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1. Motivation
Stochastic eigenvalue problem

• Eigenvalue analysis: modeling of vibration of mechanical structures, neutron transport
criticality computations, or stability of dynamical systems

• Stochastic Eigenvalue analysis: eigenvalue problems parameterized by random
variables

The behavior of the mathematical models depends on proper choice of parameters
(e.g., coefficients, boundary conditions or forces)

In practice, the exact values of these parameters are not known and are modeled as
random processes

Existing solvers for stochastic eigenvalue problem

• Monte Carlo methods [Nightingale and Umrigar 2007] => robust but slow

• Perturbation methods Shinozuka and C. J. Astill 1972] => limited to low variability

• Spectral stochastic finite element methods (SSFEMs) _Verhoosel, Guti"errez, and Hulshoff 2006]
[Haki i'a, Kaarnioja, and Laaksonen 2015] [Ghanem and Ghosh 20071 r9enner, Onwunta, and Stoll 2018]

=> effective but require solutions of large systems of nonlinear equations
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2. Problem definition
Symmetric stochastic eigenvalue problem:

A(01(0 = As(Ous(0

• A(e) c RnXn : linear operator, a matrix-valued function

• us(0 E n : eigenvector, a vector-valued function

• AV) e --.-: eigenvalue, a scalar function

• = [ -I., ... , ,,,„j-r: a set of i.i.d. random variables, e rN P(e)

ke(1))us (e(I)) = As (e(I))us (el))

A (e(2) )us (e2)) As (e(2))us (e2))

ke(3))us (e(3)) = A5(5(3))us (e(3))

• A(0 = A(6r: symmetric operator

• us(o-ru5(0 = i : orthonormal eigenvectors

I 21!
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Problem definition
Spectral approximation of random functions via gPC expansion [Xiu and Karniadakis 2002]

. gPC expansion: with generalized polynomial chaos basis 00 E

f(0 frOg) fiV)1(e)-kff02(e) + • - - + fn,IPti (e) ,
 ►

mean Degrees of polynomials increase

01(e) + 02(0 +1 +

= (T(0 ®

kl,(e)T = [0(0 ... 01,7(e)]

On(0

02(e) 4'n,(0

01(e) 02(0

r% 

• Eigenvector: us(0 = >2,uskOk(0 = (T(e)T
k= I

r%

• Eigenvalue: As(0 = Ai(Ok(0 T(0, Ask E

• • •

14, e 11 1 Cis e

, As E n

nr%

f(e), f c Rnf

(01-1(e)_
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3. Sampling-based methods
- Computing the unknown coefficients via discrete projections:

• Orthonormality of the gPC basis: (0;(0,0;(0) = -1,[,ogm(0] = fr 'cbg)0i(OdP(0

• Discrete projection:

---11,[f(e)(0i(e)] =

• Need to evaluate

(MO, 0j(0) = -L140i(0)(0] = O, i 7L j

Al [fl 0 (e)/Pg) + • - - + ft-l'On (00,(0] = f

"4 [f(OrOi(0] = f f(OrOi(OdP(e)
F

- Two methods for discrete projections

• Monte Carlo method:
1 nnic

fk =   f(0))(4(0))
n MC

q= I

• Stochastic collocation method: [Xiu 2007]

nq

fk = >_2f(e(9))ok(e(9)*(9)
q= I

"Vi(e)0i(e)1 = f
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4. Stochastic Galerkin method
- Galerkin (orthogonal) projection: gPC approximation:

(W(e)T ® A(e))as 
(yksTw(owwT) I

Us 
As(e) AsTw(e)

us(0 (T(0-r oty
us-r(w(e)w(e)-r 0 ocis 1

Galerkin projection 4, orthogonal projection onto trial basis,

W(e)T = [OW • • • 11/)11(e):
E[TIF Ar = ER/ kli)lifklf

[kif (as-r(ww-r ocis)]
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Two inexact solvers for SG formulation

Inexact stochastic inverse subspace iteration

• Stochastic inverse subspace iteration (SISI): a stochastic extension of inverse subspace
iteration [Meidani and Uhanem 2012, 2014, Sousedik and Elman 2016]

• Inexact variant of SISI

• Efficient preconditioners for inexact SISI

Inexact Newton method for stochastic eigenvalue problems

• Newton iteration (NI) for SG formulation [Ghanem and Uhosh 2007]

• Inexact variant of NI [Benner, et al 2018]

• Efficient preconditioners for inexact NI
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Inexact SISI
Inverse subspace iteration: Aus = Asus

• Approximate eigenvectors via an iterative procedure:

1. solve Avs,(1) — us,(1)

2. orthonormalize [u1,0), u2'0), • • • ] := Gram-SchmidtGv i'('), v2'('), • • • ])

• Compute eigenvalue via Rayleigh quotient: As = us'OrrAus,(1)

Stochastic inverse subspace iteration:

• Extension of ISI to solve A(Ous (0 = As (e)us (0 in SG formulation

• Modifications: approximate stochastic eigenvector via an iterative procedure:

1. solve , [ww-r A]vs,i us,i

2. Gram-Schmidt and Rayleigh quotient are tailored to stochastic expansions

Inexact SISI:

• Solve the linear systems at each nonlinear step only approximately using preconditioned
conjugate gradient method (stopping criteria: relative residual)

• Adaptive stopping tolerance: based on the previous nonlinear residual
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Inexact Newton iteration
Need to solve a nonlinear system of equations:

LI
ni s T„ [Ras, As)] rc[WIF 0 A]as — 4(AsTW)WW l]Cisl 

0IN , A ) = Gas — _Ide tp 0 asTTTT us) 1( ) [ (( ( O )] 

Newton iteration:

• Jacobian:

[ n()

j (as '(n) , s'(n) ) _s 

6F,' 

(n) = — R(Cis'(n) 1 s'(n) )

ir5A '

[
cis, (n+ I)

—
A
s,(n+1) —

J(us, As) =

[ us,(n) 1 [ öds,(n)
—
A
s, (n) + 

6
—
A
s
' 
(n)

[ Z ( us , As)

[,, (as, As)

OF  (us
OAs '

0

Inexact computation: solves the systems only approximately using Krylov-
subspace methods (GMRES)
• Stopping criteria for GMRES: relative residual
• Adaptive tolerance: based on nonlinear residual at the previous nonlinear iteration step

Pin + cln42 
< T IR11—i 2

1 R42
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Precorf itioners for Newton it rat i o n
- Preconditioners: (inexpensive) approximations to Jacobian matrices

• Mean-based (MB) preconditioner [Powell and Elman 2009]

• Constraint mean-based (MB) preconditioner [Keller, et al 2000]

• Constraint hierarchical Gauss Seidel (chGS) preconditioner [Sousedik and Ghanem 2014]
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Preconditioners for Newton iteration
- Structure of Jacobian matrices

OF OF

OW Wks

OF

OUs

_____de OsTip)iFTT I]

na

A(0 = A V>k(0, Ak E

na 

>:: Hk

k=1

nxn

Hk —

• Consider the mean-component only: HI 0 A I , HI = -41[01 ilfklir] = I

A [OKTWT]

• Mean-based (MB) preconditioner:

r
B 

B-ri
0

[A O O BA_IBT1
Constraint MB (cMB) preconditioner: [A BT

[B 0

del 1 2



Precorf itioners for Newton iteration
• Consider a hierarchical structure: Gauss Seidel update

Oth order 1st order 2nd order

Oth order

1st order

2nd order

E 

Ill

[Hdu = 'kbk0b,1
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Precorf itioners for Newton iteration
• Consider a hierarchical structure: Gauss Seidel update

ME, 1

ill

0 Diagonal blocks
O Current blocks
0 Updated blocks
O Unupdated blocks
0 RHS

Solve diagonal blocks with cMB
[Constraint hierarchical GS: chGS
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Precorf itioners for Newton iteration
• Consider a hierarchical structure: Gauss Seidel update

!

I-1

7
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Precorf itioners for Newton iteration
• Consider a hierarchical structure: Gauss Seidel update

.?,
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5. Numerical experiments
Model problem: stochastic diffusion problem with lognormal coefficient

—V • (a(x, u(x, e)) = A(e)u(x, e) in D x F,

u(x, = 0 on OD x F,

where the diffusion coefficient is a truncated lognormal process:

• Finite element discretization:

na

a (x)0e(e)

A(Ous = As(e)us(0

no no

where A(e) = A 11) = IceLl 11),e(0 with Ke a stiffness matrix weighted by af(x)

f=1 f=

and M = LLT is a mass matrix.
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Numerical experiments
Results of numerical experiments

• Eigenvalue: AS(e) = 40k(e) = AsTW(0 • gPC coefficients: A' = [Al, • • • , As] r
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Li sC -
x SISI
0  NI

10 20 30 I()

Pdf estimates of the five smallest eigenvalues
computed via ksdensity

MC: Monte Carlo method
SC: Stochastic Collocation method
SISI: Stochastic Inverse Subspace Iteration
NI: Newton iteration

d k SC SISI NI
3 1 4.9431E+00 4.9431E+00 4.9431E+00 

2 3.6197E-01 3.6197E-01 3.6197E-01
3
4

----147.9829E-16
-6.6436E-13 -1.7135E-14 -1.3429E-15

5 1.8642E-02 1.8642E-02 1.8642rOr
6 771334E-T3 797517131E-1 7

1 7 -3.0909E-13 -1.1628E-15 -9.5249E-17
'-'"`"— 8 -1.5442E-03 -1.5442E-03 -17gzifro'r

9 -97700E=T7 -1.170UF-TST3125E-18
10 -1.5442E-03 -1.5442E-03 -1.5442E-0

The first 10 coefficients of the gPC expansion of the smallest
eigenvalue
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Numerical experiments
Inexact stochastic inverse subspace iteration (SISI) performance

• Convergence plot

10°

l0-2

10-

10-

10-

5 10

iteration

15 20

Convergence history of the inexact stochastic inverse
subspace iteration

• Comparison of different preconditioners:

Preconditioner 1st 2nd 3rd 4th 5th

MB 6.45 3.90 3.90 4.60 3.75
hGS (no trunc.) 2.15 1.00 1.00 1.45 1.00

Average number of PCG iterations for computing the five
smallest eigenvalues and corresponding eigenvectors
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Numerical experiments
Inexact Newton iteration (NI) performance

• Convergence plot

10

10-

10-1

tigenpair:
1

0 2
-*— 3
a— 4

5

0 2 4 6 8

Iteration (n)

Convergence history in terms of the nonlinear residual

• Comparison of different preconditioners:

Preconditioner I st 2nd 3rd 4th 5th

NMB 13.3 28.9 27.8 16.2 43.0
cMB 4.3 24.7 25.4 5.3 28.0
chGS 2.0 13.8 13.5 2.0 12.3

Average number of MINRES/GMRES iterations for computing the five
smallest eigenvalues and corresponding eigenvectors

1st 4th 1st 4th

Nonlinear step cMB chGS

1 2 2 1 1
2 4 8 2 1
3 7 10 3 2
4 13 4

The number of GMRES iterations for computing the first and the fourth
eigenvalues and corresponding eigenvectors
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6. Conclusion
- Investigated inexact solvers for symmetric stochastic eigenvalue problems

• Inexact stochastic inverse subspace iteration (SISI) with PCG

• Inexact Newton iteration (NI) with GMRES

Proposed novel preconditioners for efficient computations

• Hierarchical Gauss-Seidel preconditioner (hGS) for SISI

• Constraint mean-based (cMB) preconditioner for NI

• Constraint hierarchical Gauss-Seidel preconditioner for NI

- Demonstrated effectiveness of the preconditions with results of numerical
experiments

Future work:

• Nonsymmetric stochastic eigenvalue problem

• Stability analysis of dynamical systems
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