
Towards Scalable Scientific
Machine Learning: Motivation
and an Approach

PRESENTED BY

Eric C. Cyr

K. Beckwith, C. Siefert, Pat Knapp (SNL),
P. Sentz, L. Olson (UIUC),
S. Guenther, N. R. Gauger (TU Kaiserslautern),
L. Ruthotto (Emory),
J. B. Schroder (UNM)

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-1957C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 Why Scientific Machine Learning (SML)?

Theory xperimen

Computational Tools

A A A

Forward Validation Inverse Can SML fill

Simulation and UQ Problems this gap?

• Large amounts of data from
experiment and simulation

• Difficult to use traditional human
centered analysis techniques

• Despite success of comp. science,
tool gap remains for analyzing data

• Can Scientific Machine Learning
(SML) fill the gap?
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3 What do I mean by scalability (in general)?

Theory I xperiment

Computational Tools

A A A

Forward Validation Inverse Can SML fill

Simulation and UQ Problems this gap?

1. Data set size
• Peta/Tera byte sized data sets
• Few independent samples

2. Complexity of DNNs

• Architectures are complex, not broadly
applicable

3. Scalability of training

• Use DOE computing platforms for
training and machine learning

4. Mixed types of data
• Images, frequency, rate calculations, etc...

5. How do you use DNNs and ML for science
apps
• Response surface construction, inversion



4 I Outline:Two distinct pieces

1) Scientific Machine Learning motivated by Sandia's Z-machine

2) Layer-parallel training of neural networks



5 Motivating Engineered System: Sandia's Z Machine

"Z compresses energy in time and
space to achieve extreme powers and
intensities"1
• Used to explore fusion concepts and
as an x-ray source

• Uses currents of around 26 million
amps

• Peak x-ray output of 350 terawatts
• This makes pretty pictures (see

right)

Photo: Randy Montoya

1For more about "Z" see https://www.sandia.gov/z-machine/



6 Motivating Engineered System: How does Z work? (As explained by a computer scientist)
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This machine is complex, SML models maybe valuable:
• Simulation is incomplete, inaccurate or expensive
• Interactions can challenge physical intuition and conventional

simulation

• "Simple" model used to guide experimental or machine design

• Ultimately another capability for an engineer or scientist
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7 Motivating Engineered System:Three potential SML activities for Z

1) Tuning of simulation parameters

2) Learning physical models

3) Guidance in experimental design



8 1 Motivating Engineered System: I) Tuning of simulation parameters

Despite our best efforts, simulation codes and algorithms have many parameters
• Multigrid methods and linear solvers are particularly challenging for analysts
• Can we use machine learning to make writing an input deck easier?

Approach
• Use ML to tune linear solver parameters
• Use "ensemble" training techniques

Current algorithm for determining best solver
parameters
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9 Motivating Engineered System: 2) Tuning of simulation parameters

Measure the blurring of the material boundary:
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Experimental setup:
• Silicon wafer with "stripes"

of material
• Exposed to X-ray's from Z
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What do the scientists hope to learn from this data?
• We would like to understand the blurring process
• Kinetic models to develop a moment based

macroscopic model model has not been predictive
• Can we determine a macroscopic model?

This leads to math and modeling questions?
• Do we have enough data?
• What more data do we need?
• What critical physical processes do we need to

included (e.g. mass conservation)? Does this make
the data requirements tractable?

• What machine learning models shall be considered
and can be used for useful interpretation?

Credit to: Kris Beckwith and Pat Knapp

1



10 Motivating Engineered System: 3) Guidance in experimental design
Flyer plate Material under test

Z is used to determine equations of state (EOS) for
materials at extreme pressures
• Flyer plates are launched into material
• VISAR data measures shock, determines EOS

(think Riemann problem)

Problem: flyer must be accelerated but must not
shock!
• This is controlled by "pulse shaping"
• Force driving flyer is a function of pulse shape

including current losses and impedance
interactions

Machine learning question: Using modeling and
data can we invert for pulse shape given a target
pressure/temperature?

 _}

 J

Magnetic field from Z

pushes flyer (very fast!)

Flyer can deform, but
shocks must not form

Flyer impacts material,
driving shock at
specified pressures

Flyer plate experiment: time sequence 



11 Machine Learning for Z: Rewind

1) Assisting analysts using learned
linear solver parameters

2) Learning new models for
interface blurring

3) Designing pulse profiles for
flyer plates
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12 Layer-Parallel Training of Deep Neural Networks

Neural networks are the "hot" thing in machine learning
• Important to realize machine learning is more than neural networks
• Deep neural networks have had an amazing impact on image recognition and

other commercial learning applications

• They are often depicted like this:

Input Layer 1 Layer 2 Layer 3 Output

The data (e.g. image) is contained and ̀ x1', ̀ g' is a nonlinear activation function, the weight
matrix 'WI' and vector 'V must be "learned" through training

xi-Fi = g(Wixi +1)1) for l= 1 . . . L 1



13 Layer-Parallel DNNs: An Evolutionary Viewpoint

The forward evolution from layer-to-layer looks like time evolution. This motivates
the ODE form':

x' — g (W (t)x(t) + b(t)) for t c [0 , T], x (0) — x 0

Training algorithm requires computation of the gradient (gross approx. here):
1) Compute forward solution
2) Compute adjoint solution

Forward Simulation

Adjoint Simulation

T me 

< M M >

Gradient computation requires two time evolutions in serial. This limits scalability.

1 E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Probl., 34:014004, 2017.



14 Layer-Parallel Training:What would be cool!

Proc. 0 Proc. 1 Proc. 2

• • .

Proc. P-1 Proc. P

IIIIIIIIIIII.

• Many parallelization strategies for DNNs subdivide the layers
• Pursue a complementary direction and also introduce layer parallelism
• Based on ideas in parallel-in-time methods
• How do we do this?



15 Layer-Parallel Training: Multigrid Reduction in Time (MGRIT)1'2

To accelerate the forward and backward solve, we will apply MGRIT1

Time grid 0 I fi

Tle grid

Time grid 2  

— r-point (fine grid only)

(form coarse grid)

(')
Xbraid Iibrary modified by Stefanie Guenther (speaking "parallel-in-time!") to solve the adjoint problem.

i: Perform mi state updates:
for m = 1, , m1 : 15,„ MGRIT(A, Um-1, 0, G)

2: Perform m2 adjoint updates:
for m = 1, , m2 : MGRIT(Aum, , Unt—i , 8, Gum, )

3: Assemble reduced gradient V9J, VwJ,
4: Approximate Hessians Bo, Bw, BA and select a stepsize a > 0
5: Network control parameter update:
0 0 — alEciVeJ
W W — aBV‘I/VwJ
p, p, — aB17,10AJ

6: If converged: halt
Else: go to step 1.

1R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder. 2XBraid: Parallel multigrid in time. software
Parallel time integration with multigrid. SIAM J. on Sci. Comp., 36, 6, 2014. available at https://github.com/XBraid/xbraid



16 Layer-Parallel Training: Scalability and Solvers

Using "one-shot" optimization to train an ODE Neural Network

• Hand written NN operators (including convolutional)

• MNIST (hand written digits) and Indian pines (hyperspectral image segmentation) data sets

• Demonstrates good weak/strong scaling
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For details, see: S. Guenther, L. Ruthotto, J. B. Schroder, E. C. Cyr, N. R. Gauger, Layer-

Parallel Training of Deep Residual Neural Networks, arXiv preprint arXiv:1812.04352, 2018.



17 Summary

• Motivated scientific machine learning ideas as filling an existing gap in the
computational toolset

• Talked through three different types of potential applications associated with
Sandia's Z-machine
1) Determination of solver parameters
2) Development of a macroscopic model of interface diffusion
3) Pulse shape design for flying plate experiments

• Changing gears, presented new results demonstrating scalable training of deep
neural networks

Thanks to the DOE Office of Science ASCR Early Career Research Program for
supporting this work.


