduction in error given the 9% of customers
predicted to have incorrect phase labels.

Keywords—machine learning, phase identification, power
system simulation, spectral clustering

I. INTRODUCTION

The challenges facing utility companies as they move
towards integrating distributed energy resources (DER) onto the
distribution system as well as the accompanying grid
modernization challenges are well known [1]. High-quality
simulations are critical and rely on the current geographical
information system (GIS) models of the grid, but the legacy
nature of the grid and updates to the GIS system make ensuring
the accuracy of those models a non-trivial task. The low-voltage
side of the distribution system is particularly prone to phase
labeling error [2], however, many of the smart grid research
questions and modelling of residential photovoltaic (PV)
systems require accurate low-voltage network models.
Significant research is now going into topology estimation of the
low-voltage systems in order to validate and improve the
existing utility models, as discussed in [2]—[6]. Historically,
improving these models has meant sending personnel into the
field to do manual verification, which is often prohibitively
time-consuming and expensive.

Customer electrical phase labeling is one area of distribution
system topology that is known to contain errors and is critical
for grid operation and moving towards higher penetrations of
DER. Phase identification is important for the safety and
efficiency of the grid, as well as being critical in determining
placement and size of PV systems. Reference [7] discusses the
importance of having balanced phases in general and [8]
discusses balanced phases in the context of DER integration.
The introduction of advanced metering infrastructure (AMI)
smart meters, presents opportunities for a data science approach
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to improving and validating GIS models that did not previously
exist. AMI meters provide an unprecedented amount of data on
individual customer usage and time-series measurements taken
at between 1-hr to 1-min intervals depending on the utility
company implementation [9]. This type of large data set is ideal
for the application of machine learning algorithms. Some uses
of AMI data include phase identification [3], [10]—[12], load
disaggregation [13], [14], and topology estimation [2]—[5]. This
research proposes a spectral clustering approach, combined with
a sliding window ensemble, for individual customer phase
identification using only the time-series voltage profiles from
the AMIE data. Compared to existing literature on phase
identification, the main contributions of this work are:

1) The proposed algorithm does not require substation
voltage measurements. Most existing research uses the known
substation phase voltages for the phase assignment. This is a
major benefit of the proposed method since substation
measurements (SCADA) are generally housed in a different
department of the utility than AMI data. Substation voltage
measurements may also be measured upstream of substation or
line voltage regulators, making phase identification with
voltage correlations challenging.

2) Topology information is not required for the phase
identification algorithm. Some approaches use the distribution
system topology information, such as customer-transformer
connection labels, in the clustering algorithm itself, [10], [15].
However, this requires all other information in the distribution
models to be accurate.

3) A new application of spectral clustering is presented to
perform phase identification.

4) Improved accuracy and scalability of phase identifi-
cation are provided using ensemble machine learning with a
sliding window approach using historical data.

This spectral clustering methodology is shown to provide
excellent initial results in the phase identification task,
validating and improving the existing phase labels in utility
models.

II. RELATED WORK

A variety of approaches to phase identification exist in the
literature. [16] uses a load summing approach, summing the
individual customer loads and comparing the results to the load
at the transformers and substation. This approach requires
solving the linear equations produced by this method. A signal
injection approach proposed in [17] requires a signal injection
device as well as a device to read the injected signal. The results
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are promising, but the addition of additional equipment adds an
expense for utilizing this method.

Several approaches using different types of clustering with
correlation coefficients have been attempted before. [3], [11]
use hierarchical clustering and [11] introduces the sliding
window approach used in this paper. [10] uses a Constrained K-
Means implementation, and [15] uses a Constrained Multi-Tree
algorithm to do phase identification. Both of these methods use
the underlying topology as constraints in their algorithms. The
customer-transformer connection labeling is used as 'must-link'
constraints to reduce the number of possible pairings of
customers. This approach reduces the complexity of the
clustering problem but requires the assumption that all of the
customer-transformer labeling is correct, otherwise this
approach propagates the errors introduced by building those
labels into the clustering algorithm

Two other approaches have been recently proposed. [18]
explores supervised machine learning techniques for this
application. Their approach uses a field-verified subset of
customers as a training dataset for the machine learning
algorithm and which then predicts the remaining customers.
Finally, [19] uses video imaging of light sources to group
customers by phase using the oscillations in the light source due
to the alternating current; this requires video imaging of
individual customer buildings throughout the feeder. There
have also been a variety of other applications of machine
learning to power systems applications with the increase data
availability [18], [20]—[22].

It is important to note that directly comparing these
methodologies is difficult given the differences in datasets used
for testing. Differences include synthetic data versus real-world
data, varying lengths of data collection, different numbers of
customers, alternative collection strategies, and differing
geographic locations which introduce different seasonal
conditions.

III. DATA

The AMI dataset used in this research covers a 15-month
period for all customers on three feeders with —1000 customers
per feeder. The data comes from the northeastern US which is
notable because seasonal variance in the data may increase the
difficulty of the phase identification task [3], [10]. The data
comes from a utility company that has installed AIVII smart
meters for each customer in these feeders. The dataset contains
individual AMI data for each customer. Each individual profile
contains 15-minute average measurements for real power,
reactive power, and voltage, as well as power generation type
and a phase label (possibly incorrect) from the utility company.
The power and voltage measurements are taken to an accuracy
of four decimal places. The dataset for this feeder contains —8%
missing data spread throughout the customers, and this can be a
challenge for certain algorithms.

In preparing the dataset before applying the clustering
methodology, the voltage profiles were first normalized to a
mean of 1, and then clearly erroneous values were removed from
the dataset. Thresholds were set at 0.1 deviation from the mean
of 1 and any value above or below that was considered an
erroneous value. This may not have removed all erroneous

values, but certainly any values removed in that range violate
the allowable voltage range set forth in ANSI C84.1. Values
adjacent to the erroneous values were also removed to reduce
the chances of including inaccurate values.

IV. METHODOLOGY

The core concept behind our approach is that the voltage
profiles from AMI meters can be clustered by phase using a
measure of correlation or affmity between pairs of historical
timeseries measurements, [3], [10], [15]. Pairs of voltage
timeseries that are on the same phase will tend to have more
similar variations in voltage measurements than two timeseries
that come from customers on separate phases. Figure 1 shows
an example of this correlation visually. There are nine examples
of simplified, synthetic profiles which are grouped by
correlation into three groups. Note that the key in this figure is
correlation of timeseries and not simply differences in voltage
magnitude.

This section is divided as follows: The Clustering Method
Section details overall methodology used in this research, the
Spectral Clustering section provides details on the specific
clustering algorithm used here, and the Validation section
describes methods used to validate these results in the absence
of field verified ground truth labels.
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Figure 1 - Voltage correlation examples

A. Clustering Method

Our proposed machine learning algorithm for phase
identification is spectral clustering with a sliding window
ensemble.

Figure 2 shows a flowchart of the methodology. First, an
arbitrarily sized time-window of historical data is selected. A
four day window was chosen for the fmal implementation, based
on the results in [11] and confirmed with experiments conducted
in this research. Next, all voltage profiles containing missing
data in that window are removed, and the remaining customers
are clustered using the spectral clustering algorithm described in
IV. B. The predicted phases are assigned by the majority vote
of the utility labels in each of the resulting clusters. Although



the utility labels are known to have some percentage of error, the
majority are assumed to be accurate. Figure 3 demonstrates this
process, with the circles representing the clusters generated by
the spectral clustering algorithm. Then, the subsequent window
of data is selected and the process is repeated; this process
repeats until all historical data is processed. For a window size
of four days, this results in 121 windows for this dataset, and the
final ensemble prediction is the majority vote of the predicted
phases from each of the windows. In summary, there are 121
individual instances of clustering the customers without missing
data during that time period. The predicted phase for each
instance/window of clustering is assigned based on the majority
vote of the utility labels, and the fmal predicted phase for each
customer is assigned based on a majority vote of all the predicted
phases from the 121 windows. This is shown visually in Figure
4. Each vertical box represents one window with one prediction
for the phase of each customer, and then, on the right-hand side,
the 'votes' from each window are used to determine the fmal
predicted phase. The sliding window ensemble was used to
handle the missing data, deal with the issue of seasonality in the
data, and leverage the power of a machine learning ensemble.
The ensemble both improves the algorithm accuracy, via the
ensemble voting, and the scalability by not requiring the whole
dataset in working memory at once.

Select a 'window' of data

iand remove customers -0—

with missing datapoints

1 Spectral clustering oj

voltage timeseries

Assign customers a

predicted phase based

on majority vote for

each cluster

Assign final prediction
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using the results of all

Figure 2. Clustering methodology
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Figure 3 - Clustering prediction assignment

B. Spectral Clustering

Spectral clustering is a member of the unsupervised machine
learning family of techniques that does not require data labels.
This methodology as a whole is a hybrid machine learning
approach. The utility labels are not used in the clustering itself,
but they are used to assign the predicted phases to the customers
after the clustering has occurred. Table 1 shows the steps in the
spectral clustering algorithm. Step 2 is the primary difference
between spectral clustering and other types of unsupervised
learning algorithms. In the nonlinear dimensionality reduction
step, the eigenvectors are computed to use as a feature
representation of the data instead of using the voltage profiles
directly in the clustering. For a more detailed treatment of
spectral clustering please see [23].

TABLE 1- SPECTRAL CLUSTERING ALGORITHM

Spectral Clustering Algorithm

1. Create an affmity (similarity) matrix using a pairwise kemel

2. Nonlinear dimensionality reduction
2.1 Compute Laplacian matrix
2.2 Compute the eigenvectors to use as feature vectors

3. Cluster with K-Means using the eigenvectors

Customer 1
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Phase Assigned by Spectral Clustering
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Figure 4 - Methodology
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C. Validation

In the case of this dataset, there are no ground truth phase
labels for the customer phase labels, which presents a significant
challenge in validating the predicted phase results. This research
uses the topology information, namely the customer-transformer
connection labels as validation of the clustering phase
predictions. Using the customer voltage measurements, the
clustering process identifies the phase connection of the service
transformers.

Figure 5 shows a Google Earth satellite image with the utility
model labeling overlaid on top. There are five customers
connected to the transformer, and Figure 6 shows the same
transformer in Google Street view connected to the middle wire,
which is Phase B by convention. In this case, the utility model
phase labels and the phase labels predicted by the clustering
agree that this transformer, and therefore these five customers,
are connected to Phase B.



Figure 5. Google Earth view of a Phase B connected transformer serving five
customers

N \
Figure 6 - Service transformer from Figure 5 sho ing a Phase B connection

The predicted phases are validated in a two-tier validation
process using a method called 'topology validation' followed by
a subset of the results validated using Google Street view. In the
example above, the fact that all five of the customers seen on
this transformer are predicted to be on the same phase,
regardless of whether that phase matches the utility phase label
or not, is considered a 'validated' prediction. Had one of the
five been predicted on a different phase from the other four, that
prediction would not be validated according to this topology
validation metric. See the Results section and Figure 7 for
further examples. It is not possible to validate all results using
Google Street View due to the issues of trees, underground
cables, and insufficient imagery; however, there is a subset of
customers that is clearly able to be visually validated using
images publicly available on Google Earth. It is important to
note that without ground truth labels obtained via field
verification, it is not possible to be absolutely certain of the
labeling, even with this two-tier validation system. However,

we believe it is possible to plausibly validate the result obtained
in this research using this two-tier validation methodology.

V. RESULTS

A. Overall Results — Feeder 1

For this feeder, —91% of the predicted phase labels match the
original utility phase labels, resulting in —9% predicted to be on
a different phase than the original utility model. Table 2 shows
the results of the algorithm, with the utility phase labels on the
x-axis and the clustering phase predictions on the y-axis.

TABLE 2 - RESULTS BREAKDOWN, FEEDER 1

MF:

Clustering
Predicted

A

B

A B

506 24

1 0 229

48 5

8

3

222

538

242

275

Total 564 258 233

Figure 7 shows an example of the results of the topology
validation step. The lateral pictured is labeled by the utility as a
Phase B lateral, as noted by the green lines. The clustering
predictions and the topology validation indicate that all of the
customers on all four of those transformers are predicted to all
be on Phase A, instead of Phase B as the utility model has them
labeled. There are fifteen customers in total represented on
those four transformers, and this is a striking example of the
topology validation method at work.

- Phase A

- Phase B

- Phase C

Figure 7 - Topology validation showing an incorrectly labeled lateral

The second tier of validation uses Google Street View to
validate a subset of the customers that are predicted to be on a
different phase from the utility phase labeling. Figure 8 shows
the satellite view of the original utility labeling of Phase C
(denoted by the blue line).

Figure 9 shows the Google Street View of the transformer
labeled 80 in Figure 8, and here we see that the transformer is
clearly connected to the middle wire, which is by convention
Phase B. Thus, the predicted phase is validated by Google Street
View, and there is clearly a phase labeling error in the utility
model.



Figure 8. Single customer connected to Phase C in the original utility model
(shown) and predicted to be on Phase B by the spectral clustering method.

_
' Phase B Connection

Figure 9. Transformer 80 from Figure 8 verified in Google Street View to be
connected to Phase B as predicted by spectral clustering.

B. Validated Example

Figure 10 and Figure 11 show a second example that is fully
verifiable using Google Street View images. In the utility
model, shown in Figure 10, all four of the transformers on this
street are labeled as being connected to Phase A. However, the
phase labeling in Figure 11 is accurate based on the clustering
phase predictions, the topology validation metric, and clearly
visible transformer connections in Google Street view. Only
transformer 51 is actually on Phase A - Figure 14, transformers
50 and 52 are on Phase C - Figure 15, and transformer 53 is on
Phase B - Figure 13. Note the unlabeled home in

Figure 10, further analysis of this location revealed a
mismatch between the OpenDSS model where the original data
came from and the Google Earth version of the model. The
OpenDSS model actually shows four more customers connected
to transformer 52 than the two that are shown in Figure 10.
Google Street View images demonstrate that those four
customers are actually connected to transformer 53, in showing
four meters visible on that unlabeled home and Figure 13
showing the Phase B interconnection for that transformer. The
identification of the customer-transformer connection error is an
interesting byproduct of the primary phase identification work.

Original Utility Labels

Figure 10. Original utility phase labels

Figure 11. Spectral clustering predicted phase connections of 10 customers
connected through 4 transformers as shown, validated with Google Street

View.

Figure 12 - The unlabeled home in Figure 10 showing four meters



Figure 13. Phase B interconnection of transformer 53
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Figure 14. Phase A connection for transformer 51
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Figure 15. Phase C connections for transformers 50 and 52

C. Summary and Comparison with Other Feeders

Overall, spectral clustering resulted in —91% of the original
utility model customers' phase labels being correct, and —8.5%
of customers' labels that have been corrected from the utility
model labeling, validated using the topology validation metric,
Google Street View, and other methods. There are —0.5% of
customers where the results are unclear, and that could be a
result of an algorithm prediction error or some type of other error
in the utility model. Out of the total customers, —99.5% have
been plausibly accounted for using this methodology. Table 3
summarizes these results.

TABLE 3 - RESULTS OVERALL, FEEDER 1

Feeder 1
Customers

Total
Customers

Validated
Utility Labels

Corrected
Utility
Labels

Remaining
Customers

Customers 1055 957 92 6 11
Percentages 100% —91% —8.5% —0.5%

Test results also demonstrate that the spectral clustering
algorithm with the sliding window ensemble is more stable than
a classic k-means approach. This was shown by running a
Monte Carlo simulation and comparing the individual time-
window clustering instances. The baseline k-means approach
failed to plausibly cluster the customers in an individual window
about 6 times more often as the spectral clustering approach.
The Monte Carlo simulation also demonstrated the consistency
of the spectral clustering approach, showing that over 99.4% of
the customers were consistently predicted on the same phase
over all Monte Carlo simulations.

Table 4 and Table 5 show the results for two other feeders in
the area. The results are similar overall to feeder 1, although
there are more phase errors predicted in these two feeders than
in feeder 1. Table 6 shows a direct comparison between the
three feeders including the feeder characteristics as well as the
percentage of customers that are predicted to be errors. Note
that feeders 2 and 3 are more complex than feeder one, with
capacitors and/or regulators. The utility noted also noted that
some additional time and effort had already been expended in
improving the model for feeder 1; those two factors may explain
the difference in results among the three feeders.

TABLE 4 - RESULTS BREAKDOWN, FEEDER 2

Utility Label

Clustering

Predicted

A Total

A 320 0 8 328

B 33 338 1 372

175 16 398 589

5311=i6354 

TABLE 5 - RESULTS BREAKDOWN, FEEDER 3

Clustering
Predicted

Uffilty LAO

"IMF A B C Total

A 354 13 59 426

B 26 318 1 345

C 73 29 239 341

Total 453 360 299



TABLE 6 - FEEDER COMPARISON

Feeder Voltage Peak Number of
Load Customers
(MW)

Feeder
Length
(KM)

Line Capacitors
Regulators

Feeder 1 12.47 kV 2.0 1153

Feeder 2 12.47 kV 1.8 1309 2.5 I 1 set, 450 kVAr
single-phase

CONCLUSIONS

Spectral clustering, combined with the sliding window
ensemble approach correctly identified the phase connections of
customers, validating and improving the existing utility model
for this section of the distribution system. It was shown on
feeder 1 that the utility phase tracking was fairly accurate with
—91% of the phase labels in the original utility model being
validated with voltage AMI measurements. —8.5% of phase
labels were corrected. This is a —94% reduction in the total —9%
error predicted to be in the original utility model phase labels
and a —99.5% reduction in the total uncertainty of the model.
Uncertainty in existing utility models for the low-voltage
portion of the distribution system is a major limiting factor in
grid modernization and the continuing addition of DER
technologies onto the power grid. A novel spectral clustering
algorithm was demonstrated on three distribution feeders as a
promising technique to remove uncertainty in the phase labeling
of customers, as well as demonstrating potential uses of machine
learning in leveraging the big data that is being produced by
AMI meters.
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