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1. Motivation

- Stochastic eigenvalue problem

Eigenvalue analysis: modeling of vibration of mechanical structures, neutron transport
criticality computations, or stability of dynamical systems

Stochastic Eigenvalue analysis: eigenvalue problems parameterized by random
variables

The behavior of the mathematical models depends on proper choice of parameters
(e.q., coefficients, boundary conditions or forces)

In practice, the exact values of these parameters are not known and are modeled as
random processes

- Existing solvers for stochastic eigenvalue problem
Monte Carlo methods => robust but slow
Perturbation methods => [imited to low variability

Spectral stochastic finite element methods (SSFEMs)

=> effective but require solutions of large systems of nonlinear equations



2. Problem definition

Symmetric stochastic eigenvalue problem:

A&)w (&) = X (§)u(€)
- A(&) € R™": linear operator, a matrix-valued function

- u*(§) € R": eigenvector, a vector-valued function

* \(€) € R: eigenvalue, a scalar function

c&=[¢&,..., &) asetof ii.d. random variables, & ~ P({)

A () = M)
AP (€)= X (E@)ur(e™)
A (E) = (e ()

» A(E) = A(€)T: symmetric operator

- (&) Tus(€) = | : orthonormal eigenvectors
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Problem definition

Spectral approximation of random functions via gPC expansion

gPC expansion with generalized polynomial chaos basis 1;(§) € R

wa, = fi1(§) +Hhava() + - +htn (), flE), fER
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3. Sampling-based methods

Computing the unknown coefficients via discrete projections:

Orthonormality of the gPC basis: (¥i(£), ¢;(€) /w );(€)dP(&

<¢i(f)a¢j(f)> — EW:’(ij(ﬁ)] =0, i # j

Discrete projection:

E[f(§)i(€)] = Elfiy1 ()vi(€) + - - + o ¥ne (§)1hi(€)] = FE[i(E)i(§)] = fi

Need to evaluate
_ / )i (€)dP(€)

Two methods for discrete projections

Monte Carlo method:

hmc

Zféq) k(€@)

Stochastic collocation method:
Nq

fo= D _AED) (@)l

q=1



4. Stochastic Galerkin method

Galerkin (orthogonal) projection: gPC approximation:
(BT 0A©)E = (XTHOUEOToNE  NO=XTUY
Galerkin projection {L orthogonal projection onto trial basis,

- VE) =€) - Yn(&)]
E[\IJ\IIT QA = IE[(XT\IJ)\II\I!T ® l)]as
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Two inexact solvers for SG formulation

Inexact stochastic inverse subspace iteration

Stochastic inverse subspace iteration (SISI): a stochastic extension of inverse subspace
iteration ' | |

Inexact variant of SISI

Efficient preconditioners for inexact SISI

Inexact Newton method for stochastic eigenvalue problems

Newton iteration (NI) for SG formulation
Inexact variant of NI

Efficient preconditioners for inexact NI



Inexact SIS|

Inverse subspace iteration:  Av® = \u®

Approximate eigenvectors via an iterative procedure:
1. solve Ay() — 50)
2. orthonormalize [u"® >0 ...]:= Gram-Schmidt([v"'@ v*® ...])
- Compute eigenvalue via Rayleigh quotient: ~ )\$ = >0 TAys 0
Stochastic inverse subspace iteration:
- Extension of ISI to solve  A(&)u* (&) = X (§u*(§) in SG formulation

- Modifications: approximate stochastic eigenvector via an iterative procedure:

1. solve| E[U¥" @ Ajy*' = &'

2. Gram-Schmidt and Rayleigh quotient are tailored to stochastic expansions

Inexact SISI:

- Solve the linear systems at each nonlinear step only approximately using preconditioned
conjugate gradient method (stopping criteria: relative residual)

- Adaptive stopping tolerance: based on the previous nonlinear residual



Inexact Newton iteration

Need to solve a nonlinear system of equations:

o TF@E )] BT @ Al — B[(CTO 0T @ @]
R(™, X°) = [ G(t) ] = [ E[W ® (@ (W07 @ )aF) — 1)) ] kS

Newton iteration:

. ous () ]
j(us,(n), )\s,(n)) 5X57(n) — _R(HS,(H)’ )\s,(n))

s (n+1) B 0 (n) ST (n)
Xs, (n+1) — Xs, (n) 5Xs, (n)

B 8_I-; —s)j\s 8__FS —575\3
R

+

Jacobian:

& (@, X) 0

Inexact computation: solves the systems only approximately using Krylov-
subspace methods (GMRES)

Stopping criteria for GMRES: relative residual

Adaptive tolerance: based on nonlinear residual at the previous nonlinear iteration step

IRy + Tnx|l2
<7 |[Ra—1]
IR 12 ’
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Preconditioners for Newton iteration

Preconditioners: (inexpensive) approximations to Jacobian matrices

Mean-based (MB) preconditioner
Constraint mean-based (MB) preconditioner

Constraint hierarchical Gauss—Seidel (chGS) preconditioner
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Preconditioners for Newton iteration

Structure of Jacobian matrices

OF
O

OF
ou’

Consider the mean-component only: H; ® Ay,

oF
o

=EUUT QA)—E[(XTT)TTT @[]

AE) = S A(€), A e R
k=1

EUUT @Al =) He®A,  He=E[ U]
k=1
H =E[¥U'] =1
A BT
= B 0
- Mean-based (MB) preconditioner: 4 0
o o

- |Constraint MB (cMB) preconditioner: [A BT}
B O
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Preconditioners for Newton iteration

Consider a hierarchical structure: Gauss—Seidel update
Oth order 1st order 2nd order

L

[Hilj = E[wbiy]

Oth order

—
A

1st order

2nd order




Preconditioners for Newton iteration

Consider a hierarchical structure: Gauss—Seidel update

B Diagonal blocks
] Current blocks

B Updated blocks
B Unupdated blocks
RHS

Solve diagonal blocks with cMB

Constraint hierarchical GS: chGS
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Preconditioners for Newton iteration

- Consider a hierarchical structure: Gauss—Seidel update
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Preconditioners for Newton iteration

- Consider a hierarchical structure: Gauss—Seidel update
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5. Numerical experiments

Model problem: stochastic diffusion problem with lognormal coefficient

=V - (a(x,§)Vu(x,§)) = A(u(x,§) inD x T,
u(x,£) =0 on dD x T,

where the diffusion coefficient is a truncated lognormal process:

a.6) =3 ar(0e()
/=

Finite element discretization:

A(Su (&) = N (v (€)
where A(¢) = ZaAgwg(f) = Z [L7'KL™T] e (€) with K¢ a stiffness matrix weighted by ae(x)
and M=1LL" fs: Ia mass mati?.
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Numerical experiments

Results of numerical experlments

Eigenvalue: X*(& Z)\ = XTw(¢) + gPC coefficients: X = [\, -+, A%]"
1.2 -
o —— | d SC SISI NI
—+—MC —
| 50 < 4.9431E+00 4.9431E+00 4.9431E+00 [
o < 3.6197E-01  3.6197E-01 3.6197E-01 [
08| | | [ 4477E-13 -T.6489E-T4  -7.9829E-16

-6.6436E-13  -1.7135E-14 -1.3429E-15
|.8642E-02  1.8642E-02  1.8642E-02 -

VWO NN DN WIN— &

-5.4534E-T3 -95178E-17 -7.426IE-17
, -3.0909E-13 -1.1628E-15 -9.5249E-17

< - -1.5442E-03  -1.5442E-03  -1.5442E-03 >
~-9.7700E-TS -T.T200E-T5 _ [.3125E-18

A
i

-1.5442E-03  -1.5442E-03 -1.5442E-03"[>

The first 10 coefficients of the gPC expansion of the smallest

Pdf estimates of the five smallest eigenvalues eigenvalue

computed via ksdensity

MC: Monte Carlo method

SC: Stochastic Collocation method

SISI: Stochastic Inverse Subspace lteration
NI: Newton iteration
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Numerical experiments

Inexact stochastic inverse subspace iteration (SISI) performance

Convergence plot - Comparison of different preconditioners:

10° Preconditioner | Ist 2nd 3rd 4th  5th

MB 645 390 390 460 3.75
hGS (no trunc.) | 2.15 1.00 1.00 145 1.00

10’ g
.4

Average number of PCG iterations for computing the five

—4 [ . . x
10 smallest eigenvalues and corresponding eigenvectors

€1

1076

1028 |

10~

5 10 15 20
iteration

Convergence history of the inexact stochastic inverse
subspace iteration
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Inexact Newton iteration (NI) performance

Convergence plot
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Convergence history in terms of the nonlinear residual

Iteration (n)

Numerical experiments

- Comparison of different preconditioners:

Preconditioner |st 2nd 3rd 4th 5th
NMB 13.3 289 278 162 430
cMB 43 247 254 53 28.0
chGS 20 138 135 20 123

Average number of MINRES/GMRES iterations for computing the five

smallest eigenvalues and corresponding eigenvectors

Ist 4th | Ist 4th
Nonlinear step cMB chGS
| 2 2 I I
2 4 8 2 I
3 7 10 | 3 2
4 13 4

The number of GMRES iterations for computing the first and the fourth
eigenvalues and corresponding eigenvectors




6. Conclusion

Investigated inexact solvers for symmetric stochastic eigenvalue problems

Inexact stochastic inverse subspace iteration (SISI) with PCG
Inexact Newton iteration (NI) with GMRES

Proposed novel preconditioners for efficient computations
Hierarchical Gauss-Seidel preconditioner (hGS) for SIS
Constraint mean-based (cMB) preconditioner for NI

Constraint hierarchical Gauss-Seidel preconditioner for NI

Demonstrated effectiveness of the preconditions with results of numerical
experiments

Future work:

Nonsymmetric stochastic eigenvalue problem

Stability analysis of dynamical systems
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