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Entropy stability is a beneficial property of numerical methods,
which we’ve largely extended to multicomponent and multitemperature systems

Implies provable nonlinear, integral (L2) stability,
consistency with thermodynamics

- Improved robustness
- Ensures physically-realizable weak solutions
- Less artificial dissipation necessary for stability

High-fidelity simulation of reacting flows is critical due
to the cost and difficulty of experimental investigation.

DNS, model development — LES, RANS, etc.
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continuous stability proofs

- conditions on constitutive properties

- requirements on mass diffusion model
J
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two-point entropy conservative flux functions

- an automated procedure for conservation form fluxes
- constraints on SBP operators

\_
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an issue in boundary conditions

- entropy vars may require extra boundary layer resolution,
or a special procedure within the stability proof

(LES uncertainty quantification ) ’

Build atop entropy stability
for robustness, high order

- fs of increasing complexity —> R ing fl H :

oxisting stability proots eacti |r;g OWws, y|?lersr.]omc

combustion ight
- hall Navier- S
Burgers’ shallow Euler Stokes MHD (1-temperature) (2,3-temp.)
water
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Thermochemical nonequilibrium complicates things greatly

Euler
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admissible
entropy fxns

Thermodynamic
entropy

Exponential

entropies
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Navier-Stokes

heat conduction
only the thermodynamic
entropy is valid

admissible
entropy fxns

Thermodynamic
entropy

Finite rate chemistry
High temperatures

Reacting flows,

Finite rate chemistry
Finite rate molecular relaxation
Extreme T (>5000 K)

combustion

(1-temperature)

Chemical non-equilibrium
solve many (5 to >100)
species equations

Variable heat capacity
thermally perfect gases
Y is not constant (T, Y dep.)

Reaction mechanisms
source terms

Mass/heat diffusion
viscous fluxes

Hypersonic
flight
(2,3-temp.)

Thermal non-equilibrium
solve multiple energy equations

Thermal relaxation
source terms



Thermochemical nonequilibrium
complicates a stability proof

conserved inviscid | | viscous | |source ~
state vector | |fluxes fluxes terms

Governin U y L g
Equationsg: q: + f —r =20 Entropy variables: ’wT — Sq

/ z \ N

T4 —0 symmetric advection-diffusion-reaction system,
q ., Wt - .f w W 1,7 waz —Tr = with provable bound on the global entropy growth rate
T

¢ I

A A A
‘ {,wT r <0 entropy source term J

is negative semi-definite
~ D

A

[Ci,j} viscous flux Jac. is SPSD
[0 =G jw,,

- J
)

S qf . = F, ! compatibility condition

xz

but it doesn’t change the fundamental mathematics

Scalar entropy function, fluxes: S, F™?

conditions for continuous
provable entropy stability
3 temperatures? same conditions

100 species? same conditions
variable cp? same conditions

I :
f,uj inviscid flux Jac. are symmetric

&
4 )

Sqq = Wq (Hessian) is SPD
w < q 1-to-1 mapping
N Y

)
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The entropy of a mixture of ideal gases,
with one temperature, is a known result

arbitrary

T Y heat capacit
Sj:Sf;—leﬂ (—‘7>—|—/ 2l 4T
ﬂzj o) Clj
Ne
Negative volumetric -
total entropy: S =—ps= Z PjS)
j=1

Extending to multitemperature follows
classical thermodynamic analysis

partial molar

l gibbs free energies
: 1 . T
entropy variables: 19 2’0 (¥
(),
1

| —T/T,
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Continuous stability proofs for MC, MT exist and
place reasonable conditions on physical properties

Convexity
T, rhoi, ¢y are strictly positive

all excited T, cy are strictly positive
A

Source Terms /

chemical reaction mech. consistent
with the 2nd law of thermodynamics

Viscous fluxes

Viscosity is honnegative

Thermal conductivity is nonnegative
Excited modes too

Mass diffusion conditions...

depends on the model!

ratio of translational/modal
temperatures



Strict mass conservation and barodiffusion rule out
the provable entropy stability of simple diffusion models

Start from a general formulation barodiffusion,
l Soret flux

.ajk B o

7Y _  |A1 ax| (p
T 1. - T

a. a 1
q L o
Dufour flux

Phenomenological approach of irreversible

thermodynamics is provably stable
(2nd law, Onsager reciprocal relations)

A suitable form

Y,

Ji = —pD; (di
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3

'Yx
i diffusional driving forces

Conditions on A1, az, a3, a4 from
the entropy variable flux Jacobian
(symmetry, positive semi-definite)

- Strict mass conservation: ZZ 7.5 =0

- At least one of az, a3 must be nonzero

Fick’s Law: J; " = —pD;(Y;) s,

is not provably stable!

Corrections to conserve mass
are not stable either. ;%% — %% = Y] E :jazk

Provable entropy stability \=> Mass conservation

binary/mix-avg diffusion coefficients - must be nonnegative
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two-point entropy conservative flux functions

- an automated procedure for conservation form fluxes

- constraints on SBP operators
_
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With appropriate high order summation-by-parts (SBP) operators,
global entropy conservation requires a local condition on the flux function

)

- consistent: approaches the physical flux

S
. 7(4,9) = fonys(@)
f°(q,,q,.)| two-point flux function

- entropy conservative: satisfies the local condition

) ' H 3 TA A
w =
jump: Aa = a, — ay entropy potential flux,

- = (f)Tw - F

(entropy flux telescopes to the boundaries)

Ensures entropy conservation globall T
o > ) Zwi (fiv12 = Fic1y2) = FN — Fo
i
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Applies for high-order with special SBP operators



Satisfying the local condition requires “jump expansion” of complex functions

Linearity: A(CL -+ b) — Aa + Ab
Product rule: A(ab) — EAQ + aAb

arithmetic averages

A
Chainrule: Af(g(...)) = A—‘gAg

We quickly run into nonlinear
functions with no analytical expansion

then solve for the flux components

1-D Euler equations

S Strategy: expand the jump of w,  in terms of a parameter vector z,
(f7) Aw = Ay

Ismail & Roe, 2009

Zl:\/ﬁv

<2 — U p/pv
23 = \/ PD-

Chandrashekar, 2012
<1 = P,

<2 — U,

Entropy-conservative,
NOT consistent!

Z1 = p,
<2 — U,
ZgZT.

Both are consistent and entropy conservative,
but have different properties (e.g. kinetic energy)

Alna = (777)Aa logarithmic average
evaluated with a special
series approximation
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Jump expansion is tedious and sensitive to arbitrary choices,
made worse by complexity of multicomponent, multitemperature

(f7)TAw = Ay

Scalar equation on vector of fluxes.

Many solutions (EC fluxes)

1-D Euler equations

— > Arbitrary simplifications: Aln(a/b) vs A(lna —Inb)

—— Parameter vector: Aln(aB) vs A(lna+ Inp)

Ismail & Roe, 2009 | [Chandrashekar, 2012
<1
21 =/ p/D;
<2
29 = u\/p/p,
23 = 1/ PP. <3

P
u?
1

2RT

Entropy-conservative,
NOT consistent!

<1 = P
<2 — U,
ZgZT.
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AN New nonlinear terms from vibrational energy:

. _ 1,0, and L ey
T (T”U) B eXp(@j/T’U) —1 o Ty 0T, l

Complexity:

species entropies, energies, entropy variables, etc. are all nontrivial
- modal energy forms (translational, vibrational, etc.)
- polynomial forms (NASA/JANAF)



Writing a library atop SageMath has largely automated the derivation
of entropy conservative flux functions for complex systems

Aw = HAZ

poblano: library atop SageMath

- builds expressions into an abstract syntax tree At = QTAZ

(fS)TAw — A | - calculates jump expansions recursively
- setup and solution of the linear system for fS fS — (HT) — 19
- verify consistency
- reproduces fluxes of earlier work for Euler egns This always produces an EC flux function
(HT is nonsingular for convex parameter vec.)
poblano has facilitated EC fluxes for: Some ‘highlights’

1 temperature, n species
- calorically perfect

Fluxes are affordable, direct functions - no phase space integration
S,n

- modal energy decomposition (aero) Species mass fluxes need the logarithmic average, f,L — ,/0\ v
- NASA polynomials (combustion)

We’ve introduced a cheap ‘exponential average’

Thermally perfect, 2 and 3 temperatures, n species for expansion of nonlinear vibrational energy terms
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directly analogous to the log avg for the Euler egns
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an issue in boundary conditions
- entropy vars may require extra boundary layer resolution,

\

or a special procedure within the stability proof
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Computing viscous fluxes with entropy variable gradients gives provable stability,
but their large gradients in boundary layers can lead ta RO fluv arrarc
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Computing viscous fluxes with entropy variable gradients gives provable stability,
but their large gradients in boundary layers can lead to BC flux errors

102 Manufactured tanh Ty profile

Nonequilibrium effects can demand the most boundary layer resolution

Recent findings motivate the use of vibrational energy
in the gradient calculation, instead of vib. temperature.

‘optimal’ form

intuitive form - N entropy var. form

a ) K;/U [ 2 _1\
dp. =|— Ko VIy |= Veyl=1 k,VT,

N\ ) C’U,’U N\ )

\ ) ]
Least resolution MOST resolution
required

required

Isothermal wall - use temp or energy at in the wall-normal gradient

- use a comparison approach,
blend more accurate (less resolution) and more stable fluxes

1071 !
0.00 0.02
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We’ve extended continuous and semi-discrete entropy stability

to multicomponent, multitemperature systems

-

. and include barometric diffusion

continuous stability proofs

- straightforward constitutive property conditions
- mass diffusion model must be strictly conservative

\

-

two-point entropy conservative flux functions

- automated jump expansion and linear system formulation

led to affordable fluxes for a variety of MC, MT systems

-

\

an issue in boundary conditions

- entropy vars may require extra boundary layer resolution,

or a special procedure within the stability proof

Y
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Thanks to my collaborators
Travis C. Fisher, SNL
Mark Carpenter, NASA

Simple Fick’s law, ji=-pDioYi, is not provably stable

Provable entropy stability \=> conservation of mass

Derived affordable fluxes for MC, MT systems
Need a new ‘exponential average’ for vibrational energy

Simplified, efficient forms exist for NASA polynomials

Comparison approach to avoid overresolution
required by the entropy variables



supplemental slides



Calorically perfect, n species, 1 temperature flux function
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species mass fluxes

f S,n — /\i@n - log avg of species density
¢ - arithmetic avg of velocity
momentum fluxes
Sn = —rS.n sk - total mass flux appears
mjom — U myass _|_ p n - consistent approx. of pressure
_ v
Sn __ S,M % * —1 —T— S,n
e T fz €, —|—p”U T |V v 9 mMass
i=1
energy flux |
- consistent approx. of total enthalpy Ae° | 3+ 2% R. 1
- log avg of inverse temperature i1 ) ¢ Z\T

supplemental slides I



supplemental slides I

Exponential average series expansion

I
Comparison with arbitrary precision numerics shows
double precision accuracy up to jump(T) =10 Kat T = 3000 K
(shock, flame front)
A (ax) 1 1 1 1 |
explax a
= —aexplax)|{14+o0[=+0| =40 F0—— . 0 =alAx
S iy et (100 (5 (50 (5 7w)))) |

New nonlinear terms from vibrational energy:

R.O. v 1 Qe .
Y 4 Tv — J ] Uv,] dTv
c ’]( ) GXp(@j/Tv) — 1 and Lo TfU 8Tfu

2/27/2019



