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2 | Why Scientific Machine Learning (SML)!?

e Large amounts of data from
experiment and simulation
e Difficult to use traditional human
centered analysis techniques
f  Despite success of comp. science,
_ools tool gap remains for analyzing data
 (Can Scientific Machine Learning
A A A \ J )
J (SML) fill the gap?

Forward Validation Inverse Can SML fill
Simulation and UQ Problems this gap?




3 I What do | mean by scalability (in general)!?

1. Data set size
* Peta/Tera byte sized data sets
* Few independent samples
2. Complexity of DNNs
* Architectures are complex, not broadly
applicable
3. Scalability of training
 Use DOE computing platforms for
training and machine learning
4. Mixed types of data
* Images, frequency, rate calculations, etc...
Y 5. How do you use DNNs and ML for science
Forward Validation Inverse Can SML fill apps

Simulation and UQ  Problems  this gap? «  Response surface construction, inversion

A A A \ J




4 I Outline: Two distinct pieces

1) Scientific Machine Learning motivated by Sandia’s Z-machine

2) Layer-parallel training of neural networks



5 I Motivating Engineered System: Sandia’s Z Machine

“Z compresses energy in time and

space to achieve extreme powers and

intensities”?

* Used to explore fusion concepts and
as an x-ray source

e Uses currents of around 26 million
amps

e Peak x-ray output of 350 terawatts

* This makes pretty pictures (see
right)

1For more about “Z” see https://www.sandia.gov/z-machine/

Photo: Randy Montoya
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This machine is complex, SML models maybe valuable: S50
e Simulation is incomplete, inaccurate or expensive E —
* Interactions can challenge physical intuition and conventional 3
simulation 5+
* “Simple” model used to guide experimental or machine design A A | ‘S
* Ultimately another capability for an engineer or scientist -50 150
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7 I Motivating Engineered System: Three potential SML activities for Z

1) Tuning of simulation parameters
2) Learning physical models

3) Guidance in experimental design



Motivating Engineered System: 1) Tuning of simulation parameters

Despite our best efforts, simulation codes and algorithms have many parameters
* Multigrid methods and linear solvers are particularly challenging for analysts
* Can we use machine learning to make writing an input deck easier?

Current algorithm for determining best solver
parameters

Exprt, Chris
Siefert, suggests
new parameters

Approach

lterations

Use ML to tune linear solver parameters
Use “ensemble” training techniques
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Motivating Engineered System: 2) Tuning of simulation parameters

Measure the blurring of the material boundary

Density Profile[A.U.]

Spatial Coordinate []

Experimental setup:
e Silicon wafer with “stripes”

of material
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What do the scientists hope to learn from this data?

We would like to understand the blurring process
Kinetic models to develop a moment based
macroscopic model model has not been predictive
Can we determine a macroscopic model?

This leads to math and modeling questions?

Do we have enough data?

What more data do we need?

What critical physical processes do we need to
included (e.g. mass conservation)? Does this make
the data requirements tractable?

What machine learning models shall be considered

and can be used for useful interpretation?

Credit to: Kris Beckwith and Pat Knapp




10 | Motivating Engineered System: 3) Guidance in experimental design
Flyer plate Material under test I
Z is used to determine equations of state (EOS) for KGEJ /\
materials at extreme pressures = Magnetic field from Z
* Flyer plates are launched into material = pushes flyer (very fast!)
* VISAR data measures shock, determines EOS =
o N\ J
(think Riemann problem)
Problem: flyer must be accelerated but must not (m A
shock! E Flyer can deform, but
* This is controlled by ”pulse shaping” 0 shocks must not form
* Force driving flyer is a function of pulse shape =
. . . N J
including current losses and impedance
interactions 4 ™
e Flyer impacts material, |
Machine learning question: Using modeling and = driving shock at
data can we invert for pulse shape given a target ,_% specified pressures
pressure/temperature? \_ ) |

Flyer plate experiment: time sequence




11 I Machine Learning for Z: Rewind
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12 | Layer-Parallel Training of Deep Neural Networks

Neural networks are the “hot” thing in machine learning

* Important to realize machine learning is more than neural networks

* Deep neural networks have had an amazing impact on image recognition and
other commercial learning applications

* They are often depicted like this:

Input Layer 1 Layer 2 Layer 3 Output

(“,7 (

The data (e.g. image) is contained and ‘x/, ‘g’ is a nonlinear activation function, the weight
matrix ‘W,” and vector ‘bI’ must be “learned” through training

xl+1:g(Wl$l—|—bl) for{=1...L —1



13 | Layer-Parallel DNNs: An Evolutionary Viewpoint

The forward evolution from layer-to-layer looks like time evolution. This motivates
the ODE form*:

' = g(W(t)x(t) +b(t)) for t € [0,T],2(0) = xg

Training algorithm requires computation of the gradient (gross approx. here):
1) Compute forward solution
2) Compute adjoint solution

Time —

Forward Simulation

Adjoint Simulation _

Gradient computation requires two time evolutions in serial. This limits scalability.

'E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Probl., 34:014004, 2017.



14 | Layer-Parallel Training: What would be cool!
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* Many parallelization strategies for DNNs subdivide the layers

* Pursue a complementary direction and also introduce layer parallelism
 Based on ideas in parallel-in-time methods

* How do we do this?




15 | Layer-Parallel Training: Multigrid Reduction in Time (MGRIT)!?2

To accelerate the forward and backward solve, we will apply MGRIT1

Time grid 0

Time grid 1

B O

—

()

®.

Time grid 2

— F-point (fine grid only)
== (-point (form coarse grid)

Xbraid library modified by Stefanie Guenther (speaking “parallel-in-time

3:

Perform m, state updates:

: U, + MGRIT(4,U,,_1,6.G)
Perform ms adjoint updates:

form=1....,mz: U, « MGRIT(AUW11 ,U,_1,0, GUm.l)
Assemble reduced gradient VgJ, VwJ, V. J

4: Approximate Hessians By, Bw, B, and select a stepsize a > 0

5:

IR. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder.
Parallel time integration with multigrid. SIAM J. on Sci. Comp., 36, 6, 2014.

Network control parameter update:
0 « 6 —aBy'VgJ

W« W —aByVw/J

no—p - aB;lvuJ

If converged: halt

Else: go to step 1.

) to solve the adjoint problem.

2XBraid: Parallel multigrid in time. software
available at https://github.com/XBraid/xbraid



16 | Layer-Parallel Training: Scalability and Solvers

Using “one-shot” optimization to train an ODE Neural Network

. Hand written NN operators (including convolutional)

. MNIST (hand written digits) and Indian pines (hyperspectral image segmentation) data sets
. Demonstrates good weak/strong scaling
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For details, see: S. Guenther, L. Ruthotto, J. B. Schroder, E. C. Cyr, N. R. Gauger, Layer-
Parallel Training of Deep Residual Neural Networks, arXiv preprint arXiv:1812.04352, 2018.




17 I Summary

* Motivated scientific machine learning ideas as filling an existing gap in the
computational toolset
* Talked through three different types of potential applications associated with
Sandia’s Z-machine
1) Determination of solver parameters
2) Development of a macroscopic model of interface diffusion
3) Pulse shape design for flying plate experiments
* Changing gears, presented new results demonstrating scalable training of deep
neural networks

Thanks to the DOE Office of Science ASCR Early Career Research Program for
supporting this work.



